JP4265168B2 - Method for manufacturing permanent magnet - Google Patents

Method for manufacturing permanent magnet Download PDF

Info

Publication number
JP4265168B2
JP4265168B2 JP2002230660A JP2002230660A JP4265168B2 JP 4265168 B2 JP4265168 B2 JP 4265168B2 JP 2002230660 A JP2002230660 A JP 2002230660A JP 2002230660 A JP2002230660 A JP 2002230660A JP 4265168 B2 JP4265168 B2 JP 4265168B2
Authority
JP
Japan
Prior art keywords
fine particles
permanent magnet
rare earth
resin
powder coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002230660A
Other languages
Japanese (ja)
Other versions
JP2004071912A (en
Inventor
吉村  公志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2002230660A priority Critical patent/JP4265168B2/en
Publication of JP2004071912A publication Critical patent/JP2004071912A/en
Application granted granted Critical
Publication of JP4265168B2 publication Critical patent/JP4265168B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高耐食性や絶縁性などの各種機能を希土類系永久磁石に付与することができる、公害問題がなく、地球環境に優しい永久磁石の製造方法に関する。
【0002】
【従来の技術】
Nd−Fe−B系永久磁石に代表されるR−Fe−B系永久磁石やSm−Fe−N系永久磁石に代表されるR−Fe−N系永久磁石などの希土類系永久磁石は、資源的に豊富で安価な材料が用いられ、かつ、高い磁気特性を有していることから、特にR−Fe−B系永久磁石は今日様々な分野で使用されている。
しかしながら、希土類系永久磁石は反応性の高い希土類元素:Rを含むため、大気中で酸化腐食されやすく、何の表面処理をも行わずに使用した場合には、わずかな酸やアルカリや水分などの存在によって表面から腐食が進行して錆が発生し、それに伴って、磁石特性の劣化やばらつきを招く。さらに、錆が発生した磁石を磁気回路などの装置に組み込んだ場合、錆が飛散して周辺部品を汚染する恐れがある。
上記の点に鑑み、希土類系永久磁石に耐食性を付与する目的で、その表面に耐食性被膜としての樹脂被膜を形成することが古くから行われている。
これまで、希土類系永久磁石の表面に樹脂被膜を形成する場合、被膜成分となる樹脂を有機溶剤に溶解して調製した塗液を電着塗装法、スプレー塗装法、浸漬塗装法、ロールコート法などによって磁石の表面に塗布した後、熱処理を行うことで樹脂被膜とする方法が採用されてきた。このような塗液を使用した樹脂被膜形成方法は、工程が簡易であることなどの点において非常に利用価値が高いものである。しかしながら、この方法は、熱処理による樹脂被膜形成過程において有機溶剤が被膜から蒸発することで被膜にピンホールが発生しやすいといった問題や塗液の歩留まりが悪いといった問題があることから、得られる樹脂被膜の耐食性被膜としての性能の点やコストの点において満足できる方法とはいえないものである。また、地球環境の改善を図る点においても、有機溶剤を使用するこの方法は望ましいものではない。従って、このような塗液を使用した樹脂被膜形成方法の代替方法として、粉体塗料を使用して静電粉体塗装により希土類系永久磁石の表面に樹脂被膜を形成する方法が既に提案されている(特開平11−238620号公報)。
【0003】
【発明が解決しようとする課題】
粉体塗料を使用して静電粉体塗装により希土類系永久磁石の表面に樹脂被膜を形成する方法は、静電塗装ガンなどによりマイナスに帯電させた粉体塗料を静電引力で希土類系永久磁石の表面に塗着させた後、熱処理を行うことで粉体塗料を溶融させて樹脂被膜とする方法であり、塗液を使用した樹脂被膜形成方法に比較して形成される樹脂被膜が耐食性に優れること、磁石の表面に塗着しなかった粉体塗料は回収して再利用ができるので無駄がなく歩留まりがよいこと、有機溶剤を使用しないので公害問題がないことなどの点において優れた方法であるが、昨今の希土類系永久磁石に要求される高耐食性を満足させるためにはさらなる改善を必要とする。
また、近年、希土類系永久磁石には、その適用分野に応じて高耐食性のみならず絶縁性などの各種機能が要求されており、希土類系永久磁石に各種機能を付与することができる優れた方法が切望されている。
そこで本発明は、高耐食性や絶縁性などの各種機能を希土類系永久磁石に付与することができる、公害問題がなく、地球環境に優しい永久磁石の製造方法を提供することを目的とする。
【0004】
【課題を解決するための手段】
本発明者は上記の点に鑑みて種々の検討を行った結果、無機質微粒子と樹脂とからなる粉体塗料を使用して静電粉体塗装により希土類系永久磁石の表面に無機質微粒子分散樹脂被膜を形成することで、上記の目的を達成することができることを知見した。
【0005】
本発明は上記の知見に基づいてなされたものであり、本発明の永久磁石の製造方法は、請求項1記載の通り、無機質微粒子と樹脂とからなる粉体塗料であって、無機質微粒子として平均粒径が0.01μm〜20μmである亜鉛微粒子を25重量%〜95重量%含有し、平均粒度が10μm〜50μmである個々の粉体の表面に亜鉛微粒子が露出して存在する粉体塗料を使用して静電粉体塗装により希土類系永久磁石の表面に無機質微粒子分散樹脂被膜を形成することを特徴とする
た、請求項記載の製造方法は、請求項記載の製造方法において、樹脂がエポキシ樹脂であることを特徴とする
た、請求項記載の製造方法は、請求項1または2記載の製造方法において、無機質微粒子分散樹脂被膜の膜厚が10μm〜50μmであることを特徴とする。
また、本発明の永久磁石は、請求項記載の通り、請求項1記載の製造方法にて製造されたことを特徴とする。
【0006】
【発明の実施の形態】
本発明の永久磁石の製造方法は、無機質微粒子と樹脂とからなる粉体塗料を使用して静電粉体塗装により希土類系永久磁石の表面に無機質微粒子分散樹脂被膜を形成することを特徴とするものである。樹脂を有機溶剤に溶解して得られた溶液に無機質微粒子を分散させて調製した塗液を使用した無機質微粒子分散樹脂被膜の形成方法は既に知られているが、本発明の方法によって形成される無機質微粒子分散樹脂被膜は、希土類系永久磁石の表面に対する密着性に優れることに加え、塗液を使用する方法によって形成される無機質微粒子分散樹脂被膜よりも、樹脂被膜中に分散させた無機質微粒子がより高くその機能を発揮するというこれまでの知見からは予期することができなかった効果を奏する。
【0007】
粉体塗料の構成成分となる無機質微粒子は、希土類系永久磁石に対して付与しようとする機能に応じて適宜選択される。例えば、高耐食性の付与を目的とする場合、亜鉛微粒子やアルミニウム微粒子やマグネシウム微粒子などを選択すればよい。これらの金属微粒子は希土類系永久磁石の表面素地よりも電位が卑であるので、これらの金属微粒子を分散させた樹脂被膜を希土類系永久磁石の表面に形成した場合、樹脂被膜中の金属微粒子が電気化学的犠牲防食作用を発揮することで、被膜全体として希土類系永久磁石に高耐食性を付与することができる。また、絶縁性の付与を目的とする場合、SiO2やAl23などの金属酸化物の微粒子を樹脂被膜中に分散させればよい。また、アナターゼ型TiO2微粒子を樹脂被膜中に分散させれば、希土類系永久磁石に光触媒機能を付与することができる。
【0008】
無機質微粒子の平均粒径は0.01μm〜20μmであることが望ましい。平均粒径が0.01μm未満であると、無機質微粒子の凝集が起こりやすくなるので、個々の粉体中において無機質微粒子を均一分散させることが困難になり、ひいては希土類系永久磁石の表面に無機質微粒子が均一分散した樹脂被膜を形成することが困難になることで希土類系永久磁石に高耐食性を付与することができなくなる恐れがあるからである。一方、平均粒径が20μmを超えると、形成される被膜の膜厚が厚くなりすぎることから、優れた寸法精度を有する小型磁石の提供や磁石の有効体積の確保が困難になる恐れがあるからである。
【0009】
粉体塗料の構成成分となる樹脂としては、エポキシ樹脂、アクリル樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリアミドイミド樹脂など、一般的に粉体塗料の構成成分として使用される樹脂が挙げられるが、中でもエポキシ樹脂は耐食性や取扱性の点で優れた樹脂であり、ポリイミド樹脂は絶縁性や耐ガス性や耐熱性の点で優れた樹脂であることから、これらの樹脂は本発明において好適に採用される。
【0010】
粉体塗料中における無機質微粒子の含有量は25重量%〜95重量%であることが望ましい。25重量%未満であると、樹脂被膜中に無機質微粒子を分散させることによる効果が十分に発揮されない恐れがある一方、95重量%を超えると、樹脂被膜の本質的な機能が損なわれたり、被膜の平滑性が損なわれたりすることで、希土類系永久磁石に目的とする機能を付与することができなくなる恐れがあるからである。
【0011】
無機質微粒子と樹脂とからなる粉体塗料は、自体公知の粉体塗料製造技術、即ち、例えば、原料となる無機質微粒子と樹脂に、必要に応じて、樹脂硬化剤(エポキシ樹脂を採用する場合には芳香族アミンや酸無水物やジシアンジアミド誘導体などが一般的に使用される)、各種の添加剤、触媒などを均一混合した後、溶融分散、冷却、粉砕、篩分工程を経て製造される。このようにして製造される粉体塗料の平均粒度は10μm〜50μmであることが望ましい。理由は、後述するように、希土類系永久磁石の表面に形成される無機質微粒子分散樹脂被膜の膜厚は10μm〜50μmであることが望ましく、このような膜厚の被膜を形成するのに都合がよいからである。
【0012】
無機質微粒子と樹脂とからなる粉体塗料を使用した静電粉体塗装は、自体公知の静電粉体塗装技術によって行えばよい。また、例えば、特開平11−57592号公報に記載された電解流動静電粉体塗装技術によれば、希土類系永久磁石の表面全体に無機質微粒子分散樹脂被膜を均一に形成することができる。このようにして形成される無機質微粒子分散樹脂被膜の膜厚は10μm〜50μmであることが望ましい。膜厚が10μm未満であると、無機質微粒子分散樹脂被膜としての性能が十分に発揮されない恐れがある一方、膜厚が50μmを超えると、優れた寸法精度を有する小型磁石の提供や磁石の有効体積の確保が困難になる恐れがあるからである。
【0013】
なお、本発明の方法によって形成された無機質微粒子分散樹脂被膜を表面に有する希土類系永久磁石は、例えば、エポキシ系接着剤やアクリル系接着剤などの有機系接着剤を使用して磁気回路などの装置に組み込まれて使用されるが、樹脂被膜中に無機質微粒子を分散させると、樹脂被膜の表面の濡れ性やアンカー効果が向上するので、本発明の製造方法によれば、樹脂被膜と有機系接着剤との優れた接着性を獲得することもできる。
【0014】
【実施例】
本発明を以下の実施例によってさらに詳細に説明するが、本発明はこれに限定して解釈されるものではない。
なお、以下の実験は、例えば、米国特許4770723号公報や米国特許4792368号公報に記載されているようにして、公知の鋳造インゴットを粉砕し、微粉砕後に成形、焼結、熱処理、表面加工を行うことによって得られた14Nd−79Fe−6B−1Co組成(at%)の縦15mm×横10mm×高さ2mm寸法の焼結磁石(以下、磁石体試験片と称する)を使用して行った。
【0015】
実施例1:
公知の粉体塗料製造技術に従い、ビスフェノールA型エポキシ樹脂(エピコート1002:油化シェル社製)13重量%と、樹脂硬化剤であるジシアンジアミド誘導体(アラルダイトHT−2844:旭チバ社製)7重量%と、平均粒径が4μmの亜鉛微粒子(ジンクダスト♯3:堺化学社製)80重量%を均一混合した後、溶融分散、冷却、粉砕、篩分工程を経て、亜鉛微粒子の含有量が80重量%であって平均粒度が25μmの粉体塗料を製造した。
公知の静電粉体塗装技術に従い、エタノール中で3分間超音波洗浄を行って表面脱脂した後、真空中にて100℃で10分間乾燥した磁石体試験片の表面に、静電塗装ガンによりマイナスに帯電させた粉体塗料を静電引力で塗着させた後、大気中にて180℃で15分間熱処理を行って焼付けし、磁石体試験片の表面に膜厚が約30μmの亜鉛微粒子分散エポキシ樹脂被膜(被膜中における亜鉛微粒子の分散量は80重量%)を形成した。
以上のようにして得られた亜鉛微粒子分散エポキシ樹脂被膜を表面に有する磁石体試験片に対し、35℃の5%塩水を噴霧する耐食性試験を行ったところ、100時間経過後においても発錆は観察されなかった(n=10)。
【0016】
比較例1:
エタノール中で3分間超音波洗浄を行って表面脱脂した後、真空中にて100℃で10分間乾燥した磁石体試験片の表面に、平均粒径が4μmの亜鉛微粒子を含有するエポキシ樹脂塗液(エポローバル:ローバル社製)をスプレー塗装法によって塗布した後、大気中にて180℃で15分間熱処理を行って焼付けし、磁石体試験片の表面に膜厚が約30μmの亜鉛微粒子分散エポキシ樹脂被膜(被膜中における亜鉛微粒子の分散量は96重量%)を形成した。
以上のようにして得られた亜鉛微粒子分散エポキシ樹脂被膜を表面に有する磁石体試験片に対し、35℃の5%塩水を噴霧する耐食性試験を行ったところ、全てのサンプルにおいて48時間経過後に発錆が観察された(n=10)。
【0017】
比較例2:
公知の静電粉体塗装技術に従い、エタノール中で3分間超音波洗浄を行って表面脱脂した後、真空中にて100℃で10分間乾燥した磁石体試験片の表面に、静電塗装ガンによりマイナスに帯電させたエポキシ樹脂からなる粉体塗料(ビリューシアEP1000:日本ペイント社製)を静電引力で塗着させた後、大気中にて180℃で15分間熱処理を行って焼付けし、磁石体試験片の表面に膜厚が約30μmのエポキシ樹脂被膜を形成した。
以上のようにして得られたエポキシ樹脂被膜を表面に有する磁石体試験片に対し、35℃の5%塩水を噴霧する耐食性試験を行ったところ、全てのサンプルにおいて24時間経過後に発錆が観察された(n=10)。
【0018】
実施例1および比較例1において形成された亜鉛微粒子分散エポキシ樹脂被膜は、被膜中に水分が浸入した場合、希土類系永久磁石の表面素地と亜鉛微粒子との間で腐食電池が形成され、希土類系永久磁石の表面素地よりも電位が卑な亜鉛微粒子が希土類系永久磁石に代わって腐食する、即ち、亜鉛微粒子が電気化学的犠牲防食作用を発揮することに加え、溶出した亜鉛が水分や炭酸ガスなどと反応して生成した亜鉛化合物が被膜表面や被膜中に存在する空隙を埋め尽くして被膜を緻密化することで外部からの腐食因子の浸入を阻止し、よって、被膜全体として高耐食性を希土類系永久磁石に付与するものである。
ここで驚くべきことに、実施例1において形成された亜鉛微粒子分散エポキシ樹脂被膜の方が比較例1において形成された亜鉛微粒子分散エポキシ樹脂被膜よりも亜鉛微粒子の分散量が少ないにもかかわらずより高い耐食性を希土類系永久磁石に付与することができた。このような結果になった理由としては次のような要因が考えられる。即ち、比較例1の亜鉛微粒子分散エポキシ樹脂塗液中の亜鉛微粒子は、エポキシ樹脂で被覆されたような状態で存在するので、形成された被膜中においては、希土類系永久磁石の表面素地と亜鉛微粒子との接触部が比較的少ないと思われる。しかしながら、実施例1の粉体塗料では個々の粉体の表面に亜鉛微粒子が露出して存在しており(この事実は粉体塗料の表面EPMA分析にて本発明者が確認している)、このような粉体塗料を使用して静電粉体塗装により形成された被膜中においては、希土類系永久磁石の表面素地と亜鉛微粒子との接触部が多いと思われ、よって、亜鉛微粒子の電気化学的犠牲防食作用が如何なく発揮されたことが考えられる。また、希土類系永久磁石の表面素地と亜鉛微粒子との接触部が多いことは、磁石の表面に対する被膜の密着性を向上させ、磁石の表面への水分の到達を効果的に阻止することに寄与していると考えられる。さらに、比較例1においては、熱処理による樹脂被膜形成過程において有機溶剤が被膜から蒸発することで被膜にピンホールが発生することが考えられるが、有機溶剤を使用しない実施例1においては原理上このような現象が起こらないことも要因の一つとして考えられる。
【0019】
【発明の効果】
本発明によれば、高耐食性や絶縁性などの各種機能を希土類系永久磁石に付与することができる、公害問題がなく、地球環境に優しい永久磁石の製造方法が提供される。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a permanent magnet that is capable of imparting various functions such as high corrosion resistance and insulation to a rare earth permanent magnet and that is free from pollution problems and is friendly to the global environment.
[0002]
[Prior art]
Rare earth permanent magnets such as R—Fe—B permanent magnets represented by Nd—Fe—B permanent magnets and R—Fe—N permanent magnets represented by Sm—Fe—N permanent magnets are In particular, R-Fe-B based permanent magnets are used in various fields today because they use abundant and inexpensive materials and have high magnetic properties.
However, since rare earth permanent magnets contain a highly reactive rare earth element: R, they are easily oxidatively corroded in the atmosphere. When used without any surface treatment, a slight amount of acid, alkali, moisture, etc. Corrosion proceeds from the surface due to the presence of rust, and rust is generated, resulting in deterioration and variation in magnet characteristics. Furthermore, when a magnet in which rust is generated is incorporated in an apparatus such as a magnetic circuit, the rust may be scattered to contaminate peripheral components.
In view of the above points, for the purpose of imparting corrosion resistance to a rare earth permanent magnet, it has long been performed to form a resin film as a corrosion resistant film on the surface thereof.
Until now, when forming a resin film on the surface of rare earth permanent magnets, electrodeposition coating, spray coating, dip coating, and roll coating methods can be applied to coating solutions prepared by dissolving the resin that is the coating component in an organic solvent. A method of applying a resin film by applying heat treatment to the surface of a magnet by means of heat treatment has been adopted. The resin film forming method using such a coating liquid is very useful in that the process is simple. However, this method has a problem that the organic solvent evaporates from the film in the process of forming the resin film by heat treatment, so that there is a problem that pinholes are easily generated in the film and a yield of the coating liquid is poor. However, it cannot be said to be a satisfactory method in terms of performance and cost as a corrosion resistant coating. Also, this method using an organic solvent is not desirable in terms of improving the global environment. Therefore, as an alternative method of forming a resin film using such a coating liquid, a method of forming a resin film on the surface of a rare earth permanent magnet by electrostatic powder coating using a powder coating has already been proposed. (Japanese Patent Laid-Open No. 11-238620).
[0003]
[Problems to be solved by the invention]
The method of forming a resin coating on the surface of rare earth permanent magnets by electrostatic powder coating using powder coating is a rare earth permanent permanent powder coating that is negatively charged by an electrostatic coating gun or the like. This is a method in which the powder coating is melted to form a resin film by applying heat treatment after being applied to the surface of the magnet, and the resin film formed is more corrosion resistant than the resin film forming method using a coating liquid. Excellent in that it can be recovered and reused because it can be recovered and reused, and there is no pollution problem because it does not use organic solvents. Although it is a method, in order to satisfy the high corrosion resistance requested | required of recent rare earth permanent magnets, the further improvement is required.
In recent years, rare earth permanent magnets have been required to have various functions such as insulation as well as high corrosion resistance depending on the application field, and an excellent method that can impart various functions to rare earth permanent magnets. Is anxious.
Accordingly, an object of the present invention is to provide a method for producing a permanent magnet that is free from pollution problems and can be imparted to rare earth-based permanent magnets with various functions such as high corrosion resistance and insulation.
[0004]
[Means for Solving the Problems]
As a result of various investigations in view of the above points, the present inventor has found that a fine particle-dispersed resin coating is applied to the surface of a rare earth permanent magnet by electrostatic powder coating using a powder coating composed of inorganic fine particles and a resin. It was found that the above-mentioned purpose can be achieved by forming.
[0005]
The present invention has been made based on the above findings, the manufacturing method of a permanent magnet of the present invention, as claimed in claim 1, a powder coating comprising a fine inorganic particles and a resin, the average as fine inorganic particles A powder coating material containing zinc fine particles having a particle size of 0.01 μm to 20 μm in an amount of 25% by weight to 95% by weight and having an average particle size of 10 μm to 50 μm with the zinc fine particles exposed on the surface. It is characterized in that an inorganic fine particle-dispersed resin film is formed on the surface of a rare earth permanent magnet by electrostatic powder coating .
Also, the manufacturing method according to claim 2 is the manufacturing method according to claim 1, wherein the resin is an epoxy resin.
Also, the manufacturing method according to claim 3, wherein, in the method according to claim 1 or 2, wherein the film thickness of the inorganic fine particle dispersed resin coating is characterized by a 10 m to 50 m.
Moreover, the permanent magnet of this invention was manufactured with the manufacturing method of Claim 1 as described in Claim 4 .
[0006]
DETAILED DESCRIPTION OF THE INVENTION
The method for producing a permanent magnet of the present invention is characterized in that an inorganic fine particle-dispersed resin film is formed on the surface of a rare earth permanent magnet by electrostatic powder coating using a powder coating comprising inorganic fine particles and a resin. Is. A method of forming an inorganic fine particle-dispersed resin film using a coating solution prepared by dispersing inorganic fine particles in a solution obtained by dissolving a resin in an organic solvent is already known, but is formed by the method of the present invention. The inorganic fine particle-dispersed resin film is superior in adhesion to the surface of the rare earth permanent magnet, and the inorganic fine particle dispersed in the resin film is more than the inorganic fine particle-dispersed resin film formed by a method using a coating liquid. It has an effect that could not be expected from the previous knowledge that its function is higher.
[0007]
The inorganic fine particles serving as a constituent component of the powder coating material are appropriately selected according to the function to be imparted to the rare earth permanent magnet. For example, for the purpose of imparting high corrosion resistance, zinc fine particles, aluminum fine particles, magnesium fine particles, or the like may be selected. Since these metal fine particles have a lower potential than the surface substrate of the rare earth permanent magnet, when the resin film in which these metal fine particles are dispersed is formed on the surface of the rare earth permanent magnet, the metal fine particles in the resin film By exhibiting an electrochemical sacrificial anticorrosive action, high corrosion resistance can be imparted to the rare earth permanent magnet as the entire coating. For the purpose of imparting insulation, fine particles of metal oxide such as SiO 2 or Al 2 O 3 may be dispersed in the resin film. Further, if the anatase type TiO 2 fine particles are dispersed in the resin film, the photocatalytic function can be imparted to the rare earth permanent magnet.
[0008]
The average particle size of the inorganic fine particles is desirably 0.01 μm to 20 μm. If the average particle size is less than 0.01 μm, the aggregation of inorganic fine particles is likely to occur, making it difficult to uniformly disperse the inorganic fine particles in each powder, and consequently the inorganic fine particles on the surface of the rare earth permanent magnet. This is because it becomes difficult to form a resin film in which a uniform dispersion is made, and thus high corrosion resistance may not be imparted to the rare earth permanent magnet. On the other hand, if the average particle size exceeds 20 μm, the film thickness of the formed film becomes too thick, and it may be difficult to provide a small magnet having excellent dimensional accuracy and to secure the effective volume of the magnet. It is.
[0009]
Examples of the resin that is a constituent of the powder coating include resins generally used as constituents of the powder coating such as epoxy resin, acrylic resin, polyester resin, polyamide resin, polyimide resin, and polyamideimide resin. Among these, epoxy resins are excellent resins in terms of corrosion resistance and handling properties, and polyimide resins are resins excellent in terms of insulation properties, gas resistance and heat resistance. Therefore, these resins are preferably used in the present invention. Adopted.
[0010]
The content of inorganic fine particles in the powder coating is preferably 25% by weight to 95% by weight. If the amount is less than 25% by weight, the effect of dispersing the inorganic fine particles in the resin film may not be sufficiently exhibited. On the other hand, if the amount exceeds 95% by weight, the essential function of the resin film may be impaired. This is because the intended function may not be imparted to the rare earth-based permanent magnet due to the loss of smoothness.
[0011]
The powder coating material composed of inorganic fine particles and resin is a known powder coating manufacturing technology, that is, for example, when a resin curing agent (epoxy resin is used as necessary) for inorganic fine particles and resin as raw materials. In general, aromatic amines, acid anhydrides, dicyandiamide derivatives, and the like are used, and various additives, catalysts, and the like are uniformly mixed, and then manufactured through melt dispersion, cooling, pulverization, and sieving steps. The average particle size of the powder coating material thus produced is desirably 10 μm to 50 μm. The reason is that, as will be described later, the inorganic fine particle-dispersed resin film formed on the surface of the rare earth permanent magnet preferably has a film thickness of 10 μm to 50 μm, which is convenient for forming a film having such a film thickness. Because it is good.
[0012]
Electrostatic powder coating using a powder coating material composed of inorganic fine particles and resin may be performed by a known electrostatic powder coating technique. Further, for example, according to the electrolytic fluid electrostatic powder coating technique described in JP-A-11-57592, an inorganic fine particle-dispersed resin film can be uniformly formed on the entire surface of the rare earth permanent magnet. The film thickness of the inorganic fine particle-dispersed resin film thus formed is desirably 10 μm to 50 μm. If the film thickness is less than 10 μm, the performance as an inorganic fine particle-dispersed resin film may not be sufficiently exhibited. On the other hand, if the film thickness exceeds 50 μm, a small magnet having excellent dimensional accuracy and the effective volume of the magnet are provided. This is because it may be difficult to ensure the above.
[0013]
The rare earth permanent magnet having the inorganic fine particle dispersed resin film formed by the method of the present invention on its surface is, for example, a magnetic circuit using an organic adhesive such as an epoxy adhesive or an acrylic adhesive. Although it is incorporated into an apparatus and used, if the inorganic fine particles are dispersed in the resin film, the wettability and anchor effect of the surface of the resin film are improved. Therefore, according to the production method of the present invention, the resin film and the organic system are used. Excellent adhesion to the adhesive can also be obtained.
[0014]
【Example】
The present invention will be described in more detail with reference to the following examples, but the present invention should not be construed as being limited thereto.
In the following experiment, for example, as described in U.S. Pat. No. 4,770,723 and U.S. Pat. No. 4,792,368, a known cast ingot is pulverized, and after pulverization, molding, sintering, heat treatment, and surface treatment are performed. This was carried out using a sintered magnet (hereinafter referred to as a magnet test piece) having a length of 15 mm, a width of 10 mm, and a height of 2 mm of the composition (at%) of 14Nd-79Fe-6B-1Co obtained by the above.
[0015]
Example 1:
According to a known powder coating production technology, 13% by weight of bisphenol A type epoxy resin (Epicoat 1002: manufactured by Yuka Shell) and 7% by weight of dicyandiamide derivative (Araldite HT-2844: manufactured by Asahi Ciba) which is a resin curing agent And 80% by weight of zinc fine particles having an average particle diameter of 4 μm (Zinc Dust # 3: manufactured by Sakai Chemical Co., Ltd.) are mixed uniformly, followed by melt dispersion, cooling, pulverization, and sieving steps, and the content of zinc fine particles is 80%. %, And a powder coating material having an average particle size of 25 μm was produced.
In accordance with a known electrostatic powder coating technique, ultrasonic cleaning is performed in ethanol for 3 minutes to degrease the surface, and then the surface of the magnet body test piece is dried at 100 ° C. for 10 minutes in a vacuum using an electrostatic coating gun. After negatively charged powder coating is applied by electrostatic attraction, it is baked by heat treatment at 180 ° C. for 15 minutes in the atmosphere, and zinc fine particles having a film thickness of about 30 μm on the surface of the magnet specimen A dispersed epoxy resin film (dispersion amount of zinc fine particles in the film was 80% by weight) was formed.
When the corrosion resistance test of spraying 5% salt water at 35 ° C. was performed on the magnet specimen having the zinc fine particle dispersed epoxy resin coating obtained on the surface as described above, rusting was observed even after 100 hours. Not observed (n = 10).
[0016]
Comparative Example 1:
An epoxy resin coating solution containing zinc fine particles having an average particle diameter of 4 μm on the surface of a magnet specimen that was degreased by ultrasonic cleaning for 3 minutes in ethanol and then dried in vacuum at 100 ° C. for 10 minutes. (Epo-Roval: manufactured by Roval Co., Ltd.) was applied by spray coating, then baked by heat treatment at 180 ° C. for 15 minutes in the atmosphere, and a zinc fine particle dispersed epoxy resin having a film thickness of about 30 μm on the surface of the magnet body test piece A film (dispersion amount of zinc fine particles in the film was 96% by weight) was formed.
When the corrosion resistance test of spraying 5% salt water at 35 ° C. was performed on the magnet body test piece having the zinc fine particle dispersed epoxy resin coating on the surface obtained as described above, it occurred after 48 hours in all samples. Rust was observed (n = 10).
[0017]
Comparative Example 2:
In accordance with a known electrostatic powder coating technique, ultrasonic cleaning is performed in ethanol for 3 minutes to degrease the surface, and then the surface of the magnet body test piece is dried at 100 ° C. for 10 minutes in a vacuum using an electrostatic coating gun. After applying a negatively charged powder coating made of epoxy resin (Billiusia EP1000: manufactured by Nippon Paint Co., Ltd.) by electrostatic attraction, it is baked by heat treatment at 180 ° C. for 15 minutes in the atmosphere. An epoxy resin film having a thickness of about 30 μm was formed on the surface of the test piece.
When the corrosion resistance test of spraying 5% salt water at 35 ° C. was performed on the magnet body test piece having the epoxy resin coating obtained on the surface as described above, rusting was observed after 24 hours in all samples. (N = 10).
[0018]
In the zinc fine particle-dispersed epoxy resin coating formed in Example 1 and Comparative Example 1, when moisture enters the coating, a corrosion battery is formed between the surface base of the rare earth permanent magnet and the zinc fine particles, and the rare earth based Zinc fine particles with a lower potential than the surface base of the permanent magnet corrode instead of the rare earth permanent magnet, that is, in addition to the zinc fine particles exhibiting an electrochemical sacrificial anti-corrosion action, the eluted zinc is water and carbon dioxide. The zinc compound produced by the reaction with the material fills the surface of the film and voids existing in the film and densifies the film, thereby preventing the entry of corrosion factors from the outside. It is given to the system permanent magnet.
Surprisingly, the zinc fine particle-dispersed epoxy resin coating formed in Example 1 is more than the zinc fine particle-dispersed epoxy resin coating formed in Comparative Example 1 even though the amount of zinc fine particles dispersed is smaller. High corrosion resistance could be imparted to rare earth permanent magnets. The following factors can be considered as the reason for such a result. That is, since the zinc fine particles in the zinc fine particle-dispersed epoxy resin coating liquid of Comparative Example 1 are present in a state of being coated with the epoxy resin, the surface base of the rare earth permanent magnet and the zinc are formed in the formed coating. There seems to be relatively few contact parts with microparticles. However, in the powder coating of Example 1, zinc fine particles are exposed on the surface of each powder (this fact is confirmed by the present inventor through surface EPMA analysis of the powder coating), In a film formed by electrostatic powder coating using such a powder coating, it is considered that there are many contact portions between the surface base of the rare earth permanent magnet and the zinc fine particles, and thus the electric charge of the zinc fine particles is It is considered that the chemical sacrificial anticorrosive action was exerted. In addition, the large number of contact portions between the surface base of the rare earth permanent magnet and the fine zinc particles contributes to improving the adhesion of the coating to the magnet surface and effectively preventing moisture from reaching the magnet surface. it seems to do. Furthermore, in Comparative Example 1, it can be considered that pinholes are generated in the film by evaporating the organic solvent from the film in the process of forming the resin film by heat treatment. One of the factors is that this phenomenon does not occur.
[0019]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the permanent magnet which does not have a pollution problem and can give various functions, such as high corrosion resistance and insulation, to a rare earth-type permanent magnet, is kind.

Claims (4)

無機質微粒子と樹脂とからなる粉体塗料であって、無機質微粒子として平均粒径が0.01μm〜20μmである亜鉛微粒子を25重量%〜95重量%含有し、平均粒度が10μm〜50μmである個々の粉体の表面に亜鉛微粒子が露出して存在する粉体塗料を使用して静電粉体塗装により希土類系永久磁石の表面に無機質微粒子分散樹脂被膜を形成することを特徴とする永久磁石の製造方法 A powder coating material comprising inorganic fine particles and resin , each containing 25 to 95% by weight of zinc fine particles having an average particle size of 0.01 to 20 μm as inorganic fine particles and an average particle size of 10 to 50 μm A permanent-magnet dispersed resin film is formed on the surface of a rare earth permanent magnet by electrostatic powder coating using a powder coating in which zinc fine particles are exposed on the surface of the powder. Manufacturing method . 樹脂がエポキシ樹脂であることを特徴とする請求項記載の製造方法 The manufacturing method according to claim 1 , wherein the resin is an epoxy resin . 無機質微粒子分散樹脂被膜の膜厚が10μm〜50μmであることを特徴とする請求項1または2記載の製造方法。The method according to claim 1 or 2 , wherein the inorganic fine particle-dispersed resin film has a thickness of 10 µm to 50 µm. 請求項1記載の製造方法にて製造されたことを特徴とする永久磁石。  A permanent magnet manufactured by the manufacturing method according to claim 1.
JP2002230660A 2002-08-07 2002-08-07 Method for manufacturing permanent magnet Expired - Lifetime JP4265168B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002230660A JP4265168B2 (en) 2002-08-07 2002-08-07 Method for manufacturing permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002230660A JP4265168B2 (en) 2002-08-07 2002-08-07 Method for manufacturing permanent magnet

Publications (2)

Publication Number Publication Date
JP2004071912A JP2004071912A (en) 2004-03-04
JP4265168B2 true JP4265168B2 (en) 2009-05-20

Family

ID=32016647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002230660A Expired - Lifetime JP4265168B2 (en) 2002-08-07 2002-08-07 Method for manufacturing permanent magnet

Country Status (1)

Country Link
JP (1) JP4265168B2 (en)

Also Published As

Publication number Publication date
JP2004071912A (en) 2004-03-04

Similar Documents

Publication Publication Date Title
US20080124567A1 (en) Corrosion-resistant rare earth metal-based permanent magnet
WO2022041594A1 (en) Wear-resistant and anticorrosion coating, preparation method therefor, and application thereof
EP1441047B1 (en) Method for forming electroplated coating on surface of article
JP3709292B2 (en) Resin bonded rare earth magnet
JP4265168B2 (en) Method for manufacturing permanent magnet
JP2005109421A (en) Method for manufacturing corrosion-resistant rare earth based permanent magnet, corrosion-resistant rare earth based permanent magnet, dip spin coating method of work, and coating film forming method of work
JPH05302176A (en) Method for forming coating film
JP2002270415A (en) R-Fe-B PERMANENT MAGNET
JP4529260B2 (en) R-Fe-B permanent magnet and method for producing the same
JP3654807B2 (en) Manufacturing method of R-Fe-B permanent magnet excellent in electrical insulation
JPH0927432A (en) Manufacture of highly anticorrosive r-fe-b bond magnet
JPH0254504A (en) Highly corrosion-resistant rare earth permanent bonded magnet and manufacture thereof
JP4131385B2 (en) Rare earth permanent magnet manufacturing method
JPH0927433A (en) Manufacture of highly acticorrosive r-fe-b bond magnet
JP2004200387A (en) Corrosion-resistant permanent magnet and its manufacturing method
CN213767510U (en) Anticorrosive coating and metal product
JP3236815B2 (en) High corrosion resistance R-Fe-B bonded magnet and method for producing the same
JP2004356328A (en) Corrosion resistant rare earth based permanent magnet and its producing process
JPH02265222A (en) Highly corrosion-resistant rare-earth-based permanent bonded magnet, rare-earth-based permanent magnet powder and their manufacture
JP2008010726A (en) Rare earth bond magnet
JP2004063806A (en) Method of improving annular bonded magnet in resistance against liquid fuel
Ding et al. Corrosion Protection Of Nd–Fe–B Magnets Via Phophatization, Silanization And Electrostatic Spraying With Organic Resin Composite Coatings
JP2003100536A (en) Method for sealing cavity of bond magnet
JPH04284601A (en) Rare earthe-iron-boron-based bonded magnet
JPH04324910A (en) Rare earth/resin bonded type magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050711

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080519

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080916

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081113

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090209

R150 Certificate of patent or registration of utility model

Ref document number: 4265168

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 5

EXPY Cancellation because of completion of term