JP4264962B2 - 高周波プラズマ発生装置と、該高周波プラズマ発生装置により構成された表面処理装置及び表面処理方法 - Google Patents

高周波プラズマ発生装置と、該高周波プラズマ発生装置により構成された表面処理装置及び表面処理方法 Download PDF

Info

Publication number
JP4264962B2
JP4264962B2 JP2008177536A JP2008177536A JP4264962B2 JP 4264962 B2 JP4264962 B2 JP 4264962B2 JP 2008177536 A JP2008177536 A JP 2008177536A JP 2008177536 A JP2008177536 A JP 2008177536A JP 4264962 B2 JP4264962 B2 JP 4264962B2
Authority
JP
Japan
Prior art keywords
plasma
output
power
substrate
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008177536A
Other languages
English (en)
Other versions
JP2008311669A (ja
Inventor
村田正義
村田泰子
Original Assignee
村田 正義
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 村田 正義 filed Critical 村田 正義
Priority to JP2008177536A priority Critical patent/JP4264962B2/ja
Publication of JP2008311669A publication Critical patent/JP2008311669A/ja
Application granted granted Critical
Publication of JP4264962B2 publication Critical patent/JP4264962B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Description

本発明は、プラズマを利用して基板の表面に所定の処理を施す表面処理装置及び表面処理方法に関する。本発明は、特に、電子温度が低く、かつ、高密度のプラズマ生成が可能という特徴をもつ超高周波プラズマ、すなわち周波数がVHF帯域(30MHz〜300MHz)及びUHF帯域(300MHz〜3GHz)の高周波電力により生成するプラズマによる表面処理装置および表面処理方法に関する。
プラズマを用いて基板の表面に各種処理を施し、各種電子デバイスを製作することは、LSI(大規模集積回路)、LCD(液晶デイスプレー)用TFT(薄膜トランジスター)、アモルファスSi系太陽電池、薄膜多結晶Si系太陽電池、複写機用感光体、および各種情報記録デバイス等の分野において既に実用化されている。また、ダイヤモンド薄膜および立方晶ボロンナイトライド(C−BN)等の超硬質膜製造分野においても実用化が進みつつある。
上記技術分野は、アモルファスSi系材料、微結晶Si系材料、多結晶Si系材料、結晶Si系材料、酸化物、金属、有機金属化合物、有機ケイ素化合物、及び有機化合物等に関する薄膜形成、エッチング、表面改質およびコーテイング等多岐に亘るが、いずれも反応性プラズマの化学的および物理的作用を活用したものである。上記反応性プラズマの生成に関する装置および方法には、大別すると3つの代表的技術がある。
第1の代表的技術は、例えば、特許文献1ないし3に記載されているもので、プラズマ発生に非接地電極と接地電極から成る2枚の平行平板電極を一対として用いることを特徴とする。第2の代表的技術は、例えば特許文献4及び5に記載されているもので、プラズマ発生に棒電極あるいはラダー型電極と平板電極を一対として用いることを特徴とする。第3の代表的技術は、例えば、特許文献6に記載されているもので、アンテナ方式であることを特徴とする。
また、電力損失防止及び電極間以外で発生の不必要なプラズマの発生を抑制する技術として、平衡不平衡変換装置を用いる技術が、例えば特許文献2及び3に記載されている。
上記文献記載の技術の特徴は概略次の通りである。特許文献1に記載の技術は、非接地電極を方形電極とし、該方形電極の第1の辺の側面に複数の第1の電力供給点を配置し、該第1の辺と対向する第2の辺の側面に複数の第2の電力供給点を配置し、かつ、該複数の第1の給電点に供給される電力の電圧と該複数の第2の電力供給点に供給される前記電力の電圧の位相差を時間的に変化させることにより、一対の電極間の電界分布を平均化し、結果として、プラズマの強さの空間的分布を一様化することを特徴としている。なお、この技術では互いに向かい合った方向に伝播するように供給される2つの電力の進行波を干渉させて定在波を生成させ、該定在波の腹の位置を時間的に変化させることが可能である。
特許文献2に記載の技術は、一対の電極は方形の形状を有し、かつ、互いに直交する方向に位置する該電極の第1および第2の辺に、それぞれ、電力供給系の出力回路に接続された複数の電力供給点が設置され、かつ、該複数の電力供給点の反対側に、それぞれ、複数の該電力供給箇点に対応したリアクタンス調整装置が設置されるということを特徴としている。この技術では、該複数の電力供給点に対応したリアクタンス調整装置を制御することにより、反射波の位相を制御することにより、該供給電力の進行波と反射波を干渉させて定在波を生成することが可能で、かつ、該定在波の腹の位置を移動させることが可能である。
特許文献3に記載の技術は、一対の電極に複数の開口を設置し、該開口の縁にそれぞれ電力供給点を配置し、かつ、電力供給系より平衡不平衡変換装置及び平衡伝送路を介して電力を供給することを特徴としている。この技術では、互いに隣接する開口より給電された電力が進行波とその反射波の関係となって生成する定在波を重ねあわせることにより、電極間のプラズマの強さの空間的分布を一様化することが可能である。
特許文献4に記載の技術は、一対の電極の電力供給点の反対側の先端部分に反射電力の位相を調整する位相調整回路が接続されるということを特徴としている。この技術では、該位相調整回路を制御することにより、反射波の位相の調整が可能で、該供給電力の進行波と反射波を干渉させて定在波を生成することが可能で、かつ、該定在波の腹の位置を移動することが可能である。
特許文献5に記載の技術は、電極上のある1つの給電点に供給される電力の電圧と他の少なくとも1つの給電点に供給される前記電力の電圧の位相差を時間的に変化させることにより、一対の電極間の電界分布を平均化し、結果として、プラズマの強さの空間的分布を一様化することを特徴としている。なお、この技術では、互いに向かい合った方向から供給される2つの電力の進行波を干渉させて定在波を生成させ、該定在波の腹の位置を時間的に変化させることが可能である。
特許文献6に記載の技術は、電極が線状導体をその中央点を基準に平面内に含まれるように折り返して形成され、該中央点を給電点としたことが特徴である。なお、この電極の形状には、例えばU字型あるいはM字型がある。また、該U字型あるいはM字型電極がアンテナとなって供給電力が空間へ放射される。
非特許文献1に記載の技術は、非接地電極のプラズマに接する面の裏側の面にH文字状の給電帯を設置し、該H文字状給電帯上に複数の給電点を設置したことを特徴としている。 非特許文献2に記載の技術は、非接地電極の給電点の反対側、即ち電力伝播方向に位置する該電極の端部にコイルを設置し、電源と該一対の電極を結ぶ給電線および該電極に発生する定在波の腹の位置をずらすことを特徴としている。
特開2002−12977(第2頁、第1図、第10−11図) 特許第3575014号(第1−3頁、第6−10図) 特開2004−235673(第2―3頁、第9−11図) 特開平11−243062(第1頁、第1図、第7図) 特許第3316490号(第1頁、第1図、第8図) 特開2000−345351(第2頁、第1図、第5図、第7図)
L.Sansonnens, A.Pletzer, D.Magni, A.A.Howling,Ch.Hollenstein and J.P.M.Schmitt,:A voltage uniformity study in large-area reactors for RF plasma deposition、Plasma Source Sci. Technol. 6 (1997),p.170-178. J.Kuske, U.Stephan, O.Steinkeand S.Rohleck: Power feeding in large area PECVD of amorphous silicon, Mat. Res. Soc. Symp.Proc. Vol. 377(1995),p.27-32.
上記のプラズマ表面処理技術、即ちプラズマ表面処理装置とプラズマ表面処理方法は、LCD,LSI,電子複写機および太陽電池等の産業分野のいずれにおいても、生産性向上に伴う製品コストの低減および大面積壁掛けTVなど性能(仕様)の改善等に関する大面積・均一化および高速処理化のニーズが年々強まっている。特に、エネルギー資源問題や地球環境問題に対応した新エネルギー源として実用化普及の加速化が期待されている薄膜シリコン系太陽電池の分野では、なお一層の生産コストの低減が社会的ニーズとして求められている。
上記ニーズに対応するため、最近では、一つの技術傾向として、産業界のみならず、学会でも特に、プラズマCVD(化学蒸着)技術およびプラズマエッチング技術ともに、高性能化と高速処理化が可能(低電子温度で高密度のプラズマが生成可能)という特徴のあるVHF帯(30MHz〜300MHz)及びUHF帯域(300MHz〜3GHz)の電源を用いたプラズマCVD技術の実用化研究が盛んになっている。しかしながら、従来技術では、以下に述べるような課題が依然として存在し、上記ニーズの分野では齟齬をきたしている。
第1の課題は、VHF及びUHFプラズマを用いた表面処理の高速化・大面積・均一化(生産性向上および性能向上)が可能な高生産性プロセス用のVHF及びUHFプラズマ表面処理装置及びVHF及びUHFプラズマ表面処理方法に係わる技術のブレークスルーである。一般に、LCD分野では、膜厚分布は再現性を確保して、±5%程度、太陽電池分野では、膜厚分布は再現性を確保して、±10%程度が実用化の一つの指標となっている。しかしながら、1987年世界初の試みとして登場したVHFプラズマの高速化・大面積・均一化に関する技術はあまり進展が見られない状況にある。従来のVHFプラズマ技術では、例えばa−Si膜を製造する場合、再現性の確保を前提条件にすると、基板面積が50cmx50cm程度に関しては、±10〜15%程度の膜厚分布、100cmx100cm程度に関しては、±20〜40%程度の膜厚分布であり、上記指標をクリアできないという問題がある。
膜厚分布の不均一性の直接的原因としてはプラズマ密度の不均一性があり、プラズマ密度の不均一性の原因には、上記VHF及びUHF固有の問題である波の干渉現象に起因する定在波の発生がある。この定在波の問題は電磁波の伝播に伴う基本的な現象であるため、従来、抜本的解決手段がなく、次善の策として、前記特許文献1〜6にあるアイデイアが実用化されつつある。しかしながら、いずれの技術も次に述べるような問題がある。すなわち、この定在波の問題を抜本的に解決できていない。
(1)特許文献1記載の技術は、方形電極の互いに対向した2つの辺から供給される電力の電圧の位相差を時間的に、例えば数kHZの周波数で、鋸歯状に変化させることにより、一対の電極間に発生の定在波の腹の位置を移動させ、時間平均的に見て均一化するものである。膜厚分布は、アモルファスSi製膜では、基板面積が50cmx50cm程度に関しては、±10〜15%程度の膜厚分布が得られているが、100cmx100cm程度に関しては、±20%以上と見られている。
(2)特許文献2記載の技術は、複数の電力供給点の反対側に、それぞれ、複数の該電力供給箇点に対応したリアクタンス調整装置を設置し、電力の反射波の位相を制御するので、電力の吸収率が高い条件、例えば圧力が数100Pa〜数1000Paでのプラズマ生成では反射波の強さが弱くなり、反射波の制御が無理となる。すなわち、プラズマ生成の圧力が数100Pa以下との条件の場合でないと応用できないという欠点がある。
(3)特許文献3記載の技術は、互いに隣接する開口より給電された電力が進行波とその反射波の関係となって生成する定在波を重ねあわせることにより、電極間のプラズマの強さの空間的分布を一様化するので、互いに隣接する開口の間隔を使用する電源周波数即ち波長に対応して選定することが必要である。すなわち、電源周波数が予め選定されることが必須条件で、かつ、プラズマ密度の強さに応じて伝播電力の波長が短縮するので、プラズマの均一性はプラズマ密度の強さに依存するという欠点がある。
(4)特許文献4記載の技術は、特許文献2記載の技術と同様に、電力供給点の反対側に、位相調整装置を設置し、電力の反射波の位相を制御するので、電力の吸収率が高い条件、例えば圧力が数100Pa〜数1000Paでのプラズマ生成では反射波の強さが弱くなり、反射波の制御が無理となる。すなわち、プラズマ生成の圧力が数100Pa程度以下との条件の場合でないと応用できないという欠点がある。
(5)特許文献5記載の技術は、特許文献1記載の技術と同様に、電極上のある1つの給電点に供給される電力の電圧と他の少なくとも1つの給電点に供給される前記電力の電圧の位相差を時間的に変化させることにより、一対の電極間の電界分布を平均化し、結果として、プラズマの強さの空間的分布を一様化するので、プロセス用VHFプラズマ表面処理装置及びVHFプラズマ表面処理方法としては、プラズマが例えば数kHzの周波数で変動するので、高品質膜製造や高品質エッチング加工等には適しないという欠点がある。また、膜厚分布は、アモルファスSi製膜では、基板面積が50cmx50cm程度に関しては、±10〜15%程度の膜厚分布が得られているが、100cmx100cm程度に関しては、±20以上と見られている。
(6)特許文献6記載の技術は、アンテナ方式即ち誘導結合型のプラズマ生成なので、圧力条件が数Pa以下という制約がある。すなわち、微結晶Si等のような圧力条件が数100Pa〜数1000Paである応用には無理があるという欠点がある。また、電極の周囲にある真空容器の形状や接地条件に影響を受けやすいで、製膜条件の適正条件の把握が困難と推測される。
更に、第2の課題として、量産装置への応用性の高いVHFあるいはUHFプラズマ発生装置の技術開発がある。一般に、高生産性プロセスでの生産装置の基本ラインは、インライン型装置、マルチチャンバー型装置及びロール・ツー・ロール型装置の3つの方式があるが、これらの装置では基板搬送装置との兼ね合いから、プラズマ処理室内の一対の電極と給電ケーブルを接続する場合、例えば該一対の電極形状が矩形の場合、周囲4辺の中の1辺のみを用いて両者が接続できる手段が求められる。しかしながら、従来のVHF及びUHFプラズマ技術では、このニーズに対応できないという問題がある。なお、前記の特許文献1~6記載の技術で、このニーズに対応可能な技術は、特許文献6記載の技術のみである。しかしながら、この技術は、前述の通り、圧力条件が数Pa以下という制約があるため、実用価値が低いと見られている。
以上説明したように、従来技術では、量産性向上や低コスト化に必要な大面積基板、例えばサイズ1mx1m級を超える大面積基板を対象にしたVHFプラズマCVDおよびプラズマエッチング等の応用は、依然として困難で、困難視されている。即ち、プラズマ表面処理の高速化・大面積化・均一化等の課題に対応する為、一つの技術トレンドとして、VHF及びUHFプラズマ技術が注目され、その実用化応用の開発研究が実施されているが、技術的困難性のため、1mx1m級を越える大面積基板を対象にしたVHF及びUHFプラズマ利用の高速化・大面積化・均一化が可能な表面処理装置及びその方法の成功例は発表されていない。
言い換えれば、現在、VHF及びUHFプラズマ分野が抱える具体的技術課題は、第1に、一対の電極間に発生の定在波を抑制可能な大面積・均一化技術の創出、第2に、基板搬送装置の設置に制約を与えることが少ない給電手段の創出である。
そこで、本発明は、上記従来技術の課題を解決するために必要な、定在波の影響を根本的に抑制し、プラズマ表面処理の高速化・大面積化・均一化が可能で、かつ、基板搬送装置の設置に制約を与えることが少ない給電手段を実現可能なアイデイアを創出し、該アイデイアを実現するための高周波プラズマ発生装置と該高周波プラズマ発生装置により構成されたプラズマ表面処理装置およびプラズマ表面処理方法を提供することを目的とする。
本発明は、上記課題を解決するため、高周波プラズマ発生装置と該高周波プラズマ発生装置により構成されたプラズマ表面処理装置及びプラズマ表面処理方法を、次のようにしたことを特徴とする。
本願に係る第1の発明は、発振周波数がVHF帯域ないしUHF帯域に属する高周波電源の出力の電力を用いて生成されるプラズマを利用して真空容器に配置された基板の表面を処理する表面処理装置に用いられる高周波プラズマ発生装置において、前記基板の表面の法線方向と実質的に同じ方向の電界を有する電磁波の定在波の腹の位置が異なり、且つ、互いに独立の関係にある第1の定在波と第2の定在波を発生させ、かつ、該第1及び第2の定在波を重畳させる手段を備えたことを特徴とする。
また、本願に係る第2の発明は、本願に係る第1の発明の高周波プラズマ発生装置において、前記第1の定在波と第2の定在波を発生させ、かつ、該第1及び第2の定在波を重畳させる手段は、複数の給電点を有する第1及び第2の電極から成る一対の電極と、2つの出力端子を有し、かつ該2つの出力端子の出力の電圧の位相差を任意に設定可能な第1の高周波電源と、該第1の高周波電源の2つの出力端子にそれぞれ一つずつ接続された第1及び第2のインピーダンス整合器と、該第1の高周波電源から独立し、かつ、2つの出力端子を有し、かつ該2つの出力端子の出力の電圧の位相差を任意に設定可能な第2の高周波電源と、該第2の高周波電源の2つの出力端子にそれぞれ一つずつ接続された第3及び第4のインピーダンス整合器とを具備し、該第1の電極に配置された第1の給電点に該第1及び第3のインピーダンス整合器の出力端子が接続され、該第1の給電点に対して電磁波の伝播上での対向点となる関係にある位置に配置された第2の給電点に該第2及び第4のインピーダンス整合器の出力端子が接続されるという構成を有することを特徴とする。
また、本願に係る第3の発明は、本願に係る第1の発明の高周波プラズマ発生装置において、前記第1の定在波と第2の定在波を発生させ、かつ、該第1及び第2の定在波を重畳させる手段は、複数の給電点を有する第1及び第2の電極から成る一対の電極と、2つの出力端子を有し、かつ該2つの出力端子の出力の電圧の位相差を任意に設定可能な第1の高周波電源と、該第1の高周波電源の2つの出力端子にそれぞれ一つずつ接続された第1及び第2のインピーダンス整合器と、該第1の高周波電源から独立し、かつ、2つの出力端子を有し、かつ該2つの出力端子の出力の電圧の位相差を任意に設定可能な第2の高周波電源と、該第2の高周波電源の2つの出力端子にそれぞれ一つずつ接続された第3及び第4のインピーダンス整合器とを具備し、該第1の電極に配置された第1の給電点に該第1のインピーダンス整合器の出力端子が接続され、該第1の給電点に対して電磁波の伝播上での対向点となる関係にある位置に配置された第2の給電点に該第2のインピーダンス整合器の出力端子が接続され、かつ、該第1の給電点と該第2の給電点を結ぶ線分に平行な関係にある位置に配置された第3及び第4の給電点に、それぞれ一つずつ、該第3及び第4のインピーダンス整合器の出力端子が接続されるという構成を有することを特徴とする。
また、本願に係る第4の発明は、本願に係る第1の発明の高周波プラズマ発生装置において、前記第1の定在波と第2の定在波を発生させ、かつ、該第1及び第2の定在波を重畳させる手段は、複数の給電点を有する第1及び第2の電極から成る一対の電極と、任意のパルス変調が可能で、かつ、2つの出力端子を有し、該2つの出力端子の出力の電圧の位相差を任意に設定可能な第1の高周波電源と、該第1の高周波電源の2つの出力端子にそれぞれ一つずつ接続された第1及び第2のインピーダンス整合器と、該第1の高周波電源のパルス変調信号に同期した任意のパルス変調が可能で、かつ、2つの出力端子を有し、該2つの出力端子の出力の電圧の位相差を任意に設定可能な第2の高周波電源と、該第2の高周波電源の2つの出力端子にそれぞれ一つずつ接続された第3及び第4のインピーダンス整合器とを具備し、該第1の電極に配置された第1の給電点に該第1及び第3のインピーダンス整合器の出力端子が接続され、かつ、該第1の給電点に対して電磁波の伝播上での対向点となる関係にある位置に配置された第2の給電点に該第2及び第4のインピーダンス整合器の出力端子が接続されるという構成を有することを特徴とする。
また、本願に係る第5の発明は、本願に係る第1の発明の高周波プラズマ発生装置において、前記第1の定在波と第2の定在波を発生させ、かつ、該第1及び第2の定在波を重畳させる手段は、複数の給電点を有する第1及び第2の電極から成る一対の電極と、任意のパルス変調が可能で、かつ、2つの出力端子を有し、該2つの出力端子の出力の電圧の位相差を任意に設定可能な第1の高周波電源と、該第1の高周波電源の2つの出力端子にそれぞれ一つずつ接続された第1及び第2のインピーダンス整合器と、該第1の高周波電源のパルス変調信号に同期した任意のパルス変調が可能で、かつ、2つの出力端子を有し、該2つの出力端子の出力の電圧の位相差を任意に設定可能な第2の高周波電源と、該第2の高周波電源の2つの出力端子にそれぞれ一つずつ接続された第3及び第4のインピーダンス整合器とを具備し、該第1の電極に配置された第1の給電点に該第1のインピーダンス整合器の出力端子が接続され、該第1の給電点に対して電磁波の伝播上での対向点となる関係にある位置に配置された第2の給電点に該第2のインピーダンス整合器の出力端子が接続され、かつ、該第1の給電点と該第2の給電点を結ぶ線分に平行な関係にある位置に配置された第3及び第4の給電点に、それぞれ一つずつ該第3及び第4のインピーダンス整合器の出力端子が接続されるという構成を有することを特徴とする。
また、本願に係る第6の発明は、本願に係る第1の発明の高周波プラズマ発生装置において、前記第1の定在波と第2の定在波を発生させ、かつ、該第1及び第2の定在波を重畳させる手段は、複数の給電点を有する第1及び第2の電極から成る一対の電極と、任意のパルス変調が可能で、かつ、4つの出力端子を有すると共に該4つの出力端子の出力の電圧の位相をそれぞれ任意に設定可能な高周波電源と、該高周波電源の4つの出力端子に、それぞれ一つずつ接続された第1、第2、第3及び第4のインピーダンス整合器とを具備し、該第1の電極に配置された第1の給電点に、該第1及び第3のインピーダンス整合器の出力端子が接続され、かつ該第1の給電点に対して電磁波の伝播上での対向点となる関係にある位置に配置された第2の給電点に、該第2及び第4のインピーダンス整合器の出力端子が接続されるという構成を有することを特徴とする。
また、本願に係る第7の発明は、本願に係る第1の発明の高周波プラズマ発生装置において、前記第1の定在波と第2の定在波を発生させ、かつ、該第1及び第2の定在波を重畳させる手段は、複数の給電点を有する第1及び第2の電極から成る一対の電極と、任意のパルス変調が可能で、かつ、4つの出力端子を有すると共に該4つの出力端子の出力の電圧の位相をそれぞれ任意に設定可能な高周波電源と、該高周波電源の4つの出力端子に、それぞれ一つずつ接続された第1、第2、第3及び第4のインピーダンス整合器とを具備し、該第1の電極に配置された第1の給電点に該第1のインピーダンス整合器の出力端子が接続され、該第1の給電点に対して電磁波の伝播上での対向点となる関係にある位置に配置された第2の給電点に該第2のインピーダンス整合器の出力端子が接続され、かつ、該第1の給電点と該第2の給電点を結ぶ線分に平行な関係にある位置に配置された第3及び第4の給電点に、それぞれ一つずつ、該第3及び第4のインピーダンス整合器の出力端子が接続されるという構成を有することを特徴とする。
また、本願に係る第8の発明は、本願に係る第4〜第7のいずれかの発明の高周波プラズマ発生装置において、前記高周波電源の出力のパルス変調のデューテイ比、即ちパルス幅Hwと周期T0の比Hw/T0は50%以下であることを特徴とする。
また、本願に係る第9の発明は、本願に係る第1〜第8のいずれかの発明の高周波プラズマ発生装置において、前記第1の定在波の腹の位置と前記第2の定在波の腹の位置との距離が、前記一対の電極間に生成のプラズマ内部を伝播する電磁波の波長λの0.22〜0.28倍、好ましくは0.25倍、即ち0.22〜0.28λに設定する手段を有することを特徴とする。
また、本願に係る第10の発明は、本願に係る第2〜第9のいずれかの発明の高周波プラズマ発生装置において、前記第2の電極は平板型の形状を有し、前記第1の電極は、該第2の電極に平行な面内に含まれるように配置された方形あるいは円形の平板型の構造を有することを特徴とする。
また、本願に係る第11の発明は、本願に係る第2〜第9のいずれかの発明の高周波プラズマ発生装置において、前記第2の電極は平板型の形状を有し、前記第1の電極は、前記第2の電極に平行な面内に配置された棒状導体から成る棒型あるいはU字型あるいはW字型あるいは螺旋型の構造を有することを特徴とする。
また、本願に係る第12の発明は、願に係る第2〜第9のいずれかの発明の高周波プラズマ発生装置において、前記第2の電極は円筒型の形状を有し、前記第1の電極は、該第2の電極を外套状に取り囲む円筒の面内に配置された棒状導体から成る棒型あるいはU字型あるいはW字型あるいはコイル型の構造を有することを特徴とする。
また、本願に係る第13の発明は、本願に係る第2〜第9のいずれかの発明の高周波プラズマ発生装置において、前記第1及び第2の電極は複数の開口を有する板状の導電体で、かつ、前記基板が該一対の電極間の外に配置されるという構成を有することを特徴とする。
また、本願に係る第14の発明は、発振周波数がVHF帯域ないしUHF帯域に属する高周波電源の出力の電力を用いて生成されたプラズマを利用して真空容器に配置された基板の表面を処理するプラズマ表面処理装置において、前記プラズマ表面処理装置装置を構成するプラズマ発生源として、本願に係る第1〜第13のいずれかの発明の高周波プラズマ発生装置から構成されることを特徴とする。
また、本願の請求項15に記載の発明は、発振周波数がVHF帯域ないしUHF帯域に属する高周波電源の出力の電力を用いて生成されたプラズマを利用して真空容器に配置された基板の表面を処理するプラズマ表面処理方法において、請求項1〜13のいずれか1項に記載の高周波プラズマ発生装置を用いて、前記基板の表面処理を行うことを特徴とする。
また、本願の請求項16に記載の発明は、発振周波数がVHF帯域ないしUHF帯域に属する高周波電源の出力の電力を用いて生成されたプラズマを利用して真空容器に配置された基板の表面を処理するプラズマ表面処理方法において、請求項2あるいは3のいずれか1項に記載の高周波プラズマ発生装置を用いて、前記第1の電極表面において電磁波の伝播上での対向点となる関係にある少なくとも2つの地点に配置された第1及び第2の給電点のいずれか一方の給電点に、前記第1及び第3のインピーダンス整合器の出力端子を接続し、他方の給電点に前記第2及び第4のインピーダンス整合器の出力端子を接続すると共に、該第1及び第2のインピーダンス整合器の出力端子から出力される電力の電圧の位相差及び該第3及び第4のインピーダンス整合器の出力端子から出力される電力の電圧の位相差を制御し、該2つの定在波の腹の位置間の距離、即ち第1の定在波の腹の位置と第2の定在波の腹の位置との間の距離を前記一対の電極間に生成のプラズマ内部を伝播する電磁波の波長λの0.22〜0.28倍、好ましくは0.25倍、即ち0.22〜0.28λに設定することにより、前記基板の表面処理を行うことを特徴とする。
また、本願の請求項17に記載の発明は、発振周波数がVHF帯域ないしUHF帯域に属する高周波電源の出力の電力を用いて生成されたプラズマを利用して真空容器に配置された基板の表面を処理するプラズマ表面処理方法において、請求項4あるいは5のいずれか1項に記載の高周波プラズマ発生装置を用いて、前記第1の電極表面において電磁波の伝播上での対向点となる関係にある少なくとも2つの地点に配置された第1及び第2の給電点のいずれか一方の給電点に、前記第1及び第3のインピーダンス整合器の出力端子を接続し、かつ、他方の給電点に前記第2及び第4のインピーダンス整合器の出力端子を接続すると共に、該第1の高周波電源の第1及び第2の出力端子から出力される電力をパルス幅Hw及びパルス周期T0でパルス変調し、該第2の高周波電源の第1及び第2の出力端子から出力される電力を該第1の高周波電源の出力端子から出力されるパル変調された電力の立ち上がり時刻より半周期、即ちT0/2遅れた時刻に立ち上がる形でパルス変調することにより、該第1の高周波電源の第1及び第2の出力端子から出力されるパルス変調された電力と該第2の高周波電源の第1及び第2の出力端子から出力されるパルス変調された電力の該第1及び第2の給電点への供給時間帯を分離し、該一対の電極間に該第1の高周波電源の第1及び第2の出力端子から出力される2つの電力により形成される第1の定在波と該第2の高周波電源の第1及び第2の出力端子から出力される2つの電力により形成される第2の定在波の発生時関領域を異ならしめると共に、該第1及び第2のインピーダンス整合器の出力端子から出力される電力の電圧の位相差と、該第3及び第4のインピーダンス整合器の出力端子から出力される電力の電圧の位相差を制御し、該2つの定在波の腹の位置間の距離即ち第1の定在波の腹の位置と第2の定在波の腹の位置との間の距離を前記一対の電極間に生成のプラズマ内部を伝播する電磁波の波長λの0.22〜0.28倍、好ましくは0.25倍、即ち0.22〜0.28λに設定することにより、前記基板の表面処理を行うことを特徴とする。
また、本願の請求項18に記載の発明は、発振周波数がVHF帯域ないしUHF帯域に属する高周波電源の出力の電力を用いて生成されたプラズマを利用して真空容器に配置された基板の表面を処理するプラズマ表面処理方法において、請求項6あるいは7のいずれか1項に記載の高周波プラズマ発生装置を用いて、前記第1の電極表面において電磁波の伝播上での対向点となる関係にある少なくとも2つの地点に配置された第1及び第2の給電点のいずれか一方の給電点に、前記第1及び第3のインピーダンス整合器の出力端子を接続し、かつ、他方の給電点に前記第2及び第4のインピーダンス整合器の出力端子を接続すると共に、該高周波電源の第1及び第2の出力端子から出力される電力をパルス幅Hw及びパルス周期T0でパルス変調し、該高周波電源の第3及び第4の出力端子から出力される電力を該第1の出力端子から出力されるパル変調された電力の立ち上がり時刻より半周期、即ちT0/2遅れた時刻に立ち上がる形でパルス変調することにより、該高周波電源の第1及び第2の出力端子から出力されるパルス変調された電力と該高周波電源の第3及び第4の出力端子から出力されるパルス変調された電力の該第1及び第2の給電点への供給時間帯を分離し、該一対の電極間に該高周波電源の第1及び第2の出力端子から出力される2つの電力により形成される第1の定在波と該高周波電源の第3及び第4の出力端子から出力される2つの電力により形成される第2の定在波の発生時関領域を異ならしめると共に、該第1及び第2のインピーダンス整合器の出力端子から出力される電力の電圧の位相差と、該第3及び第4のインピーダンス整合器の出力端子から出力される電力の電圧の位相差を制御し、該2つの定在波の腹の位置間の距離即ち第1の定在波の腹の位置と第2の定在波の腹の位置との間の距離を前記一対の電極間に生成のプラズマ内部を伝播する電磁波の波長λの0.22〜0.28倍、好ましくは0.25倍、即ち0.22〜0.28λに設定することにより、前記基板の表面処理を行うことを特徴とする。
また、本願の請求項19に記載の発明は、請求項16〜18のいずれか1項に記載のプラズマ表面処理方法において、前記第1の定在波の腹の位置を把握する工程と、前記第2の定在波の腹の位置を把握する工程と、該第1の定在波の腹の位置と第2の定在波の腹の位置の間隔を前記一対の電極間に生成のプラズマ内部を伝播する電磁波の波長λの0.22〜0.28倍、好ましくは0.25倍、即ち0.22〜0.28λに設定し、基板のプラズマ表面処理を行う工程を有すること特徴とする。
また、本願に係る第20の発明は、本願に係る第16〜第19のいずれかの発明のプラズマ表面処理方法において、前記基板の表面に、アモルファスSi系材料、微結晶Si系材料、多結晶Si系材料、結晶Si系材料、酸化物、金属、有機金属化合物、有機ケイ素化合物、及び有機化合物のいずれかを形成するようにしたことを特徴とする。
また、本願に係る第21の発明は、本願に係る第16〜第19のいずれかの発明のプラズマ表面処理方法において、前記基板の表面に固着したアモルファスSi系材料、微結晶Si系材料、多結晶Si系材料、結晶Si系材料、酸化物、金属、有機金属化合物、有機ケイ素化合物、及び有機化合物のいずれかの材料をエッチング加工するようにしたことを特徴とする。
本願に係る第1の発明のプラズマ発生装置によれば、発振周波数がVHF帯域ないしUHF帯域に属する高周波電源の出力の電力を用いて生成されるプラズマを利用して真空容器に配置された基板の表面を処理するプラズマ表面処理装置において、大面積プラズマの一様化に不可欠な一対の電極間の電力の強さの分布を均一に制御することが可能である。即ち、従来の装置では該一対の電極間の電力の強さの分布を制御することは不可能視されているが、それが可能である。その結果、従来の装置では不可能視されている大面積基板を対象にしたVHFプラズマあるいはUHFプラズマによる大面積で、かつ均一なプラズマ表面処理が可能になる。即ち、VHFプラズマ及びUHFプラズマの応用分野においての重要課題である大面積でかつ均一のプラズマ処理化を実現可能な装置の提供が可能である。その効果は、産業上、著しく大きい価値がある。
本願に係る第2〜第7の発明のプラズマ発生装置は、それぞれ、本願に係る第1の発明のプラズマ発生装置を実現する確実な手段であり、その産業界における応用上の価値は著しく高い。
即ち、本願に係る第2及び第3の発明のプラズマ発生装置は、独立した2つの2出力位相可変の高周波電源を主体に構成することにより、本願に係る第1の発明のプラズマ発生装置を確実に実現可能であり、その実用価値は高い。
また、本願に係る第4及び第5の発明のプラズマ発生装置は、任意のパルス変調が可能で、かつ、2出力でかつ該2出力の電圧の位相差を任意に設定可能な第1の高周波電源と該第1の高周波電源のパルス変調信号に同期した任意のパルス変調が可能で、かつ、2出力でかつ該2出力の電圧の位相差を任意に設定可能な第2の高周波電源を主体に構成することにより、本願に係る第1の発明のプラズマ発生装置を確実に実現可能であり、その実用価値は高い。
また、本願に係る第6及び第7の発明のプラズマ発生装置は、任意のパルス変調が可能で、4つの出力端子を有すると共に、該4つの出力端子の出力の電圧の位相を、それぞれ任意に設定可能な高周波電源を主体に構成することにより、本願に係る第1の発明のプラズマ発生装置を確実に実現可能であり、その実用価値は高い。
本願に係る第8の発明のプラズマ発生装置は、本願に係る第4〜第7の発明のプラズマ発生装置を実現する確実な手段として、その価値は著しく高い。
本願に係る第9の発明のプラズマ発生装置は、本願に係る第2〜第8のそれぞれの発明のプラズマ発生装置において、大面積でかつ均一なプラズマを実現する確実な手段を提供するものである。その結果、VHFプラズマあるいはUHFプラズマを用いた大面積で、かつ均一な表面処理が容易に実現可能であり、その産業界における応用上の価値は著しく高い。
本願に係る第10〜第13の発明のプラズマ発生装置は、本願に係る第2〜第9の発明のそれぞれのプラズマ発生装置を産業界における様々な応用に関して、確実に実現する手段として、その価値は著しく高い。
本願に係る第14の発明のプラズマ表面処理装置によれば、発振周波数がVHF帯域ないしUHF帯域に属する高周波電源の出力の電力を用いて生成されるプラズマを利用して真空容器に配置された基板の表面を処理するプラズマ表面処理装置において、大面積プラズマの一様化に不可欠な一対の電極間の電力の強さの分布の均一化制御が可能である。その結果、従来の装置では困難視されている大面積基板を対象にしたVHFプラズマあるいはUHFプラズマによる大面積で、かつ均一なプラズマ表面処理が可能になる。即ち、VHFプラズマ及びUHFプラズマの応用分野においての重要課題である大面積でかつ均一のプラズマ処理化を実現可能な装置の提供が可能である。その効果は、産業上、著しく大きい価値がある。
本願に係る第15の発明のプラズマ表面処理方法によれば、発振周波数がVHF帯域ないしUHF帯域に属する高周波電源の出力の電力を用いて生成されるプラズマを利用して真空容器に配置された基板の表面を処理するプラズマ表面処理方法において、大面積プラズマの一様化に不可欠な一対の電極間の電力の強さの分布の均一化制御が可能である。その結果、従来の方法では困難視されている大面積基板を対象にしたVHFプラズマあるいはUHFプラズマによる大面積で、かつ均一なプラズマ表面処理が可能になる。即ち、VHFプラズマ及びUHFプラズマの応用分野においての重要課題である大面積でかつ均一のプラズマ処理化を実現可能な方法の提供が可能である。その効果は、産業上、著しく大きい価値がある。
本願に係る第16〜第19の発明のプラズマ表面処理方法は、それぞれ、発振周波数がVHF帯域ないしUHF帯域に属する高周波電源の出力の電力を用いて生成されるプラズマを利用して真空容器に配置された基板の表面を処理するプラズマ表面処理方法において、大面積プラズマの一様化に不可欠な一対の電極間の電力の強さの分布の均一化制御を確実に実現することが可能である。その結果、従来の方法では困難視されている大面積基板を対象にしたVHFプラズマあるいはUHFプラズマによる大面積で、かつ均一なプラズマ表面処理が可能になる。即ち、VHFプラズマ及びUHFプラズマの応用分野においての重要課題である大面積でかつ均一のプラズマ処理化を実現可能な方法の提供が可能である。その効果は、産業上、著しく大きい価値がある。
本願に係る第20の発明のプラズマ表面処理方法によれば、発振周波数がVHF帯域ないしUHF帯域に属する高周波電源の出力の電力を用いて生成されるプラズマを利用して真空容器に配置された基板の表面を処理するプラズマ表面処理方法において、基板の表面に、アモルファスSi系材料、微結晶Si系材料、多結晶Si系材料、結晶Si系材料、酸化物、金属、有機金属化合物、有機ケイ素化合物、及び有機化合物のいずれかを、大面積で、かつ均一に形成することが可能である。その結果、LSI(大規模集積回路)、LCD(液晶デイスプレー)用TFT(薄膜トランジスター)、アモルファスSi系太陽電池、薄膜多結晶Si系太陽電池、複写機用感光体、および各種情報記録デバイス等のそれぞれの分野における製品の生産性の抜本的向上が実現される。したがって、その効果は、著しく大きい価値がある。
本願に係る第21の発明のプラズマ表面処理方法によれば、発振周波数がVHF帯域ないしUHF帯域に属する高周波電源の出力の電力を用いて生成されるプラズマを利用して真空容器に配置された基板の表面を処理するプラズマ表面処理方法において、基板の表面に固着のアモルファスSi系材料、微結晶Si系材料、多結晶Si系材料、結晶Si系材料、酸化物、金属、有機金属化合物、有機ケイ素化合物、及び有機化合物のいずれかを、大面積で、かつ均一にエッチングすることが可能である。その結果、LSI(大規模集積回路)、LCD(液晶デイスプレー)用TFT(薄膜トランジスター)、アモルファスSi系太陽電池、薄膜多結晶Si系太陽電池、複写機用感光体、および各種情報記録デバイス等のそれぞれの分野における製品の生産性の抜本的向上が実現される。したがって、その効果は、著しく大きい価値がある。
以下、本発明の実施の一形態に係わる高周波プラズマ発生装置と該高周波プラズマ発生装置により構成されたプラズマ表面処理装置及びプラズマ表面処理方法について、図面を参照して説明する。なお、以下の説明では、プラズマ表面処理装置およびプラズマ表面処理方法の一例として、太陽電池を製作する際に必要なa―Si薄膜を製作する装置および方法が記載されているが、本願の発明対象が下記の例の装置及び方法に限定されるものではない。
(実施例1)
本発明に関する実施例1の高周波プラズマ発生装置と該高周波プラズマ発生装置により構成のプラズマ表面処理装置(プラズマCVD装置)およびプラズマ表面処理方法(プラズマCVD方法)について、図1ないし図6を参照して説明する。また、図7〜図9を参照する。
図1は実施例1に係わる高周波プラズマ発生装置と該高周波プラズマ発生装置により構成のプラズマ表面処理装置(プラズマCVD装置)の全体を示す概略図、図2は図1図示のプラズマ表面処理装置の構成部材の一つである一対の電極とその給電部に係る構成の基本型を示す説明図、図3は一対の電極間を伝播する電磁波を示す説明図、図4は一対の電極間に発生の電圧の定在波の腹の位置を示す説明図、図5は一対の電極間に発生の定在波の強さ(振幅の2乗の値)を示す説明図及び図6は一対の電極間に発生の2つの定在波の強さを示す説明図である。
また、図7は図1図示のプラズマ表面処理装置の構成部材の一つである一対の電極とその給電部に係わる構成の第1の応用型を示す説明図、図8は図1図示のプラズマ表面処理装置の構成部材の一つである一対の電極とその給電部に係わる構成の第2の応用型を示す説明図、及び図9は図1図示のプラズマ表面処理装置の構成部材の一つである一対の電極とその給電部に係わる構成の第3の応用型を示す説明図である。
先ず、装置の構成を説明する。図1及び図2において、符番1は真空容器である。この真空容器1には、後述の放電ガスをプラズマ化する一対の電極、即ち非接地の1本の棒から成る第1の電極2と図示しない基板ヒータ3を内臓した接地された平板状の第2の電極4が配置されている。該第1の電極2は、絶縁物支持材5及びガス混合箱6を介して真空容器1に固着されている。
該ガス混合箱6は放電ガス供給管8より供給されるSiH4等放電ガスを、整流孔7を介して、前記一対の電極2と4の間に均一に供給する機能を有している。供給されたSiH4等放電ガスは前記一対の電極2と4の間でプラズマ化された後、排気管9及び図示しない真空ポンプ10により、真空容器1の外へ排出される。
真空容器1内の圧力は、図示しない圧力計によりモニターされ、図示しない圧力調整弁により自動的に所定の値に調整、設定される。なお、本実施例の場合は、放電ガスが流量500sccm〜1、500sccm程度の場合、圧力0.01Torr〜10Torr(1.33Pa〜1330Pa)程度に調整できる。真空容器1の真空到達圧力は2〜3E−7Torr(2.66〜3.99E−5Pa)程度である。
符番11は基板で、図示しないゲートバルブ12の開閉操作により、第2の電極4に設置される。そして、図示しない基板ヒータ3により所定の温度に加熱される。
電極へ高周波電力を給電する位置である給電点の一つは、前記1本の棒から成る第1の電極2の一方の端部とし、これを第1の給電点21とする。また、該給電点21に対して高周波電力波の伝播上での対向点となる関係にある位置である該電極の他方の端部を第2の給電点27とする。
符番15aは第1の位相可変2出力の発信器で、周波数30MHz〜300MHz(VHF帯域)あるいは周波数300MHz〜3GHz(UHF帯域)の任意の周波数の正弦波信号を発生するもので、例えば、その2つの出力端子から、それぞれ周波数60MHzの正弦波の電気信号を出力する。なお、該位相可変2出力の発信器15aの2つの出力端子から出力される2つの正弦波信号の位相差は、該位相可変2出力の発信器15aに付属の位相差調整器で任意の値に設定できる。該2つの出力端子の一方の出力は、第1の電力増幅器16、第1のインピーダンス整合器17、第1の電流導入端子18、第1の真空用同軸ケーブル19の芯線20を介して、第1の給電点21に供給される。
なお、位相可変2出力の発信器15aと第1の電力増幅器16との接続、第1の電力増幅器16と第1のインピーダンス整合器17との接続、第1のインピーダンス整合器17と第1の電流導入端子18との接続は、いずれも同軸ケーブルが用いられる。そして、第1の真空用同軸ケーブル19の外部導体は第2の電極4に接続される。
該第1の位相可変2出力の発信器15aの2つの出力端子の他方の出力は、第2の電力増幅器22、第2のインピーダンス整合器23、第2の電流導入端子24、第2の真空用同軸ケーブル25の芯線及26を介して、第2の給電点27に供給される。
なお、位相可変2出力の発信器15aと第2の電力増幅器22との接続、第2の電力増幅器22と第2のインピーダンス整合器23との接続、第2のインピーダンス整合器23と第2の電流導入端子24との接続は、いずれも同軸ケーブルが用いられる。そして、第2の真空用同軸ケーブル25の外部導体は第2の電極4に接続される。
前記第1の電力増幅器16及び第2の電力増幅器22には、それぞれ出力値(進行波)のモニター及び下流側から反射して戻ってくる反射波のモニターが付属している。また、該該反射波による該第1及び第2の電力増幅器16、22本体の電気回路を防護するためのアイソレータが付属されている。
ここで、前記第1の位相可変2出力の発信器15a、第1の電力増幅器16、第1のインピーダンス整合器17、第1の電流導入端子18、第1の真空用同軸ケーブル19の芯線20、第2の電力増幅器22、第2のインピーダンス整合器23、第2の電流導入端子24、第2の真空用同軸ケーブル25の芯線26から成る電力供給系を第1の電力供給系と呼ぶ。
符番28aは、前記第1の位相可変2出力の発信器と独立の第2の位相可変2出力の発信器で、周波数30MHz〜300MHz(VHF帯域)あるいは周波数300MHz〜3GHz(UHF帯域)の正弦波信号を発生し、その2つの出力端子から、それぞれ、例えば周波数60MHzの正弦波の電気信号を出力する。なお、該位相可変2出力の発信器28aの2つの出力端子から出力される2つの正弦波信号の位相差は、該位相可変2出力の発信器28aに付属の位相差調整器で任意の値に設定できる。
該2つの出力端子の一方の出力は、第3の電力増幅器29、第3のインピーダンス整合器30、第3の電流導入端子31、第3の真空用同軸ケーブル32の芯線33を介して、第1の給電点21に供給される。
なお、第2の位相可変2出力の発信器28と第3の電力増幅器29との接続、第3の電力増幅器29と第3のインピーダンス整合器30との接続、第3のインピーダンス整合器30と第3の電流導入端子31との接続は、いずれも同軸ケーブルが用いられる。そして、第3の真空用同軸ケーブル32の外部導体は第2の電極4に接続される。
該第2の位相可変2出力の発信器28aの2つの出力端子の他方の出力は、第4の電力増幅器34、第4のインピーダンス整合器35、第4の電流導入端子36、第4の真空用同軸ケーブル37の芯線38を介して、第2の給電点27に供給される。
なお、第2の位相可変2出力の発信器28aと第4の電力増幅器34との接続、第4の電力増幅器34と第4のインピーダンス整合器35との接続、第4のインピーダンス整合器35と第4の電流導入端子36との接続は、いずれも同軸ケーブルが用いられる。また、第4の真空用同軸ケーブル37の外部導体は第2の電極4に接続される。
前記第3の電力増幅器29及び第4の電力増幅器34には、それぞれ出力値(進行波)のモニター及び下流側から反射して戻ってくる反射波のモニターが付属している。また、該該反射波による該第3及び第4の電力増幅器29、34本体の電気回路を防護するためのアイソレータが付属されている。
ここで、前記第2の位相可変2出力の発信器28a、第3の電力増幅器29、第3のインピーダンス整合器30、第3の電流導入端子31、第3の真空用同軸ケーブル32の芯線33、第4の電力増幅器34、第4のインピーダンス整合器35、第4の電流導入端子36、第4の真空用同軸ケーブル37の芯線38から成る電力供給系を、第2の電力供給系と呼ぶ。
また、ここでは、第1の電力供給系と、第2の電力供給系と、一対の電極2、4と、給電点21、27から構成されるプラズマ発生系を、高周波プラズマ発生装置と呼ぶ。
次に、上記構成の高周波プラズマ発生装置と該高周波プラズマ発生装置により構成のプラズマ表面処理装置(プラズマCVD装置)を用いて、a−Si太陽電池用アモルファスSi膜の製造方法を説明する。
なお、本発明の実施あるいは応用では、手順として、第1及び第2の予備製膜工程と本製膜工程が必要である。第1の予備製膜工程は、前記第1の位相可変2出力の発信器15aの2つの出力の位相差の設定値を把握するに必要なデータを取得ために、第2の予備製膜工程は、前記第2の位相可変2出力の発信器28aの2つの出力の位相差の設定値を把握するために、本製膜工程は目的とするアモルファスSiの製造のために実施される。
先ず、第1の第1の予備製膜工程であるが、図1及び図2において、予め、基板11を第2の電極4の上に設置し、図示しない真空ポンプ10を稼動させ、真空容器1内の不純物ガス等を除去した後、放電ガス供給管8からSiH4ガスを、例えば250sccm、圧力0.5Torr(66.5Pa)で供給しつつ、基板温度は80〜350℃の範囲、例えば180℃に保持する。
次に、前記第1の位相可変2出力の発信器15a、第1の電力増幅器16、第1のインピーダンス整合器17、第1の電流導入端子18、第1の真空用同軸ケーブル19の芯線20、第2の電力増幅器22、第2のインピーダンス整合器23、第2の電流導入端子24、第2の真空用同軸ケーブル25の芯線26から成る第1の電力供給系を用いて、一対の電極2、4に高周波電力を、例えば周波数60MHzの電力例えば合計で200Wを供給する。
即ち、該第1の位相可変2出力の発信器15aの2つの出力の位相差を、例えば零に設定し、第1の電力増幅器16の出力を100Wに設定して、その出力を第1のインピーダンス整合器17、第1の電流導入端子18、第1の真空用同軸ケーブル19の芯線20を介して、第1の給電点21に供給するとともに、第2の電力増幅器22の出力を100Wに設定して、その出力を第2のインピーダンス整合器23、第2の電流導入端子24、第2の真空用同軸ケーブル25の芯線26を介して、第2の給電点27に供給する。
この場合、前記第1のインピーダンス整合器17及び第2のインピーダンス整合器23を調整することにより、それぞれのインピーダンス整合器17、23の上流側に上記供給電力の反射波が戻らないようにできる。
その結果、前記SiH4ガスのプラズマが生成され、基板11に例えばアモルファスSiが堆積する。
前記要領で、製膜時間を例えば10〜20分間にして、前記基板11にアモルファスSi膜を形成させる。製膜後、真空容器1から前記基板11を取り出して、該アモルファスSi膜の膜厚み分布を評価する。基板11に堆積された例えばアモルファスSiの膜厚分布は、後述するように、VHFプラズマ固有の現象である定在波の発生により、正弦的な分布となる。このような、製膜試験を第1の位相可変2出力の発信器15aの2つの出力の位相差をパラメータに繰り返し実施する。そして、第1の電極2の長さ方向において、基板11の中央点から正弦的な膜厚分布の最大厚みの位置までの距離と前記第1の位相可変2出力の発信器15aの2つの出力の位相差の関係をデータとして把握する。例えば、基板11の中央点から第1の給電点21の方向へ波長λの八分の一、即ちλ/8だけ離れた位置に設定するための位相差は、例えばΔθ1であるいうことが把握される。
なお、ここで実施する正弦的な厚み分布の最大の位置と第1の位相可変2出力の発信器15aの出力電圧の位相差との関係の把握の方法は、上記膜の厚み分布の測定を応用する方法に限定されず、例えば、生成されるプラズマの発光強度の電磁波伝播方向における空間的分布を光センサーで測定し、その最大強度の位置と該位相差の関係として把握する方法を用いても良い。
ただし、その波長λは、真空中での電磁波の波長ではなく、上記製膜条件でのプラズマ中の波長λであり、真空中での電磁波の波長λに比べて短くなる。一般的にはSiH4ガスのプラズマでは、プラズマ中での波長λと真空中での波長λとの比λ/λは0.5〜0.9程度である。
ところで、上記第1及び第2の給電点21及び27から供給される電力の電圧波は、同一電源から発振され、互いに電極間を伝播していく。すなわち、基板11の表面の法線方向と実質的に同じ方向の電界を有する2つの電磁波が、第1の電極2と第2の電極4の間に生成され、両者は互いに向かい合った方向から伝播しあって重なり合うので、干渉現象が発生する。その様子を、図2〜図4を用いて説明する。
なお、上記基板11の表面の法線方向と実質的に同じ方向とは、余弦の値が0.7以上の方向即ち該法線から45度程度以内の方向を意味する。
図2及び図3において、第1の給電点21から第2の給電点27の方向の距離をxとし、xの正方向へ伝播する電圧波をW11(x,t)、xの負方向へ伝播する電圧波、即ち第2の給電点27から第1の給電点21の方向へ伝播する電圧波をW21(x,t)とすると、次のように表現される。
W11(x、t)=V1・sin(ωt+2πx/λ)
W21(x、t)=V1・sin{ωt−2π(x−L0)/λ+Δθ}
ただし、V1は電圧波の振幅、ωは電圧の角周波数、λは電圧波の波長、tは時間、L0は第1及び第2の給電点の間隔、Δθは第1の給電点21から供給される電力の電圧波と第2の給電点27から供給される電力の電圧波の位相差である。この2つの電圧波の合成波W1(x、t)は次式のようになる。
W1(x、t)=W11(x、t)+W21(x、t)
=2・V1cos{2π(x−L0/2)/λ−Δθ/2}・sin{ωt+(πL0/λ+Δθ/2)
上記合成波W1(x、t)を概念的に図4に示す。図4において、Δθ=0の場合、生成されるプラズマの強さは給電点間の中央部(x=L0/2)が強く、該中央部から離れるにしたがって弱くなることを示している。プラズマの強い部分は、Δθ>0の場合、プラズマの強い部分が一方の給電点側へ移動し、Δθ<0の場合、他方の給電点側へ移動することを示している。
なお、ここでは、前記第1の電力供給系を用いて、前記第1及び第2の給電点21、27に供給される電力の電圧波を、それぞれ、W11(x、t)及びW21(x、t)と呼ぶ。また、その2つの電圧波の合成波を第1の定在波W1(x、t)と呼ぶ。
ところで、一対の電極間の電力の強さは、電圧の合成波即ち第1の定在波W1(x、t)の振幅値の二乗に比例する。即ち、電力の強さI1(x、t)は、
I1(x、t)∝cos{2π(x−L0/2)/λ−Δθ/2}
と表される。このI1(x、t)を概念的に、図5に示す。
図5は、一般論として、VHFプラズマの生成において、給電点からの進行波と給電点の対向端からの反射波との干渉により発生する定在波により、一対の電極間でのプラズマは一様にはならないという困難性の理由を示している。例えば、プラズマの一様性は電力の強さI1(x,t)が0.9〜1.0の範囲であるすると、電力伝播方向の距離で、−0.05〜+0.05λの範囲(即ち、膜厚が均一な範囲は長さ0.1λ)に限られるということを示している。
ただし、その波長λは、真空中での電磁波の波長ではなく、上記製膜条件でのプラズマ中の波長λであり、真空中での電磁波の波長λに比べて短くなる。一般的にはSiH4ガスのプラズマでは、プラズマ中での波長λと真空中での波長λとの比λ/λは0.5〜0.9程度である。
次に、第2の予備製膜工程であるが、図1及び図2において、予め、基板11を第2の電極4の上に設置し、図示しない真空ポンプ10を稼動させ、真空容器1内の不純物ガス等を除去した後、放電ガス供給管8からSiH4ガスを、例えば250sccm、圧力0.5Torr(66.5Pa)で供給しつつ、基板温度は80〜350℃の範囲、例えば180℃に保持する。
そして、前記第2の位相可変2出力の発信器28a、第3の電力増幅器29、第3のインピーダンス整合器30、第3の電流導入端子31、第3の真空用同軸ケーブル32の芯線33、第4の電力増幅器34、第4のインピーダンス整合器35、第4の電流導入端子36、第4の真空用同軸ケーブル37の芯線38から成る第2の電力供給系を用いて、一対の電極2、4に高周波電力を、例えば周波数60MHzの電力例えば合計で200Wを供給する。
即ち、該第2の位相可変2出力の発信器28aの2つの出力の位相差を、例えば零に設定し、第3の電力増幅器29の出力を100Wに設定して、その出力を第3のインピーダンス整合器30、第3の電流導入端子31、第3の真空用同軸ケーブル32の芯線33を介して、第1の給電点21に供給するとともに、第4の電力増幅器34の出力を100Wに設定して、その出力を第4のインピーダンス整合器35、第4の電流導入端子36、第4の真空用同軸ケーブル37の芯線38を介して、第2の給電点27に供給する。
この場合、前記第3のインピーダンス整合器30及び第4のインピーダンス整合器35を調整することにより、それぞれのインピーダンス整合器30、35の上流側に上記供給電力の反射波が戻らないようにできる。
その結果、前記SiH4ガスのプラズマが生成され、基板11に例えばアモルファスSiが堆積する。
前記要領で、製膜時間を例えば10〜20分間にして、前記基板11にアモルファスSi膜を形成させる。製膜後、真空容器1から前記基板11を取り出して、該アモルファスSi膜の膜厚み分布を評価する。該基板11に堆積された例えばアモルファスSiの膜厚分布には、前述のVHFプラズマ固有の現象である定在波の発生により、正弦的な分布となる。このような、製膜試験を第2の位相可変2出力の発信器28aの2つの出力の位相差をパラメータに繰り返し実施する。そして、第1の電極2の長さ方向において、基板の中央点から正弦的な膜厚分布の最大厚みの位置までの距離と前記第2の位相可変2出力の発信器28の2つの出力の位相差の関係をデータとして把握する。
この場合も、前記第1の予備製膜工程と同様に、第2の電力供給系を用いた場合において、基板の中央点から正弦的な膜厚分布の最大厚みの位置までの距離と前記第2の位相可変2出力の発信器28aの2つの出力の位相差の関係を示すデータにより、膜厚分布の最大厚みの位置を例えば、基板の中央点から第2の給電点27の方向へ波長λの八分の一、即ちλ/8だけ離れた位置に設定するための位相差は例えばΔθ2であるということが把握される。
なお、ここで実施する正弦的な厚み分布の最大の位置と第1の位相可変2出力の発信器15aの出力電圧の位相差との関係の把握の方法は、上記膜の厚み分布の測定を応用する方法に限定されず、例えば、生成されるプラズマの発光強度の電磁波伝播方向における空間的分布を光センサーで測定し、その最大強度の位置と該位相差の関係として把握する方法を用いても良い。
ただし、その波長λは、真空中での電磁波の波長ではなく、上記製膜条件でのプラズマ中の波長λであり、真空中での電磁波の波長λに比べて短くなる。一般的にはSiH4ガスのプラズマでは、プラズマ中での波長λと真空中での波長λとの比λ/λは0.5〜0.9程度である。
第2の予備製膜工程において、上記第1及び第2の給電点21及び27から供給される電力の電圧波は、同一電源から発振され、互いに電極間を伝播していく。すなわち、基板11の表面の法線方向と実質的に同じ方向の電界を有する2つの電磁波が、第1の電極2と第2の電極4の間に生成され、両者は互いに向かい合った方向から伝播しあって重なり合うので、干渉現象が発生する。その様子を、図2〜図4を用いて説明する。
なお、上記基板11の表面の法線方向と実質的に同じ方向とは、余弦の値が0.7以上の方向即ち該法線から45度程度以内の方向を意味する。
図2及び図3において、第1の給電点21から第2の給電点27の方向の距離をxとし、xの正方向へ伝播する電圧波をW12(x,t)、xの負方向へ伝播する電圧波、即ち第2の給電点27から第1の給電点21の方向へ伝播する電圧波をW22(x,t)とすると、次のように表現される。
W12(x、t)=V2・sin(ωt+2πx/λ)
W22(x、t)=V2・sin{ωt−2π(x−L0)/λ+Δθ}
ただし、V2は電圧波の振幅、ωは電圧の角周波数、λは電圧波の波長、tは時間、L0は第1及び第2の給電点の間隔、Δθは第1の給電点21から供給される電力の電圧波と第2の給電点27から供給される電力の電圧波の位相差である。電圧の合成波W2(x、t)は次式のようになる。
W2(x、t)=W12(x、t)+W22(x、t)
=2・V2cos{2π(x−L0/2)/λ−Δθ/2}・sin{ωt+(πL0/λ+Δθ/2)
上記合成波W2(x、t)を概念的に図4に示す。図4において、Δθ=0の場合、生成されるプラズマの強さは給電点間の中央部(x=L0/2)が強く、該中央部から離れるにしたがって弱くなることを示している。プラズマの強い部分は、Δθ>0の場合、プラズマの強い部分が一方の給電点側へ移動し、Δθ<0の場合、他方の給電点側へ移動することを示している。
なお、ここでは、前記第2の電力供給系を用いて前記第1及び第2の給電点21、27に供給される電力の電圧波を、それぞれ、W12(x、t)及びW22(x、t)と呼ぶ。また、その2つの波の合成波を第2の定在波W2(x、t)と呼ぶ。
ところで、一対の電極間の電力の強さは、第2の定在波W2(x、t)の振幅値の二乗に比例する。即ち、電力の強さI2(x、t)は、
I2(x、t)∝cos{2π(x−L0/2)/λ−Δθ/2}
と表される。このI2(x、t)を概念的に、図5に示す。
図5は、一般論として、VHFプラズマの生成において、給電点からの進行波と給電点の対向端からの反射波との干渉により発生する定在波により、一対の電極間でのプラズマは一様にはならないという困難性の理由を示している。例えば、プラズマの一様性は電力の強さI1(x,t)が0.9〜1.0の範囲であるすると、電力伝播方向の距離で、−0.05〜+0.05λの範囲(即ち、膜厚が均一な範囲は長さ0.1λ)に限られるということを示している。
ただし、その波長λは、真空中での電磁波の波長ではなく、上記製膜条件でのプラズマ中の波長λであり、真空中での電磁波の波長λに比べて短くなる。一般的にはSiH4ガスのプラズマでは、プラズマ中での波長λと真空中での波長λとの比λ/λは0.5〜0.9程度である。
さて、前記第1および第2の予備製膜工程の結果を受けて、本製膜工程に入る。先ず、図1及び図2において、予め、基板11を第2の電極4の上に設置し、図示しない真空ポンプ10を稼動させ、真空容器1内の不純物ガス等を除去した後、放電ガス供給管8からSiH4ガスを、例えば300sccm、圧力0.5Torr(66.5Pa)で供給しつつ、基板温度は80〜350℃の範囲、例えば180℃に保持する。
次に、前記第1の電力供給系の構成部材の第1の位相可変2出力の発信器15aの2つの出力の位相差を、第1の予備製膜工程のデータとして把握したΔθ1に設定し、第1及び第2の給電点21、27に、それぞれ例えば60MHzの100Wを供給するともとに、前記第2の電力供給系の構成部材の第2の位相可変2出力の発信器28aの2つの出力の位相差を、第2の予備製膜工程のデータとして把握したΔθ2に設定し、第1及び第2の給電点21、27に、それぞれ例えば60MHzの100Wを供給する。即ち、前記第1及び第2の給電点21,27に、前記電圧波W11(x、t)、W21(x、t)、W12(x、t)及びW22(x、t)が供給される。
ここで、第1の予備製膜工程及び第2の予備製膜工程では問題にならなかった第1のインピーダンス整合器17、第2のインピーダンス整合器23、第3のインピーダンス整合器30及び第4のインピーダンス整合器35の整合調整が上手くいかない場合には、第1あるいは第2の位相可変2出力の発信器15a,28aのどちらか一方の発振周波数を他方の発振周波数と若干異なる数値に変更すればよい。例えば、上記の例では、60MHzと61〜63MHz程度、例えば62MHzとすれば良い。なお、インピーダンス整合器の整合調整が上手くいかない原因は、使用する構成機器の性能、即ちインピーダンス整合器の上流側の電力増幅器の耐反射波の機能上の制約によることが多い。
一対の電極2、4間に4つの電圧波が供給されると、前述のように、W11(x、t)とW21(x、t)は干渉して第1の定在波W1(x、t)を形成し、W12(x、t)とW22(x、t)は干渉して第2の定在波W2(x、t)を形成する。ただし、第1及び第2の位相可変2出力発信器15a、28aは互いに独立した電源なので、W11(x、t)は、W12(x、t)及びW22(x、t)とは干渉しない。また、同様に、W21(x、t)は、W12(x、t)及びW22(x、t)と干渉しない。
なお、該第1及び第2の位相可変2出力発信器15a、28aが、互いに独立した電源であるということが重要である。
したがって、一対の電極2、4間に生成される電力の強さの分布は、第1の定在波W1(x、t)の強さの分布I1(x、t)と第2の定在波W2(x、t)の強さの分布I2(x、t)が重畳した形となる。その様子を概念的に図6に示す。
ここで、基板の中央点をx軸の原点とし、該原点から第1の給電点21を向いた方向を正の方向とすると、第1の定在波W1(x、t)の強さの分布I1(x、t)は、
I1(x、t)∝cos{2πx/λ+2π(λ/8)/λ}
=cos{2πx/λ+π/4}
第2の定在波W2(x、t)の強さの分布I2(x、t)は、
I2(x、t)∝cos{2πx/λ−2π(λ/8)/λ}
=cos{2πx/λ−π/4}
一対の電極2、4間に生成される電力の強さの分布I(x、t)は、
I(x、t)
=cos{2πx/λ+π/4}+cos{2πx/λ−π/4}
=1
この結果は、発振周波数がVHF帯域ないしUHF帯域に属する高周波電源の出力の電力を用いて生成されたプラズマを利用して真空容器に配置された基板の表面を処理する表面処理装置に用いられる高周波プラズマ発生装置において、前記基板の表面の法線方向と実質的に同じ方向の電界を有する電磁波の定在波の腹の位置が異なる第1の定在波と第2の定在波を発生させ、かつ、該第1及び第2の定在波を重畳させる手段を備えることにより、プラズマの一様化に不可欠な電極間の電力の強さの分布の制御が可能であるとの意味がある。
さらに、上記第1及び第2の定在波のそれぞれの腹の位置の間の距離が、使用する電磁波のプラズマ中の波長λの0.25倍、即ち0.25λであれば、一対の電極2、4間に生成される電力の強さの分布I(x、t)は、電力の伝播方向の位置に依存しないで一定の値であり、均一であるということを示している。このことは、UHFプラズマ及びUHFプラズマの応用分野においての重要課題である大面積・均一のプラズマ処理化を実現可能な装置の提供ができるという意味で画期的発見であるということを意味している。
また、上記第1及び第2の定在波のそれぞれの腹の位置の間の距離が、使用する電磁波のプラズマ中の波長λの0.22〜0.28倍、即ち0.22〜0.28λであれば、一対の電極2、4間に生成される電力の強さの分布I(x、t)は、±20%以下であることを示している。
また、上記第1及び第2の定在波のそれぞれの腹の位置の間の距離が、使用する電磁波のプラズマ中の波長λの0.238〜0.263倍、即ち0.238〜0.263λであれば、一対の電極2、4間に生成される電力の強さの分布I(x、t)は、±10%以下であることを示している。
上記工程において、SiH4ガスがプラズマ化されると、そのプラズマ中に存在するSiH3、SiH2、SiH等のラジカルが拡散現象により拡散し、基板11の表面に吸着されることによりa−Si膜が堆積するが、一対の電極2、4間の電力の分布が、上述の通り一様であるので、その堆積膜は一様になる。
このことは、波長λの二分の一を越えるサイズの基板を対象にした従来の
VHFプラズマ表面処理装置及び方法では不可能視されている一様な膜厚分布の形成が実現可能であるということを意味している。したがって、上記のことはVHFプラズマ及びUHFプラズマ応用分野においては画期的な発見であり、その実用価値は著しく大きい。
なお、微結晶Siあるいは薄膜多結晶Si等は、製膜条件の中のSiH4,H2の流量比、圧力および電力を適正化することで製膜できることは公知の技術である。
また、エッチングへの応用では、放電ガスとして、NF3、SF6、CF4、CHF3及びC4F4等を用いることで、可能であることは公知の技術である。
本実施例では、第1の電極2が一本の棒であるので、基板サイズは上記1200mmx100mm程度に制約されるが、第1の電極2である棒電極の個数を増加すれば基板サイズの幅は拡大可能であることは当然のことである。
また、a−Si太陽電池、薄膜トランジスタおよび感光ドラム等の製造では、膜厚分布として±10%以内であれば性能上問題はない。上記実施例によれば、60MHzの電源周波数を用いても、従来の装置および方法に比べ著しく良好な膜厚分布を得ることが可能である。
このことは、a−Si太陽電池、薄膜トランジスタおよび感光ドラム等の製造分野での生産性向上および低コスト化に係わる抜本的改善の手段として、VHF帯域あるいはUHF帯域の周波数を用いたプラズマ表面処理装置を提供可能であるということを意味している。この効果の工業的価値は著しく大きい。
ここで、本実施例の装置の構成部材の一つである図2図示の構造の一対の電極2、4を、図7図示の一対の電極2、4、即ち、1個の帯板状電極2と平板電極4から成る一対の電極に代えたプラズマ表面処理装置を用いることにより、本実施例と同様のプラズマ処理を行うことができることを付記しておく。
この場合は、図2の棒状電極2と平板電極4から成る一対の電極で生成されるプラズマに比べ、電磁波の伝播方向に対して直角方向へ広がりの有るプラズマの生成が容易に可能というメリットがある。
また、本実施例の装置の構成部材の一つである図2図示の構造の一対の電極2、4を、図8図示の構造の一対の電極2、4、即ち、1個の帯板状電極2と平板電極4から成る一対の電極に代えたプラズマ表面処理装置を用いることにより、本実施例と同様のプラズマ処理を行うことができることを付記しておく。なお、図8図示の第1の給電点21aと第2の給電点27aを結ぶ線分と第3の給電点21bと第4の給電点27bを結ぶ線分は平行であることが必要であることは当然である。
この場合は、図2図示の棒状電極2と平板電極4から成る一対の電極で生成されるプラズマに比べ、電磁波の伝播方向に対して直角方向へ広がりの有るプラズマの生成が容易に可能というメリットがあることに加えて、給電点に供給される電力を分散させることが可能であるというメリットがある。即ち、大電力を必要とするプラズマ処理の応用に対応が可能という特徴がある。
また、本実施例の装置の構成部材の一つである図2図示の構造の一対の電極2、4を、図9図示の構造の棒状電極2a、2bに代えたプラズマ表面処理装置を用いることにより、本実施例と同様のプラズマ処理を行うことができることを付記しておく。
なお、図9図示の第1の棒状電極2aと第2の棒状電極2bは平行に設置されることが必要である。
この場合は、図2図示の棒状電極2と平板電極4から成る一対の電極で生成されるプラズマに比べ、給電点に供給される電力を分散させることが可能であるというメリットがある。即ち、大電力を必要とするプラズマ処理の応用に対応が可能という特徴がある。
(実施例2)
本発明に関する実施例2の高周波プラズマ発生装置と該高周波プラズマ発生装置により構成のプラズマ表面処理装置(プラズマCVD装置)およびプラズマ表面処理方法(プラズマCVD方法)について、図10〜図12を参照して説明する。また、前記図2〜図6を参照する。
図10は実施例2に係わる高周波プラズマ発生装置と該高周波プラズマ発生装置により構成のプラズマ表面処理装置(プラズマCVD装置)の全体を示す概略図、図11は第1及び第2のパルス変調方式位相可変2出力発信器から出力されるパルス変調された出力の典型例を示す説明図、及び図12は第1及び第2のパルス変調方式位相可変2出力発信器から出力されるパルス変調された正弦波信号の典型例を示す説明図である。
先ず、装置の構成について説明する。ただし、実施例1に示した部材と同じ部材は同符番を付して説明を省略する。
装置の構成は、前記図1及び図2に図示の装置構成(実施例1)における第1及び第2の位相可変2出力発信器15a及び28aを、パルス発振が可能な第1のパルス変調方式位相可変2出力発信器15及び第2のパルス変調方式位相可変2出力発信器28に代えた構成であることが特徴である。
図10において、符番100は同期信号伝送ケーブルで、後述の第1のパルス変調方式位相可変2出力発信器15の出力のパルス変調波形信号を同期信号として、後述の第2のパルス変調方式位相可変2出力発信器28に伝送する。
符番15は第1のパルス変調方式位相可変2出力の発信器で、周波数30MHz〜300MHz(VHF帯域)あるいは300MHz〜3GHz(UHF帯域)の任意の周波数、例えば60MHzの正弦波信号を発生し、かつ、該正弦波信号をパルス変調し、かつ、その2つの出力端子から出力される2つのパルス変調された正弦波信号の位相差を任意に設定することが可能である。
該パルス変調方式位相可変2出力の発信器15の2つの出力端子から出力される2つの正弦波信号の位相差及びパルス変調のパルス幅Hw及び周期T0は、該パルス変調方式位相可変2出力の発信器15に付属の位相差調整器及びパルス変調の調整器で、それぞれ任意の値に設定できる。
また、該第1のパルス変調方式位相可変2出力の発信器15は、前述の同期信号伝送ケーブル100を介して、後述の第2のパルス変調方式位相可変2出力の発信器28にパルス変調の同期信号を送信する。
該第1のパルス変調方式位相可変2出力の発信器15の2つの出力端子の一方の出力は、第1の電力増幅器16、第1のインピーダンス整合器17、第1の電流導入端子18、第1の真空用同軸ケーブル19の芯線20を介して、第1の給電点21に供給される。この出力は、典型例として図11及び図12に示すW11(t)のように、パルス幅Hw、周期T0でパルス変調された正弦波である。
なお、位相可変2出力の発信器15と第1の電力増幅器16との接続、第1の電力増幅器16と第1のインピーダンス整合器17との接続、第1のインピーダンス整合器17と第1の電流導入端子18との接続は、いずれも同軸ケーブルが用いられる。そして、第1の真空用同軸ケーブル19の外部導体は第2の電極4に接続される。
該第1のパルス変調方式位相可変2出力の発信器15の2つの出力端子の他方の出力は、第2の電力増幅器22、第2のインピーダンス整合器23、第2の電流導入端子24、第2の真空用同軸ケーブル25の芯線及26を介して、第2の給電点27に供給される。この出力は、典型例として図11及び図12に示すW21(t)のように、該W11(t)と同様のパルス幅Hw、周期T0でパルス変調された正弦波である。
なお、位相可変2出力の発信器15と第2の電力増幅器22との接続、第2の電力増幅器22と第2のインピーダンス整合器23との接続、第2のインピーダンス整合器23と第2の電流導入端子24との接続は、いずれも同軸ケーブルが用いられる。そして、第2の真空用同軸ケーブル25の外部導体は第2の電極4に接続される。
前記第1の電力増幅器16及び第2の電力増幅器22には、それぞれ出力値(進行波)のモニター及び下流側から反射して戻ってくる反射波のモニターが付属している。また、該該反射波による該第1及び第2の電力増幅器16、22本体の電気回路を防護するためのアイソレータが付属されている。
ここで、前記第1のパルス変調方式位相可変2出力の発信器15、第1の電力増幅器16、第1のインピーダンス整合器17、第1の電流導入端子18、第1の真空用同軸ケーブル19の芯線20、第2の電力増幅器22、第2のインピーダンス整合器23、第2の電流導入端子24、第2の真空用同軸ケーブル25の芯線26から成る電力供給系を第1の電力供給系と呼ぶ。
符番28は、第2のパルス変調方式位相可変2出力の発信器で、周波数30MHz〜300MHz(VHF帯域)あるいは周波数300MHz〜3GHz(UHF帯域)の任意の周波数の正弦波信号を発生するもので、2つの出力端子から位相の異なる任意の周波数、例えば60MHzの正弦波信号を発生し、かつ、該2つの正弦波信号を、前記第1のパルス変調方式位相可変2出力の発信器15から同期信号伝送ケーブル100を介して受信した同期信号を用いることにより、該第1のパルス変調方式位相可変2出力の発信器15のパルス変調信号に同期してパルス変調された信号を出力する。
該パルス変調方式位相可変2出力の発信器28の2つの出力端子から出力される2つの正弦波信号の位相差及びパルス変調のパルス幅Hw及び周期T0は、該位相可変2出力の発信器28に付属の位相差調整器及びパルス変調の調整器で、それぞれ任意の値に設定できる。
該第2のパルス変調方式位相可変2出力の発信器28の2つの出力端子の一方の出力は、第3の電力増幅器29、第3のインピーダンス整合器30、第3の電流導入端子31、第3の真空用同軸ケーブル32の芯線及33を介して、第1の給電点21に供給される。この出力は、典型例として図11及び図12に示すW12(t)のように、パルス幅Hw、周期T0で、かつ、前記W11(t)及びW21(t)のパルス変調のパルス立ち上がり時間より半周期、即ちT0/2遅れた時刻に立ち上がるパルス変調された正弦波である。
なお、第2の位相可変2出力の発信器28と第3の電力増幅器29との接続、第3の電力増幅器29と第3のインピーダンス整合器30との接続、第3のインピーダンス整合器30と第3の電流導入端子31との接続は、いずれも同軸ケーブルが用いられる。そして、第3の真空用同軸ケーブル32の外部導体は第2の電極4に接続される。
該第2のパルス変調方式位相可変2出力の発信器28の2つの出力端子の他方の出力は、第4の電力増幅器34、第4のインピーダンス整合器35、第4の電流導入端子36、第4の真空用同軸ケーブル37の芯線38を介して、第2の給電点27に供給される。この出力は、典型例として図11及び図12に示すW22(t)のように、パルス幅Hw、周期T0で、かつ、前記W11(t)及びW21(t)のパルス変調のパルス立ち上がり時間より半周期、即ちT0/2遅れた時刻に立ち上がるパルス変調された正弦波である。
なお、第2の位相可変2出力の発信器28と第4の電力増幅器34との接続、第4の電力増幅器34と第4のインピーダンス整合器35との接続、第4のインピーダンス整合器35と第4の電流導入端子36との接続は、いずれも同軸ケーブルが用いられる。また、第4の真空用同軸ケーブル37の外部導体は第2の電極4に接続される。
前記第3の電力増幅器29及び第4の電力増幅器34には、それぞれ出力値(進行波)のモニター及び下流側から反射して戻ってくる反射波のモニターが付属している。また、該該反射波による該第3及び第4の電力増幅器29、34本体の電気回路を防護するためのアイソレータが付属されている。
ここで、前記第2のパルス変調方式位相可変2出力の発信器28、第3の電力増幅器29、第3のインピーダンス整合器30、第3の電流導入端子31、第3の真空用同軸ケーブル32の芯線33、第4の電力増幅器34、第4のインピーダンス整合器35、第4の電流導入端子36、第4の真空用同軸ケーブル37の芯線38から成る電力供給系を第2の電力供給系と呼ぶ。
また、ここでは、第1の電力供給系と、第2の電力供給系と、一対の電極2、4と、給電点21、27から構成されるプラズマ発生系を、高周波プラズマ発生装置と呼ぶ。
次に、上記構成の高周波プラズマ発生装置と該高周波プラズマ発生装置により構成のプラズマ表面処理装置(プラズマCVD装置)を用いて、a−Si太陽電池用アモルファスSiを製膜する方法を説明する。
なお、本発明の実施あるいは応用では、手順として、第1及び第2の予備製膜工程と本製膜工程が必要である。第1の予備製膜工程は、前記第1のパルス変調方式位相可変2出力の発信器15の2つの出力の位相差の設定値を把握するために、第2の予備製膜工程は、前記第2のパルス変調方式位相可変2出力の発信器28の2つの出力の位相差の設定値を把握するために、本製膜工程は目的とするアモルファスSiの製造のために実施される。
先ず、第1の第1の予備製膜工程であるが、図10及び図2において、予め、基板11を第2の電極4の上に設置し、図示しない真空ポンプ10を稼動させ、真空容器1内の不純物ガス等を除去した後、放電ガス供給管8からSiH4ガスを、例えば250sccm、圧力0.5Torr(66.5Pa)で供給しつつ、基板温度は80〜350℃の範囲、例えば180℃に保持する。
次に、前記第1のパルス変調方式位相可変2出力の発信器15、第1の電力増幅器16、第1のインピーダンス整合器17、第1の電流導入端子18、第1の真空用同軸ケーブル19の芯線20、第2の電力増幅器22、第2のインピーダンス整合器23、第2の電流導入端子24、第2の真空用同軸ケーブル25の芯線26から成る第1の電力供給系を用いて、一対の電極2、4に高周波電力を、例えば周波数60MHz、パルス幅Hw=400μ秒、パルス周期T0=1m秒の電力、例えば合計で200Wを供給する。
即ち、該第1のパルス変調方式位相可変2出力の発信器15の2つの出力の位相差を、例えば零に、パルス幅Hw=400μ秒、パルス周期T0=1m秒に設定し、第1の電力増幅器16の出力を100Wに設定して、その出力を第1のインピーダンス整合器17、第1の電流導入端子18、第1の真空用同軸ケーブル19の芯線20を介して、第1の給電点21に供給するとともに、第2の電力増幅器22の出力を100Wに設定して、その出力を第2のインピーダンス整合器23、第2の電流導入端子24、第2の真空用同軸ケーブル25の芯線26を介して、第2の給電点27に供給する。
この場合、前記第1のインピーダンス整合器17及び第2のインピーダンス整合器23を調整することにより、それぞれのインピーダンス整合器17、23の上流側に上記供給電力の反射波が戻らないようにすることができる。
その結果、前記SiH4ガスのプラズマが生成され、基板11に例えばアモルファスSiが堆積する。
前記要領で、製膜時間を例えば10〜20分間にして、前記基板11にアモルファスSi膜を形成させる。製膜後、真空容器1から前記基板11を取り出して、該アモルファスSi膜の膜厚み分布を評価する。基板11に堆積された例えばアモルファスSiの膜厚分布は、前述のVHFプラズマ固有の現象である定在波の発生により、正弦的な分布となる。このような、製膜試験を第1のパルス変調方式位相可変2出力の発信器15の2つの出力の位相差をパラメータに繰り返し実施する。そして、第1の電極2の長さ方向において、基板11の中央点から正弦的な膜厚分布の最大厚みの位置までの距離と前記第1のパルス変調方式位相可変2出力の発信器15の2つの出力の位相差の関係をデータとして把握する。例えば、基板11の中央点から第1の給電点21の方向へ波長λの八分の一、即ちλ/8だけ離れた位置に設定するための位相差は、例えばΔθ1であるいうことが把握される。
なお、ここで実施する正弦的な厚み分布の最大の位置と第1の位相可変2出力の発信器15aの出力電圧の位相差との関係の把握の方法は、上記膜の厚み分布の測定を応用する方法に限定されず、例えば、生成されるプラズマの発光強度の電磁波伝播方向における空間的分布を光センサーで測定し、その最大強度の位置と該位相差の関係として把握する方法を用いても良い。
ただし、その波長λは、真空中での電磁波の波長ではなく、上記製膜条件での波長λであり、真空中での電磁波の波長λに比べて短くなる。一般的にはSiH4ガスのプラズマでは、プラズマ中での波長λと真空中での波長λとの比λ/λは0.5〜0.9程度である。
ところで、上記第1及び第2の給電点21及び27からパルス状に供給される電力の電圧波は、同一電源から発振され、互いに電極間を伝播していく。すなわち、基板11の表面の法線方向と実質的に同じ方向の電界を有する2つの電磁波が、第1の電極2と第2の電極4の間に生成され、両者は互いに向かい合った方向から伝播しあって重なり合うので、干渉現象が発生する。その様子を、図2〜図4を用いて説明する。
なお、上記基板11の表面の法線方向と実質的に同じ方向とは、余弦の値が0.7以上の方向即ち該法線から±45度程度の方向を意味する。
図2及び図3において、第1の給電点21から第2の給電点27の方向の距離をxとし、xの正方向へ伝播する電圧波をW11(x、t)、xの負方向へ伝播する電圧波、即ち第2の給電点27から第1の給電点21の方向へ伝播する電圧波をW21(x、t)とすると、次のように表現される。
W11(x、t)=V1・sin(ωt+2πx/λ)
W21(x、t)=V1・sin{ωt−2π(x−L0)/λ+Δθ}
ただし、V1は電圧波の振幅、ωは電圧の角周波数、λは電圧波の波長、tは時間、L0は第1及び第2の給電点の間隔、Δθは第1の給電点21から供給される電力の電圧波と第2の給電点27から供給される電力の電圧波の位相差である。この2つの電圧波の合成波W1(x、t)は次式のようになる。
W1(x、t)=W11(x、t)+W21(x、t)
=2・V1cos{2π(x−L0/2)/λ−Δθ/2}・sin{ωt+(πL0/λ+Δθ/2)
上記合成波W1(x、t)を概念的に図4に示す。図4において、Δθ=0の場合、生成されるプラズマの強さは給電点間の中央部(x=L0/2)が強く、該中央部から離れるにしたがって弱くなることを示している。Δθ>0の場合、プラズマの強い部分が一方の給電点側へ移動し、Δθ<0の場合、他方の給電点側へ移動することを示している。
なお、ここでは、前記第1の電力供給系を用いて、前記第1及び第2の給電点21、27に供給される電力の電圧波を、それぞれ、W11(x、t)及びW21(x、t)と呼ぶ。また、その2つの電圧波の合成波を第1の定在波W1(x、t)と呼ぶ。
ところで、一対の電極間の電力の強さは、電圧の第1の定在波W1(x、t)の振幅値の二乗に比例する。即ち、電力の強さI1(x、t)は、
I1(x、t)∝cos{2π(x−L0/2)/λ−Δθ/2}
と表される。このI1(x、t)を概念的に、図5に示す。
図5は、一般論として、VHFプラズマの生成において、給電点からの進行波と給電点の対向端からの反射波との干渉により発生する定在波により、一対の電極間でのプラズマは一様にはならないという困難性の理由を示している。例えば、プラズマの一様性は電力の強さI1(x,t)が0.9〜1.0の範囲であるすると、電力伝播方向の距離で、−0.05〜+0.05λの範囲(即ち、膜厚が均一な範囲は長さ0.1λ)に限られるということを示している。
ただし、その波長λは、真空中での電磁波の波長ではなく、上記製膜条件での波長λであり、真空中での電磁波の波長λに比べて短くなる。一般的にはSiH4ガスのプラズマでは、プラズマ中での波長λと真空中での波長λとの比λ/λは0.5〜0.9程度である。
次に、第2の予備製膜工程であるが、図10及び図2において、予め、基板11を第2の電極4の上に設置し、図示しない真空ポンプ10を稼動させ、真空容器1内の不純物ガス等を除去した後、放電ガス供給管8からSiH4ガスを、例えば250sccm、圧力0.5Torr(66.5Pa)で供給しつつ、基板温度は80〜350℃の範囲、例えば180℃に保持する。
そして、前記第2のパルス変調方式位相可変2出力の発信器28、第3の電力増幅器29、第3のインピーダンス整合器30、第3の電流導入端子31、第3の真空用同軸ケーブル32の芯線33、第4の電力増幅器34、第4のインピーダンス整合器35、第4の電流導入端子36、第4の真空用同軸ケーブル37の芯線38から成る第2の電力供給系を用いて、一対の電極2、4に高周波電力を、例えば周波数60MHz、パルス幅Hw=400μ秒、パルス周期T0=1m秒の電力例えば合計で200Wを供給する。
即ち、該第2のパルス変調方式位相可変2出力の発信器28の2つの出力の位相差を、例えば零に、パルス幅Hw=400μ秒、パルス周期T0=1m秒に設定し、第3の電力増幅器29の出力を100Wに設定して、その出力を第3のインピーダンス整合器30、第3の電流導入端子31、第3の真空用同軸ケーブル32の芯線33を介して、第1の給電点21に供給するとともに、第4の電力増幅器34の出力を100Wに設定して、その出力を第4のインピーダンス整合器35、第4の電流導入端子36、第4の真空用同軸ケーブル37の芯線38を介して、第2の給電点27に供給する。
この場合、前記第3のインピーダンス整合器30及び第4のインピーダンス整合器35を調整することにより、それぞれのインピーダンス整合器30、35の上流側に上記供給電力の反射波が戻らないようにできる。
その結果、前記SiH4ガスのプラズマが生成され、基板11に例えばアモルファスSiが堆積する。
前記要領で、製膜時間を例えば10〜20分間にして、前記基板11にアモルファスSi膜を形成させる。製膜後、真空容器1から前記基板11を取り出して、該アモルファスSi膜の膜厚み分布を評価する。該基板11に堆積された例えばアモルファスSiの膜厚分布には、前述のVHFプラズマ固有の現象である定在波の発生により、正弦的な分布となる。このような、製膜試験を第2のパルス変調方式位相可変2出力の発信器28の2つの出力の位相差をパラメータに繰り返し実施する。そして、第1の電極の長さ方向において、基板の中央点から正弦的な膜厚分布の最大厚みの位置までの距離と前記第2のパルス変調方式位相可変2出力の発信器28の2つの出力の位相差の関係をデータとして把握する。
この場合も、前記第1の予備製膜工程と同様に、第2の電力供給系を用いた場合において、基板の中央点から正弦的な膜厚分布の最大厚みの位置までの距離と前記第2のパルス変調方式位相可変2出力の発信器28の2つの出力の位相差の関係を示すデータにより、膜厚分布の最大厚みの位置を例えば、基板の中央点から第2の給電点27の方向へ波長λの八分の一、即ちλ/8だけ離れた位置に設定するための位相差は例えばΔθ2であるということが把握される。
なお、ここで実施する正弦的な厚み分布の最大の位置と第1の位相可変2出力の発信器15aの出力電圧の位相差との関係の把握の方法は、上記膜の厚み分布の測定を応用する方法に限定されず、例えば、生成されるプラズマの発光強度の電磁波伝播方向における空間的分布を光センサーで測定し、その最大強度の位置と該位相差の関係として把握する方法を用いても良い。
ただし、その波長λは、真空中での電磁波の波長ではなく、上記製膜条件での波長λであり、真空中での電磁波の波長λに比べて短くなる。一般的にはSiH4ガスのプラズマでは、プラズマ中での波長λと真空中での波長λとの比λ/λは0.5〜0.9程度である。
第2の予備製膜工程において、上記第1及び第2の給電点21及び27から供給される電力の電圧波は、同一電源から発振され、互いに電極間を伝播していく。すなわち、基板11の表面の法線方向と実質的に同じ方向の電界を有する2つの電磁波が、第1の電極2と第2の電極4の間に生成され、両者は互いに向かい合った方向から伝播しあって重なり合うので、干渉現象が発生する。その様子を、図2〜図4を用いて説明する。
なお、上記基板11の表面の法線方向と実質的に同じ方向とは、余弦の値が0.7以上の方向即ち該法線から45度程度以内の方向を意味する。
図2及び図3において、第1の給電点21から第2の給電点27の方向の距離をxとし、xの正方向へ伝播する電圧波をW12(x、t)、xの負方向へ伝播する電圧波、即ち第2の給電点27から第1の給電点21の方向へ伝播する電圧波をW22(x、t)とすると、次のように表現される。
W12(x、t)=V2・sin(ωt+2πx/λ)
W22(x、t)=V2・sin{ωt−2π(x−L0)/λ+Δθ}
ただし、V2は電圧波の振幅、ωは電圧の角周波数、λは電圧波の波長、tは時間、L0は第1及び第2の給電点の間隔、Δθは第1の給電点21から供給される電力の電圧波と第2の給電点27から供給される電力の電圧波の位相差である。電圧の合成波W2(x、t)は次式のようになる。
W2(x、t)=W12(x、t)+W22(x、t)
=2・V2cos{2π(x−L0/2)/λ−Δθ/2}・sin{ωt+(πL0/λ+Δθ/2)
上記合成波W2(x、t)を概念的に図4に示す。図4において、Δθ=0の場合、生成されるプラズマの強さは給電点間の中央部(x=L0/2)が強く、該中央部から離れるにしたがって弱くなることを示している。Δθ>0の場合、プラズマの強い部分が一方の給電点側へ移動し、Δθ<0の場合、他方の給電点側へ移動することを示している。
なお、ここでは、前記第2の電力供給系を用いて前記第1及び第2の給電点21、27に供給される電力の電圧波を、それぞれ、W12(x、t)及びW22(x、t)と呼ぶ。また、その2つの波の合成波を第2の定在波W2(x、t)と呼ぶ。
ところで、一対の電極間の電力の強さは、電圧の合成波W2(x、t)の振幅値の二乗に比例する。即ち、電力の強さI2(x、t)は、
I2(x、t)∝cos{2π(x−L0/2)/λ−Δθ/2}
と表される。このI2(x、t)を概念的に、図5に示す。
図5は、一般論として、VHFプラズマの生成において、給電点からの進行波と給電点の対向端からの反射波との干渉により発生する定在波により、一対の電極間でのプラズマは一様にはならないという困難性の理由を示している。例えば、プラズマの一様性は電力の強さI1(x,t)が0.9〜1.0の範囲であるすると、電力伝播方向の距離で、−0.05〜+0.05λの範囲(即ち、膜厚が均一な範囲は長さ0.1λ)に限られるということを示している。
ただし、その波長λは、真空中での電磁波の波長ではなく、上記製膜条件での波長λであり、真空中での電磁波の波長λに比べて短くなる。一般的にはSiH4ガスのプラズマでは、プラズマ中での波長λと真空中での波長λとの比λ/λは0.5〜0.9程度である。
さて、前記第1および第2の予備製膜工程の結果を受けて、本製膜工程に入る。先ず、図10及び図2において、予め、基板11を第2の電極4の上に設置し、図示しない真空ポンプ10を稼動させ、真空容器1内の不純物ガス等を除去した後、放電ガス供給管8からSiH4ガスを、例えば300sccm、圧力0.5Torr(66.5Pa)で供給しつつ、基板温度は80〜350℃の範囲、例えば180℃に保持する。
次に、前記第1の電力供給系の構成部材の第1のパルス変調方式位相可変2出力の発信器15の2つの出力の電圧の位相差を第1の予備製膜工程のデータとして把握したΔθ1に設定し、そのパルス変調を図3及び図4に示すW11(t)及びW21(t)におけるパルス幅Hw及び周期T0を例えばHw=400μ秒及びT0=1m秒に設定し、第1及び第2の給電点21、27に、それぞれ例えば電力100Wを供給するともとに、前記第2の電力供給系の構成部材の第2のパルス変調方式位相可変2出力の発信器28の2つの出力の電圧の位相差を第2の予備製膜工程のデータとして把握したΔθ2に設定し、かつ、そのパルス変調を図11及び図12に示すW12(t)及びW22(t)におけるパルス幅Hw及び周期T0を例えばHw=400μ秒及びT0=1m秒で、かつ、前記W11(t)及びW21(t)のパルス変調のパルス立ち上がり時間より半周期、即ちT0/2遅れた時刻に立ち上がるように設定し、第1及び第2の給電点21、27に、それぞれ例えば電力100Wを供給する。即ち、前記第1及び第2の給電点21,27に、前記電圧波W11(x、t)、W21(x、t)、W12(x、t)及びW22(x、t)が供給される。
ここで、第1の予備製膜工程及び第2の予備製膜工程でそれぞれ設定した第1のパルス変調方式位相可変2出力の発信器15及び第2のパルス変調方式位相可変2出力の発信器28のパルス幅Hwと周期T0の値を、例えば、Hw=400μ秒を1m秒などへ、T0=1m秒を5m秒などへ変更して、いくつかの製膜データを比較することができる。
一対の電極2、4間に4つの電圧波が供給されると、W11(x、t)とW21(x、t)は干渉して第1の定在波W1(x、t)を形成し、W12(x、t)とW22(x、t)は干渉して第2の定在波W2(x、t)を形成する。ただし、W11(x、t)は、W12(x、t)及びW22(x、t)とは、時間的に分離されているので干渉しない。また、同様に、W21(x、t)は、W12(x、t)及びW22(x、t)と干渉しない。
したがって、上記パルス変調の周期T0より大幅に長い数秒以上の一般的な製膜時間で考えれば、一対の電極2、4間に生成される電力の強さの分布は、第1の定在波W1(x、t)の強さの分布I1(x、t)と第2の定在波W2(x、t)の強さの分布I2(x、t)が重畳した形となる。その様子を概念的に図6に示す。
ここで、基板の中央点をx軸の原点とし、該原点から第1の給電点21を向いた方向を正の方向とすると、第1の定在波W1(x、t)の強さの分布I1(x、t)は、
I1(x、t)∝cos{2πx/λ+2π(λ/8)/λ}
=cos{2πx/λ+π/4}
第2の定在波W2(x、t)の強さの分布I2(x、t)は、
I2(x、t)∝cos{2πx/λ−2π(λ/8)/λ}
=cos{2πx/λ−π/4}
一対の電極2、4間に生成される電力の強さの分布I(x、t)は、
I(x、t)
=cos{2πx/λ+π/4}+cos{2πx/λ−π/4}
=1
この結果は、発振周波数がVHF帯域ないしUHF帯域に属する高周波電源の出力の電力を用いて生成されたプラズマを利用して真空容器に配置された基板の表面を処理する表面処理装置に用いられる高周波プラズマ発生装置において、前記基板の表面の法線方向と実質的に同じ方向の電界を有する電磁波の定在波の腹の位置が異なる第1の定在波と第2の定在波を発生させ、かつ、該第1及び第2の定在波を重畳させる手段を備えることにより、プラズマの一様化に不可欠な電極間の電力の強さの分布の制御が可能であるとの意味がある。
さらに、上記第1及び第2の定在波のそれぞれの腹の位置の間の距離が、使用する電磁波のプラズマ中の波長λの0.25倍、即ち0.25λであれば、一対の電極2、4間に生成される電力の強さの分布I(x、t)は、電力の伝播方向の位置に依存しないで一定の値であり、均一であるということを示している。このことは、VHFプラズマあるいはUHFプラズマの応用分野においての重要課題である大面積・均一のプラズマ処理化を実現可能な装置の提供ができるという意味で画期的発見であるということを意味している。
また、上記第1及び第2の定在波のそれぞれの腹の位置の間の距離が、使用する電磁波のプラズマ中の波長λの0.22〜0.28倍、即ち0.22〜0.28λであれば、一対の電極2、4間に生成される電力の強さの分布I(x、t)は、±20%以下であることを示している。
また、上記第1及び第2の定在波のそれぞれの腹の位置の間の距離が、使用する電磁波のプラズマ中の波長λの0.238〜0.263倍、即ち0.238〜0.263λであれば、一対の電極2、4間に生成される電力の強さの分布I(x、t)は、±10%以下であることを示している。
上記工程において、SiH4ガスがプラズマ化されると、そのプラズマ中に存在するSiH3、SiH2、SiH等のラジカルが拡散現象により拡散し、基板11の表面に吸着されることによりa−Si膜が堆積するが、一対の電極2、4間の電力の分布が、上述の通り、時間平均的に一様であるので、その堆積膜は一様になる。
このことは、本発明の装置及び方法では、波長λの二分の一を越えるサイズの基板を対象にした場合においても、一様な膜厚分布の形成が可能であることを示している。即ち、従来のVHFプラズマ表面処理装置及び方法では不可能視されている波長λの二分の一を越えるサイズの基板を対象にした場合でも、本発明は一様な膜厚分布の形成が実現可能であるということを意味している。
したがって、上記のことはVHFプラズマの応用分野においては画期的な発見であり、その実用価値は著しく大きいものがある。
なお、微結晶Siあるいは薄膜多結晶Si等は、製膜条件の中のSiH4,H2の流量比、圧力および電力を適正化することで製膜できることは公知の技術である。
また、エッチングへの応用では、放電ガスとして、NF3、SF6、CF4、CHF3及びC4F4等を用いることで、可能であることは公知の技術である。
本実施例では、第1の電極2が一本の棒であるので、基板サイズは上記1200mmx100mm程度に制約されるが、第1の電極2である棒電極の個数を増加すれば基板サイズの幅は拡大可能であることは当然のことである。
また、a−Si太陽電池、薄膜トランジスタおよび感光ドラム等の製造では、膜厚分布として±10%以内であれば性能上問題はない。上記実施例によれば、60MHzの電源周波数を用いても、従来の装置および方法では不可能であった
該一対の電極2、4間の電力の強さの分布I(x、t)の均一化が可能である。即ち、膜厚分布として±10%以内を実現可能である。
このことは、a−Si太陽電池、薄膜トランジスタおよび感光ドラム等の製造分野での生産性向上および低コスト化に係わる抜本的改善の手段として、VHF帯域あるいはUHF帯域の周波数を用いたプラズマ表面処理装置を提供できることを意味している。この効果の工業的価値は著しく大きい。
ここで、本実施例の装置の構成部材の一つである図2図示の構造の一対の電極2、4を、図7図示の一対の電極2、4、即ち、1個の帯板状電極2と平板電極4から成る一対の電極に代えたプラズマ表面処理装置を用いることにより、本実施例と同様のプラズマ処理を行うことができることを付記しておく。
この場合は、図2の棒状電極2と平板電極4から成る一対の電極で生成されるプラズマに比べ、電磁波の伝播方向に対して直角方向へ広がりの有るプラズマの生成が容易に可能というメリットがある。
また、本実施例の装置の構成部材の一つである図2図示の構造の一対の電極2、4を、図8図示の構造の一対の電極2、4、即ち、1個の帯板状電極2と平板電極4から成る一対の電極に代えたプラズマ表面処理装置を用いることにより、本実施例と同様のプラズマ処理を行うことができることを付記しておく。なお、図8図示の第1の給電点21aと第2の給電点27aを結ぶ線分と第3の給電点21bと第4の給電点27bを結ぶ線分は平行であることが必要であることは当然である。
この場合は、図2図示の棒状電極2と平板電極4から成る一対の電極で生成されるプラズマに比べ、電磁波の伝播方向に対して直角方向へ広がりの有るプラズマの生成が容易に可能というメリットがあることに加えて、給電点に供給される電力を分散させることが可能であるというメリットがある。即ち、大電力を必要とするプラズマ処理の応用に対応が可能という特徴がある。
また、本実施例の装置の構成部材の一つである図2図示の構造の一対の電極2、4を、図9図示の構造の棒状電極2a、2bに代えたプラズマ表面処理装置を用いることにより、本実施例と同様のプラズマ処理を行うことができることを付記しておく。
なお、図9図示の第1の棒状電極2aと第2の棒状電極2bは平行に設置されることが必要である。
この場合は、図2図示の棒状電極2と平板電極4から成る一対の電極で生成されるプラズマに比べ、給電点に供給される電力を分散させることが可能であるというメリットがある。即ち、大電力を必要とするプラズマ処理の応用に対応が可能という特徴がある。
(実施例3)
本発明に関する実施例3の高周波プラズマ発生装置と該高周波プラズマ発生装置により構成のプラズマ表面処理装置(プラズマCVD装置)及びプラズマ表面処理方法(プラズマCVD方法)について、図13〜図15を参照して説明する。また、図16を参照する。
図13は実施例3に係わる高周波プラズマ発生装置と該高周波プラズマ発生装置により構成のプラズマ表面処理装置(プラズマCVD装置)の全体を示す概略図である。図14及び図15は、それぞれ図13図示の装置に用いられる第1及び第2の電力供給系の配線図である。
また、図16は、図13図示の装置に用いられる矩形導体板から成る一対の電極とその給電部に係わる構成を示す説明図である。
先ず、装置の構成について説明する。ただし、前記実施例1及び実施例2に示した部材と同じ部材は同符番を付して説明を省略する。
図13及び図14において、第1のパルス変調方式位相可変2出力の発信器15の2つの出力端子の一方の出力端子は、第1の電力増幅器16、第1のインピーダンス整合器17、第1の電力分配器70の一方の出力端子を介して、第2の電力分配器71、該第2の電力分配器71の一方の出力端子、電流導入端子18a、真空用同軸ケーブル19aの芯線20aを介して給電点21aに接続されるとともに、該第2の電力分配器71の他方の出力端子を介して、電流導入端子18b、真空用同軸ケーブル19bの芯線20bを介して給電点21bに接続されるとともに、該第1の電力分配器70の他方の出力端子を介して、第3の電力分配器72の一方の出力端子、電流導入端子18c、真空用同軸ケーブル19cの芯線20cを介して給電点21cに接続されるとともに、該第3の電力分配器72の他方の出力端子、電流導入端子18d、真空用同軸ケーブル19dの芯線20dを介して給電点21dに接続される。
電力供給点21a〜21dに供給される電力は、典型例として図11及び図12に示すW11(t)のように、パルス幅Hw、周期T0でパルス変調された正弦波である。
また、第7の電力分配器76から第1の給電点21a〜21dまでの電力波の伝播路の長さが同じになるように、分岐されたそれぞれの同軸ケーブル線路は、構造、材質及び長さを等しくしている。
第1のパルス変調方式位相可変2出力の発信器15の2つの出力端子の他方の出力端子は、第2の電力増幅器22、第2のインピーダンス整合器23、第4の電力分配器73の一方の出力端子を介して、第5の電力分配器74の一方の出力端子、電流導入端子24a、真空用同軸ケーブル25aの芯線26aを介して給電点27aに接続されるとともに、該第5の電力分配器74の他方の出力端子、電流導入端子24b、真空用同軸ケーブル25bの芯線26bを介して給電点27bに接続されるとともに、該第4の電力分配器74の他方の出力端子を介して、第6の電力分配器75の一方の出力端子、電流導入端子24c、真空用同軸ケーブル25cの芯線26cを介して給電点27cに接続されるとともに、該第6の電力分配器75の他方の出力端子、電流導入端子24d、真空用同軸ケーブル25dの芯線26dを介して給電点27dに接続される。
なお、給電点27a〜27bに供給される電力は、典型例として図11及び図12に示すW21(t)のように、該W11(t)と同様のパルス幅Hw、周期T0でパルス変調された正弦波である。
また、第7の電力分配器76から第1の給電点21a〜21dまでの電力波の伝播路の長さが同じになるように、分岐されたそれぞれの同軸ケーブル線路は、構造、材質及び長さを等しくしている。
前記第1の電力増幅器16及び第2の電力増幅器22には、それぞれ出力値(進行波)のモニター及び下流側から反射して戻ってくる反射波のモニターが付属している。また、該該反射波による該第1及び第2の電力増幅器16、22本体の電気回路を防護するためのアイソレータが付属されている。
ここで、第1の位相可変2出力の発信器15の2つの出力をそれぞれ電力増幅器16、22等を用いて、第1及び第2の給電点21a〜21d、27a〜27dに供給する電力供給系を第1の電力供給系と呼ぶ。
そして、図13及び図15において、第2のパルス変調方式位相可変2出力の発信器28の2つの出力端子の一方の出力端子は、第3の電力増幅器29、第3のインピーダンス整合器30、第7の電力分配器76の一方の出力端子を介して、第8の電力分配器77、該第8の電力分配器77の一方の出力端子、電流導入端子31a、真空用同軸ケーブル32の芯線33aを介して給電点21aに接続されるとともに、該第8の電力分配器77の他方の出力端子を介して、電流導入端子31b、真空用同軸ケーブル32bの芯線33bを介して給電点21bに接続されるとともに、該第7の電力分配器76の他方の出力端子を介して、第9の電力分配器78の一方の出力端子、電流導入端子31c、真空用同軸ケーブル32cの芯線33cを介して給電点21cに接続されるとともに、該第9の電力分配器78の他方の出力端子、電流導入端子31d、真空用同軸ケーブル32dの芯線33dを介して給電点21dに接続される。
なお、給電点21a〜21dに供給される電力は、典型例として図11及び図12に示すW12(t)のように、パルス幅Hw、周期T0で、かつ、前記W11(t)及びW21(t)のパルス変調のパルス立ち上がり時間より半周期、即ちT0/2遅れた時刻に立ち上がるパルス変調された正弦波である。
また、第7の電力分配器76から第1の給電点21a〜21dまでの電力波の伝播路の長さが同じになるように、分岐されたそれぞれの同軸ケーブル線路は、構造、材質及び長さを等しくしている。
第2のパルス変調方式位相可変2出力の発信器28の2つの出力端子の他方の出力端子は、第4の電力増幅器34、第4のインピーダンス整合器35、第10の電力分配器79の一方の出力端子を介して、第11の電力分配器80、該第11の電力分配器80の一方の出力端子、電流導入端子36a、真空用同軸ケーブル37a及び接続線38aを介して給電点27aに接続されるとともに、該第11の電力分配器80の他方の出力端子、電流導入端子36b、真空用同軸ケーブル37b及び接続線38bを介して給電点27bに接続されるとともに、該第10の電力分配器79の他方の出力端子を介して、第12の電力分配器81の一方の出力端子、電流導入端子36c、真空用同軸ケーブル37c及び接続線38cを介して給電点27cに接続されるとともに、該第12の電力分配器81の他方の出力端子、電流導入端子36d、真空用同軸ケーブル37d及び接続線38dを介して給電点27dに接続される。
なお、給電点27a〜27bに供給される電力は、典型例として図11及び図12に示すW22(t)のように、パルス幅Hw、周期T0で、かつ、前記W11(t)及びW21(t)のパルス変調のパルス立ち上がり時間より半周期、即ちT0/2遅れた時刻に立ち上がるパルス変調された正弦波である。
また、第10の電力分配器79から第2の給電点27a〜27dまでの電力波の伝播路の長さが同じになるように、分岐されたそれぞれの同軸ケーブル線路は、構造、材質及び長さを等しくしている。
また、前記第3の電力増幅器29及び第4の電力増幅器34には、それぞれ出力値(進行波)のモニター及び下流側から反射して戻ってくる反射波のモニターが付属している。また、該該反射波による該第3及び第4の電力増幅器29、34本体の電気回路を防護するためのアイソレータが付属されている。
ここで、第2の位相可変2出力の発信器28の2つの出力をそれぞれ電力増幅器29、34等を用いて、第1及び第2の給電点21a〜21d、27a〜27dに供給する電力供給系を第2の電力供給系と呼ぶ。
次に、上記構成のプラズマ表面処理装置を用いて、a−Si太陽電池用アモルファスSi膜を製造する方法を説明する。なお、本発明の実施あるいは応用では、手順として、第1及び第2の予備製膜工程と本製膜工程が必要である。第1の予備製膜工程は、前記第1のパルス変調方式位相可変2出力の発信器15の2つの出力の位相差の設定値を把握するために、第2の予備製膜工程は、前記第2のパルス変調方式位相可変2出力の発信器28の2つの出力の位相差の設定値を把握するために、本製膜工程は目的とするアモルファスSiの製造のために実施される。
先ず、第1の予備製膜工程であるが、図13及び図14において、予め、図示しない基板11を第2の電極4の上に設置し、図示しない真空ポンプ10を稼動させ、真空容器1内の不純物ガス等を除去した後、図示しない放電ガス供給管8からSiH4ガスを、例えば500sccm、圧力0.5Torr(66.5Pa)で供給しつつ、基板温度は80〜350℃の範囲、例えば180℃に保持する。
そして、前記第1の電力供給系を用いて、第1及び第2の給電点21a〜21d、27a〜27dに高周波電力を、例えば周波数60MHzの電力例えば合計で500Wを供給する。
即ち、該第1のパルス変調方式位相可変2出力の発信器15の2つの出力の位相差を、例えば零に、パルス幅Hw=400μ秒及び周期T0=1m秒に設定し、第1の電力増幅器16及び第2の電力増幅器22の出力をそれぞれ、周波数60MHzで250Wに設定して、第1の電極の両端部にそれぞれ供給する。
ここで、該第1及び第2の給電点21a〜21d、27a〜27dに給電される電力の典型例を、図11及び図12に、W11(t)、W21(t)として示している。該W11(t)及びW21(t)は、それぞれ、パルス幅Hw、周期T0でパルス変調された超高周波数、例えば60MHzの正弦波である。該パルス幅Hw及び周期T0は、該第1のパルス変調方式位相可変2出力の発信器15に付属の調整器により任意の値、例えばHw=400μ秒及び周期T0=1m秒に設定される。
その結果、前記SiH4ガスのプラズマが生成され、基板11に例えばアモルファスSiが堆積する。
前記の要領で、製膜時間を例えば10〜20分間にして、前記基板11にアモルファスSi膜を形成させる。製膜後、真空容器1から前記基板11を取り出して、該アモルファスSi膜の膜厚み分布を評価する。基板11に堆積された例えばアモルファスSiの膜厚分布は、前述のVHFプラズマ固有の現象である定在波の発生により、正弦的な分布となる。このような、製膜試験を第1の位相可変2出力の発信器15の2つの出力の位相差をパラメータに繰り返し実施する。そして、第1の電極2a〜2dの長さ方向において、基板11の中央点から正弦的な膜厚分布の最大厚みの位置までの距離と前記第1の位相可変2出力の発信器15の2つの出力の位相差の関係をデータとして把握する。例えば、基板11の中央点から第1の給電点21a〜21dの方向へ波長λの八分の一、即ちλ/8だけ離れた位置に設定するための位相差は、例えばΔθ1であるいうことが把握される。
なお、ここで実施する正弦的な厚み分布の最大の位置と第1の位相可変2出力の発信器15aの出力電圧の位相差との関係の把握の方法は、上記膜の厚み分布の測定を応用する方法に限定されず、例えば、生成されるプラズマの発光強度の電磁波伝播方向における空間的分布を光センサーで測定し、その最大強度の位置と該位相差の関係として把握する方法を用いても良い。
ただし、その波長λは、真空中での電磁波の波長ではなく、上記製膜条件での波長λであり、真空中での電磁波の波長λに比べて短くなる。一般的にはSiH4ガスのプラズマでは、プラズマ中での波長λと真空中での波長λとの比λ/λは0.5〜0.9程度である。
次に、第2の予備製膜工程であるが、図13及び図15において、予め、図示しない基板11を第2の電極4の上に設置し、図示しない真空ポンプ10を稼動させ、真空容器1内の不純物ガス等を除去した後、図示しない放電ガス供給管8からSiH4ガスを、例えば500sccm、圧力0.5Torr(66.5Pa)で供給しつつ、基板温度は80〜350℃の範囲、例えば180℃に保持する。
そして、前記第2の電力供給系を用いて、第1及び第2の給電点21a〜21d、27a〜27dに高周波電力を、例えば周波数60MHzの電力例えば合計で500Wを供給する。
即ち、該第2のパルス変調方式位相可変2出力の発信器28の2つの出力の位相差を、例えば零に、パルス幅Hw=400μ秒及びパルス周期T0=1m秒に設定し、第3の電力増幅器29及び第2の電力増幅器34の出力をそれぞれ、周波数60MHzで250Wに設定して、第1の電極の両端部にそれぞれ供給する。
その結果、前記SiH4ガスのプラズマが生成され、基板11に例えばアモルファスSiが堆積する。
前記の要領で、製膜時間を例えば10〜20分間にして、前記基板11にアモルファスSi膜を形成させる。製膜後、真空容器1から前記基板11を取り出して、該アモルファスSi膜の膜厚み分布を評価する。基板11に堆積された例えばアモルファスSiの膜厚分布は、前述のVHFプラズマ固有の現象である定在波の発生により、正弦的な分布となる。このような、製膜試験を第1の位相可変2出力の発信器28の2つの出力の位相差をパラメータに繰り返し実施する。そして、第1の電極の長さ方向において、基板11の中央点から正弦的な膜厚分布の最大厚みの位置までの距離と前記第2のパルス変調方式位相可変2出力の発信器28の2つの出力の位相差の関係をデータとして把握する。例えば、基板11の中央点から第2の給電点27の方向へ波長λの八分の一、即ちλ/8だけ離れた位置に設定するための位相差は、例えばΔθ2であるいうことが把握される。
なお、ここで実施する正弦的な厚み分布の最大の位置と第1の位相可変2出力の発信器15aの出力電圧の位相差との関係の把握の方法は、上記膜の厚み分布の測定を応用する方法に限定されず、例えば、生成されるプラズマの発光強度の電磁波伝播方向における空間的分布を光センサーで測定し、その最大強度の位置と該位相差の関係として把握する方法を用いても良い。
ただし、その波長λは、真空中での電磁波の波長ではなく、上記製膜条件での波長λであり、真空中での電磁波の波長λに比べて短くなる。一般的にはSiH4ガスのプラズマでは、プラズマ中での波長λと真空中での波長λとの比λ/λは0.5〜0.9程度である。
さて、前記第1および第2の予備製膜工程の結果を受けて、本製膜工程に入る。先ず、図13〜図15において、予め、基板11を第2の電極4の上に設置し、図示しない真空ポンプ10を稼動させ、真空容器1内の不純物ガス等を除去した後、放電ガス供給管8からSiH4ガスを、例えば800sccm、圧力0.5Torr(66.5Pa)で供給しつつ、基板温度は80〜350℃の範囲、例えば180℃に保持する。
次に、前記第1の電力供給系の構成部材の第1のパルス変調方式位相可変2出力の発信器15の2つの出力、例えば周波数60MHzの正弦波の電力の電圧の位相差を第1の予備試験データで把握したΔθ1に設定し、そのパルス変調を図11及び図12に示すW11(t)及びW21(t)におけるパルス幅Hw及び周期T0を例えばHw=400μ秒及びT0=1m秒に設定し、第1及び第2の給電点21a〜21b、27a〜27bに、それぞれ例えば電力500Wを供給するともとに、前記第2の電力供給系の構成部材の第2のパルス変調方式位相可変2出力の発信器28の2つの出力、例えば周波数60MHzの正弦波の電力の電圧の位相差を第2の予備試験データで把握したΔθ2に設定し、そのパルス変調を図11及び図12に示すW12(t)及びW22(t)におけるパルス幅Hw及び周期T0を例えばHw=400μ秒及びT0=1m秒で、かつ、前記W11(t)及びW21(t)のパルス変調のパルス立ち上がり時間より半周期、即ちT0/2遅れた時刻に立ち上がるように設定し、第1及び第2の給電点21a〜21b、27a〜27bに、それぞれ例えば電力500Wを供給する。
即ち、前記第1及び第2の給電点21a〜21b、27a〜27bに、それぞれ、電力250Wの電圧波W11(x、t)、電力250Wの電圧波W21(x、t)、電力250WのW12(x、t)及び電力250WのW22(x、t)が供給される。
ここで、第1の予備製膜工程及び第2の予備製膜工程でそれぞれ設定した第1のパルス変調方式位相可変2出力の発信器15及び第2のパルス変調方式位相可変2出力の発信器28のパルス幅Hwと周期T0の値を、例えば、Hw=400μ秒を1m秒などへ、T0=1m秒を5m秒などへ変更して、いくつかの製膜データを比較することができる。
前記一対の電極2a〜2d、4間に、前記第1及び第2の給電点21a〜21b、27a〜27bを介して4つの電圧波からなる電力が供給されると、前述のように、W11(x、t)とW21(x、t)は干渉して第1の定在波W1(x、t)を形成し、W12(x、t)とW22(x、t)は干渉して第2の定在波W2(x、t)を形成する。ただし、W11(x、t)は、W12(x、t)及びW22(x、t)とは時間的に分離されているので干渉しない。また、同様に、W21(x、t)は、W12(x、t)及びW22(x、t)と干渉しない。
したがって、上記パルス変調の周期T0より大幅に長い数秒以上の一般的な製膜時間で考えれば、一対の電極2a〜2d、4間に生成される電力の強さの分布は、第1の定在波W1(x、t)の強さの分布I1(x、t)と第2の定在波W2(x、t)の強さの分布I2(x、t)が重畳した形となる。その様子を概念的に図6に示す。
ここで、基板の中央点をx軸の原点とし、該原点から第1の給電点21a〜21dを向いた方向を正の方向とすると、第1の定在波W1(x、t)の強さの分布I1(x、t)は、
I1(x、t)=cos{2πx/λ+2π(λ/8)/λ}
=cos{2πx/λ+π/4}
第2の定在波W2(x、t)の強さの分布I2(x、t)は、
I2(x、t)=cos{2πx/λ−2π(λ/8)/λ}
=cos{2πx/λ−π/4}
一対の電極2a〜2d、4間に生成される電力の強さの分布I(x、t)は、
I(x、t)
=cos{2πx/λ+π/4}+cos{2πx/λ−π/4}
=1
この結果は、発振周波数がVHF帯域ないしUHF帯域に属する高周波電源の出力の電力を用いて生成されたプラズマを利用して真空容器に配置された基板の表面を処理する表面処理装置に用いられる高周波プラズマ発生装置において、前記基板の表面の法線方向と実質的に同じ方向の電界を有する電磁波の定在波の腹の位置が異なる第1の定在波と第2の定在波を発生させ、かつ、該第1及び第2の定在波を重畳させる手段を備えることにより、プラズマの一様化に不可欠な電極間の電力の強さの分布の制御が可能であるということを意味している。
さらに、上記第1及び第2の定在波のそれぞれの腹の位置の間の距離が、使用する電磁波のプラズマ中の波長λの0.25倍、即ち0.25λであれば、一対の電極2、4間に生成される電力の強さの分布I(x、t)は、電力の伝播方向の位置に依存しないで一定の値であり、均一であるということを示している。このことは、UHFプラズマ及びUHFプラズマの応用分野においての重要課題である大面積・均一のプラズマ処理化を実現可能な装置の提供ができるという意味で画期的発見であるということを意味している。
また、上記第1及び第2の定在波のそれぞれの腹の位置の間の距離が、使用する電磁波のプラズマ中の波長λの0.22〜0.28倍、即ち0.22〜0.28λであれば、一対の電極2、4間に生成される電力の強さの分布I(x、t)は、±20%以下であることを示している。
また、上記第1及び第2の定在波のそれぞれの腹の位置の間の距離が、使用する電磁波のプラズマ中の波長λの0.238〜0.263倍、即ち0.238〜0.263λであれば、一対の電極2、4間に生成される電力の強さの分布I(x、t)は、±10%以下であることを示している。
上記工程において、SiH4ガスがプラズマ化されると、そのプラズマ中に存在するSiH3、SiH2、SiH等のラジカルが拡散現象により拡散し、基板11の表面に吸着されることによりa−Si膜が堆積するが、一対の電極2,4間の電力の分布が、上述の通り時間平均的に一様であるので、その堆積膜は一様になる。
このことは、本発明によれば、波長λの二分の一を越えるサイズの基板を対象にした場合においても、一様な膜厚分布の形成が可能であることを示している。即ち、従来のVHFプラズマ表面処理装置及び方法では不可能視されている波長λの二分の一を越えるサイズの基板を対象にした場合でも、本発明は一様な膜厚分布の形成が実現可能であるということを意味している。
したがって、上記のことはVHFプラズマの応用分野においては画期的な発見であり、その実用価値は著しく大きいものがある。
なお、微結晶Siあるいは薄膜多結晶Si等は、製膜条件の中のSiH4,H2の流量比、圧力および電力を適正化することで製膜できることは公知の技術である。
また、エッチングへの応用では、放電ガスとして、NF3、SF6、CF4、CHF3及びC4F4等を用いることで、可能であることは公知の技術である。
本実施例では、第1の電極に用いられる棒電極のサイズを、直径5〜20mm程度で、間隔を5〜30mm、長さを1400mm〜1800mm程度とし、第1の棒電極と第2の平板電極(接地電極)の距離を5〜40mm程度に設定することにより、アモルファスSi膜は、製膜速度1〜3nm/s程度で、膜厚分布は±10%以内の製膜が可能である。
基板サイズの幅は、前記棒電極の個数及び電力供給系の個数を増加することにより拡大できることは当然である。
なお、本実施例では、プラズマ発生用の一対の電極として、図13〜図15図示の複数の棒電極と平板電極を用いたが、複数の棒電極を、例えば図16図示の平板電極に代えた構成を用いることが可能であることは当然である。この場合、一対の電極の一方には、図16に示すように、ガス通過孔13を有する平板を用いることが好ましい。
また、図13〜図16における電極あるいは給電部の構造を図7図〜9図示の電極あるいは給電部構造に代えることが可能であることは、当然のことである。
(実施例4)
本発明に関する実施例4の高周波プラズマ発生装置と該高周波プラズマ発生装置により構成のプラズマ表面処理装置(プラズマCVD装置)およびプラズマ表面処理方法(プラズマCVD方法)について、図17及び図18を参照して説明する。また、図19〜図21を参照する。
図17は実施例4に係わる高周波プラズマ発生装置と該高周波プラズマ発生装置により構成のプラズマ表面処理装置(プラズマCVD装置)の全体を示す概略図、図18は図17図示のプラズマ表面処理装置の真空容器内部の断面図である。
また、図19は、図17図示の装置の構成部材として用いられる一対の電極とその給電部に係わる構成の第1の応用型を示す説明図、図20は、図17図示の装置の構成部材として用いられる一対の電極とその給電部に係わる構成の第2の応用型を示す説明図、及び図21は、図17図示の装置の構成部材として用いられる一対の電極とその給電部に係わる構成の第3の応用型を示す説明図である。
先ず、装置の構成について説明する。ただし、前記実施例1ないし実施例3に示した部材と同じ部材は同符番を付して説明を省略する。
図17及び図18において、符番109は基板支持材で、図示しない基板ヒータ3を内臓している。第1及び第2の電極2、4は、方形平板状の形状で直径3mm程度の孔が開口率55%程度で設置されている。その厚みは6mm程度、面積は1500mmx300mm程度である。給電点21は、該方形平板電極の一つの辺の中央に、給電点27は対向する辺の中央に設置される。電極2、4の間隔は5〜50mm程度で任意に設定可能である。基板11には、厚み2〜4mm程度、面積:1400mmx200mm程度のガラス基板が用いられる。放電用のガスは放電ガス供給管8から、ガス混合箱6の整流孔7を介して供給される。
次に、上記構成の高周波プラズマ発生装置及び該高周波プラズマ発生装置より構成されたプラズマ表面処理装置を用いて、a−Si太陽電池用アモルファスSi膜を製造する方法を説明する。なお、本発明の実施あるいは応用では、手順として、第1及び第2の予備製膜工程と本製膜工程が必要である。第1の予備製膜工程は、第1のパルス変調方式位相可変2出力の発信器15の2つの出力の位相差の設定値を把握するために、第2の予備製膜工程は、前記第2のパルス変調方式位相可変2出力の発信器28の2つの出力の位相差の設定値を把握するために、本製膜工程は目的とするアモルファスSiの製造のために実施される。
先ず、第1の第1の予備製膜工程であるが、図17及び図18において、予め、基板11を基板支持材109の上に設置し、図示しない真空ポンプ10を稼動させ、真空容器1内の不純物ガス等を除去した後、放電ガス供給管8からSiH4ガスを、例えば500sccm、圧力0.5Torr(66.5Pa)で供給しつつ、基板温度は80〜350℃の範囲、例えば180℃に保持する。
次に、前記第1のパルス変調方式位相可変2出力の発信器15、第1の電力増幅器16、第1のインピーダンス整合器17、第1の電流導入端子18、第1の真空用同軸ケーブル19の芯線20、第2の電力増幅器22、第2のインピーダンス整合器23、第2の電流導入端子24、第2の真空用同軸ケーブル25の芯線26から成る第1の電力供給系を用いて、一対の電極2、4に高周波電力を、例えば周波数60MHzの電力例えば合計で400Wを供給する。
即ち、該第1のパルス変調方式位相可変2出力の発信器15の2つの出力の位相差を、例えば零に、パルス変調のパルス幅Hw=400μ秒、パルス周期T0=1m秒に設定し、第1の電力増幅器16の出力を200Wに設定して、その出力を第1のインピーダンス整合器17、第1の電流導入端子18、第1の真空用同軸ケーブル19の芯線20を介して、第1の給電点21に供給するとともに、第2の電力増幅器22の出力を200Wに設定して、その出力を第2のインピーダンス整合器23、第2の電流導入端子24、第2の真空用同軸ケーブル25の芯線26を介して、第2の給電点27に供給する。
この場合、前記第1のインピーダンス整合器17及び第2のインピーダンス整合器23を調整することにより、それぞれのインピーダンス整合器17、23の上流側に上記供給電力の反射波が戻らないようにできる。
ここで、該第1及び第2の給電点21、27に給電される電力の典型例を、図11及び図12に、それぞれW11(t)、W21(t)として示している。該W11(t)及びW21(t)は、それぞれ、パルス幅Hw=400μ秒、周期T0=1m秒でパルス変調された超高周波数、例えば60MHzの正弦波である。該パルス幅Tw及び周期T0は、該第1のパルス変調方式位相可変2出力の発信器15に付属の調整器により任意の値、例えばTw=400μ秒及び周期T0=1m秒に設定される。
その結果、前記SiH4ガスのプラズマが生成され、基板11に例えばアモルファスSiが堆積する。
前記要領で、製膜時間を例えば10〜20分間にして、前記基板11にアモルファスSi膜を形成させる。製膜後、真空容器1から前記基板11を取り出して、該アモルファスSi膜の膜厚み分布を評価する。基板11に堆積された例えばアモルファスSiの膜厚分布は、前述のVHFプラズマ固有の現象である定在波の発生により、正弦的な分布となる。このような、製膜試験を第1のパルス変調方式位相可変2出力の発信器15の2つの出力の位相差をパラメータに繰り返し実施する。
そして、給電点21と27を結ぶ線分の方向において、基板11の中央点から正弦的な膜厚分布の最大厚みの位置までの距離と前記第1のパルス変調方式位相可変2出力の発信器15の2つの出力の位相差の関係をデータとして把握する。例えば、基板11の中央点から第1の給電点21の方向へ波長λの八分の一、即ちλ/8だけ離れた位置に設定するための位相差は、例えばΔθ1であるということが把握される。
なお、ここで実施する正弦的な厚み分布の最大の位置と第1の位相可変2出力の発信器15aの出力電圧の位相差との関係の把握の方法は、上記膜の厚み分布の測定を応用する方法に限定されず、例えば、生成されるプラズマの発光強度の電磁波伝播方向における空間的分布を光センサーで測定し、その最大強度の位置と該位相差の関係として把握する方法を用いても良い。
ただし、その波長λは、真空中での電磁波の波長ではなく、上記製膜条件での波長λであり、真空中での電磁波の波長λに比べて短くなる。一般的にはSiH4ガスのプラズマでは、プラズマ中での波長λと真空中での波長λとの比λ/λは0.5〜0.9程度である。
次に、第2の予備製膜工程であるが、図17及び図18において、予め、基板11を基板支持材109の上に設置し、図示しない真空ポンプ10を稼動させ、真空容器1内の不純物ガス等を除去した後、放電ガス供給管8からSiH4ガスを、例えば500sccm、圧力0.5Torr(66.5Pa)で供給しつつ、基板温度は80〜350℃の範囲、例えば180℃に保持する。
そして、前記第2のパルス変調方式位相可変2出力の発信器28、第3の電力増幅器29、第3のインピーダンス整合器30、第3の電流導入端子31、第3の真空用同軸ケーブル32の芯線33、第4の電力増幅器34、第4のインピーダンス整合器35、第4の電流導入端子36、第4の真空用同軸ケーブル37の芯線38から成る第2の電力供給系を用いて、一対の電極2、4に高周波電力を、例えば周波数60MHzの電力例えば合計で400Wを供給する。
即ち、該第2のパルス変調方式位相可変2出力の発信器28の2つの出力の位相差を、例えば零に、パルス変調のパルス幅=400μ秒、パルス周期=1m秒に設定し、第3の電力増幅器29の出力を200Wに設定して、その出力を第3のインピーダンス整合器30、第3の電流導入端子31、第3の真空用同軸ケーブル32の芯線33を介して、第1の給電点に供給するとともに、第4の電力増幅器34の出力を200Wに設定して、その出力を第4のインピーダンス整合器35、第4の電流導入端子36、第4の真空用同軸ケーブル37の芯線38を介して、第2の給電点に供給する。
その結果、前記SiH4ガスのプラズマが生成され、基板11に例えばアモルファスSiが堆積する。
前記要領で、製膜時間を例えば10〜20分間にして、前記基板11にアモルファスSi膜を形成させる。製膜後、真空容器1から前記基板11を取り出して、該アモルファスSi膜の膜厚み分布を評価する。該基板11に堆積された例えばアモルファスSiの膜厚分布には、前述のVHFプラズマ固有の現象である定在波の発生により、正弦的な分布となる。このような、製膜試験を第2のパルス変調方式位相可変2出力の発信器28の2つの出力の位相差をパラメータに繰り返し実施する。そして、第1の電極の長さ方向において、基板の中央点から正弦的な膜厚分布の最大厚みの位置までの距離と前記第2のパルス変調方式位相可変2出力の発信器28の2つの出力の位相差の関係をデータとして把握する。
この場合も、前記第1の予備製膜工程と同様に、第2の電力供給系を用いた場合において、基板の中央点から正弦的な膜厚分布の最大厚みの位置までの距離と前記第2のパルス変調方式位相可変2出力の発信器28の2つの出力の位相差の関係を示すデータにより、膜厚分布の最大厚みの位置を例えば、基板の中央点から第2の給電点27の方向へ波長λの八分の一、即ちλ/8だけ離れた位置に設定するための位相差は例えばΔθ2であるということが把握される。
なお、ここで実施する正弦的な厚み分布の最大の位置と第1の位相可変2出力の発信器15aの出力電圧の位相差との関係の把握の方法は、上記膜の厚み分布の測定を応用する方法に限定されず、例えば、生成されるプラズマの発光強度の電磁波伝播方向における空間的分布を光センサーで測定し、その最大強度の位置と該位相差の関係として把握する方法を用いても良い。
ただし、その波長λは、真空中での電磁波の波長ではなく、上記製膜条件での波長λであり、真空中での電磁波の波長λに比べて短くなる。一般的にはSiH4ガスのプラズマでは、プラズマ中での波長λと真空中での波長λとの比λ/λは0.5〜0.9程度である。
さて、前記第1および第2の予備製膜工程の結果を受けて、本製膜工程に入る。先ず、図17及び図18において、予め、基板11を基板支持材109の上に設置し、図示しない真空ポンプ10を稼動させ、真空容器1内の不純物ガス等を除去した後、放電ガス供給管8からSiH4ガスを、例えば500sccm、圧力0.5Torr(66.5Pa)で供給しつつ、基板温度は80〜350℃の範囲、例えば180℃に保持する。
次に、前記第1の電力供給系の構成部材の第1のパルス変調方式位相可変2出力の発信器15の2つの出力、例えば周波数60MHzの正弦波の位相差を第1の予備製膜工程のデータとして把握したΔθ1に設定し、そのパルス変調を図11及び図12に示すW11(t)及びW21(t)におけるパルス幅Hw及び周期T0を例えばHw=400μ秒及びT0=1m秒に設定し、第1及び第2の給電点21、27に、それぞれ例えば電力200Wを供給するともとに、前記第2の電力供給系の構成部材の第2のパルス変調方式位相可変2出力の発信器28の2つの出力の位相差を第2の予備製膜工程のデータとして把握したΔθ2に設定し、そのパルス変調を図11及び図12に示すW12(t)及びW22(t)におけるパルス幅Hw及び周期T0を例えばHw=400μ秒及びT0=1m秒で、かつ、前記W11(t)及びW21(t)のパルス変調のパルス立ち上がり時間より半周期、即ちT0/2遅れた時刻に立ち上がるように設定し、第1及び第2の給電点21、27に、それぞれ例えば電力200Wを供給する。
即ち、前記第1及び第2の給電点21及び27に、それぞれ、電力200Wの電圧波W11(x、t)と電力200Wの電圧波W12(x、t)及び電力200WのW21(x、t)と電力200WのW22(x、t)が供給される。
ここで、第1の予備製膜工程及び第2の予備製膜工程でそれぞれ設定した第1のパルス変調方式位相可変2出力の発信器15及び第2のパルス変調方式位相可変2出力の発信器28のパルス幅Hwと周期T0の値を、例えば、Tw=400μ秒を1m秒などへ、T0=1m秒を5m秒などへ変更して、いくつかの製膜データを比較することができる。
一対の電極2、4間に4つの電圧波が供給されると、前述のように、W11(x、t)とW21(x、t)は干渉して第1の定在波W1(x、t)を形成し、W12(x、t)とW22(x、t)は干渉して第2の定在波W2(x、t)を形成する。ただし、W11(x、t)は、W12(x、t)及びW22(x、t)とは、時間的に分離されているので干渉しない。また、同様に、W21(x、t)は、W12(x、t)及びW22(x、t)と干渉しない。
したがって、上記パルス変調の周期T0より大幅に長い数秒以上の一般的な製膜時間で考えれば、一対の電極2、4間に生成される電力の強さの分布は、第1の定在波W1(x、t)の強さの分布I1(x、t)と第2の定在波W2(x、t)の強さの分布I2(x、t)が重畳した形となる。その様子を概念的に図6に示す。
ここで、基板の中央点をx軸の原点とし、該原点から第1の給電点21を向いた方向を正の方向とすると、第1の定在波W1(x、t)の強さの分布I1(x、t)は、
I1(x、t)∝cos{2πx/λ+2π(λ/8)/λ}
=cos{2πx/λ+π/4}
第2の定在波W2(x、t)の強さの分布I2(x、t)は、
I2(x、t)∝cos{2πx/λ−2π(λ/8)/λ}
=cos{2πx/λ−π/4}
一対の電極2、4間に生成される電力の強さの分布I(x、t)は、
I(x、t)
=cos{2πx/λ+π/4}+cos{2πx/λ−π/4}
=1
この結果は、発振周波数がVHF帯域ないしUHF帯域に属する高周波電源の出力の電力を用いて生成されたプラズマを利用して真空容器に配置された基板の表面を処理する表面処理装置に用いられる高周波プラズマ発生装置において、前記基板の表面の法線方向と実質的に同じ方向の電界を有する電磁波の定在波の腹の位置が異なる第1の定在波と第2の定在波を発生させ、かつ、該第1及び第2の定在波を重畳させる手段を備えることにより、プラズマの一様化に不可欠な電極間の電力の強さの分布の制御が可能であるということを意味している。
さらに、上記第1及び第2の定在波のそれぞれの腹の位置の間の距離が、使用する電磁波のプラズマ中の波長λの0.25倍、即ち0.25λであれば、一対の電極2、4間に生成される電力の強さの分布I(x、t)は、電力の伝播方向の位置に依存しないで一定の値であり、均一であるということを示している。このことは、UHFプラズマ及びUHFプラズマの応用分野においての重要課題である大面積・均一のプラズマ処理化を実現可能な装置の提供ができるという意味で画期的発見であるということを意味している。
また、上記第1及び第2の定在波のそれぞれの腹の位置の間の距離が、使用する電磁波のプラズマ中の波長λの0.22〜0.28倍、即ち0.22〜0.28λであれば、一対の電極2、4間に生成される電力の強さの分布I(x、t)は、±20%以下であることを示している。
また、上記第1及び第2の定在波のそれぞれの腹の位置の間の距離が、使用する電磁波のプラズマ中の波長λの0.238〜0.263倍、即ち0.238〜0.263λであれば、一対の電極2、4間に生成される電力の強さの分布I(x、t)は、±10%以下であることを示している。
上記工程において、SiH4ガスがプラズマ化されると、そのプラズマ中に存在するSiH3、SiH2、SiH等のラジカルが第1の電極2の開口を介して拡散現象により拡散し、基板11の表面に吸着されることによりa−Si膜が堆積するが、一対の電極2、4間の電力の分布が、上述の通り、時間平均的に一様であるので、その堆積膜は一様になる。
このことは、本発明によれば、波長λの二分の一を越えるサイズの基板を対象にした場合においても、一様な膜厚分布の形成が可能であることを示している。即ち、従来のVHFプラズマ表面処理装置及び方法では不可能視されている波長λの二分の一を越えるサイズの基板を対象にした場合でも、本発明は一様な膜厚分布の形成が実現可能であるということを意味している。
したがって、上記のことはVHFプラズマの応用分野においては画期的な発見であり、その実用価値は著しく大きいものがある。
なお、微結晶Siあるいは薄膜多結晶Si等は、製膜条件の中のSiH4,H2の流量比、圧力および電力を適正化することで製膜できることは公知の技術である。
また、エッチングへの応用では、放電ガスとして、NF3、SF6、CF4、CHF3及びC4F4等を用いることで、可能であることは公知の技術である。
本実施例では、第1の電極2の給電点が対向する辺の中央部に1点ずつであるので、基板サイズは上記1400mmx200mm程度に制約されるが、該電極の幅を増大し、該給電点の個数を増加することにより、基板サイズの幅は拡大可能であることは当然のことである。ただし、この場合、隣り合う給電点の間隔は100mm〜300mm程度が好ましい。
基板が大面積の場合は、図17図示のプラズマ表面処理装置の構成部材の一対の電極2、4の幅を拡大し、かつ、給電点を複数にすることにより対応可能であることは当然のことである。即ち、実施例3として示した図13〜図15及び図16図示のプラズマ表面処理装置のように、複数の給電点を配置する構成を用いることで対応可能である。
また、a−Si太陽電池、薄膜トランジスタおよび感光ドラム等の製造では、膜厚分布として±10%以内であれば性能上問題はない。上記実施例によれば、60MHzの電源周波数を用いても、従来の装置および方法に比べ著しく良好な、例えば±10%以内の膜厚分布を得ることが可能である。このことは、a−Si太陽電池、薄膜トランジスタおよび感光ドラム等の製造分野での生産性向上および低コスト化に係わる工業的価値が著しく大きいことを意味している。
ここで、給電点21、27の位置を変更する場合の応用として、図17及び図18図示の高周波プラズマ発生装置と該高周波プラズマ発生装置により構成のプラズマ表面処理装置(プラズマCVD装置)の構成部材の給電点の位置を該方形電極の角に配置する構成の一例を図19に示す。この場合は、図17及び図18図示の装置の場合に比べて、前記第1及び第2の定在波を形成する4つの電磁波の給電点近傍での広がり角度が狭いことから、該定在波の制御が容易になることが期待できる。
また、基板形状が円形の場合への応用として、図17及び図18図示の高周波プラズマ発生装置と該高周波プラズマ発生装置により構成のプラズマ表面処理装置(プラズマCVD装置)の構成部材の一つである一対の電極の構造を、図20図示の螺旋型電極2と円板型電極4から成る構造に代えた装置の一例を示す。この場合は、円形基板の表面処理に好適なプラズマの生成が可能というメリットが期待できる。
また、プラズマ密度の更なる増大を図る為の手段への応用として、矩形電極の4辺に給電点を配置し、伝播方向が互いに直交する定在波の発生が可能な高周波プラズマ発生装置の一例を図21に示す。
図21図示の装置の構成部材は、上記実施例と同じであるので、その説明を省略する。
一般的に、プラズマ密度は供給電力量の大きさに比例して増大するが、VHF帯域あるいはUHF帯域の周波数での電力供給に用いる同軸ケーブルは電力損失が大きくなり、ある一定の制約がある。そのため、その制約値以上の電力伝送は困難である。したがって、プラズマ密度の更なる増大には無理がある。
図21図示の装置構成では、伝播方向が互いに直交する方向より、所要の2つの定在波の発生に必要な電力を供給可能である。即ち、上記制約のある装置構成の場合に比べ、2倍の電力を供給することが可能である。その結果、約2倍のプラズマ密度を得ることが可能である。
(実施例5)
本発明に関する実施例5のプラズマ発生装置と該プラズマ発生装置により構成のプラズマ表面処理装置(プラズマCVD装置)及びプラズマ表面処理方法(プラズマCVD方法)について、図22及び図23を参照して説明する。
図22は実施例5に係わるプラズマ発生装置と該プラズマ発生装置により構成のプラズマ表面処理装置(プラズマCVD装置)の全体を示す概略図、図23は図22図示のプラズマ表面処理装置の電力供給系配線図を示す説明図である。
先ず、装置の構成について説明する。ただし、実施例1ないし実施例4に示した部材と同じ部材は同符番を付して説明を省略する。
図22及び図23において、第1の電極2は、直径5〜20mm程度のSUS棒材で構成されるU字型電極を用いる。該U字の直線部の長さは1400mm程度、該直線状棒体の間隔は10〜40mm程度である。U字型電極と第2の平板電極の間隔は5〜50mm程度で任意に設定可能である。基板11には、厚み4mm程度のガラス基板面積1200mmx200mm程度のガラス基板が用いられる。
そして、好ましくはU字状の棒の全長は使用電力の波長λの二分の一、即ちλ/2の整数倍であるようにした構成を有することである。また、該U字型電極の曲がり部分はアルミナ等の誘電体で被覆されていることである。
図22及び図23において、第1のパルス変調方式位相可変2出力の発信器15の2つの出力端子の一方の出力端子は、第1の電力増幅器16、第1のインピーダンス整合器17、第1の電流導入端子18及び第1の真空同軸ケーブル19の端部の芯線20を介して、第1の給電点21に接続される。該第1の真空同軸ケーブル19の端部の外部導体は第2の電極4に接続される。
第1のパルス変調方式位相可変2出力の発信器15の2つの出力端子の他方の出力端子は、第2の電力増幅器22、第2のインピーダンス整合器23、第2の電流導入端子24及び第2の真空同軸ケーブル25の端部の芯線26を介して、第2の給電点27に接続される。該第2の真空同軸ケーブル19の端部の外部導体は第2の電極4に接続される。
なお、前記第1の電力増幅器16及び第2の電力増幅器22には、それぞれ出力値(進行波)のモニター及び下流側から反射して戻ってくる反射波のモニターが付属している。また、該該反射波による該第1及び第2の電力増幅器16、22本体の電気回路を防護するためのアイソレータが付属されている。
ここで、第1のパルス変調方式位相可変2出力の発信器15の2つの出力をそれぞれ電力増幅器16、22等により、それぞれ第1及び第2の給電点21、27に供給する電力供給系を第1の電力供給系と呼ぶ。
図22及び図23において、第2のパルス変調方式位相可変2出力の発信器28は、同期信号ケーブル100を介して伝送される第1のパルス変調方式位相可変2出力の発信器15のパルス変調波形の同期信号を用いて、該第1のパルス変調方式位相可変2出力の発信器15の出力のパルス変調波形に同期したパルス変調の電力を出力する。
第2のパルス変調方式位相可変2出力の発信器28の2つの出力端子の一方の出力端子は、第3の電力増幅器29、第3のインピーダンス整合器30、第3の電流導入端子31及び第3の真空同軸ケーブル32の端部の芯線33を介して、第1の給電点21に接続される。該第3の真空同軸ケーブル32の端部の外部導体は第2の電極4に接続される。
第2のパルス変調方式位相可変2出力の発信器28の2つの出力端子の他方の出力端子は、第4の電力増幅器34、第4のインピーダンス整合器35、第4の電流導入端子36及び第4の真空同軸ケーブル37の端部の芯線38を介して、第2の給電点27に接続される。該第2の真空同軸ケーブル19の端部の外部導体は第2の電極4に接続される。
前記第3の電力増幅器29及び第4の電力増幅器34には、それぞれ出力値(進行波)のモニター及び下流側から反射して戻ってくる反射波のモニターが付属している。また、該該反射波による該第1及び第2の電力増幅器29、34本体の電気回路を防護するためのアイソレータが付属されている。
ここで、第2の位相可変2出力の発信器28の2つの出力をそれぞれ電力増幅器29、34等により、それぞれ第1及び第2の給電点21、27に供給する電力供給系を第2の電力供給系と呼ぶ。
次に、上記構成の高周波プラズマ発生装置と該高周波プラズマ発生装置により構成のプラズマ表面処理装置(プラズマCVD装置)を用いて、a−Si太陽電池用アモルファスSi膜を製造する方法を説明する。なお、本発明の実施あるいは応用では、手順として、第1及び第2の予備製膜工程と本製膜工程が必要である。第1の予備製膜工程は、前記第1のパルス変調方式位相可変2出力の発信器15の2つの出力の位相差の設定値を把握するために、第2の予備製膜工程は、前記第2のパルス変調方式位相可変2出力の発信器28の2つの出力の位相差の設定値を把握するために、本製膜工程は目的とするアモルファスSiの製造のために実施される。
先ず、第1の予備製膜工程であるが、図22及び図23において、予め、基板11を第2の電極4の上に設置し、図示しない真空ポンプ10を稼動させ、真空容器1内の不純物ガス等を除去した後、放電ガス供給管8からSiH4ガスを、例えば500sccm、圧力0.5Torr(66.5Pa)で供給しつつ、基板温度は80〜350℃の範囲、例えば180℃に保持する。
そして、前記第1の電力供給系を用いて、一対の電極2、4に高周波電力を、例えばパルス変調された周波数70MHzの電力を、例えば合計で400Wを供給する。
即ち、該第1のパルス変調方式位相可変2出力の発信器15の2つの出力の位相差を、例えば零に、パルス変調のパルス幅Hw=400μ秒、パルス周期T0=1m秒に設定し、第1の電力増幅器16の出力を例えば200Wに設定して、その出力を第1のインピーダンス整合器17、第1の電流導入端子18及び真空用同軸ケーブル19を介して、第1の給電点21と第2の電極4間に供給するとともに、第2の電力増幅器22の出力を例えば200Wに設定して、その出力を第2のインピーダンス整合器23、第2の電流導入端子24、真空用同軸ケーブル25を介して、第2の給電点27と第2の電極4間に供給する。
この場合、給電点21及び27から供給され電力波は、その伝播路である第1の電極の形状が中間点で折れ曲がっているので、若干影響を受けて減衰はするが、該折れ曲り部分に被覆されている誘電体膜92により、その領域での電力損失が抑制される。その結果、その伝播路にて電力波W11(x、t)及びW21(x、t)、による前述の定在波が発生する。
その結果、前記SiH4ガスのプラズマが生成され、基板11に例えば正弦的分布を持つアモルファスSiが堆積する。
前記の要領で、製膜時間を例えば10〜20分間にして、前記基板11にアモルファスSi膜を形成させる。製膜後、真空容器1から前記基板11を取り出して、該アモルファスSi膜の膜厚み分布を評価する。基板11に堆積された例えばアモルファスSiの膜厚分布は、前述のVHFプラズマ固有の現象である定在波の発生により、正弦的な分布となる。このような、製膜試験を第1のパルス変調方式位相可変2出力の発信器15の2つの出力の位相差をパラメータに繰り返し実施する。そして、該U字型電極2の棒のU字に沿った線分上において、該U字型電極2の中央点から正弦的な膜厚分布の最大厚みの位置までの距離と前記第1のパルス変調方式位相可変2出力の発信器15の2つの出力の位相差の関係をデータとして把握する。例えば、該U字型電極2の中央点から第1の給電点21の方向へ波長λの八分の一、即ちλ/8だけ離れた位置に設定するための位相差は、例えばΔθ1であるいうことが把握される。
なお、ここで実施する正弦的な厚み分布の最大の位置と第1の位相可変2出力の発信器15aの出力電圧の位相差との関係の把握の方法は、上記膜の厚み分布の測定を応用する方法に限定されず、例えば、生成されるプラズマの発光強度の電磁波伝播方向における空間的分布を光センサーで測定し、その最大強度の位置と該位相差の関係として把握する方法を用いても良い。
ただし、その波長λは、真空中での電磁波の波長ではなく、上記製膜条件での波長λであり、真空中での電磁波の波長λに比べて短くなる。一般的にはSiH4ガスのプラズマでは、プラズマ中での波長λと真空中での波長λとの比λ/λは0.5〜0.9程度である。
次に、第2の予備試験であるが、図22及び図23において、予め、基板11を第2の電極4の上に設置し、図示しない真空ポンプ10を稼動させ、真空容器1内の不純物ガス等を除去した後、放電ガス供給管8からSiH4ガスを、例えば500sccm、圧力0.5Torr(66.5Pa)で供給しつつ、基板温度は80〜350℃の範囲、例えば180℃に保持する。
そして、前記第2の電力供給系を用いて、一対の電極2、4に高周波電力を、例えばパルス変調された周波数70MHzの電力を、例えば合計で400Wを供給する。
即ち、該第2のパルス変調方式位相可変2出力の発信器28の2つの出力の位相差を、例えば零に、パルス変調のパルス幅Hw=400μ秒、パルス周期T0=1m秒に設定し、第1の電力増幅器16の出力を200Wに設定して、第3の電力増幅器29の出力を200Wに設定して、その出力を第3のインピーダンス整合器30、第3の電流導入端子31及び真空用同軸ケーブル32を介して、第1の給電点21と第2の電極4間に供給するとともに、第4の電力増幅器34の出力を200Wに設定して、その出力を第4のインピーダンス整合器35、第4の電流導入端子36、真空用同軸ケーブル37を介して、第2の給電点27と第2の電極4間に供給する。
この場合、給電点21及び27から供給され電力波は、その伝播路である第1の電極の形状が中間点で折れ曲がっているので、若干影響を受けて減衰はするが、該折れ曲り部分に被覆されている誘電体膜92により、その領域での電力損失が抑制される。その結果、その伝播路にて電力波W12(x、t)及びW22(x、t)による前述の定在波が発生する。
その結果、前記SiH4ガスのプラズマが生成され、基板11に例えば正弦的分布を持つアモルファスSiが堆積する。
前記の要領で、製膜時間を例えば10〜20分間にして、前記基板11にアモルファスSi膜を形成させる。製膜後、真空容器1から前記基板11を取り出して、該アモルファスSi膜の膜厚み分布を評価する。基板11に堆積された例えばアモルファスSiの膜厚分布は、前述のように、VHFプラズマ固有の現象である定在波の発生により、正弦的な分布となる。このような、製膜試験を第2のパルス変調方式位相可変2出力の発信器28の2つの出力の位相差をパラメータに繰り返し実施する。そして、該U字型電極2の棒のU字に沿った線分上において、該U字型電極2の中央点から正弦的な膜厚分布の最大厚みの位置までの距離と前記第2のパルス変調方式位相可変2出力の発信器28の2つの出力の位相差の関係をデータとして把握する。例えば、該U字型電極2の中央点から第2の給電点27の方向へ波長λの八分の一、即ちλ/8だけ離れた位置に設定するための位相差は、例えばΔθ2であるいうことが把握される。
なお、ここで実施する正弦的な厚み分布の最大の位置と第1の位相可変2出力の発信器15aの出力電圧の位相差との関係の把握の方法は、上記膜の厚み分布の測定を応用する方法に限定されず、例えば、生成されるプラズマの発光強度の電磁波伝播方向における空間的分布を光センサーで測定し、その最大強度の位置と該位相差の関係として把握する方法を用いても良い。
ただし、その波長λは、真空中での電磁波の波長ではなく、上記製膜条件での波長λであり、真空中での電磁波の波長λに比べて短くなる。一般的にはSiH4ガスのプラズマでは、プラズマ中での波長λと真空中での波長λとの比λ/λは0.5〜0.9程度である。
さて、前記第1および第2の予備製膜工程の結果を受けて、本製膜工程に入る。先ず、図22及び図23において、予め、基板11を第2の電極4の上に設置し、図示しない真空ポンプ10を稼動させ、真空容器1内の不純物ガス等を除去した後、放電ガス供給管8からSiH4ガスを、例えば500sccm、圧力0.5Torr(66.5Pa)で供給しつつ、基板温度は80〜350℃の範囲、例えば180℃に保持する。
次に、前記第1の電力供給系の構成部材の第1のパルス変調方式位相可変2出力の発信器15の2つの出力、例えば周波数70MHzの正弦波の位相差を第1の予備試験データで把握したΔθ1に設定し、そのパルス変調を図11及び図12に示すW11(t)及びW21(t)におけるパルス幅Hw及び周期T0を例えばHw=400μ秒及びT0=1m秒に設定し、第1及び第2の給電点21、27に、それぞれ例えば電力200Wを供給するともとに、前記第2の電力供給系の構成部材の第2のパルス変調方式位相可変2出力の発信器28の2つの出力、例えば周波数70MHzの正弦波の位相差を第2の予備製膜工程のデータとして把握したΔθ2に設定し、そのパルス変調を図11及び図12に示すW12(t)及びW22(t)におけるパルス幅Hw及び周期T0を例えばHw=400μ秒及びT0=1m秒で、かつ、前記W11(t)及びW21(t)のパルス変調のパルス立ち上がり時間より半周期、即ちT0/2遅れた時刻に立ち上がるように設定し、第1及び第2の給電点21、27に、それぞれ例えば電力200Wを供給する。
即ち、前記第1の給電点21に、電力200Wの電圧波W11(x、t)及び電力200Wの電圧波W12(x、t)が、前記第2の給電点27に電力200WのW21(x、t)及び電力200Wの電圧波W22(x、t)が供給される。
ここで、第1の予備製膜工程及び第2の予備製膜工程でそれぞれ設定した第1のパルス変調方式位相可変2出力の発信器15及び第2のパルス変調方式位相可変2出力の発信器28のパルス幅Hwと周期T0の値を、例えば、Hw=400μ秒を1m秒などへ、T0=1m秒を5m秒などへ変更して、いくつかの製膜データを比較することができる。
前記一対の電極2、4間に4つの電圧波が供給されると、前述のように、W11(x、t)とW21(x、t)は干渉して第1の定在波W1(x、t)を形成し、W12(x、t)とW22(x、t)は干渉して第2の定在波W2(x、t)を形成する。ただし、W11(x、t)は、W12(x、t)及びW22(x、t)とは時間的に分離されているので干渉しない。また、同様に、W21(x、t)は、W12(x、t)及びW22(x、t)と干渉しない。
したがって、一対の電極2、4間に生成される電力の強さの分布は、第1の定在波W1(x、t)の強さの分布I1(x、t)と第2の定在波W2(x、t)の強さの分布I2(x、t)が重畳した形となる。その様子を概念的に図6に示す。
ここで、該U字型電極2の中央点をx軸の原点とし、該原点からU字に沿った線分上において、第1の給電点21を向いた方向を正の方向とすると、第1の定在波W1(x、t)の強さの分布I1(x、t)は、
I1(x、t)=cos{2πx/λ+2π(λ/8)/λ}
=cos{2πx/λ+π/4}
第1の定在波W2(x、t)の強さの分布I2(x、t)は、
I2(x、t)=cos{2πx/λ−2π(λ/8)/λ}
=cos{2πx/λ−π/4}
一対の電極2、4間に生成される電力の強さの分布I(x、t)は、
I(x、t)
=cos{2πx/λ+π/4}+cos{2πx/λ−π/4}
=1
この結果は、発振周波数がVHF帯域ないしUHF帯域に属する高周波電源の出力の電力を用いて生成されたプラズマを利用して真空容器に配置された基板の表面を処理する表面処理装置に用いられる高周波プラズマ発生装置において、前記基板の表面の法線方向と実質的に同じ方向の電界を有する電磁波の定在波の腹の位置が異なる第1の定在波と第2の定在波を発生させ、かつ、該第1及び第2の定在波を重畳させる手段を備えることにより、プラズマの一様化に不可欠な電極間の電力の強さの分布の制御が可能であるといことを意味している。
さらに、上記第1及び第2の定在波のそれぞれの腹の位置の間の距離が、使用する電磁波のプラズマ中の波長λの0.25倍、即ち0.25λであれば、一対の電極2、4間に生成される電力の強さの分布I(x、t)は、電力の伝播方向の位置に依存しないで一定の値であり、均一であるということを示している。このことは、UHFプラズマ及びUHFプラズマの応用分野においての重要課題である大面積・均一のプラズマ処理化を実現可能な装置の提供ができるという意味で画期的発見であるということを意味している。
また、上記第1及び第2の定在波のそれぞれの腹の位置の間の距離が、使用する電磁波のプラズマ中の波長λの0.22〜0.28倍、即ち0.22〜0.28λであれば、一対の電極2、4間に生成される電力の強さの分布I(x、t)は、±20%以下であることを示している。
また、上記第1及び第2の定在波のそれぞれの腹の位置の間の距離が、使用する電磁波のプラズマ中の波長λの0.238〜0.263倍、即ち0.238〜0.263λであれば、一対の電極2、4間に生成される電力の強さの分布I(x、t)は、±10%以下であることを示している。
上記工程において、SiH4ガスがプラズマ化されると、そのプラズマ中に存在するSiH3、SiH2、SiH等のラジカルが拡散現象により拡散し、基板11の表面に吸着されることによりa−Si膜が堆積するが、一対の電極2、4間の電力の強さの分布が上述の通り、時間平均的に一様であるので、その堆積膜は一様になる。このことはVHFプラズマの応用分野においては画期的な発見であり、実用価値は著しく大きい。
即ち、インライン型やマルチチャンバー形やロール・ツー・ロール型のプラズマ表面処理装置の高生産性化のためのプラズマ発生装置の改善において求められている矩形型の第1の電極の一つの辺の近傍のみからVHF電力を供給する手段
に関する一つの新規手段として実現が可能である。このことは、該プラズマ表面処理装置本体の断面を、その基板搬送方向に直交する断面で見た場合、その断面が例えば矩形状の断面であれば、該矩形断面の4辺の中の1辺のみを用いたVHFプラズマ生成用の新規給電手段が実現可能である。
本実施例では、第1及び第2の電極の間隔を5~40mm程度に設定することにより、ガラス基板の面積:1200mmx200mm程度でのアモルファスSi膜は、製膜速度1〜3nm/s程度で、膜厚分布は±10%以内の製膜が可能である。
また、本実施例では、U字型の第1の電極2が1個であるので、基板サイズの幅は200mm程度に制約されるが、該第1の電極の個数を増加すれば基板サイズの幅は拡大可能であることは当然なことである。
なお、微結晶Siあるいは薄膜多結晶Si等は、製膜条件の中のSiH4,H2の流量比、圧力および電力を適正化することで製膜できることは公知の技術である。
また、エッチングへの応用では、放電ガスとして、NF3、SF6、CF4、CHF3及びC4F4等を用いることで、可能であることは公知の技術である。
(実施例6)
本発明に関する実施例6の高周波プラズマ発生装置と該高周波プラズマ発生装置により構成のプラズマ表面処理装置(プラズマCVD装置)およびプラズマ表面処理方法(プラズマCVD方法)について、図24を参照して説明する。
図24は実施例6に係わる高周波プラズマ発生装置と該高周波プラズマ発生装置により構成のプラズマ表面処理装置(プラズマCVD装置)の全体を示す概略図である。
なお、第24図図示の装置構成については、実施例1ないし実施例5に示した部材と同じ部材は同符番を付している。
本実施例での装置は、図24に示すように、実施例5で説明したU字型の第1電極を複数個、例えば2個を第2の電極に平行な面内に含まれるように設置し、該複数のU字型第1電極のそれぞれの端部に第1及び第2の給電点を配置させて、かつ、それぞれの該U字型第1電極の第1及び第2の給電点に、前記第1及び第2の電力供給系の出力を供給するような構成を有する。
なお、U字型電極2は直径5〜20mm程度のSUS棒材で構成し、第2の電極との間隔は、5〜50mm程度で任意に設定可能である。
ここで、該第1及び第2の電力供給系は、実施例3の図13〜図15に示すような一つの電力供給系を用いることが可能である。
本実施例により、第1の電極として、U字型電極を多数設置することにより、大面積基板への対応が可能である。
(実施例7)
本発明に関する実施例7の高周波プラズマ発生装置と該高周波プラズマ発生装置により構成のプラズマ表面処理装置(プラズマCVD装置)およびプラズマ表面処理方法(プラズマCVD方法)について、図25を参照して説明する。
図25は実施例7に係わる高周波プラズマ発生装置と該高周波プラズマ発生装置により構成のプラズマ表面処理装置(プラズマCVD装置)の全体を示す概略図である。
本実施例の装置は、図25に示すように、W字型第1電極のそれぞれの端部に、第1及び第2の給電点21、27を配置させ、該第1及び第2の給電点に前記第1及び第2の電力供給系の出力を供給するような構成を有している。
即ち、非接地の第1の電極に配置される第1及び第2の給電点21、27が、第2の電極4である矩形平板型接地電極の4辺の中の1辺の近傍に配置されていること及び第1の電極の形状が1本の棒状導体を前記第1の電極に平行な面内に含まれるように折り返して形成されるW字型の形状を有し、かつ、好ましくは、W字の全長は使用電力の波長λの二分の一、即ちλ/2の整数倍であるようにした構成を有することである。また、該W字型電極の曲がり部分をアルミナ等の誘電体で被覆されていることが特徴である。
なお、W字型電極2は、直径5〜20mm程度のSUS棒材で構成し、第2の平板電極との間隔は5〜50mmで任意に設定可能である。
本実施例によれば、U字型電極を用いる場合に比べて、大面積基板への対応が容易に可能であることが期待される。
(実施例8)
本発明に関する実施例8の高周波プラズマ発生装置と該高周波プラズマ発生装置により構成のプラズマ表面処理装置(プラズマCVD装置)及びプラズマ表面処理方法(プラズマCVD方法)について、図26を参照して説明する。また、図27を参照する。
図26は実施例8に係わる高周波プラズマ発生装置と該高周波プラズマ発生装置により構成のプラズマ表面処理装置(プラズマCVD装置)の全体を示す概略図である。図27は、図26図示の装置の構成部材として用いられる一対の電極とその給電部に係わる構成の応用型を示す説明図である。
なお、図26及び図27図示の構成部材において、実施例1ないし実施例7に示した部材と同じ部材は同符番を付し、説明を省略する。
本実施例の装置は、円筒形の基板を対象にしたプラズマ表面処理装置であり、その構成は、図26に示すように、W字型の第1電極を複数個、例えば2個を円筒形状を有する第2の電極を外套状に取り囲む円筒の面内に含まれるように設置し、該複数のW字型第1電極のそれぞれの端部に第1及び第2の給電点21、27を配置させて、かつ、それぞれの該W字型第1電極の第1及び第2の給電点21、27に、前記第1及び第2の電力供給系の出力を供給するような構成を有することである。そして、好ましくは、それぞれのW字型電極の全長は使用電力の波長λの二分の一、即ちλ/2の整数倍であるようにした構成を有する。
当然、このW字型電極をU字型電極に代えた構成のプラズマ表面処理装置も考えられる。
なお、W字型電極2は、直径5〜20mm程度のSUS棒材で構成し、第2の平板電極との間隔は5〜50mmで任意に設定可能である。
本実施例の装置によれば、基板の形状が円筒形の場合に対しても容易に対応が可能である。
また、図26図示の装置構成での第1の電極として、図27図示のコイル型電極を用いることは当然可能である。装置構成上、特に制約が無い場合はこのコイル型電極の活用が可能である。
(実施例9)
本発明に関する実施例9の高周波プラズマ発生装置と該高周波プラズマ発生装置により構成のプラズマ表面処理装置(プラズマCVD装置)およびプラズマ表面処理方法(プラズマCVD方法)について、図28を参照して説明する。また、図3〜図6、図11及び図12を参照する。
図28は実施例9に係わる高周波プラズマ発生装置と該高周波プラズマ発生装置により構成のプラズマ表面処理装置(プラズマCVD装置)の全体を示す概略図である。
先ず、装置の構成について説明する。ただし、前記実施例1ないし実施例8
に示した部材と同じ部材は同符番を付して説明を省略する。
本実施例の装置は、矩形平板の導電体をW字状のスリットで2分割し、その一方の導体を第1の電極とし、他方を第2の電極とし、かつ、該W字状スリットの端部に給電点を配置させるという構造を有する。
なお、該スリットの形状はW字状以外の、例えばU字状及びジグザグ状にしても良い。また、該導電体の形状は矩形平板のみならず、例えば基板の形状が円筒形の場合にはそれに対応して円筒形にすることができる。
図28において、符番91はスリットである。ここでは、W字状のスリットを用いている。該スリットの幅は、2mm〜50mm程度、ここでは後述の圧力条件:0.5Torr(66.5Pa)を考慮して、例えば8mmにする。
符番2は第1の電極で、符番4は第2の電極である。該第1及び第2の電極のサイズは、例えば一対の外寸法で、1400mmx200mm程度である。符番21は第1の給電点、符番27は第2の給電点で、それぞれ、対向した形でW字状スリット91の端部に配置される。符番90は放電ガス通過孔で、該第1及び第2の電極に設置される。その孔の直径は1〜5mm程度で、開口率は50%程度以上が好ましい。
図28において、第1のパルス変調方式位相可変2出力の発信器15の2つの出力端子の一方の出力端子は、第1の電力増幅器16、第1のインピーダンス整合器17、第1の電流導入端子18及び第1の真空同軸ケーブル19の端部の芯線20を介して、第1の給電点21に接続される。該第1の真空同軸ケーブル19の端部の外部導体は第2の電極4に接続される。
第1のパルス変調方式位相可変2出力の発信器15の2つの出力端子の他方の出力端子は、第2の電力増幅器22、第2のインピーダンス整合器23、第2の電流導入端子24及び第2の真空同軸ケーブル25の端部の芯線26を介して、第2の給電点27に接続される。該第2の真空同軸ケーブル19の端部の外部導体は第2の電極4に接続される。
なお、前記第1の電力増幅器16及び第2の電力増幅器22には、それぞれ出力値(進行波)のモニター及び下流側から反射して戻ってくる反射波のモニターが付属している。また、該該反射波による該第1及び第2の電力増幅器16、22本体の電気回路を防護するためのアイソレータが付属されている。
ここで、第1の位相可変2出力の発信器15の2つの出力をそれぞれ電力増幅器16、22等により、それぞれ第1及び第2の給電点21、27に供給する電力供給系を第1の電力供給系と呼ぶ。
図28において、第2のパルス変調方式位相可変2出力の発信器28の2つの出力端子の一方の出力端子は、第3の電力増幅器29、第3のインピーダンス整合器30、第3の電流導入端子31及び第3の真空同軸ケーブル32の端部の芯線33を介して、第1の給電点21に接続される。該第3の真空同軸ケーブル32の端部の外部導体は第2の電極4に接続される。
第2のパルス変調方式位相可変2出力の発信器28の2つの出力端子の他方の出力端子は、第4の電力増幅器34、第4のインピーダンス整合器35、第4の電流導入端子36及び第4の真空同軸ケーブル37の端部の芯線38を介して、第2の給電点27に接続される。該第2の真空同軸ケーブル19の端部の外部導体は第2の電極4に接続される。
なお、前記第3の電力増幅器29及び第4の電力増幅器34には、それぞれ出力値(進行波)のモニター及び下流側から反射して戻ってくる反射波のモニターが付属している。また、該該反射波による該第1及び第2の電力増幅器29、34本体の電気回路を防護するためのアイソレータが付属されている。
ここで、第2のパルス変調方式位相可変2出力の発信器28の2つの出力をそれぞれ電力増幅器29、34等により、それぞれ第1及び第2の給電点21、27に供給する電力供給系を第2の電力供給系と呼ぶ。
次に、上記構成のプラズマ表面処理装置を用いて、a−Si太陽電池用アモルファスSi膜を製造する方法を説明する。なお、本発明の実施あるいは応用では、手順として、第1及び第2の予備製膜工程と本製膜工程が必要である。第1の予備製膜工程は、前記第1のパルス変調方式位相可変2出力の発信器15の2つの出力の位相差の設定値を把握するために、第2の予備製膜工程は、前記第2のパルス変調方式位相可変2出力の発信器28の2つの出力の位相差の設定値を把握するために、本製膜工程は目的とするアモルファスSiの製造のために実施される。
先ず、第1の予備製膜工程であるが、図28において、予め、基板11を第2の電極4の上に設置し、図示しない真空ポンプ10を稼動させ、真空容器1内の不純物ガス等を除去した後、放電ガス供給管8からSiH4ガスを、例えば500sccm、圧力0.5Torr(66.5Pa)で供給しつつ、基板温度は80〜350℃の範囲、例えば180℃に保持する。
そして、前記第1の電力供給系を用いて、一対の電極2、4に超高周波電力を、例えば周波数70MHzの電力を、例えば合計で400Wを供給する。
即ち、該第1のパルス変調方式位相可変2出力の発信器15の2つの出力、例えばパルス変調された周波数70MHzの正弦波の位相差を、例えば零に設定し、第1の電力増幅器16の出力を例えば200Wに設定して、その出力を第1のインピーダンス整合器17、第1の電流導入端子18及び真空用同軸ケーブル19を介して、第1の給電点21と第2の電極4間に供給するとともに、第2の電力増幅器22の出力を例えば200Wに設定して、その出力を第2のインピーダンス整合器23、第2の電流導入端子24、真空用同軸ケーブル25を介して、第2の給電点27と第2の電極4間に供給する。
ここで、該第1及び第2の給電点21、27に給電される電力の典型例を、図11及び図12に、W11(t)、W21(t)として示している。該W11(t)及びW21(t)は、それぞれ、パルス幅Hw、周期T0でパルス変調された超高周波数、例えば70MHzの正弦波である。該パルス幅Hw及び周期T0は、該第1のパルス変調方式位相可変2出力の発信器15に付属の調整器により任意の値、例えばHw=400μ秒及び周期T0=1m秒に設定される。
この場合、給電点21及び27から供給され電力波は、その伝播路であるW字状スリットが途中で折れ曲がっているので、若干影響を受けて減衰はするが、該折れ曲り部分に被覆されている誘電体92により、その領域での電力損失が抑制される。その結果、その伝播路にて電力波W11(x、t)及びW21(x、t)、による前述の定在波が発生する。
その結果、前記SiH4ガスのプラズマが生成され、基板11に正弦的分布を持つアモルファスSiが堆積する。
前記の要領で、製膜時間を例えば10〜20分間にして、前記基板11にアモルファスSi膜を形成させる。製膜後、真空容器1から前記基板11を取り出して、該アモルファスSi膜の膜厚み分布を評価する。基板11に堆積された例えばアモルファスSiの膜厚分布は、前述のVHFプラズマ固有の現象である定在波の発生により、正弦的な分布となる。このような、製膜試験を第1のパルス変調方式位相可変2出力の発信器15の2つの出力の位相差をパラメータに繰り返し実施する。そして、W字状スリット91の長さ方向において、該W字状スリット91の中央点から正弦的な膜厚分布の最大厚みの位置までの距離と前記第1のパルス変調方式位相可変2出力の発信器15の2つの出力の位相差の関係をデータとして把握する。例えば、該W字状スリット91の中央点から第1の給電点21の方向へ波長λの八分の一、即ちλ/8だけ離れた位置に設定するための位相差は、例えばΔθ1であるいうことが把握される。
なお、ここで実施する正弦的な厚み分布の最大の位置と第1の位相可変2出力の発信器15aの出力電圧の位相差との関係の把握の方法は、上記膜の厚み分布の測定を応用する方法に限定されず、例えば、生成されるプラズマの発光強度の電磁波伝播方向における空間的分布を光センサーで測定し、その最大強度の位置と該位相差の関係として把握する方法を用いても良い。
ただし、その波長λは、真空中での電磁波の波長ではなく、上記製膜条件での波長λであり、真空中での電磁波の波長λに比べて短くなる。一般的にはSiH4ガスのプラズマでは、プラズマ中での波長λと真空中での波長λとの比λ/λは0.5〜0.9程度である。
次に、第2の予備試験であるが、図24において、予め、基板11を第2の電極4の上に設置し、図示しない真空ポンプ10を稼動させ、真空容器1内の不純物ガス等を除去した後、放電ガス供給管8からSiH4ガスを、例えば500sccm、圧力0.5Torr(66.5Pa)で供給しつつ、基板温度は80〜350℃の範囲、例えば180℃に保持する。
そして、前記第2の電力供給系を用いて、一対の電極2、4に超高周波電力を、例えば周波数70MHzの電力を、例えば合計で400Wを供給する。
即ち、該第2のパルス変調方式位相可変2出力の発信器28の2つの出力、例えばパルス変調された周波数70MHzの正弦波の位相差を、例えば零に設定し、第3の電力増幅器29の出力を200Wに設定して、その出力を第3のインピーダンス整合器30、第3の電流導入端子31及び真空用同軸ケーブル32を介して、第1の給電点21と第2の電極4間に供給するとともに、第4の電力増幅器34の出力を200Wに設定して、その出力を第4のインピーダンス整合器35、第4の電流導入端子36、真空用同軸ケーブル37を介して、第2の給電点27と第2の電極4間に供給する。
ここで、該第1及び第2の給電点21、27に給電される電力の典型例を、図11及び図12に、W12(t)、W22(t)として示している。該W12(t)及びW22(t)は、それぞれ、パルス幅Tw、周期T0でパルス変調された超高周波数、例えば70MHzの正弦波である。
該パルス幅Tw及び周期T0は、該第2のパルス変調方式位相可変2出力の発信器28に付属の調整器により任意の値、例えばTw=400μ秒及び周期T0=1m秒に設定される。
この場合、給電点21及び27から供給され電力波は、その伝播路であるW字状スリットが途中で折れ曲がっているので、若干影響を受けて減衰はするが、該折れ曲り部分に被覆されている誘電体92により、その領域での電力損失が抑制される。その結果、その伝播路にて電力波W12(x、t)及びW22(x、t)による前述の定在波が発生する。
その結果、前記SiH4ガスのプラズマが生成され、基板11に例えば正弦的分布を持つアモルファスSiが堆積する。
前記の要領で、製膜時間を例えば10〜20分間にして、前記基板11にアモルファスSi膜を形成させる。製膜後、真空容器1から前記基板11を取り出して、該アモルファスSi膜の膜厚み分布を評価する。基板11に堆積された例えばアモルファスSiの膜厚分布は、前述のVHFプラズマ固有の現象である定在波の発生により、正弦的な分布となる。このような、製膜試験を第2の位相可変2出力の発信器28の2つの出力の位相差をパラメータに繰り返し実施する。そして、W字状スリット91の長さ方向において、W字状スリット91の中央点から正弦的な膜厚分布の最大厚みの位置までの距離と前記第2のパルス変調方式位相可変2出力の発信器28の2つの出力の位相差の関係をデータとして把握する。例えば、W字状スリット91の中央点から第2の給電点27の方向へ波長λの八分の一、即ちλ/8だけ離れた位置に設定するための位相差は、例えばΔθ2であるいうことが把握される。
なお、ここで実施する正弦的な厚み分布の最大の位置と第1の位相可変2出力の発信器15aの出力電圧の位相差との関係の把握の方法は、上記膜の厚み分布の測定を応用する方法に限定されず、例えば、生成されるプラズマの発光強度の電磁波伝播方向における空間的分布を光センサーで測定し、その最大強度の位置と該位相差の関係として把握する方法を用いても良い。
ただし、その波長λは、真空中での電磁波の波長ではなく、上記製膜条件での波長λであり、真空中での電磁波の波長λに比べて短くなる。一般的にはSiH4ガスのプラズマでは、プラズマ中での波長λと真空中での波長λとの比λ/λは0.5〜0.9程度である。
さて、前記第1および第2の予備製膜工程の結果を受けて、本製膜工程に入る。先ず、図28において、予め、基板11を第2の電極4の上に設置し、図示しない真空ポンプ10を稼動させ、真空容器1内の不純物ガス等を除去した後、放電ガス供給管8からSiH4ガスを、例えば500sccm、圧力0.5Torr(66.5Pa)で供給しつつ、基板温度は80〜350℃の範囲、例えば180℃に保持する。
次に、前記第1の電力供給系の構成部材の第1のパルス変調方式位相可変2出力の発信器15の2つの出力、例えば周波数70MHzの正弦波の位相差を第1の予備試験データで把握したΔθ1に設定し、そのパルス変調を図11及び図12に示すW11(t)及びW21(t)におけるパルス幅Hw及び周期T0を例えばHw=400μ秒及びT0=1m秒に設定し、第1及び第2の給電点21、27に、それぞれ例えば電力200Wを供給するともとに、前記第2の電力供給系の構成部材の第2のパルス変調方式位相可変2出力の発信器28の2つの出力、例えば周波数70MHzの正弦波の位相差を第2の予備製膜工程のデータとして把握したΔθ2に設定し、そのパルス変調を図11及び図12に示すW12(t)及びW22(t)におけるパルス幅Hw及び周期T0を例えばHw=400μ秒及びT0=1m秒で、かつ、前記W11(t)及びW21(t)のパルス変調のパルス立ち上がり時間より半周期、即ちT0/2遅れた時刻に立ち上がるように設定し、第1及び第2の給電点21、27に、それぞれ例えば電力200Wを供給する。
即ち、前記第1の給電点21に、電力200Wの電圧波W11(x、t)及び電力200Wの電圧波W12(x、t)が、前記第2の給電点27に電力200WのW21(x、t)及び電力200Wの電圧波W22(x、t)が供給される。
ここで、第1の予備製膜工程及び第2の予備製膜工程でそれぞれ設定した第1のパルス変調方式位相可変2出力の発信器15及び第2のパルス変調方式位相可変2出力の発信器28のパルス幅Hwと周期T0の値を、例えば、Hw=400μ秒を1m秒などへ、T0=1m秒を5m秒などへ変更して、いくつかの製膜データを比較することができる。
前記一対の電極2、4間に4つの電圧波が供給されると、前述のように、W11(x、t)とW21(x、t)は干渉して第1の定在波W1(x、t)を形成し、W12(x、t)とW22(x、t)は干渉して第2の定在波W2(x、t)を形成する。ただし、W11(x、t)は、W12(x、t)及びW22(x、t)とは時間的に分離されているので、干渉しない。また、同様に、W21(x、t)は、W12(x、t)及びW22(x、t)と干渉しない。
したがって、上記パルス変調の周期T0より大幅に長い数秒以上の一般的な製膜時間で考えれば、一対の電極2、4間に生成される電力の強さの分布は、第1の定在波W1(x、t)の強さの分布I1(x、t)と第2の定在波W2(x、t)の強さの分布I2(x、t)が重畳した形となる。その様子を概念的に図6に示す。
ここで、基板の中央点、即ち該楔形90の頂点とスリットを結ぶラインをx軸の原点とし、該原点から第1の給電点21を向いた方向を正の方向とすると、第1の定在波W1(x、t)の強さの分布I1(x、t)は、
I1(x、t)=cos{2πx/λ+2π(λ/8)/λ}
=cos{2πx/λ+π/4}
第2の定在波W2(x、t)の強さの分布I2(x、t)は、
I2(x、t)=cos{2πx/λ−2π(λ/8)/λ}
=cos{2πx/λ−π/4}
一対の電極2、4間に生成される電力の強さの分布I(x、t)は、
I(x、t)
=cos{2πx/λ+π/4}+cos{2πx/λ−π/4}
=1
この結果は、上記第1及び第2の定在波のそれぞれの腹の位置の間の距離が、使用する電磁波のプラズマ中の波長λの0.25倍、即ち0.25λであれば、一対の電極2、4間に生成される電力の強さの分布I(x、t)は、電力の伝播方向の位置に依存しないで一定の値であり、均一であるということを示している。このことは、UHFプラズマ及びUHFプラズマの応用分野においての重要課題である大面積・均一のプラズマ処理化を実現可能な装置の提供ができるという意味で画期的発見であるということを意味している。
また、上記第1及び第2の定在波のそれぞれの腹の位置の間の距離が、使用する電磁波のプラズマ中の波長λの0.22〜0.28倍、即ち0.22〜0.28λであれば、一対の電極2、4間に生成される電力の強さの分布I(x、t)は、±20%以下であることを示している。
また、上記第1及び第2の定在波のそれぞれの腹の位置の間の距離が、使用する電磁波のプラズマ中の波長λの0.238〜0.263倍、即ち0.238〜0.263λであれば、一対の電極2、4間に生成される電力の強さの分布I(x、t)は、±10%以下であることを示している。
上記工程において、SiH4ガスがプラズマ化されると、そのプラズマ中に存在するSiH3、SiH2、SiH等のラジカルが拡散現象により拡散し、基板11の表面に吸着されることによりa−Si膜が堆積するが、一対の電極2、4間の電力の強さの分布が上述の通り、時間平均的に一様であるので、その堆積膜は一様になる。このことはVHFプラズマの応用分野においては画期的な発見であり、実用価値は著しく大きい。
即ち、インライン型やマルチチャンバー形やロール・ツー・ロール型のプラズマ表面処理装置の高生産性化のためのプラズマ発生装置の改善において求められている矩形型の第1の電極の一つの辺の近傍のみからVHF電力を供給する手段
に関する一つの新規手段として実現が可能である。このことは、該プラズマ表面処理装置本体の断面を、その基板搬送方向に直交する断面で見た場合、その断面が例えば矩形状の断面であれば、該矩形断面の4辺の中の1辺のみを用いたVHFプラズマ生成用の新規給電手段が実現可能である。
本実施例では、第1及び第2の電極の設置面と基板との間隔を5~40mm程度に設定することにより、ガラス基板サイズ:1200mmx200mm程度でのアモルファスSi製膜は、製膜速度1〜3nm/s程度で、膜厚分布は±10%以内の製膜が可能である。
また、本実施例では、W字状スリット91を含む一対の電極2、4が1式であるので、基板サイズの幅は200mm程度に制約されるが、該W字状スリット91を含む一対の電極2、4の個数を増加すれば基板サイズの幅は拡大可能であることは当然なことである。
なお、微結晶Siあるいは薄膜多結晶Si等は、製膜条件の中のSiH4,H2の流量比、圧力および電力を適正化することで製膜できることは公知の技術である。
また、エッチングへの応用では、放電ガスとして、NF3、SF6、CF4、CHF3及びC4F4等を用いることで、可能であることは公知の技術である。
(実施例10)
本発明に関する実施例10の高周波プラズマ発生装置と該高周波プラズマ発生装置により構成のプラズマ表面処理装置(プラズマCVD装置)及びプラズマ表面処理法(プラズマCVD法)について、図29を参照して説明する。なお、図2〜図6、図11及び図12も参照する。
図29は実施例10に係わる高周波プラズマ発生装置と該高周波プラズマ発生装置により構成のプラズマ表面処理装置(プラズマCVD装置)の全体を示す概略図である。
先ず、装置の構成について説明する。ただし、実施例1〜実施例9に示した部材と同じ部材は同符番を付して説明を省略する。
図29において、符番70は高周波発信器で、周波数がVHF帯域あるいはUHF帯域、例えば10MHz〜300MHzの正弦波信号を発生する。符番71、72、73はそれぞれ、第1、第2及び第3の分配器である。第1の分配器71は、高周波発信器70の出力を2分配する。第2の分配器72は、後述の第1のゲート回路装置74の出力を2分配する。第3の分配器73は後述の第2のゲート回路装置75の出力を2分配する。
符番74、75はそれぞれ、第1及び第2のゲート回路装置で、それぞれ、後述のパルス発信器80のパルス電圧が印加されている時間の間だけ、その入力端子と出力端子間を導通状態にする。なお、パルス電圧が印加されていない時間は不通状態になる。符番76、77は第1及び第2の位相シフターである。第1の位相シフター76は、その入力端子に入力されるパルス変調された高周波信号の位相を遅延させる機能を持ち、その遅延量は後述の位相差検出器78の出力により制御される。第2の位相シフター77は、その入力端子に入力されるパルス変調された高周波信号の位相を遅延させる機能を持ち、その遅延量は後述の位相差検出器79の出力により制御される。
符番78、79は、それぞれ、第1及び第2の位相差検出器である。第1の位相差検出器78は、第1及び第2のインピーダンス整合器17、23のそれぞれの出力電圧の位相差を検知し、その位相差に比例した電圧を位相シフター76の制御信号として、位相シフター76に伝送する。第2の位相差検出器79は、第3及び第4のインピーダンス整合器30、35のそれぞれの出力電圧の位相差を検知し、その位相差に比例した電圧を位相シフター77の制御信号として、位相シフター77に伝送する。なお、第1及び第2の位相差検出器78、79には、それぞれ、第1及び第2の位相シフター76、77の位相を任意に制御可能な位相調整ダイヤルが付属しており、該第1及び第2の位相シフター76、77の出力の正弦波信号の位相を任意に調整が可能である。
符番80は2出力のパルス発信器で、その第1の出力端子は任意のパルス幅Hwと任意の周期T0のパルス電圧を出力し、その第2の出力端子は第1の出力端子から出力されるパルス電圧と同じパルス幅Hw及び周期T0で、位相が半周期即ちT0/2だけ遅れたパルス電圧を出力する。なお、該第1の出力端子からのパルス電圧は第1のゲート回路装置74の制御信号として、該第1のゲート回路装置74に伝送される。また、該第2の出力端子からのパルス電圧は第2のゲート回路装置75の制御信号として、該第2のゲート回路装置75に伝送される。
図29において、高周波発信器70の出力端子から出力される超高周波の正弦波信号、例えば60MHzの正弦波信号は、第1の分配器71により2分配されて、その出力の一方は第1のゲート回路装置74を介して、第2の分配器72により2分配される。その出力の一方は、第1の電力増幅器16で電力増幅されて、第1のインピーダンス整合器17、第1の電流導入端子18、真空用同軸ケーブル19の芯線20を介して、第1の給電点21に供給される。
なお、第1のゲート回路装置74は、パルス発信器80の出力端子から伝送される任意のパルス幅Hwと任意の周期T0のパルス電圧によりオンオフ制御がなされる。
ここで、そのパルス電圧の典型例を、図11及び図12にW11(t)、W21(t)として示す。
該第2の分配器72の他方の出力は、位相シフター76を介して第2の電力増幅器22、第2のインピーダンス整合器23、第2の電流導入端子24、第2の真空用同軸ケーブル25の芯線26を介して、第2の給電点27に供給される。
該位相シフター76は、第1の位相差検出器78が検知した第1及び第2のインピーダンス整合器17、23の出力の電圧の位相差に比例した電圧により制御され、該位相シフター76に入力された正弦波信号の位相を遅延させ、後流側の第2の電力増幅器22に伝送する。
なお、第1の位相差検出器78に付属の位相調整ダイヤルにて、手動にて、該位相シフター76の位相を任意に制御可能である。
図29において、第1の分配器71により2分配された出力の他方は第2のゲート回路装置75を介して、第3の分配器73により2分配される。その出力の一方は、第3の電力増幅器29で電力増幅されて、第3のインピーダンス整合器30、第3の電流導入端子36、真空用同軸ケーブル31の芯線32を介して、第1の給電点21に供給される。
第2のゲート回路装置75は、パルス発信器80の出力端子から伝送される任意のパルス幅Hwと任意の周期T0のパルス電圧によりオンオフ制御がなされる。ここで、そのパルス電圧の典型例を、図11及び図12に、W12(t)、W22(t)として示す。W12(t)、W22(t)は、上記W11(t)、W21(t)に比べて、半周期、即ちT0/2だけ遅れた時刻に立ち上がる。
該第3の分配器73の他方の出力は、位相シフター77を介して第4の電力増幅器34、第4のインピーダンス整合器35、第4の電流導入端子36、第4の真空用同軸ケーブル37の芯線38を介して、第2の給電点27に供給される。
該位相シフター77は、第2の位相差検出器79が検知した第3及び第4のインピーダンス整合器30、35の出力の電圧の位相差に比例した電圧により制御され、該位相シフター77に入力された正弦波信号の位相を遅延させ、後流側の第4の電力増幅器34に伝送する。なお、第2の位相差検出器79に付属の位相調整ダイヤルにて、手動にて、該位相シフター77の位相を任意に制御可能である。
ここで、高周波発信器70と、第1、第2及び第3の分配器71、72、73と、第1及び第2のゲート回路装置74、75と、第1及び第2の位相シフター76、77と、第1の位相シフター76と、第2の位相シフター77と、第1及び第2の位相差検出器78、79と、2出力のパルス発信器80と、第1の電力増幅器16と、第1のインピーダンス整合器17と、第1の電流導入端子18、第1の真空用同軸ケーブル19と、第2の電力増幅器22、第2のインピーダンス整合器23と、第2の電流導入端子24と、第2の真空用同軸ケーブル25と、第3の電力増幅器29と、第3のインピーダンス整合器30と、第3の電流導入端子31と、第3の真空用同軸ケーブル32と、第4の電力増幅器34と、第4のインピーダンス整合器35と、第4の電流導入端子36及び第4の真空用同軸ケーブル37から構成される電力供給系を、高周波電力供給装置と呼ぶ。
また、ここでは、該高周波電力供給装置と、一対の電極24と、給電点2127から構成されるプラズマ発生系を、プラズマ発生装置と呼ぶ。
次に、上記構成のプラズマ発生装置と該プラズマ発生装置により構成のプラズマ表面処理装置(プラズマCVD装置)を用いて、a−Si太陽電池用アモルファスSiを製膜する方法を説明する。
なお、本発明の実施あるいは応用では、手順として、第1及び第2の予備製膜工程と本製膜工程が必要である。第1の予備製膜工程は、前記第1のインピーダンス整合器17の出力の電圧及び前記第2のインピーダンス整合器23の出力の電圧の位相差を測定し、制御する第1の位相差検出器78及び第1の位相シフター76から成る第1の位相制御系の位相設定値を把握するために、第2の予備製膜工程は、前記第3のインピーダンス整合器30の出力の電圧及び前記第4のインピーダンス整合器35の出力の電圧の位相差を測定し、制御する第2の位相差検出器79及び第2の位相シフター77から成る第2の位相制御系の位相設定値を把握するために、本製膜工程は目的とするアモルファスSiの製造のために実施される。
先ず、第1の第1の予備製膜工程であるが、図29及び図2において、予め、基板11を第2の電極4の上に設置し、図示しない真空ポンプ10を稼動させ、真空容器1内の不純物ガス等を除去した後、図示しない放電ガス供給管8からSiH4ガスを、例えば250sccm、圧力0.5Torr(66.5Pa)で供給しつつ、基板温度は80〜350℃の範囲、例えば180℃に保持する。
次に、高周波電力供給装置の一部を用いて一対の電極2、4に高周波電力を供給する。
即ち、2出力のパルス発信器80のパルス電圧で制御される第1のゲート回路装置74でパルス変調された高周波発信器70の正弦波出力を第2の分配器72で2分配する。この場合、該高周波発信器70の正弦波出力の周波数は、10MHz〜300MHzの範囲で任意に設定可能で、例えば、周波数を60MHzに設定する。また、前記パルス変調された超高周波発信器70の正弦波出力のパルス幅Hw及びパルス周期T0は任意に設定が可能で、例えば、パルス幅Hw=400μ秒、パルス周期T0=1m秒と設定される。
該第2の分配器72で2分配された一方の信号を第1の電力増幅器16で増幅し、例えば電力200Wとし、該電力を第1のインピーダンス整合器17、第1の電流導入端子18及び第1の真空用同軸ケーブル19の芯線20を介して、第1の給電点21に供給する。
該第2の分配器72で2分配された他方の信号を第1の位相シフター76を介して第2の電力増幅器22で増幅し、例えば電力200Wとし、該電力を第2のインピーダンス整合器23、第2の電流導入端子24及び第2の真空用同軸ケーブル25の芯線26を介して、第2の給電点27に供給する。この場合、該第1及び第2の給電点21、27に供給される電力の電圧の位相差は、該第1のインピーダンス整合器17の出力の電圧及び該第2のインピーダンス整合器23の出力の電圧の位相差を測定し、制御する第1の位相差検出器78及び第1の位相シフター76から成る第1の位相制御系で制御され、任意の位相差を設定可能で、例えば該位相差を零度に設定する。
第1の給電点21に供給されるパルス変調された電力の波形を、概念的に、図11及び図12に、W11(t)として示す。また、第2の給電点27に供給されるパルス変調された電力の波形を、概念的に、図11及び図12に、W21(t)として示す。
この場合、前記第1のインピーダンス整合器17及び第2のインピーダンス整合器23を調整することにより、それぞれのインピーダンス整合器17、23の上流側に上記供給電力の反射波が戻らないようにすることができる。
その結果、前記SiH4ガスのプラズマが生成され、基板11に例えばアモルファスSiが堆積する。
前記要領で、製膜時間を例えば10〜20分間にして、前記基板11にアモルファスSi膜を形成させる。製膜後、真空容器1から前記基板11を取り出して、該アモルファスSi膜の膜厚み分布を評価する。基板11に堆積された例えばアモルファスSiの膜厚分布は、前述のVHFプラズマ固有の現象である定在波の発生により、正弦的な分布となる。このような、製膜試験を第1及び第2の給電点に供給される電力の電圧の位相差をパラメータに繰り返し実施する。
そして、第1の電極2の長さ方向において、基板11の中央点から正弦的な膜厚分布の最大厚みの位置までの距離と該位相差の関係をデータとして把握する。例えば、基板11の中央点から第1の給電点21の方向へ波長λの八分の一、即ちλ/8だけ離れた位置に設定するための位相差は、例えばΔθ1であるいうことが把握される。
なお、ここで実施する正弦的な厚み分布の最大の位置と第1の位相可変2出力の発信器15aの出力電圧の位相差との関係の把握の方法は、上記膜の厚み分布の測定を応用する方法に限定されず、例えば、生成されるプラズマの発光強度の電磁波伝播方向における空間的分布を光センサーで測定し、その最大強度の位置と該位相差の関係として把握する方法を用いても良い。
ただし、その波長λは、真空中での電磁波の波長ではなく、上記製膜条件での波長λであり、真空中での電磁波の波長λに比べて短くなる。一般的にはSiH4ガスのプラズマでは、プラズマ中での波長λと真空中での波長λとの比λ/λは0.5〜0.9程度である。
ところで、上記第1及び第2の給電点21及び27から供給される電力の電圧波は、同一電源から発振され、互いに電極間を伝播していく。すなわち、基板11の表面の法線方向と実質的に同じ方向の電界を有する2つの電磁波が、第1の電極2と第2の電極4の間に生成され、両者は互いに向かい合った方向から伝播しあって重なり合うので、干渉現象が発生する。その様子を、図2〜図4を用いて説明する。
なお、上記基板11の表面の法線方向と実質的に同じ方向とは、余弦の値が0.7以上の方向即ち該法線から45度程度以内の方向を意味する。
図2及び図3において、第1の給電点21から第2の給電点27の方向の距離をxとし、xの正方向へ伝播する電圧波をW11(x,t)、xの負方向へ伝播する電圧波、即ち第2の給電点27から第1の給電点21の方向へ伝播する電圧波をW21(x,t)とすると、次のように表現される。
W11(x、t)=V1・sin(ωt+2πx/λ)
W21(x、t)=V1・sin{ωt−2π(x−L0)/λ+Δθ}
ただし、V1は電圧波の振幅、ωは電圧の角周波数、λは電圧波の波長、tは時間、L0は第1及び第2の給電点の間隔、Δθは第1の給電点21から供給される電力の電圧波と第2の給電点27から供給される電力の電圧波の位相差である。この2つの電圧波の合成波W1(x、t)は次式のようになる。
W1(x、t)=W11(x、t)+W21(x、t)
=2・V1cos{2π(x−L0/2)/λ−Δθ/2}・sin{ωt+(πL0/λ+Δθ/2)
上記合成波W1(x、t)を概念的に図4に示す。図4において、Δθ=0の場合、生成されるプラズマの強さは給電点間の中央部(x=L0/2)が強く、該中央部から離れるにしたがって弱くなることを示している。Δθ>0の場合、プラズマの強い部分が一方の給電点側へ移動し、Δθ<0の場合、他方の給電点側へ移動することを示している。
なお、ここでは、前記第1及び第2の給電点21、27に供給される電力の電圧波を、それぞれ、W11(x、t)及びW21(x、t)と呼ぶ。また、その2つの電圧波の合成波を第1の定在波W1(x、t)と呼ぶ。
ところで、一対の電極間の電力の強さは、電圧の第1の定在波W1(x、t)の振幅値の二乗に比例する。即ち、電力の強さI1(x、t)は、
I1(x、t)∝cos{2π(x−L0/2)/λ−Δθ/2}
と表される。このI1(x、t)を概念的に、図5に示す。
図5は、VHFプラズマの生成において、一様な強さのプラズマを得ることは困難であることを示している。一対の電極間でのプラズマの一様性は、例えば強さが0.9〜1.0の範囲であるすると、電力伝播方向の距離で、−0.05〜+0.05λの範囲(即ち、膜厚が均一な範囲は長さ0.1λ)に限られるということを示している。
ただし、その波長λは、真空中での電磁波の波長ではなく、上記製膜条件での波長λであり、真空中での電磁波の波長λに比べて短くなる。一般的にはSiH4ガスのプラズマでは、プラズマ中での波長λと真空中での波長λとの比λ/λは0.5〜0.9程度である。
また、前記第1の予備製膜工程にて取得した基板の中央点から正弦的な膜厚分布の最大厚みの位置までの距離と前記第1及び第2の給電点21、27に供給される電力の電圧の位相差の関係を示すデータにより、膜厚分布の最大厚みの位置を例えば、基板の中央点から波長λの八分の一、即ちλ/8だけ離れた位置に設定することができる。
次に、第2の予備製膜工程であるが、前記第1の予備製膜工程と同様に、図29及び図2において、予め、基板11を第2の電極4の上に設置し、図示しない真空ポンプ10を稼動させ、真空容器1内の不純物ガス等を除去した後、図示しない放電ガス供給管8からSiH4ガスを、例えば250sccm、圧力0.5Torr(66.5Pa)で供給しつつ、基板温度は80〜350℃の範囲、例えば180℃に保持する。
次に、高周波電力供給装置の一部を用いて一対の電極2、4に高周波電力を供給する。
即ち、2出力のパルス発信器80のパルス電圧で制御される第2のゲート回路装置75でパルス変調された高周波発信器70の正弦波出力を第3の分配器73で2分配する。なお、該高周波発信器70の正弦波出力の周波数は、前記第1の予備製膜工程と同じ周波数、例えば、周波数を60MHzである。また、前記パルス変調された超高周波発信器70の正弦波出力のパルス幅Hw及びパルス周期T0は、前記第1の予備製膜工程と同じ、例えば、パルス幅Hw=400μ秒、パルス周期T0=1m秒と設定されるが、パルスの立ち上がり時刻は半周期遅れに設定する。
該第3の分配器73で2分配された一方の信号を第3の電力増幅器29で増幅し、例えば電力200Wとし、該電力を第3のインピーダンス整合器30、第3の電流導入端子36及び第3の真空用同軸ケーブル31の芯線32を介して、第1の給電点21に供給する。
該第3の分配器72で2分配された他方の信号を第2の位相シフター77を介して第4の電力増幅器34で増幅し、例えば電力200Wとし、該電力を第4のインピーダンス整合器35、第4の電流導入端子36及び第4の真空用同軸ケーブル37の芯線38を介して、第2の給電点27に供給する。この場合、該第1及び第2の給電点21、27に供給される電力の電圧の位相差は、該第3のインピーダンス整合器30の出力の電圧及び該第4のインピーダンス整合器35の出力の電圧の位相差を測定し、制御する第2の位相差検出器79及び第2の位相シフター77から成る第2の位相制御系で制御され、任意の位相差を設定可能で、例えば該位相差を零度に設定する。
第1の給電点21に供給されるパルス変調された電力の波形を、概念的に、図11及び図12に、W12(t)として示す。また、第2の給電点27に供給されるパルス変調された電力の波形を、概念的に、図11及び図12に、W22(t)として示す。
この場合、前記第3のインピーダンス整合器30及び第4のインピーダンス整合器35を調整することにより、それぞれのインピーダンス整合器30、35の上流側に上記供給電力の反射波が戻らないようにすることができる。
その結果、前記SiH4ガスのプラズマが生成され、基板11に例えばアモルファスSiが堆積する。
前記要領で、製膜時間を例えば10〜20分間にして、前記基板11にアモルファスSi膜を形成させる。製膜後、真空容器1から前記基板11を取り出して、該アモルファスSi膜の膜厚み分布を評価する。基板11に堆積された例えばアモルファスSiの膜厚分布は、前述のように、VHFプラズマ固有の現象である定在波の発生により、正弦的な分布となる。このような、製膜試験を第1及び第2の給電点に供給される電力の電圧の位相差をパラメータに繰り返し実施する。
そして、第1の電極2の長さ方向において、基板11の中央点から正弦的な膜厚分布の最大厚みの位置までの距離と該位相差の関係をデータとして把握する。例えば、基板11の中央点から第1の給電点27の方向へ波長λの八分の一、即ちλ/8だけ離れた位置に設定するための位相差は、例えばΔθ2であるいうことが把握される。
なお、ここで実施する正弦的な厚み分布の最大の位置と第1の位相可変2出力の発信器15aの出力電圧の位相差との関係の把握の方法は、上記膜の厚み分布の測定を応用する方法に限定されず、例えば、生成されるプラズマの発光強度の電磁波伝播方向における空間的分布を光センサーで測定し、その最大強度の位置と該位相差の関係として把握する方法を用いても良い。
ただし、その波長λは、真空中での電磁波の波長ではなく、上記製膜条件での波長λであり、真空中での電磁波の波長λに比べて短くなる。一般的にはSiH4ガスのプラズマでは、プラズマ中での波長λと真空中での波長λとの比λ/λは0.5〜0.9程度である。
第2の予備製膜工程において、上記第1及び第2の給電点21及び27から供給されるパルス変調された電力の電圧波は、同一電源から発振され、互いに電極間を伝播していくので、すなわち、基板11の表面の法線方向と実質的に同じ方向の電界を有する2つの電磁波が、第1の電極2と第2の電極4の間に生成され、両者は互いに向かい合った方向から伝播しあって重なり合うので、干渉現象が発生する。その様子を、図2〜図4を用いて説明する。
なお、上記基板11の表面の法線方向と実質的に同じ方向とは、余弦の値が0.7以上の方向即ち該法線から45度程度以内の方向を意味する。
図2及び図3において、第1の給電点21から第2の給電点27の方向の距離をxとし、xの正方向へ伝播する電圧波をW12(x,t)、xの負方向へ伝播する電圧波、即ち第2の給電点27から第1の給電点21の方向へ伝播する電圧波をW22(x,t)とすると、次のように表現される。
W12(x、t)=V2・sin(ωt+2πx/λ)
W22(x、t)=V2・sin{ωt−2π(x−L0)/λ+Δθ}
ただし、V2は電圧波の振幅、ωは電圧の角周波数、λは電圧波の波長、tは時間、L0は第1及び第2の給電点の間隔、Δθは第1の給電点21から供給される電力の電圧波と第2の給電点27から供給される電力の電圧波の位相差である。電圧の合成波W2(x、t)は次式のようになる。
W2(x、t)=W12(x、t)+W22(x、t)
=2・V2cos{2π(x−L0/2)/λ−Δθ/2}・sin{ωt+(πL0/λ+Δθ/2)
上記合成波W2(x、t)を概念的に図4に示す。図4において、Δθ=0の場合、生成されるプラズマの強さは給電点間の中央部(x=L0/2)が強く、該中央部から離れるにしたがって弱くなることを示している。Δθ>0の場合、プラズマの強い部分が一方の給電点側へ移動し、Δθ<0の場合、他方の給電点側へ移動することを示している。
なお、ここでは、前記第1及び第2の給電点21、27に供給される電力の電圧波を、それぞれ、W12(x、t)及びW22(x、t)と呼ぶ。また、その2つの波の合成波を第2の定在波W2(x、t)と呼ぶ。
ところで、一対の電極間の電力の強さは、電圧の合成波W2(x、t)の振幅値の二乗に比例する。即ち、電力の強さI2(x、t)は、
I2(x、t)∝cos{2π(x−L0/2)/λ−Δθ/2}
と表される。このI2(x、t)を概念的に、図5に示す。
図5は、VHFプラズマの生成において、一様な強さのプラズマを得ることは困難であることを示している。一対の電極間でのプラズマの一様性は、例えば強さが0.9〜1.0の範囲であるすると、電力伝播方向の距離で、−0.05〜+0.05λの範囲(即ち、膜厚が均一な範囲は長さ0.1λ)に限られるということを示している。
ただし、その波長λは、真空中での電磁波の波長ではなく、上記製膜条件での波長λであり、真空中での電磁波の波長λに比べて短くなる。一般的にはSiH4ガスのプラズマでは、プラズマ中での波長λと真空中での波長λとの比λ/λは0.5〜0.9程度である。
さて、前記第1および第2の予備製膜工程の結果を受けて、本製膜工程に入る。先ず、図29において、予め、基板11を第2の電極4の上に設置し、図示しない真空ポンプ10を稼動させ、真空容器1内の不純物ガス等を除去した後、放電ガス供給管8からSiH4ガスを、例えば300sccm、圧力0.5Torr(66.5Pa)で供給しつつ、基板温度は80〜350℃の範囲、例えば180℃に保持する。
次に、高周波電力供給装置を用いて一対の電極2、4に高周波電力を供給する。
前記高周波発信器70の出力の周波数を、例えば60MHzに設定し、第1の給電点21及び第2の給電点に供給される前記電力W11(t)、W21(t)のパルス幅Hw及び周期T0を例えばHw=400μ秒及びT0=1m秒に設定し、前記電力W12(t)、W22(t)のパルス幅Hw及び周期T0を例えばHw=400μ秒及びT0=1m秒で、かつ、前記W11(t)及びW21(t)のパルス変調のパルス立ち上がり時間より半周期、即ちT0/2遅れた時刻に立ち上がるように設定する。そして、前記第1の位相差検出器78及び第1の位相シフター76から成る第1の位相制御系で制御する第1及び第2の給電点に供給の電力の電圧の位相差を前記第1の予備製膜工程のデータとして把握したΔθ1に設定し、前記第2の位相差検出器79及び第2の位相シフター77から成る第2の位相制御系で制御する第1及び第2の給電点に供給の電力の電圧の位相差を前記第2の予備製膜工程のデータとして把握したΔθ2に設定する。
第1、第2、第3及び第4の増幅器16、22、29、34の出力は、例えばそれぞれ、200Wに設定する。即ち、前記第1及び第2の給電点21,27に、電力200Wの電圧波W11(x、t)、電力200Wの電圧波W21(x、t)、電力200WのW12(x、t)及び電力200WのW22(x、t)が供給される。
ここで、第1の予備製膜工程及び第2の予備製膜工程でそれぞれ設定した上記パルス幅Hwと周期T0の値を、例えば、Hw=400μ秒を1m秒などへ、T0=1m秒を5m秒などへ変更して、いくつかの製膜データを比較することができる。
一対の電極2、4間に4つの電圧波が供給されると、前述のように、W11(x、t)とW21(x、t)は干渉して第1の定在波W1(x、t)を形成し、W12(x、t)とW22(x、t)は干渉して第2の定在波W2(x、t)を形成する。ただし、W11(x、t)は、W12(x、t)及びW22(x、t)とは、時間的に分離されているので干渉しない。また、同様に、W21(x、t)は、W12(x、t)及びW22(x、t)と干渉しない。
したがって、上記パルス変調の周期T0より大幅に長い数秒以上の一般的な製膜時間で考えれば、一対の電極2、4間に生成される電力の強さの分布は、第1の定在波W1(x、t)の強さの分布I1(x、t)と第2の定在波W2(x、t)の強さの分布I2(x、t)が重畳した形となる。その様子を概念的に図6に示す。
ここで、基板の中央点をx軸の原点とし、該原点から第1の給電点21を向いた方向を正の方向とすると、第1の定在波W1(x、t)の強さの分布I1(x、t)は、
I1(x、t)∝cos{2πx/λ+2π(λ/8)/λ}
=cos{2πx/λ+π/4}
第2の定在波W2(x、t)の強さの分布I2(x、t)は、
I2(x、t)∝cos{2πx/λ−2π(λ/8)/λ}
=cos{2πx/λ−π/4}
一対の電極2、4間に生成される電力の強さの分布I(x、t)は、
I(x、t)
=cos{2πx/λ+π/4}+cos{2πx/λ−π/4}
=1
この結果は、発振周波数がVHF帯域ないしUHF帯域に属する高周波電源の出力の電力を用いて生成されたプラズマを利用して真空容器に配置された基板の表面を処理する表面処理装置に用いられる高周波プラズマ発生装置において、前記基板の表面の法線方向と実質的に同じ方向の電界を有する電磁波の定在波の腹の位置が異なる第1の定在波と第2の定在波を発生させ、かつ、該第1及び第2の定在波を重畳させる手段を備えることにより、プラズマの一様化に不可欠な電極間の電力の強さの分布の制御が可能であるとの意味がある。
さらに、上記第1及び第2の定在波のそれぞれの腹の位置の間の距離が、使用する電磁波のプラズマ中の波長λの0.25倍、即ち0.25λであれば、一対の電極2、4間に生成される電力の強さの分布I(x、t)は、電力の伝播方向の位置に依存しないで一定の値であり、均一であるということを示している。このことは、UHFプラズマ及びUHFプラズマの応用分野においての重要課題である大面積・均一のプラズマ処理化を実現可能な装置の提供ができるという意味で画期的発見であるということを意味している。
また、上記第1及び第2の定在波のそれぞれの腹の位置の間の距離が、使用する電磁波のプラズマ中の波長λの0.22〜0.28倍、即ち0.22〜0.28λであれば、一対の電極2、4間に生成される電力の強さの分布I(x、t)は、±20%以下であることを示している。
また、上記第1及び第2の定在波のそれぞれの腹の位置の間の距離が、使用する電磁波のプラズマ中の波長λの0.238〜0.263倍、即ち0.238〜0.263λであれば、一対の電極2、4間に生成される電力の強さの分布I(x、t)は、±10%以下であることを示している。
上記工程において、SiH4ガスがプラズマ化されると、そのプラズマ中に存在するSiH3、SiH2、SiH等のラジカルが拡散現象により拡散し、基板11の表面に吸着されることによりa−Si膜が堆積するが、一対の電極2、4間の電力の分布が、上述の通り、時間平均的に一様であるので、その堆積膜は一様になる。
このことは、本発明の装置及び方法では、波長λの二分の一を越えるサイズの基板を対象にした場合においても、一様な膜厚分布の形成が可能であることを示している。即ち、従来のVHFプラズマ表面処理装置及び方法では不可能視されている波長λの二分の一を越えるサイズの基板を対象にした場合でも、本発明は一様な膜厚分布の形成が実現可能であるということを意味している。
したがって、上記のことはVHFプラズマの応用分野においては画期的な発見であり、その実用価値は著しく大きいものがある。
なお、微結晶Siあるいは薄膜多結晶Si等は、製膜条件の中のSiH4,H2の流量比、圧力および電力を適正化することで製膜できることは公知の技術である。
また、エッチングへの応用では、放電ガスとして、NF3、SF6、CF4、CHF3及びC4F4等を用いることで、可能であることは公知の技術である。
本実施例では、第1及び第2の電極2、4がサイズ1400mmx200mm程度であるので、基板サイズは1200mmx200mm程度に制約されるが、第1の電極2の幅及び給電点の個数を増加すれば、基板サイズの幅は拡大可能であることは当然のことである。
また、本実施例では、電源周波数は60MHzの場合のみについて説明したが、上記高周波電力供給装置の構成部材は、周波数10MHz〜300MHz(VHF帯域)において、電力の伝送及び制御において、問題はないことは当然のことである。また、周波数300MHz〜3GHz(UHF帯域)においても、伝送損失はあるが実用に供せられるものである。
また、本実施例では、第1の電極2の形状を矩形の場合のみについて説明したが、その形状は矩形以外、例えば棒状導体をU字状にしたもの及びW字状にしたものを用い、該電極の両端に第1及び第2の給電点21、27を配置することが容易に考えられる。
また、基板の形状が円筒形の場合への応用では、電極形状を円筒形にして該円筒形電極の端面に第1及び第2の給電点21、27を配置することが容易に考えられる。
a−Si太陽電池、薄膜トランジスタおよび感光ドラム等の製造では、膜厚分布として±10%以内であれば性能上問題はない。
上記実施例によれば、60MHzの電源周波数を用いても、従来の装置および方法では不可能であった該一対の電極2、4間の電力の強さの分布I(x、t)の均一化が可能である。即ち、膜厚分布として±10%以内を実現可能である。このことは、a−Si太陽電池、薄膜トランジスタおよび感光ドラム等の製造分野での生産性向上および低コスト化に係わる工業的価値が著しく大きいことを意
味している。
ここで、本実施例の装置の構成部材の一つである図2図示の構造の一対の電極2、4を、図7図示の一対の電極2、4、即ち、1個の帯板状電極2と平板電極4から成る一対の電極に代えたプラズマ表面処理装置を用いることにより、本実施例と同様のプラズマ処理を行うことができることを付記しておく。
この場合は、図2の棒状電極2と平板電極4から成る一対の電極で生成されるプラズマに比べ、電磁波の伝播方向に対して直角方向へ広がりの有るプラズマの生成が容易に可能というメリットがある。
また、本実施例の装置の構成部材の一つである図2図示の構造の一対の電極2、4を、図8図示の構造の一対の電極2、4、即ち、1個の帯板状電極2と平板電極4から成る一対の電極に代えたプラズマ表面処理装置を用いることにより、本実施例と同様のプラズマ処理を行うことができることを付記しておく。なお、図8図示の第1の給電点21aと第2の給電点27aを結ぶ線分と第3の給電点21bと第4の給電点27bを結ぶ線分は平行であることが必要であることは当然である。
この場合は、図2図示の棒状電極2と平板電極4から成る一対の電極で生成されるプラズマに比べ、電磁波の伝播方向に対して直角方向へ広がりの有るプラズマの生成が容易に可能というメリットがあることに加えて、給電点に供給される電力を分散させることが可能であるというメリットがある。即ち、大電力を必要とするプラズマ処理の応用に対応が可能という特徴がある。
また、本実施例の装置の構成部材の一つである図2図示の構造の一対の電極2、4を、図9図示の構造の棒状電極2a、2bに代えたプラズマ表面処理装置を用いることにより、本実施例と同様のプラズマ処理を行うことができることを付記しておく。
なお、図9図示の第1の棒状電極2aと第2の棒状電極2bは平行に設置されることが必要である。
この場合は、図2図示の棒状電極2と平板電極4から成る一対の電極で生成されるプラズマに比べ、給電点に供給される電力を分散させることが可能であるというメリットがある。即ち、大電力を必要とするプラズマ処理の応用に対応が可能という特徴がある。
実施例1に係わる高周波プラズマ発生装置と該高周波プラズマ発生装置により構成のプラズマ表面処理装置(プラズマCVD装置)の全体を示す概略図。 図1図示のプラズマ表面処理装置の構成部材の一つである一対の電極とその給電部に係る構成の基本型を示す説明図。 一対の電極間を伝播する電磁波を示す説明図。 一対の電極間に発生の電圧の定在波の腹の位置を示す説明図。 一対の電極間に発生の定在波の強さ(振幅の2乗の値)を示す説明図。 一対の電極間に発生の2つの定在波の強さを示す説明図。 図1図示のプラズマ表面処理装置の構成部材の一つである一対の電極とその給電部に係わる構成の第1の応用型を示す説明図。 図1図示のプラズマ表面処理装置の構成部材の一つである一対の電極とその給電部に係わる構成の第2の応用型を示す説明図。 図1図示のプラズマ表面処理装置の構成部材の一つである一対の電極とその給電部に係わる構成の第3の応用型を示す説明図。 実施例2に係わる高周波プラズマ発生装置と該高周波プラズマ発生装置により構成のプラズマ表面処理装置(プラズマCVD装置)の全体を示す概略図。 第1及び第2のパルス変調方式位相可変2出力発信器から出力されるパルス変調された出力の典型例を示す説明図。 第1及び第2のパルス変調方式位相可変2出力発信器から出力されるパルス変調された正弦波信号の典型例を示す説明図。 実施例3に係わる高周波プラズマ発生装置と該高周波プラズマ発生装置により構成のプラズマ表面処理装置(プラズマCVD装置)の全体を示す概略図。 図13図示の装置に用いられる第1の電力供給系の配線図。 図13図示の装置に用いられる第2の電力供給系の配線図。 図13図示の装置に用いられる矩形導体板から成る一対の電極とその給電部に係わる構成を示す説明図。 実施例4に係わる高周波プラズマ発生装置と該高周波プラズマ発生装置により構成のプラズマ表面処理装置(プラズマCVD装置)の全体を示す概略図。 図17図示のプラズマ表面処理装置の真空容器内部の断面図。 図17図示の装置の構成部材として用いられる一対の電極とその給電部に係わる構成の第1の応用型を示す説明図。 図17図示の装置の構成部材として用いられる一対の電極とその給電部に係わる構成の第2の応用型を示す説明図。 図17図示の装置の構成部材として用いられる一対の電極とその給電部に係わる構成の第3の応用型を示す説明図。 実施例5に係わるプラズマ発生装置と該プラズマ発生装置により構成のプラズマ表面処理装置(プラズマCVD装置)の全体を示す概略図。 図22図示のプラズマ表面処理装置の電力供給系配線図を示す説明図。 実施例6に係わる高周波プラズマ発生装置と該高周波プラズマ発生装置により構成のプラズマ表面処理装置(プラズマCVD装置)の全体を示す概略図。 実施例7に係わる高周波プラズマ発生装置と該高周波プラズマ発生装置により構成のプラズマ表面処理装置(プラズマCVD装置)の全体を示す概略図。 実施例8に係わる高周波プラズマ発生装置と該高周波プラズマ発生装置により構成のプラズマ表面処理装置(プラズマCVD装置)の全体を示す概略図。 図26図示の装置の構成部材として用いられる一対の電極とその給電部に係わる構成の応用型を示す説明図。 実施例9に係わる高周波プラズマ発生装置と該高周波プラズマ発生装置により構成のプラズマ表面処理装置(プラズマCVD装置)の全体を示す概略図。 実施例10に係わる高周波プラズマ発生装置と該高周波プラズマ発生装置により構成のプラズマ表面処理装置(プラズマCVD装置)の全体を示す概略図。
符号の説明
1...真空容器、
2...第1の電極、
3...図示しない基板ヒータ、
4...第2の電極、
5...絶縁物支持材、
6...ガス混合箱、
7...整流孔、
8...放電ガス供給管、
9...排気管、
10...図示しない真空ポンプ、
11...基板、
12...図示しないゲートバルブ、
15...第1のパルス変調方式位相可変2出力発信器、
16...第1の電力増幅器、
17...第1のインピーダンス整合器、
18...第1の電流導入端子、
19...第1の真空用同軸ケーブル、
20...第1の真空用同軸ケーブルの芯線、
21...第1の給電点、
22...第2の電力増幅器、
23...第2のインピーダンス整合器、
24...第2の電流導入端子、
25...第2の真空用同軸ケーブル、
26...第2の真空用同軸ケーブルの芯線、
27...第2の給電点、
100...同期信号伝送ケーブル、
28...第2のパルス変調方式位相可変2出力発信器、
29...第3の電力増幅器、
30...第3のインピーダンス整合器、
31...第3の電流導入端子、
32...第3の真空用同軸ケーブル、
33...第3の真空用同軸ケーブルの芯線、
34...第4の電力増幅器、
35...第4のインピーダンス整合器、
36...第4の電流導入端子、
37...第4の真空用同軸ケーブル、
38...第4の真空用同軸ケーブルの芯線。

Claims (4)

  1. 真空容器と、該真空容器内のガスを排気する排気系と、該真空容器内に放電用ガスを供給する放電用ガス供給系と、該放電用ガスをプラズマ化する一対の電極と、該一対の電極に周波数がVHF帯域ないしUHF帯域に属する高周波電力を供給する高周波電力供給系と、基板が設置される基板支持台とを具備し、生成したプラズマを利用して基板の表面を処理するプラズマ表面処理装置に用いられる高周波プラズマ発生装置であって、前記一対の電極には、互いに独立の関係にある第1及び第2の定在波を重畳して発生させ、且つ、該第1の定在波の腹の位置と該第2の定在波の腹の位置の距離を該一対の電極間に生成のプラズマ内部を伝播する電磁波の波長の四分の一に設定する高周波電力供給系が接続されていることを特徴とする高周波プラズマ発生装置。
  2. 真空容器と、該真空容器内のガスを排気する排気系と、該真空容器内に放電用ガスを供給する放電用ガス供給系と、該放電用ガスをプラズマ化する一対の電極と、該一対の電極に周波数がVHF帯域ないしUHF帯域に属する高周波電力を供給する高周波電力供給系と、基板が設置される基板支持台とを具備し、生成したプラズマを利用して基板の表面を処理するプラズマ表面処理装置に用いられる高周波プラズマ発生装置であって、前記一対の電極には、互いに独立の関係にある第1及び第2の定在波を重畳して発生させ、且つ、該第1の定在波の腹の位置と該第2の定在波の腹の位置の距離を該一対の電極間に生成のプラズマ内部を伝播する電磁波の波長λの0.22〜0.28倍、即ち0.22〜0.28λに設定する高周波電力供給系が接続されていることを特徴とする高周波プラズマ発生装置。
  3. 真空容器と、該真空容器内のガスを排気する排気系と、該真空容器内に放電用ガスを供給する放電用ガス供給系と、該放電用ガスをプラズマ化する一対の電極と、該一対の電極に周波数がVHF帯域ないしUHF帯域に属する高周波電力を供給する高周波電力供給系と、基板が設置される基板支持台とを具備し、生成したプラズマを利用して基板の表面を処理するプラズマ表面処理装置において、前記プラズマ表面処理装置を構成する高周波プラズマ発生装置として、請求項1あるいは2のいずれか1項に記載の高周波プラズマ発生装置が用いられることを特徴とするプラズマ表面処理装置。
  4. 真空容器と、該真空容器内のガスを排気する排気系と、該真空容器内に放電用ガスを供給する放電用ガス供給系と、該放電用ガスをプラズマ化する一対の電極と、該一対の電極に周波数がVHF帯域ないしUHF帯域に属する高周波電力を供給する高周波電力供給系と、基板が設置される基板支持台とを具備し、生成したプラズマを利用して基板の表面を処理するプラズマ表面処理装置を用いて、基板の表面を処理するプラズマ表面処理方法において、請求項1あるいは2のいずれか1項に記載の高周波プラズマ発生装置を用いて、前記基板の表面処理を行うことを特徴とするプラズマ表面処理方法。
JP2008177536A 2008-07-08 2008-07-08 高周波プラズマ発生装置と、該高周波プラズマ発生装置により構成された表面処理装置及び表面処理方法 Expired - Fee Related JP4264962B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008177536A JP4264962B2 (ja) 2008-07-08 2008-07-08 高周波プラズマ発生装置と、該高周波プラズマ発生装置により構成された表面処理装置及び表面処理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008177536A JP4264962B2 (ja) 2008-07-08 2008-07-08 高周波プラズマ発生装置と、該高周波プラズマ発生装置により構成された表面処理装置及び表面処理方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005016444A Division JP4207131B2 (ja) 2005-01-25 2005-01-25 高周波プラズマ発生装置及び表面処理方法

Publications (2)

Publication Number Publication Date
JP2008311669A JP2008311669A (ja) 2008-12-25
JP4264962B2 true JP4264962B2 (ja) 2009-05-20

Family

ID=40238929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008177536A Expired - Fee Related JP4264962B2 (ja) 2008-07-08 2008-07-08 高周波プラズマ発生装置と、該高周波プラズマ発生装置により構成された表面処理装置及び表面処理方法

Country Status (1)

Country Link
JP (1) JP4264962B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022048825A (ja) * 2020-09-15 2022-03-28 東京エレクトロン株式会社 プラズマ処理装置及び半導体デバイスの製造方法
WO2024154459A1 (ja) * 2023-01-17 2024-07-25 富士フイルム株式会社 給電方法およびプラズマ生成装置

Also Published As

Publication number Publication date
JP2008311669A (ja) 2008-12-25

Similar Documents

Publication Publication Date Title
KR100449370B1 (ko) 방전전극으로의 급전방법, 고주파 플라즈마 생성방법 및 반도체 제조방법
WO2010024128A1 (ja) プラズマ表面処理方法及びプラズマ表面処理装置
JP3377773B2 (ja) 放電電極への給電方法、高周波プラズマ発生方法および半導体製造方法
JP2006332704A (ja) プラズマ表面処理方法及びプラズマ表面処理装置
WO2010013624A1 (ja) 電流導入端子と、該電流導入端子を備えたプラズマ表面処理装置及びプラズマ表面処理方法
RU2507628C2 (ru) Устройство для плазменной обработки больших площадей
US20050067934A1 (en) Discharge apparatus, plasma processing method and solar cell
JP2006228933A (ja) 高周波プラズマ発生装置と、該高周波プラズマ発生装置により構成された表面処理装置及び表面処理方法
JP4022670B2 (ja) 超高周波プラズマ発生用電極と、該電極により構成されたプラズマ表面処理装置及びプラズマ表面処理方法
JP4264962B2 (ja) 高周波プラズマ発生装置と、該高周波プラズマ発生装置により構成された表面処理装置及び表面処理方法
JP4207131B2 (ja) 高周波プラズマ発生装置及び表面処理方法
US20130285551A1 (en) Method for Improving Uniformity of High-Frequency Plasma Discharge by Means of Frequency Modulation
JP2007103970A (ja) 電極への電力供給方法、該電力供給方法を用いたプラズマ表面処理方法及びプラズマ表面処理装置
JP3575011B1 (ja) プラズマ表面処理装置およびプラズマ表面処理方法
JP3143649U (ja) スロット電極
JP2006332709A (ja) 電極への電力供給方法、該電力供給方法を用いたプラズマ表面処理方法及びプラズマ表面処理装置
JP2006221887A (ja) 高周波プラズマ発生装置と、該高周波プラズマ発生装置により構成された表面処理装置及び表面処理方法
JP4026181B2 (ja) 高周波プラズマ発生用電極と、該電極により構成されたプラズマ表面処理装置およびプラズマ表面処理方法
JP4120831B2 (ja) 高周波電力供給装置、該高周波電力供給装置により構成されたプラズマ表面処理装置及びプラズマ表面処理方法
JP2022136227A (ja) プラズマcvd装置
JP3590955B2 (ja) 平衡伝送回路と、該平衡伝送回路により構成されたプラズマ表面処理装置およびプラズマ表面処理方法
JP3416622B2 (ja) 表面処理装置及び表面処理方法
JP2005303257A (ja) 高周波プラズマ生成用平衡不平衡変換装置と、該平衡不平衡変換装置により構成されたプラズマ表面処理装置およびプラズマ表面処理方法
US20100006142A1 (en) Deposition apparatus for improving the uniformity of material processed over a substrate and method of using the apparatus
JP2005123203A5 (ja)

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20080910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090207

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150227

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees