JP2005109421A - Method for manufacturing corrosion-resistant rare earth based permanent magnet, corrosion-resistant rare earth based permanent magnet, dip spin coating method of work, and coating film forming method of work - Google Patents

Method for manufacturing corrosion-resistant rare earth based permanent magnet, corrosion-resistant rare earth based permanent magnet, dip spin coating method of work, and coating film forming method of work Download PDF

Info

Publication number
JP2005109421A
JP2005109421A JP2003397416A JP2003397416A JP2005109421A JP 2005109421 A JP2005109421 A JP 2005109421A JP 2003397416 A JP2003397416 A JP 2003397416A JP 2003397416 A JP2003397416 A JP 2003397416A JP 2005109421 A JP2005109421 A JP 2005109421A
Authority
JP
Japan
Prior art keywords
rare earth
permanent magnet
coating
corrosion
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003397416A
Other languages
Japanese (ja)
Other versions
JP4285218B2 (en
Inventor
Masayuki Yoshimura
吉村  公志
Tomoiku Ootani
智郁 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Neomax Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neomax Co Ltd filed Critical Neomax Co Ltd
Priority to JP2003397416A priority Critical patent/JP4285218B2/en
Publication of JP2005109421A publication Critical patent/JP2005109421A/en
Application granted granted Critical
Publication of JP4285218B2 publication Critical patent/JP4285218B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a stable and easy manufacturing method of a rare earth based permanent magnet which has a zinc particulate variance corrosion-resistant coat on a surface, the corrosion-resistant rare earth based permanent magnet which is manufactured by the method, a dip spin coating method suitable for coating film formation to thin works of various profiles, and a coating film forming method of the work. <P>SOLUTION: In the manufacturing method of the corrosion-resistant rare earth based permanent magnet, basin system treatment liquid whose pH is 6-8 and viscosity is at most 1,000 cP and which contains hydrolysis polymerized reactant of an alkyl silicate and zinc particulate whose mean particle diameter is 1-50 μm is spread on a surface of the rare earth based permanent magnet. After that, thermal treatment is performed at 250-400°C, and zinc particulate variance corrosion-resistant coat is formed. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、亜鉛微粒子分散耐食性被膜を表面に有する希土類系永久磁石の安定かつ簡易な製造方法、こうして製造される耐食性希土類系永久磁石、各種形状の薄型ワークに対する塗膜形成に適したディップスピンコーティング法およびワークの塗膜形成方法に関する。   The present invention relates to a stable and simple method for producing a rare earth permanent magnet having a zinc fine particle dispersed corrosion resistant coating on its surface, a corrosion resistant rare earth permanent magnet thus produced, and dip spin coating suitable for forming a coating film on thin workpieces of various shapes. The present invention relates to a method and a method for forming a coating film on a workpiece.

Nd−Fe−B系永久磁石に代表されるR−Fe−B系永久磁石やSm−Fe−N系永久磁石に代表されるR−Fe−N系永久磁石などの希土類系永久磁石は、資源的に豊富で安価な材料が用いられ、かつ、高い磁気特性を有していることから、特にR−Fe−B系永久磁石は今日様々な分野で使用されている。
しかしながら、希土類系永久磁石は反応性の高い希土類元素:Rを含むため、大気中で酸化腐食されやすく、何の表面処理をも行わずに使用した場合には、わずかな酸やアルカリや水分などの存在によって表面から腐食が進行して錆が発生し、それに伴って、磁石特性の劣化やばらつきを招く。さらに、錆が発生した磁石を磁気回路などの装置に組み込んだ場合、錆が飛散して周辺部品を汚染する恐れがある。
希土類系永久磁石に耐食性を付与する方法には数多くの方法があるが、その一つとして、珪素化合物を出発原料とした耐食性被膜を希土類系永久磁石の表面に形成する方法がある。近年、このような耐食性被膜の更なる性能向上を目的として種々の研究がなされている。
例えば、下記の特許文献1においては、亜鉛微粒子を分散させたアルカリ珪酸塩水溶液からなる処理液を、希土類系永久磁石の表面に塗布した後、熱処理を行うことで亜鉛微粒子分散耐食性被膜とする方法が提案されている。この方法は、アルカリ珪酸塩を出発原料とした被膜の耐食作用と電位的に卑な亜鉛微粒子の犠牲防食作用を利用したものであり、希土類系永久磁石に高い耐食性を付与することができる方法として期待される。しかしながら、この方法においては、亜鉛微粒子分散耐食性被膜を形成するための処理液中に亜鉛微粒子を均一に分散させておくためには処理液をアルカリ性にしておかなければならないため、処理液を希土類系永久磁石の表面に塗布した際、磁石の表面において磁石を構成する金属の水酸化物が生成し、このような金属水酸化物からなる層で磁石の表面が覆われてしまうことに起因して、密着性に優れた亜鉛微粒子分散耐食性被膜が形成されにくいといった問題や、アルカリ珪酸塩を出発原料とした被膜は柔軟性に劣るためにクラックが生じやすいといった問題や、廃液処理が面倒であるといった問題などがある。
また、下記の特許文献2においては、珪素有機化合物と平均粒径が1nm〜100nmの無機質微粒子を含有した処理液を、希土類系永久磁石の表面に塗布した後、熱処理を行うことで無機質微粒子分散耐食性被膜とする方法が提案されている。この方法は、珪素有機化合物を出発原料とした薄くて緻密な耐食性被膜を希土類系永久磁石の表面に形成するためのものであり、特定の平均粒径を有する無機質微粒子を被膜成分中に分散させることで、被膜生成過程における被膜内部応力を緩和してクラックなどの物理的欠陥が発生することを防止するものである。この方法も希土類系永久磁石に高い耐食性を付与することができる方法として期待される。しかしながら、ナノメーターオーダーの無機質微粒子は水に均一に分散させることが困難なことなどを考慮すれば、処理液の調製においては、低級アルコールなどの有機溶媒を主体としてそこにわずかな水を添加し、酸性条件下で珪素有機化合物を加水分解重合反応させてゾル液とするとともに無機質微粒子を分散させる必要があり、従って、調製された処理液は酸性であるため、処理液を希土類系永久磁石の表面に塗布した際、磁石の腐食を招くといった問題や、有機溶媒が揮発することで処理液組成が変動しやすく、また、環境に悪影響を与えるといった問題や、廃液処理が面倒であるといった問題などがある。
特開2000−182813号公報 特開2001−143949号公報
Rare earth permanent magnets such as R—Fe—B permanent magnets represented by Nd—Fe—B permanent magnets and R—Fe—N permanent magnets represented by Sm—Fe—N permanent magnets are In particular, R-Fe-B based permanent magnets are used in various fields today because they use abundant and inexpensive materials and have high magnetic properties.
However, since rare earth permanent magnets contain a highly reactive rare earth element: R, they are easily oxidatively corroded in the atmosphere. When used without any surface treatment, a slight amount of acid, alkali, moisture, etc. Corrosion proceeds from the surface due to the presence of rust, and rust is generated, resulting in deterioration and variation in magnet characteristics. Furthermore, when a magnet in which rust is generated is incorporated in an apparatus such as a magnetic circuit, the rust may be scattered to contaminate peripheral components.
There are many methods for imparting corrosion resistance to a rare earth permanent magnet. One of them is a method of forming a corrosion resistant coating using a silicon compound as a starting material on the surface of a rare earth permanent magnet. In recent years, various studies have been conducted for the purpose of further improving the performance of such corrosion-resistant coatings.
For example, in Patent Document 1 below, a method of forming a zinc fine particle-dispersed corrosion-resistant coating by applying a treatment liquid composed of an alkali silicate aqueous solution in which zinc fine particles are dispersed to the surface of a rare earth-based permanent magnet and then performing a heat treatment. Has been proposed. This method is based on the corrosion resistance of the coating using alkali silicate as a starting material and the sacrificial corrosion protection of fine zinc particles that are potentially base, and can provide high corrosion resistance to rare earth permanent magnets. Be expected. However, in this method, in order to uniformly disperse the zinc fine particles in the treatment liquid for forming the zinc fine particle-dispersed corrosion-resistant coating, the treatment liquid must be made alkaline. When applied to the surface of the permanent magnet, a metal hydroxide constituting the magnet is generated on the surface of the magnet, and the surface of the magnet is covered with a layer made of such a metal hydroxide. The problem is that it is difficult to form a zinc fine particle-dispersed corrosion-resistant film with excellent adhesion, the problem that a film using alkali silicate as a starting material is inferior in flexibility, and cracking tends to occur, and the waste liquid treatment is troublesome. There are problems.
In Patent Document 2 below, inorganic fine particle dispersion is achieved by applying a treatment liquid containing a silicon organic compound and inorganic fine particles having an average particle diameter of 1 nm to 100 nm to the surface of a rare earth permanent magnet, followed by heat treatment. A method for forming a corrosion-resistant coating has been proposed. This method is for forming a thin and dense corrosion-resistant film using a silicon organic compound as a starting material on the surface of a rare earth permanent magnet, and dispersing inorganic fine particles having a specific average particle diameter in the film component. Thus, the internal stress in the coating film generation process is relaxed and physical defects such as cracks are prevented from occurring. This method is also expected as a method capable of imparting high corrosion resistance to rare earth permanent magnets. However, considering that it is difficult to uniformly disperse nanometer-order inorganic fine particles in water, in the preparation of the treatment liquid, a slight amount of water is mainly added to an organic solvent such as a lower alcohol. Therefore, it is necessary to hydrolyze and polymerize the silicon organic compound under acidic conditions to form a sol liquid and to disperse the inorganic fine particles. Therefore, since the prepared treatment liquid is acidic, the treatment liquid is made of a rare earth permanent magnet. Problems such as magnet corrosion when applied to the surface, volatilization of organic solvent due to volatilization of the processing liquid composition, adverse effects on the environment, and cumbersome waste liquid processing There is.
Japanese Patent Laid-Open No. 2000-182813 JP 2001-143949 A

そこで本発明は、亜鉛微粒子分散耐食性被膜を表面に有する希土類系永久磁石の安定かつ簡易な製造方法、こうして製造される耐食性希土類系永久磁石、各種形状の薄型ワークに対する塗膜形成に適したディップスピンコーティング法およびワークの塗膜形成方法を提供することを目的とする。   Accordingly, the present invention provides a stable and simple method for producing a rare earth permanent magnet having a zinc fine particle dispersed corrosion resistant coating on its surface, a corrosion resistant rare earth permanent magnet thus produced, and a dip spin suitable for coating on thin workpieces of various shapes. It aims at providing the coating method and the coating-film formation method of a workpiece | work.

上記の点に鑑みてなされた本発明の耐食性希土類系永久磁石の製造方法は、請求項1記載の通り、アルキルシリケートの加水分解重合反応物と平均粒径が1μm〜50μmの亜鉛微粒子を含有したpHが6〜8で粘度が1000cP以下の水系処理液を、希土類系永久磁石の表面に塗布した後、250℃〜400℃にて熱処理を行うことで亜鉛微粒子分散耐食性被膜とすることを特徴とする。
また、請求項2記載の製造方法は、請求項1記載の製造方法において、亜鉛微粒子が鱗片状のものであることを特徴とする。
また、請求項3記載の製造方法は、請求項1または2記載の製造方法において、水系処理液中における出発原料としてのアルキルシリケートと亜鉛微粒子の合計配合割合が40重量%〜90重量%(アルキルシリケートはSiO2換算)であることを特徴とする。
また、請求項4記載の製造方法は、請求項1乃至3のいずれかに記載の製造方法において、水系処理液中における出発原料としてのアルキルシリケートと亜鉛微粒子の混合比率が1:1〜1:19(重量比:アルキルシリケートはSiO2換算)であることを特徴とする。
また、請求項5記載の製造方法は、請求項1乃至4のいずれかに記載の製造方法において、水系処理液中に有機分散剤を添加することを特徴とする。
また、請求項6記載の製造方法は、請求項1乃至5のいずれかに記載の製造方法において、亜鉛微粒子分散耐食性被膜の膜厚が1μm〜50μmであることを特徴とする。
また、請求項7記載の製造方法は、請求項1乃至6のいずれかに記載の製造方法において、亜鉛微粒子分散耐食性被膜中に他の無機質微粒子をさらに分散させることを特徴とする。
また、請求項8記載の製造方法は、請求項1乃至7のいずれかに記載の製造方法において、水系処理液の希土類系永久磁石の表面への塗布をディップスピンコーティング法で行うことを特徴とする。
また、請求項9記載の製造方法は、請求項8記載の製造方法において、粘度が300cP〜600cPの水系処理液を用いて行うことを特徴とする。
また、請求項10記載の製造方法は、請求項8または9記載の製造方法において、鉛直方向の中心軸を回転軸として回転可能な回転台座の略外周端部上に、複数個の希土類系永久磁石を保持し、希土類系永久磁石が保持された回転台座を水系処理液槽に浸漬することで希土類系永久磁石に水系処理液を浸漬塗装した後、液中から取り出し、回転台座を回転させて希土類系永久磁石に余分に付着した水系処理液を遠心振り切りすることでディップスピンコーティングを行うことを特徴とする。
また、請求項11記載の製造方法は、請求項10記載の製造方法において、複数個の希土類系永久磁石を回転台座の略外周端部上に略環状に保持することを特徴とする。
また、請求項12記載の製造方法は、請求項10または11記載の製造方法において、希土類系永久磁石が薄型磁石であることを特徴とする。
また、請求項13記載の製造方法は、請求項12記載の製造方法において、薄型磁石をその最も広い面が回転台座の放射状方向に対して略平行になるように保持することを特徴とする。
また、請求項14記載の製造方法は、請求項13記載の製造方法において、回転台座の略外周端部上に装着した際、複数個の薄型磁石を個々の磁石が離間した状態でその最も広い面が回転台座の放射状方向に対して略平行になるように略環状にセットすることができる塗装治具を用いて行うことを特徴とする。
また、請求項15記載の製造方法は、請求項12記載の製造方法において、薄型磁石が平板状、リング状、弓形状のいずれかの形状であることを特徴とする。
また、請求項16記載の製造方法は、請求項14記載の製造方法において、ディップスピンコーティングを行った後、薄型磁石がセットされたままの塗装治具を回転台座から取り外し、任意の場所で塗装治具にセットされたままの薄型磁石を熱処理することを特徴とする。
また、本発明の希土類系永久磁石は、請求項17記載の通り、アルキルシリケートを出発原料とした被膜成分中に平均粒径が1μm〜50μmの亜鉛微粒子を分散させた耐食性被膜を表面に有することを特徴とする。
また、請求項18記載の希土類系永久磁石は、請求項17記載の希土類系永久磁石において、耐食性被膜の亜鉛微粒子含有量が50重量%〜95重量%であることを特徴とする。
また、請求項19記載の希土類系永久磁石は、請求項17または18記載の希土類系永久磁石において、磁石本体表面から内部に亜鉛が拡散していることを特徴とする。
また、請求項20記載の希土類系永久磁石は、請求項17乃至19のいずれかに記載の希土類系永久磁石において、請求項1記載の製造方法により製造されたことを特徴とする。
また、本発明のワークのディップスピンコーティング法は、請求項21記載の通り、鉛直方向の中心軸を回転軸として回転可能な回転台座の略外周端部上に、複数個のワークを保持し、ワークが保持された回転台座を塗料槽に浸漬することでワークに塗料を浸漬塗装した後、液中から取り出し、回転台座を回転させてワークに余分に付着した塗料を遠心振り切りすることを特徴とする。
また、本発明のワークの塗膜形成方法は、請求項22記載の通り、鉛直方向の中心軸を回転軸として回転可能な回転台座の略外周端部上に装着した際、複数個のワークを個々のワークが離間した状態で略環状にセットすることができる塗装治具を用い、ワークがセットされた塗装治具を装着した回転台座を塗料槽に浸漬することでワークに塗料を浸漬塗装した後、液中から取り出し、回転台座を回転させてワークに余分に付着した塗料を遠心振り切りし、ワークがセットされたままの塗装治具を回転台座から取り外し、任意の場所で塗装治具にセットされたままのワークを所望により乾燥処理して行うことを特徴とする。
The manufacturing method of the corrosion-resistant rare earth-based permanent magnet of the present invention made in view of the above points contains, as described in claim 1, an alkyl silicate hydrolysis polymerization reaction product and zinc fine particles having an average particle diameter of 1 μm to 50 μm. It is characterized in that after applying an aqueous treatment liquid having a pH of 6 to 8 and a viscosity of 1000 cP or less to the surface of the rare earth permanent magnet, a heat treatment is performed at 250 ° C. to 400 ° C. to form a zinc fine particle dispersed corrosion resistant coating. To do.
The manufacturing method according to claim 2 is characterized in that, in the manufacturing method according to claim 1, the zinc fine particles are scaly.
The manufacturing method according to claim 3 is the manufacturing method according to claim 1 or 2, wherein the total blending ratio of the alkyl silicate as the starting material and the zinc fine particles in the aqueous treatment liquid is 40 wt% to 90 wt% (alkyl Silicate is SiO 2 equivalent).
The production method according to claim 4 is the production method according to any one of claims 1 to 3, wherein the mixing ratio of the alkyl silicate as the starting material in the aqueous treatment liquid and the zinc fine particles is 1: 1 to 1: 19 (weight ratio: alkyl silicate is SiO 2 equivalent).
The manufacturing method according to claim 5 is characterized in that in the manufacturing method according to any one of claims 1 to 4, an organic dispersant is added to the aqueous treatment liquid.
The manufacturing method according to claim 6 is characterized in that, in the manufacturing method according to any one of claims 1 to 5, the thickness of the zinc fine particle-dispersed corrosion-resistant film is 1 μm to 50 μm.
The manufacturing method according to claim 7 is characterized in that in the manufacturing method according to any one of claims 1 to 6, other inorganic fine particles are further dispersed in the zinc fine particle-dispersed corrosion-resistant coating.
The manufacturing method according to claim 8 is characterized in that, in the manufacturing method according to any one of claims 1 to 7, the aqueous treatment liquid is applied to the surface of the rare earth permanent magnet by a dip spin coating method. To do.
The manufacturing method according to claim 9 is characterized in that in the manufacturing method according to claim 8, the viscosity is 300 cP to 600 cP and an aqueous processing solution is used.
The manufacturing method according to claim 10 is the manufacturing method according to claim 8 or 9, wherein a plurality of rare earth-based permanent magnets are provided on a substantially outer peripheral end portion of a rotating pedestal that is rotatable about a central axis in the vertical direction. Immerse the rotating pedestal holding the magnet and the rare earth-based permanent magnet in the aqueous treatment liquid tank so that the rare earth-based permanent magnet is dipped in the aqueous treatment liquid, then remove it from the solution and rotate the rotating pedestal. It is characterized in that dip spin coating is performed by centrifuging off an aqueous treatment liquid adhering to the rare earth permanent magnet.
The manufacturing method according to claim 11 is characterized in that, in the manufacturing method according to claim 10, a plurality of rare earth-based permanent magnets are held in a substantially annular shape on a substantially outer peripheral end portion of the rotating pedestal.
The manufacturing method according to claim 12 is the manufacturing method according to claim 10 or 11, wherein the rare earth permanent magnet is a thin magnet.
A manufacturing method according to a thirteenth aspect is characterized in that, in the manufacturing method according to the twelfth aspect, the thin magnet is held such that the widest surface thereof is substantially parallel to the radial direction of the rotating pedestal.
The manufacturing method according to claim 14 is the manufacturing method according to claim 13, wherein the plurality of thin magnets are widest in a state where the individual magnets are separated from each other when mounted on the substantially outer peripheral end portion of the rotating base. It is characterized by using a coating jig that can be set in a substantially annular shape so that the surface is substantially parallel to the radial direction of the rotating pedestal.
The manufacturing method according to claim 15 is characterized in that, in the manufacturing method according to claim 12, the thin magnet has any one of a flat plate shape, a ring shape, and a bow shape.
The manufacturing method according to claim 16 is the manufacturing method according to claim 14, wherein after the dip spin coating is performed, the coating jig with the thin magnet set is removed from the rotating pedestal and painted at an arbitrary place. The thin magnet as set in the jig is heat-treated.
In addition, the rare earth permanent magnet of the present invention has a corrosion-resistant coating film on which zinc fine particles having an average particle size of 1 μm to 50 μm are dispersed in a coating component using alkylsilicate as a starting material, as described in claim 17. It is characterized by.
The rare earth permanent magnet according to claim 18 is the rare earth permanent magnet according to claim 17, characterized in that the content of zinc fine particles in the corrosion-resistant coating is 50 wt% to 95 wt%.
The rare earth permanent magnet according to claim 19 is the rare earth permanent magnet according to claim 17 or 18, characterized in that zinc diffuses from the surface of the magnet body to the inside.
A rare earth permanent magnet according to claim 20 is the rare earth permanent magnet according to any one of claims 17 to 19, which is manufactured by the manufacturing method according to claim 1.
The workpiece dip spin coating method of the present invention, as described in claim 21, holds a plurality of workpieces on a substantially outer peripheral end of a rotating pedestal that is rotatable about a vertical central axis as a rotation axis, It is characterized by immersing the rotating pedestal holding the work in the paint tank, immersing the paint on the work, removing it from the liquid, rotating the rotating pedestal, and centrifugally shaking off the extra paint on the work. To do.
In addition, the method for forming a coating film on a workpiece according to the present invention has a plurality of workpieces when the workpiece is mounted on a substantially outer peripheral end of a rotatable pedestal that is rotatable about a vertical central axis as a rotation axis. Using a coating jig that can be set in a substantially annular shape with individual workpieces separated, the workpiece is dipped in the coating by immersing the rotating pedestal with the coating jig on which the workpiece is set in the coating tank. After that, remove from the liquid, rotate the rotating pedestal, centrifuge off any paint that has adhered to the workpiece, remove the coating jig with the workpiece set from the rotating pedestal, and place it on the coating jig at any place It is characterized in that the workpiece as it is is dried after desired.

本発明によれば、亜鉛微粒子分散耐食性被膜を表面に有する希土類系永久磁石の安定かつ簡易な製造方法、こうして製造される耐食性希土類系永久磁石、各種形状の薄型ワークに対する塗膜形成に適したディップスピンコーティング法およびワークの塗膜形成方法が提供される。   According to the present invention, a stable and simple method for producing a rare earth-based permanent magnet having a zinc fine particle-dispersed corrosion-resistant coating on its surface, a corrosion-resistant rare earth-based permanent magnet thus produced, and a dip suitable for forming a coating film on thin workpieces of various shapes. A spin coating method and a method for forming a coating film on a workpiece are provided.

本発明において、亜鉛微粒子分散耐食性被膜は、アルキルシリケートの加水分解重合反応物と平均粒径が1μm〜50μmの亜鉛微粒子を含有したpHが6〜8で粘度が1000cP以下の水系処理液を、希土類系永久磁石の表面に塗布した後、250℃〜400℃にて熱処理を行うことで形成される。このようにして形成された亜鉛微粒子分散耐食性被膜は、希土類系永久磁石に高い耐食性を付与するものであるとともに、磁石本体表面から内部に亜鉛が拡散していることで密着性に優れる。   In the present invention, the zinc fine particle-dispersed corrosion-resistant coating film is formed from an aqueous treatment liquid having a pH of 6 to 8 and a viscosity of 1000 cP or less, which contains alkyl silicate hydrolysis polymerization reaction product and zinc fine particles having an average particle diameter of 1 μm to 50 μm. It is formed by applying heat treatment at 250 ° C. to 400 ° C. after coating on the surface of the system permanent magnet. The zinc fine particle-dispersed corrosion-resistant coating formed in this way imparts high corrosion resistance to the rare earth-based permanent magnet, and has excellent adhesion due to the diffusion of zinc from the surface of the magnet body.

ここで、アルキルシリケートとしては、一般式:Sin(n-1)(OR)(2n+2)で示されるものが用いられる。式中、Rはアルキル基であり、メチル基、エチル基、プロピル基、ブチル基などの炭素数1〜4の低級アルキル基が例示されるが、中でも、安価であることに加えて毒性がなく取り扱い性に優れたエチル基(エチルシリケート)が好適である。また、nは1以上の整数であるが、緻密な被膜を形成するためにはnは10以下の整数であることが望ましい。 Here, as the alkyl silicate, one represented by the general formula: Si n O (n-1) (OR) (2n + 2) is used. In the formula, R is an alkyl group, and examples thereof include lower alkyl groups having 1 to 4 carbon atoms such as a methyl group, an ethyl group, a propyl group and a butyl group. An ethyl group (ethyl silicate) excellent in handleability is preferred. Further, n is an integer of 1 or more, but n is preferably an integer of 10 or less in order to form a dense film.

また、亜鉛微粒子は、平均粒径が1μm〜50μmのものが用いられる。これは、平均粒径が1μmよりも小さいと、水系処理液中で亜鉛微粒子が二次凝集を起こす恐れがある一方、平均粒径が50μmよりも大きいと、水系処理液中で亜鉛微粒子が沈降する恐れがあり、いずれの場合においても保存安定性に優れた亜鉛微粒子が均一に分散した水系処理液を調製することが困難になる恐れがあるからである。なお、亜鉛微粒子の平均粒径は、2μm〜30μmが望ましく、5μm〜20μmがより望ましい。亜鉛微粒子はいかなる形状のものであってもよいが、亜鉛微粒子分散耐食性被膜にピンホールが極力発生しないようにするためには、亜鉛微粒子は被膜成分中に高密度に積層充填されることが有利であり、また、磁石本体表面から内部に亜鉛を拡散させるためには磁石本体に対する亜鉛微粒子の接触面積は広いことが有利である。従って、かかる観点からは、亜鉛微粒子は鱗片状のものが望ましい。亜鉛微粒子が鱗片状のものである場合、亜鉛微粒子の平均粒径とは平均長径を意味するものとする。   In addition, zinc fine particles having an average particle diameter of 1 μm to 50 μm are used. This is because if the average particle size is smaller than 1 μm, the zinc fine particles may cause secondary aggregation in the aqueous processing solution, whereas if the average particle size is larger than 50 μm, the zinc fine particles settle in the aqueous processing solution. This is because, in any case, it may be difficult to prepare an aqueous treatment liquid in which zinc fine particles having excellent storage stability are uniformly dispersed. The average particle size of the zinc fine particles is desirably 2 μm to 30 μm, and more desirably 5 μm to 20 μm. The zinc fine particles may have any shape. However, in order to prevent pinholes from being generated as much as possible in the zinc fine particle-dispersed corrosion-resistant coating, it is advantageous that the zinc fine particles are densely stacked and filled in the coating components. In order to diffuse zinc from the magnet body surface to the inside, it is advantageous that the contact area of the zinc fine particles with the magnet body is wide. Therefore, from this viewpoint, the zinc fine particles are preferably scaly. When the zinc fine particles are scaly, the average particle size of the zinc fine particles means an average major axis.

水系処理液中における出発原料としてのアルキルシリケートと亜鉛微粒子の合計配合割合は、40重量%〜90重量%(アルキルシリケートはSiO2換算)とすることが望ましく、60重量%〜80重量%とすることがより望ましい。合計配合割合が40重量%未満であると、十分な特性を発揮する膜厚を有する亜鉛微粒子分散耐食性被膜を得るためには製造工程回数を必要以上に増やさなければならなくなる恐れがある一方、90重量%を超えると、水系処理液の保存安定性に影響を及ぼす恐れがあるからである。 The total blending ratio of the alkyl silicate as the starting material and the zinc fine particles in the aqueous processing liquid is preferably 40% by weight to 90% by weight (the alkyl silicate is converted to SiO 2 ), and 60% by weight to 80% by weight. It is more desirable. If the total blending ratio is less than 40% by weight, the number of production steps may be increased more than necessary to obtain a zinc fine particle-dispersed corrosion-resistant film having a film thickness that exhibits sufficient characteristics. This is because exceeding the weight percentage may affect the storage stability of the aqueous treatment liquid.

水系処理液中における出発原料としてのアルキルシリケートと亜鉛微粒子の混合比率は、形成される亜鉛微粒子分散耐食性被膜の亜鉛微粒子含有量が50重量%〜95重量%になるように、1:1〜1:19(重量比:アルキルシリケートはSiO2換算)とすることが望ましく、1:3〜1:10とすることがより望ましい。形成される亜鉛微粒子分散耐食性被膜の亜鉛微粒子含有量が50重量%より少ないと、被膜成分中に亜鉛微粒子を分散させることの効果が十分に発揮されない恐れがある一方、95重量%より多いと、アルキルシリケートを出発原料とする耐食性被膜としての本来的な特性が十分に発揮されない恐れがあるからである。 The mixing ratio of the alkyl silicate as the starting material in the aqueous treatment liquid and the zinc fine particles is 1: 1 to 1 so that the zinc fine particle content of the formed zinc fine particle-dispersed corrosion-resistant coating is 50 wt% to 95 wt%. : 19 (weight ratio: alkyl silicate calculated as SiO 2) is preferably set to be 1: 3 to 1: it is more desirable to be 10. If the zinc fine particle content of the formed zinc fine particle-dispersed corrosion resistant coating is less than 50% by weight, the effect of dispersing the zinc fine particles in the coating component may not be sufficiently exerted, whereas if more than 95% by weight, This is because the original characteristics as a corrosion-resistant film using alkyl silicate as a starting material may not be sufficiently exhibited.

希土類系永久磁石の表面に塗布する水系処理液のpHを6〜8と規定するのは、pHが6より小さいと、上記の特許文献2に記載したように希土類系永久磁石の腐食を招く恐れがある一方、pHが8より大きいと、上記の特許文献1に記載したように密着性に優れた亜鉛微粒子分散耐食性被膜が形成されない恐れがあるからである。   The reason why the pH of the aqueous treatment liquid applied to the surface of the rare earth permanent magnet is defined as 6 to 8 is that if the pH is smaller than 6, the corrosion of the rare earth permanent magnet may be caused as described in Patent Document 2 above. On the other hand, if the pH is higher than 8, there is a possibility that a zinc fine particle dispersed corrosion-resistant film having excellent adhesion as described in Patent Document 1 may not be formed.

希土類系永久磁石の表面に塗布する水系処理液の粘度を1000cP以下と規定するのは、水系処理液の粘度が1000cPを超えると、膜厚が均一な亜鉛微粒子分散耐食性被膜を形成することが困難になる恐れがあるからである。   The reason why the viscosity of the aqueous treatment liquid applied to the surface of the rare earth permanent magnet is defined as 1000 cP or less is that when the viscosity of the aqueous treatment liquid exceeds 1000 cP, it is difficult to form a zinc fine particle-dispersed corrosion-resistant film having a uniform film thickness. Because there is a risk of becoming.

均質性に優れた水系処理液の調製は、例えば、酸性条件下(pH3〜4程度)または塩基性条件下(pH10〜12程度)でアルキルシリケートを加水分解重合反応させた水溶液に平均粒径が1μm〜50μmの亜鉛微粒子を添加した後、pHを6〜8に調整するとともに粘度を100cP以下に維持または調整することで行うことが望ましい(粘度は50cP以下がより望ましく25cP以下がさらに望ましい)。なお、酸性条件下でアルキルシリケートを加水分解重合反応させた場合、pHの調整は、例えば、水酸化ナトリウムなどを用いて行えばよい。また、塩基性条件下でアルキルシリケートを加水分解重合反応させた場合、pHの調整は、例えば、塩酸などを用いて行えばよい。   Preparation of an aqueous processing solution with excellent homogeneity can be achieved, for example, by using an aqueous solution obtained by subjecting an alkyl silicate to a hydrolysis polymerization reaction under acidic conditions (about pH 3 to 4) or basic conditions (about pH 10 to 12). After adding 1 μm to 50 μm of zinc fine particles, it is preferable to adjust the pH to 6 to 8 and maintain or adjust the viscosity to 100 cP or less (viscosity is more preferably 50 cP or less, and further preferably 25 cP or less). When the alkyl silicate is subjected to a hydrolysis polymerization reaction under acidic conditions, the pH may be adjusted using, for example, sodium hydroxide. When alkyl silicate is subjected to a hydrolysis polymerization reaction under basic conditions, the pH may be adjusted using, for example, hydrochloric acid.

水系処理液の調製の段階でアルキルシリケートを加水分解重合反応させておくのは、形成される被膜を緻密なものにするためである。アルキルシリケートの加水分解重合反応は、用いるアルキルシリケートの全てを加水分解重合反応させる必要は必ずしもなく、その一部を加水分解重合反応させるような態様であってもよい。加水分解重合反応の程度は、酸や塩基の添加量や加水分解重合反応を起こすに際して使用する媒体としての水の量にて調整することができる。アルキルシリケートの加水分解重合反応の程度が高いと、水溶液の粘度が100cPを超える場合がある。いったん粘度が100cPを超えた場合であっても加温水を添加するなどすれば粘度の低下を図ることも可能ではあるが、水系処理液のより優れた均質性を確保するためには、加水分解重合反応時に水溶液の粘度が100cPを超えそうな場合には、適宜、水を添加するなどしてその粘度が100cPを越えないようにすることが望ましい。なお、所望する膜厚の被膜が形成されやすくすることを目的として水系処理液の表面張力を適度なものにしたい場合などには、例えば、水系処理液中にセルロース系の増粘剤(ヒドロキシエチルセルロース、メチルセルロース、メチルヒドロキシプロピルセルロース、エチルヒドロキシエチルセルロース、メチルエチルセルロースなどが例示される水溶性セルロースエーテルなど)などを添加することで、その粘度を調整することができる。形成される被膜の膜厚を厚くすることなどを目的として水系処理液の粘度を100cP以上にしたい場合には、いったん調製した水系処理液中に増粘剤を添加して粘度を高めることによって行うことが望ましい。   The reason why the alkyl silicate is hydrolytically polymerized at the stage of preparation of the aqueous treatment liquid is to make the formed film dense. The hydrolysis polymerization reaction of the alkyl silicate is not necessarily required to carry out the hydrolysis polymerization reaction for all of the alkyl silicate to be used, and may be an embodiment in which a part of the alkyl silicate is subjected to the hydrolysis polymerization reaction. The degree of the hydrolysis polymerization reaction can be adjusted by the amount of acid or base added or the amount of water as a medium used for causing the hydrolysis polymerization reaction. If the degree of hydrolysis polymerization reaction of the alkyl silicate is high, the viscosity of the aqueous solution may exceed 100 cP. Even if the viscosity exceeds 100 cP, it is possible to reduce the viscosity by adding warm water, but in order to ensure better homogeneity of the aqueous treatment liquid, hydrolysis is required. If the viscosity of the aqueous solution is likely to exceed 100 cP during the polymerization reaction, it is desirable that the viscosity does not exceed 100 cP by appropriately adding water. For example, when it is desired to make the surface tension of the aqueous treatment liquid appropriate for the purpose of facilitating the formation of a film having a desired film thickness, for example, a cellulose-based thickener (hydroxyethylcellulose) is added to the aqueous treatment liquid. , Methyl cellulose, methyl hydroxypropyl cellulose, water-soluble cellulose ether exemplified by ethyl hydroxyethyl cellulose, methyl ethyl cellulose, etc.) can be added to adjust the viscosity. When it is desired to increase the viscosity of the aqueous processing solution to 100 cP or more for the purpose of increasing the thickness of the coating film to be formed, the viscosity is increased by adding a thickener to the prepared aqueous processing solution. It is desirable.

アルキルシリケートを加水分解重合反応させた水溶液に亜鉛微粒子を添加するに際しては、有機分散剤を用いて、水系処理液中で亜鉛微粒子が均一に分散するようにすることが望ましい。水系処理液中への有機分散剤の添加は、例えば、有機分散剤を添加した水に亜鉛微粒子を投入することで亜鉛微粒子が均一に分散した亜鉛微粒子分散水系媒体を調製し、この亜鉛微粒子分散水系媒体とアルキルシリケートを加水分解重合反応させた水溶液を混合することで行えばよい。なお、有機分散媒としては、アニオン性分散媒(脂肪族系多価カルボン酸、ポリエーテルポリエステルカルボン酸塩、高分子ポリエステル酸ポリアミン塩、高分子量ポリカルボン酸長鎖アミン塩など)、非イオン性分散媒(ポリオキシエチレンアルキルエーテルやソルビタンエステルなどのカルボン酸塩やスルフォン酸塩やアンモニウム塩など)、高分子分散媒(水溶性エポキシのカルボン酸塩やスルフォン酸塩やアンモニウム塩など、スチレン−アクリル酸共重合物、ニカワなど)などが亜鉛微粒子との親和性やコストの点から好適に使用される。   When adding the zinc fine particles to the aqueous solution obtained by subjecting the alkyl silicate to hydrolysis polymerization reaction, it is desirable to use an organic dispersant so that the zinc fine particles are uniformly dispersed in the aqueous treatment liquid. The organic dispersant is added to the aqueous treatment liquid by, for example, introducing zinc fine particles into water added with the organic dispersant to prepare a zinc fine particle dispersed aqueous medium in which the zinc fine particles are uniformly dispersed. What is necessary is just to mix by mixing the aqueous medium and the aqueous solution which hydrolyzed the alkyl silicate. In addition, as an organic dispersion medium, anionic dispersion medium (aliphatic polyvalent carboxylic acid, polyether polyester carboxylate, high molecular weight polyester acid polyamine salt, high molecular weight polycarboxylic acid long chain amine salt, etc.), nonionic Dispersion media (carboxylates such as polyoxyethylene alkyl ethers and sorbitan esters, sulfonates, and ammonium salts), polymer dispersion media (carboxylates, sulfonates, and ammonium salts of water-soluble epoxies, styrene-acrylic) Acid copolymers, glues, etc.) are preferably used from the viewpoint of affinity with zinc fine particles and cost.

なお、希土類系永久磁石の表面に塗布する水系処理液の粘度は、十分な特性を発揮する膜厚を有する亜鉛微粒子分散耐食性被膜を必要以上の製造工程回数を繰り返すことなく形成するためには、5cP以上であることが望ましい。   In addition, in order to form the viscosity of the aqueous processing liquid applied to the surface of the rare earth-based permanent magnet without repeating the number of manufacturing steps more than necessary, the zinc fine particle-dispersed corrosion-resistant coating film having a film thickness that exhibits sufficient characteristics is formed. It is desirable that it is 5 cP or more.

希土類系永久磁石の表面に水系処理液を塗布するに際しては、ディップコーティング法、スプレー法、スピンコーティング法、ディップスピンコーティング法などを採用することができる。なお、希土類系永久磁石の表面に形成される亜鉛微粒子分散耐食性被膜との密着性の向上を図るため、水系処理液を塗布する前に磁石に対してサンドブラスト処理や酸洗処理を施してもよい。   When applying the aqueous treatment liquid to the surface of the rare earth permanent magnet, a dip coating method, a spray method, a spin coating method, a dip spin coating method, or the like can be employed. In order to improve the adhesion with the zinc fine particle-dispersed corrosion-resistant coating formed on the surface of the rare earth-based permanent magnet, the magnet may be subjected to sandblasting or pickling before applying the aqueous processing solution. .

水系処理液の希土類系永久磁石の表面への塗布は、より均一な水系処理液の塗膜が形成されるようにするためには、ディップスピンコーティング法で行うことが望ましい。とりわけ、鉛直方向の中心軸を回転軸として回転可能な回転台座の略外周端部上に、複数個の希土類系永久磁石を保持し、希土類系永久磁石が保持された回転台座を水系処理液槽に浸漬することで希土類系永久磁石に水系処理液を浸漬塗装した後、液中から取り出し、回転台座を回転させて希土類系永久磁石に余分に付着した水系処理液を遠心振り切りすることでディップスピンコーティングを行うことが望ましい。   Application of the aqueous treatment liquid to the surface of the rare earth permanent magnet is preferably performed by a dip spin coating method in order to form a more uniform aqueous treatment liquid coating. In particular, a plurality of rare earth-based permanent magnets are held on a substantially outer peripheral end of a rotating pedestal that can be rotated with a central axis in the vertical direction as a rotation axis, and the rotating pedestal holding the rare earth-based permanent magnets is After dip-coating the aqueous treatment liquid onto the rare earth permanent magnet by immersing in It is desirable to perform the coating.

薄型ワークの表面に、膜厚が例えば10μm程度の薄い塗膜を形成する方法として、ワークを塗料槽に浸漬することでワークに塗料を浸漬塗装した後、液中から取り出し、高速回転させて余分に付着した塗料を振り切ることによるディップスピンコーティング法が採用されることがある。これまでに知られている薄型ワークのディップスピンコーティング法としては、例えば、特開平7−201088号公報に光ディスクの保護膜塗布方法として提案されているものがある。この方法は、水平主軸に複数個の基板を一定間隔に垂直にセットし、主軸を中心に低速回転させながら基板の中心部以外を保護膜材料に浸漬して該材料を塗布した後、該材料から引き上げ、最後に高速回転させて該材料を振り切ることによるものである。また、特開平3−86271号公報においては、ハンガーを用いて被塗物の塗布面(平面)をほぼ水平に保持した状態で、ハンガーと被塗物を含む全体の重心を通る鉛直線を回転軸として回転させて塗料を遠心振り切りする工程を含むことを特徴とするディップスピンコーティング法が提案されている。また、特開2000−164556号公報においては、複数の溝を有する一対の保持部材を溝を有する側を対向させ、この対向する溝でウエハの周辺を保持するようにしたウエハキャリアを用い、キャリアをその溝が略回転加速度方向に向くように回転させてキャリアに保持した複数個のウエハ上の液体を遠心振り切り乾燥する方法が提案されている。   As a method of forming a thin coating film with a film thickness of, for example, about 10 μm on the surface of a thin work, after the work is immersed in the paint tank, the paint is immersed in the work, and then removed from the liquid and rotated at a high speed for extra work A dip spin coating method by shaking off the paint adhering to the surface may be employed. As a dip spin coating method for a thin workpiece known so far, for example, there is a method proposed as a method for applying a protective film on an optical disk in Japanese Patent Application Laid-Open No. 7-201088. In this method, a plurality of substrates are set on a horizontal main axis vertically at regular intervals, and the material other than the center part of the substrate is immersed in a protective film material while rotating at low speed around the main axis, and then the material is applied. This is because the material is shaken off by pulling it up and finally rotating at high speed. In Japanese Patent Laid-Open No. 3-86271, a vertical line passing through the center of gravity including the hanger and the object to be coated is rotated while the application surface (plane) of the object to be coated is held almost horizontally using the hanger. There has been proposed a dip spin coating method characterized by including a step of rotating the shaft as a shaft and centrifugally shaking off the paint. Japanese Patent Laid-Open No. 2000-164556 uses a wafer carrier in which a pair of holding members having a plurality of grooves are opposed to each other on the side having the grooves, and the periphery of the wafer is held by the opposed grooves. There has been proposed a method in which the liquid on a plurality of wafers held on a carrier by rotating the substrate so that the groove is directed substantially in the direction of rotational acceleration is centrifugally spun off and dried.

大量の薄型ワークに対してディップスピンコーティング法を採用する場合、ワークの形状にとらわれることなく、全てのワークに対して膜厚のばらつきを生じさせないで均一な塗装ができることが望ましい。しかしながら、この点に鑑みれば、上記の特許文献に記載のいずれの方法も多かれ少なかれ欠点を有する。具体的には、特開平7−201088号公報に記載の方法では、ワークをその中心部で保持しなければならないので、リング状ワークにしか適用することができないといった欠点がある。また、この方法では、リング状ワークの内周面に水平主軸を当接させ、両者間に発生する摩擦力でワーク自体を回転させるため、ワークと主軸との間に発生する摩擦力にばらつきがあると、ワークの回転速度がばらつくので、全てのワークに対して均一な塗装ができない恐れがあるといった欠点や、ワークを高速回転させることが困難であるため、粘性が高い塗料(例えば粘度が500cPを超えるようなもの)をワークに塗装する場合には、余分に付着した塗料を十分に振り切ることができない恐れがあるといった欠点がある。また、特開平3−86271号公報に記載の方法では、ワークの平面をほぼ水平に保持するので、上面と下面との間で塗料の付着量に差異が生じる恐れがあるといった欠点がある。また、特開2000−164556号公報に記載の方法では、ワークの一方の平面が回転軸に対向して保持されるので、保持位置によってワークごとにその回転速度が異なることから、全てのワークに対して均一な塗装ができない恐れがあるといった欠点がある。   When the dip spin coating method is employed for a large number of thin workpieces, it is desirable that uniform coating can be performed without causing variations in film thickness for all workpieces without being limited by the shape of the workpiece. However, in view of this point, any of the methods described in the above patent documents has more or less disadvantages. Specifically, the method described in Japanese Patent Application Laid-Open No. 7-201088 has a drawback that it can be applied only to a ring-shaped workpiece because the workpiece must be held at its center. In this method, the horizontal spindle is brought into contact with the inner peripheral surface of the ring-shaped workpiece, and the workpiece itself is rotated by the frictional force generated between the two. Therefore, the frictional force generated between the workpiece and the spindle varies. In such a case, since the rotation speed of the workpieces varies, there is a possibility that uniform coating cannot be applied to all the workpieces, and it is difficult to rotate the workpieces at a high speed. In the case of coating a workpiece with an excess of the above, there is a drawback that the extra adhered paint may not be sufficiently shaken off. Further, the method described in Japanese Patent Application Laid-Open No. 3-86271 has a drawback in that since the plane of the workpiece is held almost horizontally, there is a possibility that a difference in the coating amount of the paint may occur between the upper surface and the lower surface. Further, in the method described in Japanese Patent Application Laid-Open No. 2000-164556, since one plane of the workpiece is held facing the rotation axis, the rotation speed varies depending on the holding position. On the other hand, there is a drawback that uniform coating may not be possible.

しかしながら、本発明において提案するディップスピンコーティング法によれば、大量の薄型ワークに対しても膜厚のばらつきを生じさせないで均一な塗膜形成ができる。   However, according to the dip spin coating method proposed in the present invention, a uniform coating film can be formed even on a large number of thin workpieces without causing variations in film thickness.

以下、本発明において提案するディップスピンコーティング法を、必要に応じて図面を参照しながら説明するが、本発明において提案するディップスピンコーティング法は以下の記載に何ら限定して解釈されるものではない。本発明において提案するディップスピンコーティング法は、ワークの形状にとらわれることなく、あらゆる形状のワークの塗装に適用することができるが、とりわけ平板状やリング状や弓形状などの薄型ワークの塗装に好適であるので、以下の説明においては、本発明の方法を平板状ワークとリング状ワークの塗装に適用する場合を例にとる。   Hereinafter, the dip spin coating method proposed in the present invention will be described with reference to the drawings as necessary. However, the dip spin coating method proposed in the present invention is not construed as being limited to the following description. . The dip spin coating method proposed in the present invention can be applied to the painting of workpieces of any shape without being restricted by the shape of the workpiece, but is particularly suitable for the painting of thin workpieces such as flat plates, rings and bows. Therefore, in the following description, the case where the method of the present invention is applied to the coating of a flat workpiece and a ring workpiece is taken as an example.

図1は、本発明において提案するディップスピンコーティング法の一例の概略工程図である。その工程を順を追って説明すると、(a)まず、鉛直方向の中心軸1を回転軸として回転可能な回転台座2の略外周端部上に、複数個の平板状ワークXを、その個々の最も広い面(平面)が放射状方向に略平行になるように略環状に保持する。(b)次に、エアシリンダ3により塗料槽4を上昇させてワークXが保持された回転台座2を塗料槽4に浸漬することでワークXに塗料を浸漬塗装する。(c)次に、エアシリンダ3により塗料槽4を下降させて回転台座2を液中から取り出す。(d)最後に、回転台座2をモータ5により中心軸1を回転軸として回転させて(少なくとも1回は回転方向を逆転することが望ましい)、ワークXの平面に余分に付着した塗料を遠心振り切りする。この方法によれば、粘性が比較的高い塗料(例えば粘度が200cPを超えるようなもの)であっても、回転台座2の大きさを調整したり回転速度を制御したりすることで、ワークXの平面への塗料の付着量を自在に調整することができることから、形成される塗膜の膜厚も自在に調整することができる。   FIG. 1 is a schematic process diagram of an example of the dip spin coating method proposed in the present invention. The process will be described in order. (A) First, a plurality of flat workpieces X are individually placed on the substantially outer peripheral end of a rotating base 2 that can be rotated with the central axis 1 in the vertical direction as a rotation axis. It is held in a substantially annular shape so that the widest surface (plane) is substantially parallel to the radial direction. (B) Next, the paint tank 4 is lifted by the air cylinder 3 and the rotary base 2 holding the work X is immersed in the paint tank 4 to dip the paint on the work X. (C) Next, the paint tank 4 is lowered by the air cylinder 3 and the rotary base 2 is taken out of the liquid. (D) Finally, the rotating pedestal 2 is rotated by the motor 5 about the central axis 1 as the rotation axis (preferably, the rotation direction is reversed at least once), and the paint adhered to the plane of the workpiece X is centrifuged. Shake off. According to this method, even if the paint has a relatively high viscosity (for example, a viscosity exceeding 200 cP), by adjusting the size of the rotary base 2 or controlling the rotation speed, the work X Since the adhesion amount of the paint to the flat surface can be freely adjusted, the film thickness of the coating film to be formed can also be freely adjusted.

なお、回転台座2の台座面は、塗料溜りができたりしないように、メッシュ状であることが望ましい。   The pedestal surface of the rotary pedestal 2 is preferably mesh-shaped so as not to cause paint accumulation.

図2(a)は、回転台座2の略外周端部上に、複数個の平板状ワークXを、その個々の平面が放射状方向に略平行になるように略環状に保持した状態の一例の概略部分斜視図である。図2(b)は、ワークXを保持した回転台座2をその上方から見た図である。ワークXは、回転台座2に敷設された2本の保持部材(断面が半円の棒状のものが望ましい)11上に載置される。ワークXは、図1に示したように、回転台座2上に直に載置してもよいが、このような載置方法を採用することで、ワークXの下面に生じる載置跡を極小化することができる(図2(c)参照)。   FIG. 2A shows an example of a state in which a plurality of flat workpieces X are held on a substantially annular end so that their respective planes are substantially parallel to the radial direction on the substantially outer peripheral end of the rotating base 2. It is a general | schematic fragmentary perspective view. FIG. 2B is a view of the rotary base 2 holding the workpiece X as viewed from above. The workpiece X is placed on two holding members 11 (preferably rod-like ones having a semicircular cross section) laid on the rotary base 2. As shown in FIG. 1, the workpiece X may be placed directly on the rotary base 2, but by adopting such a placement method, the placement trace generated on the lower surface of the workpiece X is minimized. (See FIG. 2C).

個々の平板状ワークXは、保持部材11に対して鉛直方向に設けられたスペーサ12によって離間した状態で保持される。なお、スペーサ12はワークXの横転を防止する機能も併せ持つ。隣接するスペーサ12とスペーサ12の間隔は、ワークXの厚みよりも広いことが望ましい。常にワークXの両面にスペーサ12が当接していると、その当接跡が顕著になるからである。また、スペーサ12の断面は円形であることが望ましい。回転台座2を回転させることによってワークXの平面に生じる当接跡を極小化することができるからである。   The individual flat workpieces X are held in a state of being separated by spacers 12 provided in the vertical direction with respect to the holding member 11. The spacer 12 also has a function of preventing the workpiece X from overturning. The interval between the adjacent spacers 12 and the spacers 12 is desirably wider than the thickness of the workpiece X. This is because if the spacer 12 is always in contact with both surfaces of the workpiece X, the contact mark becomes remarkable. The cross section of the spacer 12 is preferably circular. This is because the contact trace generated on the plane of the workpiece X can be minimized by rotating the rotary base 2.

工程(d)において、回転台座2をモータ5により中心軸1を回転軸として回転させて平板状ワークXの平面に余分に付着した塗料を遠心振り切りする際、ワークXは、遠心力により放射状方向に飛び出そうとするが、図略の構成によって回転台座2に固定され、水平方向に配置された遠心飛び出し規制棒13は、ワークXの外側側面に当接してワークXの放射状方向への飛び出しを規制する働きを有する。また、遠心飛び出し規制棒13に対して回転軸方向に設けられたスペーサ14は、遠心振り切り中のワークXの動きを規制する働きを有する。   In the step (d), when the rotating base 2 is rotated by the motor 5 with the central axis 1 as the rotation axis, and the paint adhered excessively to the plane of the flat workpiece X is spun off, the workpiece X is moved in the radial direction by centrifugal force. However, the centrifugal pop-out restricting bar 13 fixed to the rotary base 2 and arranged in the horizontal direction by an unillustrated configuration abuts against the outer side surface of the work X and causes the work X to jump out in the radial direction. Has the function of regulating. Further, the spacer 14 provided in the direction of the rotation axis with respect to the centrifugal protrusion regulating rod 13 has a function of regulating the movement of the workpiece X during centrifugal swing-off.

図3(a)は、回転台座2の略外周端部上に、複数個のリング状ワークYを、その個々の平面が放射状方向に略平行になるように略環状に保持した状態の一例の概略部分斜視図である。ワークYは、図略の構成によって回転台座2に固定された水平吊掛部材15に、そのリング部にて吊り掛けられて保持される。水平吊掛部材15は、断面が円形の棒状のものが望ましい。また、水平吊掛部材15のワークYが吊り掛けられる部分は、例えばV字型に切り欠いておくことが望ましい(図3(b)参照)。水平吊掛部材15をこのような構成とすることで、ワークYのリング部に生じる吊掛跡を極小化することができる。   FIG. 3A shows an example of a state in which a plurality of ring-shaped workpieces Y are held on a substantially annular end so that their individual planes are substantially parallel to a radial direction on a substantially outer peripheral end portion of the rotary base 2. It is a general | schematic fragmentary perspective view. The workpiece Y is suspended and held by the ring portion on a horizontal suspension member 15 fixed to the rotary base 2 with a configuration not shown. The horizontal hanging member 15 is preferably a rod-shaped member having a circular cross section. Further, it is desirable that the portion of the horizontal hanging member 15 on which the workpiece Y is hung is cut out, for example, in a V shape (see FIG. 3B). With the horizontal hanging member 15 having such a configuration, the hanging trace generated in the ring portion of the workpiece Y can be minimized.

複数個の薄型ワークにディップスピン塗装を行うに際しては、図1〜図3に示したように、薄型ワークの1個1個を直接的に回転台座に保持させてもよいが、回転台座の略外周端部上に装着した際、複数個の薄型ワークを個々のワークが離間した状態でその最も広い面が回転台座の放射状方向に対して略平行になるように略環状にセットすることができる塗装治具を用いてもよい。   When performing dip spin coating on a plurality of thin workpieces, as shown in FIGS. 1 to 3, each thin workpiece may be directly held on a rotating pedestal. When mounted on the outer peripheral edge, a plurality of thin workpieces can be set in a substantially annular shape so that the widest surface of the thin workpieces is substantially parallel to the radial direction of the rotating pedestal with the individual workpieces separated. A painting jig may be used.

図4は、回転台座の略外周端部上に装着した際、複数個の平板状ワークを個々のワークが離間した状態でその平面が回転台座の放射状方向に対して略平行になるように略環状にセットすることができる塗装治具の一例の概略斜視図である。この塗装治具Zは、複数個の平板状ワークXを個々のワークが離間した状態でその平面が鉛直方向に略平行になるように保持するための、水平方向に平行配置された、2本の、スペーサ22付き保持棒21と、ワークXがセットされた治具を回転台座の略外周端部上に装着して回転台座を回転させた際に、ワークXの外側側面に当接して遠心力による放射状方向へのワークXの飛び出しを規制するための、水平方向に平行配置された、スペーサ24付き遠心飛び出し規制棒23を少なくとも有してなるが、保持棒21の上方に、治具を上下反転させた際に、複数個のワークXを個々のワークが離間した状態でその平面が鉛直方向に略平行になるように、かつ、ワークXの上部が保持棒21と空間を存するように保持するための、保持棒21に平行配置された、2本の、スペーサ26付き棒状部材25をさらに有してなる。ワークXを上段にて保持するための保持棒21は、治具を上下反転させた際に、棒状部材25として機能する。   FIG. 4 shows that when mounted on the substantially outer peripheral end of the rotating pedestal, a plurality of flat workpieces are substantially parallel to the radial direction of the rotating pedestal in a state where the individual workpieces are separated from each other. It is a schematic perspective view of an example of the coating jig which can be set cyclically | annularly. The coating jig Z includes two pieces arranged in parallel in the horizontal direction for holding a plurality of flat workpieces X so that the planes are substantially parallel to the vertical direction with the individual workpieces separated. When the holding rod 21 with the spacer 22 and the jig on which the workpiece X is set are mounted on the substantially outer peripheral end of the rotating base and the rotating base is rotated, the rotating rod is brought into contact with the outer side surface of the rotating base X and centrifuged. It has at least a centrifugal pop-out restricting bar 23 with a spacer 24 arranged in parallel in the horizontal direction to restrict the pop-out of the workpiece X in the radial direction by force. A jig is placed above the holding bar 21. When the workpiece X is turned upside down, the planes of the plurality of workpieces X are substantially parallel to each other with the workpieces separated from each other, and the upper portion of the workpiece X has a space with the holding rod 21. To holding rod 21 for holding Are row arrangement, two, further comprising a spacer 26 with the rod-shaped member 25. The holding bar 21 for holding the workpiece X in the upper stage functions as a bar-like member 25 when the jig is turned upside down.

図5は、複数個の薄型ワークXをセットした塗装治具Zの概略正面図(a)とD−D断面図(b)である。   FIG. 5 is a schematic front view (a) and a DD sectional view (b) of a coating jig Z on which a plurality of thin workpieces X are set.

保持棒21と棒状部材25は、断面が円形であることが望ましい。薄型ワークXの下面に生じる載置跡を極小化することができるからである。また、遠心飛び出し規制棒23も、断面が円形であることが望ましい。薄型ワークXの外側側面に生じる当接跡を極小化することができるからである。また、スペーサ22とスペーサ24とスペーサ26も、断面が円形であることが望ましい。薄型ワークXの平面に生じる当接跡を極小化することができるからである。なお、保持棒21と棒状部材25は、必ずしも2本必要であるわけではなく、1本であってもよい。   It is desirable that the holding rod 21 and the rod-like member 25 have a circular cross section. This is because the placement trace generated on the lower surface of the thin workpiece X can be minimized. Moreover, it is desirable that the centrifugal protrusion regulating rod 23 also has a circular cross section. This is because the contact trace generated on the outer side surface of the thin workpiece X can be minimized. In addition, the spacer 22, the spacer 24, and the spacer 26 are preferably circular in cross section. This is because the contact trace generated on the flat surface of the thin workpiece X can be minimized. Note that two holding rods 21 and rod-like members 25 are not necessarily required, and may be one.

図4に示した塗装治具Zは、例えば、次のようにして用いられる。図6は、自体公知の着脱自在な装着手段により、複数個の平板状ワークXをセットした塗装治具Zを、回転台座2の略外周端部上に装着した状態の一例の概略部分平面図である。図1に示した概略工程図に従って、エアシリンダ2により塗料槽4を上昇させてワークXをセットした塗装治具Zを装着した回転台座2を塗料槽4に浸漬することでワークXに塗料を浸漬塗装する。次に、エアシリンダ3により塗料槽4を下降させて回転台座2を液中から取り出す。最後に、回転台座2をモータ5により中心軸1を回転軸として回転させてワークXの平面に余分に付着した塗料を遠心振り切りすることでディップスピン塗装を完了する。任意時間経過後、ワークXがセットされたままの塗装治具Zを回転台座2から取り外し、任意の場所で塗装治具ZにセットされたままのワークXを所望により乾燥処理(自然乾燥または加熱乾燥)する。その後、ワークXがセットされたままの塗装治具Zを上下反転させて再び回転台座2に装着し、ディップスピン塗装を前記と同様の工程にて再び行う。このようにすれば、1回目の塗装と2回目の塗装とでは、ワークXに生じる載置跡や当接跡の位置が変わるので、2回目の塗装により、1回目の塗装でワークXに生じた載置跡や当接跡にも塗装が行われることから、ワークXに対してより均一な塗装を行うことができる。その後、ワークXがセットされたままの塗装治具Zを回転台座2から取り外し、任意の場所で塗装治具ZにセットされたままのワークXを所望により乾燥処理(自然乾燥または加熱乾燥)すれば、大量のワークに対しても膜厚のばらつきを生じさせないで均一な塗膜形成を効率よく行うことができる。   The coating jig Z shown in FIG. 4 is used as follows, for example. FIG. 6 is a schematic partial plan view of an example of a state in which a coating jig Z on which a plurality of flat workpieces X are set is mounted on a substantially outer peripheral end portion of the rotating base 2 by a publicly known removable mounting means. It is. In accordance with the schematic process diagram shown in FIG. 1, the paint tank 4 is lifted by the air cylinder 2, and the rotating base 2 equipped with the coating jig Z on which the work X is set is immersed in the paint tank 4 to apply the paint to the work X. Apply dip coating. Next, the paint tank 4 is lowered by the air cylinder 3 and the rotary base 2 is taken out of the liquid. Finally, the rotating pedestal 2 is rotated by the motor 5 with the central axis 1 as the rotation axis, and the paint adhering excessively to the plane of the workpiece X is spun off to complete the dip spin coating. After an arbitrary time has elapsed, the coating jig Z with the workpiece X still set is removed from the rotating base 2, and the workpiece X that has been set on the coating jig Z at an arbitrary place is optionally dried (naturally dried or heated). dry. Thereafter, the coating jig Z on which the workpiece X is set is turned upside down and mounted again on the rotating pedestal 2, and dip spin coating is performed again in the same process as described above. In this way, the position of the placement trace and the contact trace generated on the workpiece X changes between the first coating and the second coating, so that the second coating causes the workpiece X in the first coating. Since the coating is also performed on the placement trace and the contact trace, the workpiece X can be more uniformly painted. Thereafter, the coating jig Z with the workpiece X still set is removed from the rotary base 2, and the workpiece X with the workpiece X set on the coating jig Z is dried at any place as desired (natural drying or heat drying). For example, uniform coating can be efficiently formed without causing variations in film thickness even for a large amount of workpieces.

なお、水系処理液の希土類系永久磁石の表面への塗布をディップスピンコーティング法で行う場合、粘度が300cP〜600cPの水系処理液を用いることで、より均一な塗膜形成を行うことができる。このような粘度の水系処理液は、上述したように、いったん調製した水系処理液中にセルロース系の増粘剤などを添加することで粘度を高めたものであることが望ましい(増粘剤は水系処理液中に1重量%〜2重量%含まれるように添加することが望ましい)。   In addition, when apply | coating to the surface of the rare earth-type permanent magnet of an aqueous processing liquid by the dip spin coating method, a more uniform coating-film formation can be performed by using the aqueous processing liquid with a viscosity of 300 cP-600 cP. As described above, it is desirable that the aqueous treatment liquid having such a viscosity has a viscosity increased by adding a cellulose-based thickener or the like to the aqueous treatment liquid once prepared (the thickener is It is desirable to add such that it is contained in the aqueous treatment liquid in an amount of 1 to 2% by weight.

表面に水系処理液の塗膜が形成された希土類系永久磁石の熱処理は、250℃〜400℃にて行う。このような温度条件にて熱処理を行うと、水系処理液中に含まれる亜鉛微粒子の一部が、被膜生成過程において、磁石本体表面から内部に適度に拡散することで、密着性に優れた亜鉛微粒子分散耐食性被膜が形成される。熱処理の温度が250℃よりも低いと、このような亜鉛の拡散が十分に起こらないばかりか、水が十分に蒸発せずに希土類系永久磁石の表面に残存することで、その後において磁石の腐食を招く恐れがある一方、400℃よりも高いと、亜鉛の拡散が必要以上に起こることで磁石特性に悪影響を及ぼす恐れがある。熱処理の時間は、例えば、10分〜120分が望ましい。なお、水系処理液を表面に塗布した希土類系永久磁石をいったん100℃〜170℃で仮乾燥してから熱処理を行うことで、より均質な亜鉛微粒子分散耐食性被膜を形成することができる。   Heat treatment of the rare earth permanent magnet having a coating film of the aqueous treatment liquid formed on the surface is performed at 250 ° C to 400 ° C. When heat treatment is performed under such temperature conditions, a part of the zinc fine particles contained in the aqueous processing solution is appropriately diffused from the surface of the magnet body to the inside during the film formation process, so that zinc having excellent adhesion can be obtained. A fine particle dispersed corrosion resistant coating is formed. If the temperature of the heat treatment is lower than 250 ° C., not only the diffusion of zinc will not occur sufficiently, but also water will not sufficiently evaporate and remain on the surface of the rare earth permanent magnet. On the other hand, if the temperature is higher than 400 ° C., zinc diffusion may occur more than necessary, which may adversely affect the magnet characteristics. The heat treatment time is preferably, for example, 10 minutes to 120 minutes. Note that a rare earth-based permanent magnet coated with an aqueous treatment liquid is temporarily dried at 100 ° C. to 170 ° C. and then heat-treated to form a more uniform zinc fine particle-dispersed corrosion resistant coating.

亜鉛微粒子分散耐食性被膜は、その膜厚が1μm〜50μmとなるように形成することが望ましく、5μm〜15μmとなるように形成することがより望ましい。膜厚が1μm未満であると、亜鉛微粒子分散耐食性被膜としての特性が十分に発揮されない恐れがある一方、膜厚が50μmを超えると、希土類系永久磁石の有効体積が十分に確保することができなくなる恐れがあるからである。   The zinc fine particle-dispersed corrosion resistant coating is preferably formed to have a thickness of 1 μm to 50 μm, and more preferably 5 μm to 15 μm. If the film thickness is less than 1 μm, the characteristics as a zinc fine particle-dispersed corrosion-resistant film may not be sufficiently exhibited. On the other hand, if the film thickness exceeds 50 μm, a sufficient effective volume of the rare earth permanent magnet can be secured. Because there is a risk of disappearing.

なお、亜鉛微粒子分散耐食性被膜中に他の無機質微粒子をさらに分散させてもよい。無機質微粒子としては、例えば、アルミニウム、錫、マンガン、マグネシウム、チタン、ニッケルなどの亜鉛と同様に電位的に卑な金属の微粒子が挙げられる。例えば、亜鉛微粒子とともにアルミニウム微粒子を分散させることで、亜鉛微粒子の腐食による白錆(塩基性炭酸亜鉛)の生成を効果的に防止することができる。また、被膜に発生しうるピンホールをより低減化し、被膜の耐食性をより高めるために、被膜中に亜鉛微粒子とともにAl23やTiO2やSiO2やマイカなどの酸化物微粒子を分散させてもよい。亜鉛微粒子とともに他の無機質微粒子を分散させる場合、形成される耐食性被膜の亜鉛微粒子と他の無機質微粒子の合計含有量は、95重量%以下であることが望ましい。 Note that other inorganic fine particles may be further dispersed in the zinc fine particle-dispersed corrosion-resistant coating. Examples of the inorganic fine particles include fine particles of a potential base metal like zinc such as aluminum, tin, manganese, magnesium, titanium and nickel. For example, by dispersing aluminum fine particles together with zinc fine particles, generation of white rust (basic zinc carbonate) due to corrosion of zinc fine particles can be effectively prevented. In addition, in order to further reduce pinholes that can occur in the coating and to further improve the corrosion resistance of the coating, fine particles of oxide such as Al 2 O 3 , TiO 2 , SiO 2 and mica are dispersed in the coating along with zinc fine particles. Also good. When other inorganic fine particles are dispersed together with the zinc fine particles, the total content of the zinc fine particles and the other inorganic fine particles in the formed corrosion-resistant coating is desirably 95% by weight or less.

希土類系永久磁石としては、Nd−Fe−B系永久磁石に代表されるR−Fe−B系永久磁石やSm−Fe−N系永久磁石に代表されるR−Fe−N系永久磁石などの公知の希土類系永久磁石が挙げられる。中でも、R−Fe−B系永久磁石は、特に磁気特性が高く、量産性や経済性に優れている点において望ましいものである。希土類系永久磁石は、焼結磁石であってもよいしボンド磁石であってもよい。
希土類系永久磁石における希土類元素(R)は、Nd、Pr、Dy、Ho、Tb、Smのうち少なくとも1種、あるいはさらに、La、Ce、Gd、Er、Eu、Tm、Yb、Lu、Yのうち少なくとも1種を含むものが望ましい。
また、通常はRのうち1種をもって足りるが、実用上は2種以上の混合物(ミッシュメタルやジジムなど)を入手上の便宜などの理由によって使用することもできる。
さらに、Al、Ti、V、Cr、Mn、Bi、Nb、Ta、Mo、W、Sb、Ge、Sn、Zr、Ni、Si、Zn、Hf、Gaのうち少なくとも1種を添加することで、保磁力や減磁曲線の角型性の改善、製造性の改善、低価格化を図ることが可能となる。また、Feの一部をCoで置換することによって、得られる磁石の磁気特性を損なうことなしに温度特性を改善することができる。
Examples of rare earth permanent magnets include R—Fe—B permanent magnets typified by Nd—Fe—B permanent magnets and R—Fe—N permanent magnets typified by Sm—Fe—N permanent magnets. A known rare earth permanent magnet can be used. Among these, R-Fe-B permanent magnets are desirable in that they have particularly high magnetic properties and are excellent in mass productivity and economy. The rare earth permanent magnet may be a sintered magnet or a bonded magnet.
The rare earth element (R) in the rare earth based permanent magnet is at least one of Nd, Pr, Dy, Ho, Tb, Sm, or La, Ce, Gd, Er, Eu, Tm, Yb, Lu, Y. Among them, those containing at least one kind are desirable.
Usually, one type of R is sufficient, but in practice, a mixture of two or more types (such as misch metal and didymium) may be used for reasons of convenience.
Furthermore, by adding at least one of Al, Ti, V, Cr, Mn, Bi, Nb, Ta, Mo, W, Sb, Ge, Sn, Zr, Ni, Si, Zn, Hf, and Ga, It becomes possible to improve the squareness of the coercive force and the demagnetization curve, improve the manufacturability, and reduce the price. Further, by replacing part of Fe with Co, the temperature characteristics can be improved without impairing the magnetic characteristics of the obtained magnet.

以下、本発明を実施例と比較例によってさらに詳細に説明するが、本発明はこれに限定して解釈されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further in detail, this invention is limited to this and is not interpreted.

実施例1:
出発原料として、電解鉄、フェロボロン、RとしてのNdを所要の磁石組成に配合し、溶解鋳造後、機械的粉砕法にて粗粉砕してから微粉砕することで粒度が3μm〜10μmの微粉末を得、これを10kOeの磁界中で成形してからアルゴン雰囲気中で1100℃×1時間の焼結を行った後、得られた焼結体に対して600℃×2時間の時効処理を行い、15Nd−7B−78Feの組成を有する磁石体から切り出した36mm×32mm×3mm寸法の平板状焼結磁石試験片を用いて以下の実験を行った。
Example 1:
As a starting material, electrolytic iron, ferroboron, and Nd as R are blended into the required magnet composition, and after melt casting, finely pulverized by mechanical pulverization and then finely pulverized to obtain a fine powder having a particle size of 3 μm to 10 μm After being molded in a magnetic field of 10 kOe and sintered in an argon atmosphere at 1100 ° C. for 1 hour, the obtained sintered body was subjected to aging treatment at 600 ° C. for 2 hours. The following experiment was conducted using a plate-like sintered magnet test piece having a size of 36 mm × 32 mm × 3 mm cut out from a magnet body having a composition of 15Nd-7B-78Fe.

A. エチルシリケート40(エチルシリケートをSiO2換算で40重量%含有する無色透明液体)に水を添加し、1N塩酸でpHを3に調整することでエチルシリケートを加水分解重合反応させ、出発原料としてのエチルシリケートを20重量%(SiO2換算)含有する水溶液を調製した。この水溶液と、有機分散剤(商品名ソルスパースS20000:アビシア社製)と平均長径が20μmの鱗片状亜鉛微粒子(概寸法20μm×20μm×1μm)を水に添加して調製した亜鉛微粒子分散水系媒体を混合し、よく攪拌して1N水酸化ナトリウムでpHを7に調整し、出発原料としてのエチルシリケートと亜鉛微粒子の合計配合割合が70重量%(エチルシリケートはSiO2換算)で、出発原料としてのエチルシリケートと亜鉛微粒子と有機分散剤の混合比率が、9.9:90:0.1(重量比:エチルシリケートはSiO2換算)である粘度が15cPの水系処理液を得た。
B. エタノールにて超音波洗浄(脱脂処理)してから15分間自然乾燥させた試験片を上記の水系処理液に浸漬した。水系処理液から取り出した試験片を遠心乾燥機に収容し、300rpmにて30秒間振り切りすることで試験片の表面に付着している余分な水系処理液を除去した後、100℃×5分間大気中にて仮乾燥した。こうして表面に塗布した水系処理液を仮乾燥させた試験片を再度水系処理液に浸漬した。水系処理液から取り出した試験片の表面に付着している余分な水系処理液を上記と同様にして除去した後、表面に水系処理液の塗膜が形成された試験片に対して320℃×10分間大気中にて熱処理を行い、試験片の表面に亜鉛微粒子含有量が90重量%の亜鉛微粒子分散耐食性被膜を形成した。形成された亜鉛微粒子分散耐食性被膜の膜厚は約10μmであった(断面観察より)。
C. こうして製造された亜鉛微粒子分散耐食性被膜を表面に有する試験片10個に対して35℃の5%塩水を500時間噴霧するという耐食性試験を行ったが、試験後において外観変化(発錆)を来したものはなかった。
A. Water is added to ethyl silicate 40 (a colorless transparent liquid containing 40% by weight of ethyl silicate in terms of SiO 2 ), and the pH is adjusted to 3 with 1N hydrochloric acid to cause hydrolytic polymerization reaction of ethyl silicate. ethyl silicate 20% by weight (SiO 2 equivalent) aqueous solution containing prepared. A zinc fine particle-dispersed aqueous medium prepared by adding this aqueous solution, an organic dispersant (trade name Solsperse S20000: manufactured by Avicia) and scaly zinc fine particles having an average major axis of 20 μm (approximately 20 μm × 20 μm × 1 μm) to water. Mix, mix well and adjust the pH to 7 with 1N sodium hydroxide. The total blending ratio of ethyl silicate and zinc fine particles as the starting material is 70% by weight (ethyl silicate is equivalent to SiO 2 ). An aqueous processing solution having a mixing ratio of ethyl silicate, zinc fine particles and organic dispersant of 9.9: 90: 0.1 (weight ratio: ethyl silicate converted to SiO 2 ) and a viscosity of 15 cP was obtained.
B. The test piece which was ultrasonically cleaned with ethanol (degreasing treatment) and then naturally dried for 15 minutes was immersed in the aqueous processing solution. The test piece taken out from the aqueous processing solution is stored in a centrifugal dryer, and after removing the excess aqueous processing solution adhering to the surface of the test piece by shaking off at 300 rpm for 30 seconds, the atmosphere is 100 ° C. for 5 minutes. It was temporarily dried inside. The test piece obtained by temporarily drying the aqueous treatment liquid applied to the surface in this manner was again immersed in the aqueous treatment liquid. After removing the excess aqueous treatment liquid adhering to the surface of the test piece taken out from the aqueous treatment liquid in the same manner as described above, the test piece with the aqueous treatment liquid coating film formed on the surface was 320 ° C. × A heat treatment was performed in the air for 10 minutes to form a zinc fine particle-dispersed corrosion-resistant film having a zinc fine particle content of 90% by weight on the surface of the test piece. The film thickness of the formed zinc fine particle-dispersed corrosion-resistant film was about 10 μm (from cross-sectional observation).
C. A corrosion resistance test was carried out by spraying 5% salt water at 35 ° C. for 500 hours on 10 test pieces having zinc fine particle dispersed corrosion resistance coatings produced on the surface. However, the appearance change (rusting) occurred after the test. There was nothing I did.

実施例2:
実施例1と同様にして調製した出発原料としてのエチルシリケートを20重量%(SiO2換算)含有するpHが3の水溶液と、有機分散剤(商品名ソルスパースS20000:アビシア社製)と平均長径が20μmの鱗片状亜鉛微粒子(概寸法20μm×20μm×1μm)と平均粒径が3μmの粒状アルミニウム微粒子を水に添加して調製した亜鉛・アルミニウム微粒子分散水系媒体を混合し、よく攪拌して1N水酸化ナトリウムでpHを7に調整し、出発原料としてのエチルシリケートと亜鉛微粒子とアルミニウム微粒子の合計配合割合が70重量%(エチルシリケートはSiO2換算)で、出発原料としてのエチルシリケートと亜鉛微粒子とアルミニウム微粒子と有機分散剤の混合比率が、9.9:60:30:0.1(重量比:エチルシリケートはSiO2換算)である粘度が13cPの水系処理液を得た。この水系処理液を用いて実施例1と同様の試験片の表面に実施例1と同様にして亜鉛微粒子含有量が60重量%でアルミニウム微粒子含有量が30重量%の亜鉛・アルミニウム微粒子分散耐食性被膜を形成した。形成された亜鉛・アルミニウム微粒子分散耐食性被膜の膜厚は約10μmであった(断面観察より)。こうして製造された亜鉛・アルミニウム微粒子分散耐食性被膜を表面に有する試験片10個に対して実施例1と同様の耐食性試験を行ったが、試験後において外観変化(発錆)を来したものはなかった。
Example 2:
An aqueous solution having a pH of 3 containing 20% by weight (converted to SiO 2 ) of ethyl silicate as a starting material prepared in the same manner as in Example 1, an organic dispersant (trade name Solsperse S20000: manufactured by Avicia) and an average major axis A zinc / aluminum fine particle dispersed aqueous medium prepared by adding 20 μm scale-like zinc fine particles (approximately 20 μm × 20 μm × 1 μm) and granular aluminum fine particles having an average particle diameter of 3 μm to water is mixed and stirred well to give 1N water. The pH is adjusted to 7 with sodium oxide, and the total blending ratio of ethyl silicate, zinc fine particles and aluminum fine particles as a starting material is 70% by weight (ethyl silicate is converted to SiO 2 ), and ethyl silicate and zinc fine particles as starting materials The mixing ratio of the aluminum fine particles and the organic dispersant is 9.9: 60: 30: 0.1 (weight ratio: ethyl chloride). Kate viscosity is calculated as SiO 2) to obtain a water-based treatment liquid 13CP. Using this aqueous treatment liquid, a zinc / aluminum fine particle-dispersed corrosion-resistant film having a zinc fine particle content of 60% by weight and an aluminum fine particle content of 30% by weight on the surface of a test piece similar to that of Example 1 was used. Formed. The film thickness of the formed zinc / aluminum fine particle-dispersed corrosion-resistant film was about 10 μm (from cross-sectional observation). A corrosion resistance test similar to that of Example 1 was performed on 10 test pieces having zinc / aluminum fine particle-dispersed corrosion resistant coatings on the surface thus produced, but none of the specimens had changed in appearance (rusting) after the test. It was.

実施例3:
実施例1と同様にして調製した出発原料としてのエチルシリケートを20重量%(SiO2換算)含有するpHが3の水溶液と、有機分散剤(商品名ソルスパースS20000:アビシア社製)と平均長径が20μmの鱗片状亜鉛微粒子(概寸法20μm×20μm×1μm)と平均粒径が3μmの粒状アルミニウム微粒子と平均粒径が3μmの粒状錫微粒子を水に添加して調製した亜鉛・アルミニウム・錫微粒子分散水系媒体を混合し、よく攪拌して1N水酸化ナトリウムでpHを7に調整し、出発原料としてのエチルシリケートと亜鉛微粒子とアルミニウム微粒子と錫微粒子の合計配合割合が70重量%(エチルシリケートはSiO2換算)で、出発原料としてのエチルシリケートと亜鉛微粒子とアルミニウム微粒子と錫微粒子と有機分散剤の混合比率が、9.9:55:25:10:0.1(重量比:エチルシリケートはSiO2換算)である粘度が18cPの水系処理液を得た。この水系処理液を用いて実施例1と同様の試験片の表面に実施例1と同様にして亜鉛微粒子含有量が55重量%でアルミニウム微粒子含有量が25重量%で錫微粒子含有量が10重量%の亜鉛・アルミニウム・錫微粒子分散耐食性被膜を形成した。形成された亜鉛・アルミニウム・錫微粒子分散耐食性被膜の膜厚は約10μmであった(断面観察より)。こうして製造された亜鉛・アルミニウム・錫微粒子分散耐食性被膜を表面に有する試験片10個に対して実施例1と同様の耐食性試験を行ったが、試験後において外観変化(発錆)を来したものはなかった。
Example 3:
An aqueous solution having a pH of 3 containing 20% by weight (converted to SiO 2 ) of ethyl silicate as a starting material prepared in the same manner as in Example 1, an organic dispersant (trade name Solsperse S20000: manufactured by Avicia) and an average major axis Zinc / aluminum / tin fine particle dispersion prepared by adding 20 μm scaly zinc fine particles (approximately 20 μm × 20 μm × 1 μm), granular aluminum fine particles having an average particle diameter of 3 μm and granular tin fine particles having an average particle diameter of 3 μm to water. The aqueous medium was mixed, stirred well, adjusted to pH 7 with 1N sodium hydroxide, and the total blending ratio of ethyl silicate, zinc fine particles, aluminum fine particles and tin fine particles as a starting material was 70% by weight (ethyl silicate is SiO 2 2 terms), ethyl silicate and zinc particles and fine aluminum particles and tin particles and organic dispersant as the starting material If the ratio is 9.9: 55: 25: 10: 0.1 (weight ratio: ethyl silicate calculated as SiO 2) Viscosity is to obtain an aqueous treating solution of 18 cP. Using this aqueous processing solution, on the surface of the same test piece as in Example 1, as in Example 1, the zinc fine particle content was 55% by weight, the aluminum fine particle content was 25% by weight, and the tin fine particle content was 10% by weight. % Zinc / aluminum / tin fine particle dispersed corrosion-resistant film was formed. The film thickness of the formed zinc / aluminum / tin fine particle-dispersed corrosion-resistant film was about 10 μm (from cross-sectional observation). The same corrosion resistance test as in Example 1 was performed on 10 test pieces having zinc, aluminum, and tin fine particle dispersed corrosion resistance coatings produced on the surface, but the appearance change (rusting) occurred after the test. There was no.

比較例1:
A. SiO2/Na2Oが4.0でpHが12のアルカリ珪酸ナトリウム水溶液を調製した。この水溶液と、有機分散剤(商品名ソルスパースS20000:アビシア社製)と平均長径が20μmの鱗片状亜鉛微粒子(概寸法20μm×20μm×1μm)を水に添加して調製した亜鉛微粒子分散水系媒体を混合し、よく攪拌して、出発原料としてのアルカリ珪酸ナトリウムと亜鉛微粒子の合計配合割合が70重量%(アルカリ珪酸ナトリウムはSiO2換算)で、出発原料としてのアルカリ珪酸ナトリウムと亜鉛微粒子と有機分散剤の混合比率が、9.9:90:0.1(重量比:アルカリ珪酸ナトリウムはSiO2換算)である処理液を得た。
B. エタノールにて超音波洗浄(脱脂処理)してから15分間自然乾燥させた実施例1と同様の試験片を上記の処理液に浸漬した。処理液から取り出した試験片を遠心乾燥機に収容し、300rpmにて30秒間振り切りすることで試験片の表面に付着している余分な処理液を除去した後、100℃×5分間大気中にて仮乾燥した。こうして表面に塗布した処理液を仮乾燥させた試験片を再度処理液に浸漬した。処理液から取り出した試験片の表面に付着している余分な処理液を上記と同様にして除去した後、表面に処理液の塗膜が形成された試験片に対して150℃×30分間大気中にて熱処理を行い、試験片の表面に亜鉛微粒子含有量が90重量%の亜鉛微粒子分散耐食性被膜を形成した。形成された亜鉛微粒子分散耐食性被膜の膜厚は約10μmであった(断面観察より)。
C. こうして製造された亜鉛微粒子分散耐食性被膜を表面に有する試験片10個に対して35℃の5%塩水を500時間噴霧するという耐食性試験を行ったところ、200時間経過時点において外観変化(発錆)を来したものが7個存在した。
Comparative Example 1:
A. An aqueous sodium silicate solution having a SiO 2 / Na 2 O value of 4.0 and a pH of 12 was prepared. A zinc fine particle-dispersed aqueous medium prepared by adding this aqueous solution, an organic dispersant (trade name Solsperse S20000: manufactured by Avicia) and scaly zinc fine particles having an average major axis of 20 μm (approximately 20 μm × 20 μm × 1 μm) to water. Mixing and stirring well, the total blending ratio of alkali sodium silicate and zinc fine particles as starting material is 70 wt% (alkali sodium silicate is SiO 2 equivalent), alkali sodium silicate and zinc fine particles as starting material and organic dispersion mixing ratio of agent, 9.9: 90: 0.1 (weight ratio: sodium alkaline silicate is in terms of SiO 2) to obtain a processing solution is.
B. A test piece similar to Example 1 that had been subjected to ultrasonic cleaning (degreasing treatment) with ethanol and then naturally dried for 15 minutes was immersed in the treatment solution. The test piece taken out from the treatment liquid is stored in a centrifugal dryer, and after removing the excess treatment liquid adhering to the surface of the test piece by shaking off at 300 rpm for 30 seconds, it is placed in the atmosphere at 100 ° C. for 5 minutes. And temporarily dried. The test piece obtained by temporarily drying the treatment liquid applied to the surface in this manner was again immersed in the treatment liquid. After removing the excess treatment liquid adhering to the surface of the test piece taken out from the treatment liquid in the same manner as described above, the atmosphere is 150 ° C. for 30 minutes with respect to the test piece having a coating film of the treatment liquid formed on the surface. A heat treatment was performed inside to form a zinc fine particle-dispersed corrosion-resistant film having a zinc fine particle content of 90% by weight on the surface of the test piece. The film thickness of the formed zinc fine particle-dispersed corrosion-resistant film was about 10 μm (from cross-sectional observation).
C. When the corrosion resistance test of spraying 5% salt water at 35 ° C. for 500 hours was performed on 10 test pieces having zinc fine particle-dispersed corrosion resistance coatings thus produced on the surface, the appearance change (rusting) after 200 hours. There were 7 things that came.

実施例4:
急冷合金法で作製した、Nd:12原子%、Fe:77原子%、B:6原子%、Co:5原子%の組成からなる平均長径150μmの合金粉末にエポキシ樹脂を2wt%加えて混練し、686N/mm2の圧力で圧縮成形した後、150℃で1時間キュアすることによって作製した、外径30mm×内径28mm×長さ4mmのリング状ボンド磁石試験片を用いて実施例1と同様の実験を行い、試験片の表面に亜鉛微粒子含有量が90重量%の亜鉛微粒子分散耐食性被膜を形成した。形成された亜鉛微粒子分散耐食性被膜の膜厚は約10μmであった(断面観察より)。また、EPMA(電子線マイクロアナライザー:島津製作所社製EPM810)を用いて亜鉛微粒子分散耐食性被膜を表面に有する試験片の表面付近の断面観察を行った。その2次電子像を図7に亜鉛X線像を図8に鉄X線像を図9に示す。図7〜図9より、試験片本体表面から内部に亜鉛が拡散していることが判明した。なお、亜鉛の拡散による試験片本体の磁気特性の劣化は認められなかった。こうして製造された亜鉛微粒子分散耐食性被膜を表面に有する試験片10個に対して35℃の5%塩水を500時間噴霧するという耐食性試験を行ったが、試験後において外観変化(発錆)を来したものはなかった。
Example 4:
2 wt% of an epoxy resin is added to an alloy powder having an average major axis of 150 μm having a composition of Nd: 12 atomic%, Fe: 77 atomic%, B: 6 atomic%, and Co: 5 atomic% prepared by a rapid cooling alloy method and kneaded. After compression molding at a pressure of 686 N / mm 2 and curing at 150 ° C. for 1 hour, a ring-shaped bonded magnet test piece having an outer diameter of 30 mm × inner diameter of 28 mm × length of 4 mm was used as in Example 1. Thus, a zinc fine particle-dispersed corrosion-resistant film having a zinc fine particle content of 90% by weight was formed on the surface of the test piece. The film thickness of the formed zinc fine particle-dispersed corrosion-resistant film was about 10 μm (from cross-sectional observation). Moreover, cross-sectional observation of the surface vicinity of the test piece which has a zinc fine particle dispersion | distribution corrosion-resistant film on the surface was performed using EPMA (electron beam microanalyzer: Shimadzu Corporation EPM810). The secondary electron image is shown in FIG. 7, the zinc X-ray image is shown in FIG. 8, and the iron X-ray image is shown in FIG. 7 to 9, it was found that zinc was diffused from the surface of the test piece main body to the inside. In addition, the deterioration of the magnetic properties of the test piece main body due to the diffusion of zinc was not recognized. A corrosion resistance test was carried out by spraying 5% salt water at 35 ° C. for 500 hours on 10 test pieces having zinc fine particle dispersed corrosion resistance coatings produced on the surface. However, the appearance change (rusting) occurred after the test. There was nothing I did.

実施例5:
実施例1で調製した水系処理液に、増粘剤としてヒドロキシエチルセルロースをその濃度が1重量%となるように添加し、粘度を450cPに調整した。エタノールにて超音波洗浄(脱脂処理)してから15分間乾燥させた実施例1と同様の多数の試験片を、図4に示した塗装治具にセットし、試験片をセットした塗装治具を図6のようにして回転台座の略外周端部上に装着し、図1のようにして前記の処理液を用いたディップスピンコーティングを行った(遠心振り切りは300rpmで30秒間)。その後、試験片がセットされたままの塗装治具を回転台座から取り外し、試験片を塗装治具にセットしたまま130℃×10分間大気中にて仮乾燥し、続いて、表面に水系処理液の塗膜が形成された試験片に対して350℃×30分間大気中にて熱処理を行った。次に、試験片がセットされたままの塗装治具を上下反転させて再び回転台座に装着し、前記と同様の工程でディップスピンコーティングと仮乾燥と熱処理を行うことで、試験片の表面に亜鉛微粒子含有量が90重量%の亜鉛微粒子分散耐食性被膜を形成した。形成された亜鉛微粒子分散耐食性被膜の膜厚は10μmであった(断面観察より)。こうして製造された亜鉛微粒子分散耐食性被膜を表面に有する試験片10個に対して実施例1と同様の耐食性試験を行ったが、試験後において外観変化(発錆)を来したものはなかった。
Example 5:
Hydroxyethyl cellulose as a thickener was added to the aqueous treatment liquid prepared in Example 1 so that its concentration was 1% by weight, and the viscosity was adjusted to 450 cP. A number of test pieces similar to Example 1 that had been ultrasonically cleaned (degreased) with ethanol and dried for 15 minutes were set on the coating jig shown in FIG. 4, and the coating jig on which the test pieces were set 6 was mounted on the substantially outer peripheral end of the rotating pedestal, and dip spin coating using the above-described treatment liquid was performed as shown in FIG. 1 (centrifugal shaking off at 300 rpm for 30 seconds). Thereafter, the coating jig with the test piece set is removed from the rotating pedestal, and temporarily dried in the atmosphere at 130 ° C. for 10 minutes while the test piece is set on the coating jig. A heat treatment was performed in the air at 350 ° C. for 30 minutes on the test piece on which the coating film was formed. Next, turn the coating jig with the test piece set upside down and mount it again on the rotating pedestal, and perform dip spin coating, temporary drying and heat treatment in the same process as above, to the surface of the test piece. A zinc fine particle-dispersed corrosion-resistant film having a zinc fine particle content of 90% by weight was formed. The film thickness of the formed zinc fine particle-dispersed corrosion-resistant film was 10 μm (from cross-sectional observation). A corrosion resistance test similar to that of Example 1 was performed on 10 test pieces having zinc fine particle dispersed corrosion resistance coatings thus produced on the surface, but none of the specimens had changed in appearance (rusting) after the test.

実施例6:
実施例2で調製した水系処理液に、増粘剤としてヒドロキシエチルセルロースをその濃度が1重量%となるように添加し、粘度を440cPに調整した。この処理液を用いて、エタノールにて超音波洗浄(脱脂処理)してから15分間乾燥させた実施例1と同様の試験片の表面に、実施例5と同様にして、亜鉛微粒子含有量が60重量%でアルミニウム微粒子含有量が30重量%の亜鉛・アルミニウム微粒子分散耐食性被膜を形成した。形成された亜鉛・アルミニウム微粒子分散耐食性被膜の膜厚は10μmであった(断面観察より)。こうして製造された亜鉛・アルミニウム微粒子分散耐食性被膜を表面に有する試験片10個に対して実施例1と同様の耐食性試験を行ったが、試験後において外観変化(発錆)を来したものはなかった。
Example 6:
Hydroxyethyl cellulose as a thickener was added to the aqueous treatment liquid prepared in Example 2 so that its concentration was 1% by weight, and the viscosity was adjusted to 440 cP. Using this treatment solution, the surface of a test piece similar to Example 1 that had been ultrasonically cleaned (degreased) with ethanol and dried for 15 minutes had the same zinc fine particle content as in Example 5. A zinc / aluminum fine particle-dispersed corrosion-resistant film having an aluminum fine particle content of 60% by weight and 30% by weight was formed. The thickness of the formed zinc / aluminum fine particle-dispersed corrosion-resistant film was 10 μm (from cross-sectional observation). A corrosion resistance test similar to that of Example 1 was performed on 10 test pieces having zinc / aluminum fine particle-dispersed corrosion resistant coatings on the surface thus produced, but none of the specimens had changed in appearance (rusting) after the test. It was.

実施例7:
実施例3で調製した水系処理液に、増粘剤としてヒドロキシエチルセルロースをその濃度が1重量%となるように添加し、粘度を460cPに調整した。この処理液を用いて、エタノールにて超音波洗浄(脱脂処理)してから15分間乾燥させた実施例1と同様の試験片の表面に、実施例5と同様にして、亜鉛微粒子含有量が55重量%でアルミニウム微粒子含有量が25重量%で錫微粒子含有量が10重量%の亜鉛・アルミニウム・錫微粒子分散耐食性被膜を形成した。形成された亜鉛・アルミニウム・錫微粒子分散耐食性被膜の膜厚は10μmであった(断面観察より)。こうして製造された亜鉛・アルミニウム・錫微粒子分散耐食性被膜を表面に有する試験片10個に対して実施例1と同様の耐食性試験を行ったが、試験後において外観変化(発錆)を来したものはなかった。
Example 7:
Hydroxyethyl cellulose as a thickener was added to the aqueous treatment liquid prepared in Example 3 so that its concentration was 1% by weight, and the viscosity was adjusted to 460 cP. Using this treatment solution, the surface of a test piece similar to Example 1 that had been ultrasonically cleaned (degreased) with ethanol and dried for 15 minutes had the same zinc fine particle content as in Example 5. A zinc / aluminum / tin fine particle-dispersed corrosion-resistant film having an aluminum fine particle content of 55% by weight and an aluminum fine particle content of 25% by weight and a tin fine particle content of 10% by weight was formed. The film thickness of the formed zinc / aluminum / tin fine particle-dispersed corrosion-resistant film was 10 μm (from cross-sectional observation). The same corrosion resistance test as in Example 1 was performed on 10 test pieces having zinc, aluminum, and tin fine particle dispersed corrosion resistance coatings produced on the surface, but the appearance change (rusting) occurred after the test. There was no.

実施例8:
実施例1と同様にして調製した出発原料としてのエチルシリケートを20重量%(SiO2換算)含有するpHが3の水溶液と、有機分散剤(商品名ソルスパースS20000:アビシア社製)と平均長径が20μmの鱗片状亜鉛微粒子(概寸法20μm×20μm×1μm)と平均粒径が3μmの粒状アルミニウム微粒子と平均粒径が3μmの粒状錫微粒子と平均粒径が1μmのアルミナ微粒子を水に添加して調製した亜鉛・アルミニウム・錫・アルミナ微粒子分散水系媒体を混合し、よく攪拌して1N水酸化ナトリウムでpHを7に調整し、出発原料としてのエチルシリケートと亜鉛微粒子とアルミニウム微粒子と錫微粒子とアルミナ微粒子の合計配合割合が70重量%(エチルシリケートはSiO2換算)で、出発原料としてのエチルシリケートと亜鉛微粒子とアルミニウム微粒子と錫微粒子とアルミナ微粒子と有機分散剤の配合比率が、9.9:55:25:8:2:0.1(重量比:エチルシリケートはSiO2換算)である粘度が16cPの水系処理液を得た。この水系処理液に、増粘剤としてヒドロキシエチルセルロースをその濃度が1重量%となるように添加し、粘度を465cPに調整した。この処理液を用いて、エタノールにて超音波洗浄(脱脂処理)してから15分間乾燥させた実施例1と同様の試験片の表面に、実施例5と同様にして、亜鉛微粒子含有量が55重量%でアルミニウム微粒子含有量が25重量%で錫微粒子含有量が8重量%でアルミナ微粒子含有量が2重量%の亜鉛・アルミニウム・錫・アルミナ微粒子分散耐食性被膜を形成した。形成された亜鉛・アルミニウム・錫・アルミナ微粒子分散耐食性被膜の膜厚は10μmであった(断面観察より)。こうして製造された亜鉛・アルミニウム・錫・アルミナ微粒子分散耐食性被膜を表面に有する試験片10個に対して実施例1と同様の耐食性試験を行ったが、試験後において外観変化(発錆)を来したものはなかった。
Example 8:
An aqueous solution having a pH of 3 containing 20% by weight (converted to SiO 2 ) of ethyl silicate as a starting material prepared in the same manner as in Example 1, an organic dispersant (trade name Solsperse S20000: manufactured by Avicia) and an average major axis 20 μm scaly zinc fine particles (approximately 20 μm × 20 μm × 1 μm in size), granular aluminum fine particles having an average particle diameter of 3 μm, granular tin fine particles having an average particle diameter of 3 μm, and alumina fine particles having an average particle diameter of 1 μm are added to water. The prepared zinc / aluminum / tin / alumina fine particle dispersed aqueous medium is mixed, stirred well and adjusted to pH 7 with 1N sodium hydroxide, and ethyl silicate, zinc fine particles, aluminum fine particles, tin fine particles and alumina as starting materials. The total blending ratio of fine particles is 70% by weight (ethyl silicate is SiO 2 equivalent), and ethyl silicate as a starting material The blending ratio of the fine particles, zinc fine particles, aluminum fine particles, tin fine particles, alumina fine particles, and the organic dispersant is 9.9: 55: 25: 8: 2: 0.1 (weight ratio: ethyl silicate is converted to SiO 2 ). An aqueous treatment liquid having a viscosity of 16 cP was obtained. To this aqueous processing solution, hydroxyethyl cellulose as a thickener was added so that its concentration was 1% by weight, and the viscosity was adjusted to 465 cP. Using this treatment solution, the surface of a test piece similar to Example 1 that had been ultrasonically cleaned (degreased) with ethanol and dried for 15 minutes had the same zinc fine particle content as in Example 5. A zinc / aluminum / tin / alumina fine particle-dispersed corrosion resistant coating having 55% by weight, aluminum fine particle content of 25% by weight, tin fine particle content of 8% by weight and alumina fine particle content of 2% by weight was formed. The film thickness of the formed zinc / aluminum / tin / alumina fine particle-dispersed corrosion-resistant film was 10 μm (from cross-sectional observation). The same corrosion resistance test as in Example 1 was performed on 10 test pieces having zinc, aluminum, tin, and alumina fine particle dispersed corrosion resistant coatings on the surface, but the appearance change (rusting) occurred after the test. There was nothing I did.

比較例2:
比較例1で調製した処理液に、増粘剤としてヒドロキシエチルセルロースをその濃度が1重量%となるように添加し、粘度を420cPに調整した。この処理液を用いて、エタノールにて超音波洗浄(脱脂処理)してから15分間乾燥させた実施例1と同様の試験片の表面に、仮乾燥条件と熱処理条件を比較例1と同様にしたこと以外は実施例5と同様にして、亜鉛微粒子含有量が90重量%の亜鉛微粒子分散耐食性被膜を形成した。形成された亜鉛微粒子分散耐食性被膜の膜厚は10μmであった(断面観察より)。こうして製造された亜鉛微粒子分散耐食性被膜を表面に有する試験片10個に対して実施例1と同様の耐食性試験を行ったところ、200時間経過時点において外観変化(発錆)を来したものが6個存在した。
Comparative Example 2:
Hydroxyethyl cellulose as a thickener was added to the treatment solution prepared in Comparative Example 1 so that its concentration was 1% by weight, and the viscosity was adjusted to 420 cP. Using this treatment liquid, the ultrasonic drying (degreasing treatment) with ethanol was followed by drying for 15 minutes, and then the temporary drying conditions and heat treatment conditions were the same as in Comparative Example 1 on the surface of the same test piece as in Example 1. Except that, a zinc fine particle-dispersed corrosion-resistant film having a zinc fine particle content of 90% by weight was formed in the same manner as in Example 5. The film thickness of the formed zinc fine particle-dispersed corrosion-resistant film was 10 μm (from cross-sectional observation). When the same corrosion resistance test as in Example 1 was performed on 10 test pieces having the zinc fine particle-dispersed corrosion-resistant coating thus produced on the surface, 6 specimens that had changed in appearance (rusting) after 200 hours had elapsed. There were.

本発明は、亜鉛微粒子分散耐食性被膜を表面に有する希土類系永久磁石の安定かつ簡易な製造方法、こうして製造される耐食性希土類系永久磁石、各種形状の薄型ワークに対する塗膜形成に適したディップスピンコーティング法およびワークの塗膜形成方法を提供することができる点において産業上の利用可能性を有する。   The present invention relates to a stable and simple method for producing a rare earth permanent magnet having a zinc fine particle dispersed corrosion resistant coating on its surface, a corrosion resistant rare earth permanent magnet thus produced, and dip spin coating suitable for forming a coating film on thin workpieces of various shapes. The present invention has industrial applicability in that a method and a method for forming a coating film on a workpiece can be provided.

本発明のワークのディップスピン塗装方法の一例の概略工程図。The schematic process drawing of an example of the dip spin coating method of the workpiece | work of this invention. 本発明の回転台座の略外周端部上に複数個の平板状ワークを保持した状態の一例の概略図。Schematic of an example of the state which hold | maintained the several flat plate-shaped workpiece | work on the substantially outer periphery edge part of the rotation base of this invention. 本発明の回転台座の略外周端部上に複数個のリング状ワークを保持した状態の一例の概略図。Schematic of an example of the state which hold | maintained several ring-shaped workpiece | work on the substantially outer periphery edge part of the rotation base of this invention. 本発明の塗装治具の一例の概略斜視図。The schematic perspective view of an example of the painting jig of the present invention. 本発明の複数個の平板状ワークをセットした塗装治具の概略図。The schematic diagram of the painting jig which set up a plurality of flat works of the present invention. 本発明の複数個の平板状ワークをセットした塗装治具を回転台座の略外周端部上に装着した状態の一例の概略図。The schematic of an example of the state which mounted | wore the substantially outer peripheral edge part of the rotation base with the coating jig which set the some flat plate-shaped workpiece of this invention. 実施例4におけるEPMA2次電子像。The EPMA secondary electron image in Example 4. 同、亜鉛X線像。Same as above, zinc X-ray image. 同、鉄X線像。Same as above, iron X-ray image.

符号の説明Explanation of symbols

1 中心軸(回転軸)
2 回転台座
3 エアシリンダ
4 塗料槽
5 モータ
11 保持部材
12 スペーサ
13 遠心飛び出し規制棒
14 スペーサ
15 水平吊掛部材
21 保持棒
22 スペーサ
23 遠心飛び出し規制棒
24 スペーサ
25 棒状部材
26 スペーサ
X 薄型ワーク(平板状ワーク)
Y 薄型ワーク(リング状ワーク)
Z 塗装治具
1 Central axis (rotary axis)
DESCRIPTION OF SYMBOLS 2 Rotation base 3 Air cylinder 4 Paint tank 5 Motor 11 Holding member 12 Spacer 13 Centrifugal protrusion control bar 14 Spacer 15 Horizontal suspension member 21 Holding bar 22 Spacer 23 Centrifugal protrusion control bar 24 Spacer 25 Bar-shaped member 26 Spacer X Thin work (flat plate) Work)
Y Thin workpiece (ring-shaped workpiece)
Z painting jig

Claims (22)

アルキルシリケートの加水分解重合反応物と平均粒径が1μm〜50μmの亜鉛微粒子を含有したpHが6〜8で粘度が1000cP以下の水系処理液を、希土類系永久磁石の表面に塗布した後、250℃〜400℃にて熱処理を行うことで亜鉛微粒子分散耐食性被膜とすることを特徴とする耐食性希土類系永久磁石の製造方法。   After applying an aqueous treatment liquid having a pH of 6 to 8 and a viscosity of 1000 cP or less containing an alkyl silicate hydrolysis polymerization reaction product and zinc fine particles having an average particle diameter of 1 μm to 50 μm to the surface of the rare earth permanent magnet, 250 A method for producing a corrosion-resistant rare earth-based permanent magnet, characterized in that a zinc fine particle-dispersed corrosion-resistant coating film is obtained by performing a heat treatment at from 400C to 400C. 亜鉛微粒子が鱗片状のものであることを特徴とする請求項1記載の製造方法。   2. The production method according to claim 1, wherein the zinc fine particles are scaly. 水系処理液中における出発原料としてのアルキルシリケートと亜鉛微粒子の合計配合割合が40重量%〜90重量%(アルキルシリケートはSiO2換算)であることを特徴とする請求項1または2記載の製造方法。 The process according to claim 1 or 2, wherein the total blending ratio of alkyl silicate and zinc particles as the starting material in the aqueous treating solution is 40 wt% to 90 wt% (alkyl silicate calculated as SiO 2) is . 水系処理液中における出発原料としてのアルキルシリケートと亜鉛微粒子の混合比率が1:1〜1:19(重量比:アルキルシリケートはSiO2換算)であることを特徴とする請求項1乃至3のいずれかに記載の製造方法。 4. The mixing ratio of alkyl silicate as a starting material and zinc fine particles in an aqueous processing solution is 1: 1 to 1:19 (weight ratio: alkyl silicate is converted to SiO 2 ). The manufacturing method of crab. 水系処理液中に有機分散剤を添加することを特徴とする請求項1乃至4のいずれかに記載の製造方法。   The manufacturing method according to any one of claims 1 to 4, wherein an organic dispersant is added to the aqueous processing solution. 亜鉛微粒子分散耐食性被膜の膜厚が1μm〜50μmであることを特徴とする請求項1乃至5のいずれかに記載の製造方法。   The manufacturing method according to any one of claims 1 to 5, wherein the zinc fine particle-dispersed corrosion-resistant film has a thickness of 1 µm to 50 µm. 亜鉛微粒子分散耐食性被膜中に他の無機質微粒子をさらに分散させることを特徴とする請求項1乃至6のいずれかに記載の製造方法。   7. The production method according to claim 1, wherein other inorganic fine particles are further dispersed in the zinc fine particle-dispersed corrosion-resistant coating. 水系処理液の希土類系永久磁石の表面への塗布をディップスピンコーティング法で行うことを特徴とする請求項1乃至7のいずれかに記載の製造方法。   The manufacturing method according to any one of claims 1 to 7, wherein the aqueous treatment liquid is applied to the surface of the rare earth permanent magnet by a dip spin coating method. 粘度が300cP〜600cPの水系処理液を用いて行うことを特徴とする請求項8記載の製造方法。   The production method according to claim 8, wherein the treatment is performed using an aqueous treatment liquid having a viscosity of 300 cP to 600 cP. 鉛直方向の中心軸を回転軸として回転可能な回転台座の略外周端部上に、複数個の希土類系永久磁石を保持し、希土類系永久磁石が保持された回転台座を水系処理液槽に浸漬することで希土類系永久磁石に水系処理液を浸漬塗装した後、液中から取り出し、回転台座を回転させて希土類系永久磁石に余分に付着した水系処理液を遠心振り切りすることでディップスピンコーティングを行うことを特徴とする請求項8または9記載の製造方法。   A plurality of rare earth-based permanent magnets are held on a substantially outer peripheral end of a rotatable pedestal that can be rotated about a vertical central axis as a rotation axis, and the rotating pedestal holding the rare earth-based permanent magnets is immersed in an aqueous treatment liquid tank After dip-coating the aqueous treatment liquid on the rare earth permanent magnet, remove it from the liquid, rotate the rotating pedestal, and spin off the aqueous treatment liquid adhering to the rare earth permanent magnet. The manufacturing method according to claim 8, wherein the manufacturing method is performed. 複数個の希土類系永久磁石を回転台座の略外周端部上に略環状に保持することを特徴とする請求項10記載の製造方法。   The manufacturing method according to claim 10, wherein the plurality of rare earth-based permanent magnets are held in a substantially annular shape on a substantially outer peripheral end portion of the rotating pedestal. 希土類系永久磁石が薄型磁石であることを特徴とする請求項10または11記載の製造方法。   The method according to claim 10 or 11, wherein the rare earth permanent magnet is a thin magnet. 薄型磁石をその最も広い面が回転台座の放射状方向に対して略平行になるように保持することを特徴とする請求項12記載の製造方法。   13. The manufacturing method according to claim 12, wherein the thin magnet is held such that the widest surface thereof is substantially parallel to the radial direction of the rotating base. 回転台座の略外周端部上に装着した際、複数個の薄型磁石を個々の磁石が離間した状態でその最も広い面が回転台座の放射状方向に対して略平行になるように略環状にセットすることができる塗装治具を用いて行うことを特徴とする請求項13記載の製造方法。   When mounted on the outer peripheral edge of the rotating pedestal, a plurality of thin magnets are set in an annular shape so that the widest surface of the thin magnets is substantially parallel to the radial direction of the rotating pedestal when the individual magnets are separated. The manufacturing method according to claim 13, wherein the manufacturing method is performed using a coating jig that can be used. 薄型磁石が平板状、リング状、弓形状のいずれかの形状であることを特徴とする請求項12記載の製造方法。   13. The manufacturing method according to claim 12, wherein the thin magnet has a flat plate shape, a ring shape, or a bow shape. ディップスピンコーティングを行った後、薄型磁石がセットされたままの塗装治具を回転台座から取り外し、任意の場所で塗装治具にセットされたままの薄型磁石を熱処理することを特徴とする請求項14記載の製造方法。   After performing the dip spin coating, the coating jig with the thin magnet set is removed from the rotating base, and the thin magnet with the coating jig set at an arbitrary place is heat-treated. 14. The production method according to 14. アルキルシリケートを出発原料とした被膜成分中に平均粒径が1μm〜50μmの亜鉛微粒子を分散させた耐食性被膜を表面に有することを特徴とする希土類系永久磁石。   A rare earth-based permanent magnet having a corrosion-resistant film in which zinc fine particles having an average particle diameter of 1 to 50 μm are dispersed in a film component using an alkyl silicate as a starting material. 耐食性被膜の亜鉛微粒子含有量が50重量%〜95重量%であることを特徴とする請求項17記載の希土類系永久磁石。   18. The rare earth-based permanent magnet according to claim 17, wherein the content of zinc fine particles in the corrosion-resistant coating is 50% by weight to 95% by weight. 磁石本体表面から内部に亜鉛が拡散していることを特徴とする請求項17または18記載の希土類系永久磁石。   The rare earth-based permanent magnet according to claim 17 or 18, wherein zinc is diffused from the surface of the magnet body into the interior. 請求項1記載の製造方法により製造されたことを特徴とする請求項17乃至19のいずれかに記載の希土類系永久磁石。   The rare earth-based permanent magnet according to any one of claims 17 to 19, which is manufactured by the manufacturing method according to claim 1. 鉛直方向の中心軸を回転軸として回転可能な回転台座の略外周端部上に、複数個のワークを保持し、ワークが保持された回転台座を塗料槽に浸漬することでワークに塗料を浸漬塗装した後、液中から取り出し、回転台座を回転させてワークに余分に付着した塗料を遠心振り切りすることを特徴とするワークのディップスピンコーティング法。   A plurality of workpieces are held on the substantially outer peripheral end of a rotatable pedestal that can rotate about the vertical central axis as a rotation axis, and the rotating pedestal holding the workpieces is immersed in the paint tank to immerse the paint in the workpiece. A dip spin coating method for workpieces characterized in that after coating is taken out of the liquid, the rotating pedestal is rotated, and the extra paint on the workpiece is spun off. 鉛直方向の中心軸を回転軸として回転可能な回転台座の略外周端部上に装着した際、複数個のワークを個々のワークが離間した状態で略環状にセットすることができる塗装治具を用い、ワークがセットされた塗装治具を装着した回転台座を塗料槽に浸漬することでワークに塗料を浸漬塗装した後、液中から取り出し、回転台座を回転させてワークに余分に付着した塗料を遠心振り切りし、ワークがセットされたままの塗装治具を回転台座から取り外し、任意の場所で塗装治具にセットされたままのワークを所望により乾燥処理して行うことを特徴とするワークの塗膜形成方法。


A coating jig that can set a plurality of workpieces in a substantially annular shape with the individual workpieces separated when mounted on a substantially outer peripheral end of a rotatable pedestal that can rotate about a vertical central axis as a rotation axis. Used, after the paint is immersed in the paint tank by immersing the rotating pedestal with the coating jig on which the work is set in the paint tank, the paint is removed from the liquid, and the rotating pedestal is rotated and the paint adheres to the work. The coating jig with the workpiece still set is removed from the rotating base, and the workpiece with the workpiece set on the coating jig is dried at any place as desired. Coating film forming method.


JP2003397416A 2002-11-29 2003-11-27 Method for producing corrosion-resistant rare earth permanent magnet and corrosion-resistant rare earth permanent magnet Expired - Lifetime JP4285218B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003397416A JP4285218B2 (en) 2002-11-29 2003-11-27 Method for producing corrosion-resistant rare earth permanent magnet and corrosion-resistant rare earth permanent magnet

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002348841 2002-11-29
JP2003319207 2003-09-11
JP2003397416A JP4285218B2 (en) 2002-11-29 2003-11-27 Method for producing corrosion-resistant rare earth permanent magnet and corrosion-resistant rare earth permanent magnet

Publications (2)

Publication Number Publication Date
JP2005109421A true JP2005109421A (en) 2005-04-21
JP4285218B2 JP4285218B2 (en) 2009-06-24

Family

ID=34556946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003397416A Expired - Lifetime JP4285218B2 (en) 2002-11-29 2003-11-27 Method for producing corrosion-resistant rare earth permanent magnet and corrosion-resistant rare earth permanent magnet

Country Status (1)

Country Link
JP (1) JP4285218B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007305691A (en) * 2006-05-09 2007-11-22 Tdk Corp Rare earth magnet
JP2008274358A (en) * 2007-04-27 2008-11-13 Tokyo Electric Power Co Inc:The Corrosion prevention method for sintered metal, corrosion resistant magnet and magnetic attracting device
JP4618390B1 (en) * 2009-12-16 2011-01-26 Tdk株式会社 Rare earth sintered magnet manufacturing method and coating apparatus
JP2011129871A (en) * 2010-08-23 2011-06-30 Tdk Corp Method of manufacturing rare earth sintered magnet, and coating device
WO2011108704A1 (en) * 2010-03-04 2011-09-09 Tdk株式会社 Sintered rare-earth magnet and motor
JP2014190592A (en) * 2013-03-27 2014-10-06 Hitachi Metals Ltd Drier for drying process object accommodated in cylindrical barrel
US10916372B2 (en) 2015-04-28 2021-02-09 Shin-Etsu Chemical Co., Ltd. Method for producing rare-earth magnets, and rare-earth-compound application device
US10943731B2 (en) 2015-04-28 2021-03-09 Shin-Etsu Chemical Co., Ltd. Method for producing rare-earth magnets, and rare-earth-compound application device
CN112750615A (en) * 2020-12-23 2021-05-04 北京京磁电工科技有限公司 Super-gravity rotary packing device and method for improving grain boundary diffusion efficiency of sintered neodymium iron boron
JP2023101445A (en) * 2022-01-10 2023-07-21 エミオ-ユ インテレクチュアル プロパティ コンサルティング カンパニー リミテッド Waste magnet reproduction method
JP7417038B2 (en) 2018-09-26 2024-01-18 日亜化学工業株式会社 Manufacturing method of rare earth magnetic powder

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007305691A (en) * 2006-05-09 2007-11-22 Tdk Corp Rare earth magnet
JP2008274358A (en) * 2007-04-27 2008-11-13 Tokyo Electric Power Co Inc:The Corrosion prevention method for sintered metal, corrosion resistant magnet and magnetic attracting device
JP2011129648A (en) * 2009-12-16 2011-06-30 Tdk Corp Method of manufacturing rare earth sintered magnet, and coating device
JP4618390B1 (en) * 2009-12-16 2011-01-26 Tdk株式会社 Rare earth sintered magnet manufacturing method and coating apparatus
US9154004B2 (en) 2010-03-04 2015-10-06 Tdk Corporation Rare earth sintered magnet and motor
WO2011108704A1 (en) * 2010-03-04 2011-09-09 Tdk株式会社 Sintered rare-earth magnet and motor
US20120139388A1 (en) * 2010-03-04 2012-06-07 Tdk Corporation Rare earth sintered magnet and motor
JP5472444B2 (en) * 2010-03-04 2014-04-16 Tdk株式会社 Rare earth sintered magnet and motor
JP2011129871A (en) * 2010-08-23 2011-06-30 Tdk Corp Method of manufacturing rare earth sintered magnet, and coating device
JP2014190592A (en) * 2013-03-27 2014-10-06 Hitachi Metals Ltd Drier for drying process object accommodated in cylindrical barrel
US10916372B2 (en) 2015-04-28 2021-02-09 Shin-Etsu Chemical Co., Ltd. Method for producing rare-earth magnets, and rare-earth-compound application device
US10943731B2 (en) 2015-04-28 2021-03-09 Shin-Etsu Chemical Co., Ltd. Method for producing rare-earth magnets, and rare-earth-compound application device
JP7417038B2 (en) 2018-09-26 2024-01-18 日亜化学工業株式会社 Manufacturing method of rare earth magnetic powder
CN112750615A (en) * 2020-12-23 2021-05-04 北京京磁电工科技有限公司 Super-gravity rotary packing device and method for improving grain boundary diffusion efficiency of sintered neodymium iron boron
JP2023101445A (en) * 2022-01-10 2023-07-21 エミオ-ユ インテレクチュアル プロパティ コンサルティング カンパニー リミテッド Waste magnet reproduction method

Also Published As

Publication number Publication date
JP4285218B2 (en) 2009-06-24

Similar Documents

Publication Publication Date Title
US20080124567A1 (en) Corrosion-resistant rare earth metal-based permanent magnet
JP4285218B2 (en) Method for producing corrosion-resistant rare earth permanent magnet and corrosion-resistant rare earth permanent magnet
JP2021087010A (en) RARE EARTH ELEMENT DIFFUSION PROCESSING METHOD FOR Nd-Fe-B BASED SINTERED PERMANENT MAGNETIC MATERIAL
KR20000017644A (en) PROCESS FOR PRODUCING Fe-B-R BASED PERMANENT MAGNET HAVING A CORROSION-RESISTANT FILM
CN110767440B (en) Surface treatment method of magnet, system and application of magnet
JP2016178289A (en) Method for manufacturing r-t-b-based sintered magnet
CN100361239C (en) Method for producing corrosion-resistant rare earth based permanent magnet, corrosion-resistant rare earth based permanent magnet, dip spin coating method for work piece, and method for forming coatin
EP1441047B1 (en) Method for forming electroplated coating on surface of article
CN106935390B (en) Surface treatment method of rare earth sintered magnet
JP4529260B2 (en) R-Fe-B permanent magnet and method for producing the same
JP2001176711A (en) Method of manufacturing for bonded magnet, method of manufacturing for bonded magnet powder, bonded magnet and bonded magnet powder
JP2002220675A (en) Method for forming metal oxide film by sol-gel process
JP2004200387A (en) Corrosion-resistant permanent magnet and its manufacturing method
JP2001040287A (en) Antimicrobial coating film and substrate with the same
JP3719483B2 (en) Rare earth magnetic powder and surface treatment method thereof
CN1762000A (en) Production of nanoparticulate thin films
JP2018525817A (en) magnet
JP4225063B2 (en) High corrosion resistance permanent magnet and method of manufacturing the same
JP2001181862A (en) Method for imparting contamination preventability to base material and member having contamination preventability
EP0984464B1 (en) Process for producing Fe-B-R based permanent magnet having a corrosion-resistant film
KR102229282B1 (en) Method for treating surface of sintered rare-earth magnet
JP2004071912A (en) Manufacturing method of permanent magnet
JP2000232026A (en) MANUFACTURE OF Fe-B-R PERMANENT MAGNET HAVING CORROSION-RESISTING COATING
JP2003217914A (en) Rare-earth permanent magnet having anticorrosive coating on surface, and its manufacturing method
JP4131385B2 (en) Rare earth permanent magnet manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060623

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090303

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090316

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4285218

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140403

Year of fee payment: 5

EXPY Cancellation because of completion of term