JP4264156B2 - Pirani vacuum gauge - Google Patents

Pirani vacuum gauge Download PDF

Info

Publication number
JP4264156B2
JP4264156B2 JP05381599A JP5381599A JP4264156B2 JP 4264156 B2 JP4264156 B2 JP 4264156B2 JP 05381599 A JP05381599 A JP 05381599A JP 5381599 A JP5381599 A JP 5381599A JP 4264156 B2 JP4264156 B2 JP 4264156B2
Authority
JP
Japan
Prior art keywords
filament
pirani
plate
vacuum gauge
envelope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05381599A
Other languages
Japanese (ja)
Other versions
JP2000249617A (en
Inventor
一兵 宋
望 高木
浩二 柳下
静雄 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP05381599A priority Critical patent/JP4264156B2/en
Publication of JP2000249617A publication Critical patent/JP2000249617A/en
Application granted granted Critical
Publication of JP4264156B2 publication Critical patent/JP4264156B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Fluid Pressure (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、真空計測に使用するピラニ真空計に関する。
【0002】
【従来の技術】
ピラニ真空計は、加熱された白金などのフィラメントの電気抵抗が温度によって変化することを利用した熱伝導型の真空計として知られており、例えば図1に示したような、1本のフィラメントgを収めた真空と大気を遮断する金属筒などのエンベロープaの一端を、気密に該エンベロープaに溶接された外周の金属製の円筒bとその内部のセラミックス又はガラス等の電気絶縁部材cとからなる端子dで塞ぎ、該電気絶縁部材cを挿通して3本の電気接続ピンeをロー付けで埋設し、そのうちの2本の電気接続ピンe、eにエンベロープaの内部へ延びるU字型の金属棒fを溶接した構成のものが知られている。該フィラメントgは、その両端を該ピンeの1本と該U字型の金属棒fに溶接して張設されている。hはエンベロープaに気密に溶接したフランジで、図示してない真空装置に取り付けられ、該フィラメントgにつながる2本のピンeを、図示してないコネクターによってピラニ真空計のコントローラに接続することによって該真空装置の圧力が測定される。
【0003】
また、図2乃至図5に示す構成のピラニ真空計も知られており、これらの図では、エンベロープ及びフランジの記載が省略した。図2及び図3のものでは、4本の電気接続ピンeが気密にロー付けされており、そのうちの2本にはU字型の金属棒fが溶接され、他の2本のピンe、eと該金属棒fの間に2本のフィラメント部材g’、g’からなるフィラメントgが張られており、4点でフィラメントgが溶接固定される。
【0004】
図4及び図5に示したものは、3本の電気接続ピンeがロー付けされており、そのうちの1本のピンの先端に金属製の円盤iが溶接され、他の2本のピンeと該円盤iとの間に2本のフィラメント部材g’、g’からなるフィラメントgが張り渡されたもので、この場合も4点でフィラメントが固定される。
【0005】
図2乃至図5に示した構成のものは、フィラメントgが1往復しており、往復させることにより真空計の長さを短縮でき真空計を小型化する上で効果がある。2往復以上にすればより小型化できるが、その小型化の効果が僅かであるし、2往復以上したものは、フィラメントの全長の固体間のバラツキを小さく押さえることが困難になるため、実施されていない。
【0006】
また、フィラメントgは、図6、図7のように、金属棒f或いはピンeに点溶接により溶接するのが一般であり、金属棒f等は下側の電極jの上に載せ、更にその上にフィラメントgを載せ、上側の電極kを下降させて金属棒fとフィラメントgを挟み込み、通電してこれら金属棒fとフィラメントgを溶接する。あるいは、図8、図9のような形状の電極j、kを使用している。点溶接の場合、溶接を容易にするため、金属棒f等とフィラメントgの間に白金の薄膜等を挟んで溶接することもある。
【0007】
ピラニ真空計は、真空中の気体分子と加熱されたフィラメントgの間の熱伝達を利用した真空計で、該フィラメントgは、通常、室温より100℃以上の温度に加熱される。フィラメントgが失う熱は、▲1▼真空中の気体分子が衝突して奪われる熱、▲2▼フィラメントの熱輻射によりエンベロープに奪われる熱、▲3▼フィラメントの終端から熱伝導によりフィラメントサポート電極に奪われる熱、の3種がある。圧力が変化して気体分子と加熱されたフィラメントの間の熱伝達量が変化してもフィラメントの温度が一定になるように制御してやれば、前記▲2▼▲3▼の熱輻射、熱伝達の量は一定になる。しかるに、圧力が変化して気体分子と加熱されたフィラメントgの間の熱伝達量が変化したときにフィラメント温度が一定になるように制御すると、フィラメントgに加える電力(或いは電圧)が変化することになる。例えば、圧力が高くなると、気体分子と加熱されたフィラメントの間の熱伝達量が増えて、フィラメントgに加える電力(或いは電圧)が増える。逆に圧力が低くなると、気体分子と加熱されたフィラメントの間の熱伝達量が減って、フィラメントに加える電力(或いは電圧)が減る。この増減する電力(或いは電圧)を圧力に換算することにより、圧力を計測することができる。
【0008】
【発明が解決しようとする課題】
従来のピラニ真空計の立ち上がり及び立ち下がりの応答特性は、図23、図24の曲線A、Bの如くであり、隔膜真空計の応答特性を曲線C、Dで併記した。これらの応答性は、環境温度25℃、窒素を試験ガスとして、1.3×10-3〜26.7Paの範囲で調べたもので、ガスの導入及び排気にはバタフライバルブを用いてその開閉によって真空計が取り付けられた空間の圧力を急激に変え、真空計の出力信号の応答を調べた。出力が95%まで変化したときの経過時間を応答時間とすれば、真空計の応答は立ち上がり時間で約0.6秒、立ち下がりで約2.5秒となる。
【0009】
例えば、半導体プロセスにおいては、真空計の圧力をモニターしてプロセスガスの導入バルブなどプロセス制御を行っているが、隔膜真空計に比べて経時劣化が発生せず100℃以上の高温に耐えられ測定範囲の広いという利点のあるピラニ真空計が使用され難いのは、応答性が遅いことが原因の一つである。例えば、半導体装置にガスを導入しつつ排気するとき、装置内の圧力を一定に保つように真空計出力の応答が遅れれば、バルブの開閉度の制御が遅れて、装置内の圧力を一定に保てず、変動が起こるので好ましくない。
【0010】
フィラメントgの直径は、通常、数十ミクロン程度であるから、切れ易く取り扱いが難しい。また、フィラメントgを複数本のフィラメント部材g’で構成した場合は、その全長(合計長さ)の個体差をなくさなければ、各ピラニ真空計の測定にバラツキが生じる。該ピンeは端子を構成するセラミックスやガラスの絶縁物中に固定されるので取付位置に誤差が生じやすく、ピンeの製作精度も良くないので金属棒の取付精度を期待することができず、フィラメントgの全長にバラツキのない正確な組立は困難である。フィラメントの溶接は、端子dを手で持ち或いは機械に固定して点溶接機の電極間にセットして行われるが、端子dを3次元に移動させたり旋回させる複雑な作動を伴うので、溶接作業が難しく、フィラメント部材の数が増えると更に困難になる。点溶接作業が難しいために溶接が不確実になりやすく、金属棒fが細く振動しやすいこともあって、ピラニ真空計に振動が加わったときフィラメントに過剰な力が加わって断線しやすい欠点がある。
【0011】
本発明は、応答の迅速なピラニ真空計を提供すること、及び製作が容易でフィラメントの耐久性が良く個体差の少ないピラニ真空計を提供することを目的とするものである。
【0012】
【課題を解決するための手段】
【0013】
本発明の目的は、ピラニ真空計のエンベロープ内に設けられるフィラメントを複数本のフィラメント部材で構成したものに於いて、該エンベロープの一端を閉鎖する端子に、2本の電気接続ピンと1本の金属軸を埋設し、該金属軸に該エンベロープの内部へ延びる取付板を設けると共に該取付板の板面に電気絶縁された導電端子板を設け、各フィラメント部材が両電気接続ピン間で電気的に直列に接続されるように各導電端子板に各フィラメント部材の両端部を溶接した構成によっても達成でき、該取付板を金属板で形成し、該導電端子板を電気絶縁材を介して該取付板に固定し、各フィラメント部材をほぼ同一平面上に配置するようにしてもよい。
【0014】
【発明の実施の形態】
本発明に関係する技術を図面に基づき説明すると、図10乃至図12に於いて、符号1はピラニ真空計の金属円筒製のエンベロープ、2は該エンベロープ1の一端を閉鎖する端子を示し、該端子2を外周の金属筒3とセラミックスの電気絶縁部材4及び該絶縁部材4に埋設して気密にロー付けした5本の電気接続ピン5で構成した。該ピン5のうちの2本にはL字型の金属棒6が溶接されて長い電気接続ピンに構成されており、該金属棒6と残りの3本の短いピン5との間に4本の白金のフィラメント部材7で構成されたフィラメント8が張られている。
【0015】
各フィラメント部材7は長さ25mmで、その夫々を電気的に直列接続になるようにピン5と金属棒6に溶接し、その合計で一般的な全長100mmのフィラメント8が構成されるようにした。この場合のフィラメント8は、8箇所で溶接固定されるが、長短のピン5の本数を調整してフィラメント部材7を3本とし、6箇所の溶接としてもよく、5本以上として10箇所を溶接してもよい。
【0016】
これは、全長Lmmのフィラメントを1本又は2本のフィラメント部材で構成するよりも、3本以上の直列接続で構成して溶接固定箇所を多くすることにより、フィラメントの長さ方向の温度勾配が増え、フィラメント部材7とピン5や金属棒6の間の熱の伝達が速やかになるため、圧力を急激に変化させたときのフィラメント温度が定常に達するまでの過渡的な時間が短くなり、急激な圧力変化があったときの応答速度が速くなるという知見に基づくもので、図10乃至図12の実施例の場合、図25及び図26の曲線E、Fに示すような応答特性が得られ、この応答性は同測定条件の図23、図24の従来例よりも大幅に改善されている。この場合、出力が95%まで変化したときの経過時間を応答時間とすれば、立ち上がりで約0.3秒、立ち下がりで約0.5である。尚、曲線C、Dは隔膜真空計の応答特性である。
【0017】
該フィラメント部材7は数十ミクロン程度の金属細線であり、溶接の不具合や振動で断線しやすいが、図16乃至図22に示す実施例では、端子2に電気接続ピン5の他にねじを備えた金属軸9を埋設し、L字型の取付板10をナット11でエンベロープの内部へ延びるように該金属軸9に止め付け、該取付板10の板面に設けた電気絶縁された導電端子板12にフィラメント部材7の各端部を溶接することによりその断線を防止した。導電端子板12は取付板10の板面に沿っているから導電端子板12間の距離を正確に決めやすく、そのためフィラメントの全長の個体差が少なくなり、ピラニ真空計の感度の個体差をなくせる。該金属軸9は直径3mm、取付板10には厚さ2.5mmの金属板若しくは電気絶縁板が使用される。
【0018】
図16乃至図20に示す実施例では、該取付板10は金属製で、図18に示した外周属製リング13とその内部のガラス14で絶縁された金属柱15とから成るハーメチックシール16を3個設け、各柱15に導電端子板12を夫々取り付けると共に2本の柱をリード線17によりピン5へ接続した。図21及び図22の例では、取付板10にセラミックス製等の絶縁板18をロー付けなどで固定し、これに導電端子板12をロー付けなどで取り付けした。取付板10としてセラミック等の絶縁性のものを使用したときは、導電端子板12を直接ロー付けすればよい。
【0019】
図13乃至図15は、図21の実施例の溶接方法の説明図で、XYZテーブルに載せられ且つ点溶接の電極ケーブル20が接続された銅製の点溶接治具19の上に、導電端子板12及び取付板10を載せ、該導電端子板12と上側の電極21の間にフィラメント部材7を挟み込み、通電により該フィラメント部材7と導電端子板12を溶かして溶接し、XYZテーブルの移動で8箇所を点溶接する。点溶接する箇所は、取付板10に沿った同一平面上にあるので、溶接作業が容易になり正確で確実な溶接を行える。
【0020】
このような取付板10を設けてこれにフィラメント部材7を取り付けておくことで、ピラニ真空計としたとき衝撃を受けて該取付板10が振動してもフィラメント部材7に力が加わり難く、その断線が防止される。
【0021】
【発明の効果】
以上のように本発明では、ピラニ真空計のフィラメントを複数本のフィラメント部材で構成したので、急激な圧力変化に対する応答特性が向上し、隔膜真空計に近い応答特性が得られ、エンベロープの一端を閉鎖する端子に金属軸を埋設し、該金属軸に取り付けた取付板の板面に電気絶縁された導電端子板を設け、各フィラメント部材が両電気接続ピン間で電気的に直列に接続されるように各導電端子板に各フィラメント部材の両端部を溶接したので、応答特性が良く製作が容易で振動によってもフィラメントが断線しにくいピラニ真空計が得られ、真空プロセス制御に好都合に適用できる等の効果がある。
【図面の簡単な説明】
【図1】従来のピラニ真空計の截断側面図
【図2】他の従来のピラニ真空計の截断側面図
【図3】図2の3−3線断面図
【図4】更に別の従来のピラニ真空計の截断側面図
【図5】図4の5−5線断面図
【図6】従来のフィラメント溶接状態の正面図
【図7】図6の平面図
【図8】他の従来のフィラメント溶接状態の正面図
【図9】図8の平面図
【図10】本発明に関係する技術の正面断面図
【図11】図10の11−11線断面図
【図12】図10の平面図
【図13】本発明の実施の形態に於ける溶接状態の説明図
【図14】図13の平面図
【図15】図13の側面図
【図16】本発明の他の実施例の正面図
【図17】図16の17−17線断面図
【図18】ハーメチックシールの拡大断面図
【図19】本発明の更に他の実施例の正面図
【図20】図19の20−20線断面図
【図21】本発明の更に他の実施例の正面図
【図22】図21の22−22線断面図
【図23】従来のピラニ真空計の立ち上がり応答特性の線図
【図24】従来のピラニ真空計の立ち下がり応答特性の線図
【図25】本発明に関係する図10に示す実施例のピラニ真空計の立ち上がり応答特性の線図
【図26】本発明に関係する図10に示す実施例のピラニ真空計の立ち下がり応答特性の線図
【符号の説明】
1 エンベロープ、2 端子、5 電気接続ピン、6 金属棒、7 フィラメント部材、8 フィラメント、9 金属軸、10 取付板、12 導電端子板、
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a Pirani gauge used for vacuum measurement.
[0002]
[Prior art]
The Pirani gauge is known as a heat conduction type gauge utilizing the fact that the electrical resistance of a heated filament such as platinum changes with temperature. For example, a single filament g as shown in FIG. One end of an envelope a such as a metal cylinder that shuts off the vacuum and the atmosphere containing air from an outer peripheral metal cylinder b welded to the envelope a and an electrical insulating member c such as ceramics or glass inside. The terminal d is closed, and the electrical insulating member c is inserted and three electrical connection pins e are embedded by brazing, and the two electrical connection pins e and e extend into the envelope a. The thing of the structure which welded the metal rod f of this is known. The filament g is stretched by welding both ends thereof to one of the pins e and the U-shaped metal rod f. h is a flange hermetically welded to the envelope a, which is attached to a vacuum device (not shown), and two pins e connected to the filament g are connected to the controller of the Pirani vacuum gauge by a connector (not shown). The pressure of the vacuum device is measured.
[0003]
Further, Pirani gauges having the configurations shown in FIGS. 2 to 5 are also known, and in these drawings, the description of the envelope and the flange is omitted. 2 and 3, four electrical connection pins e are airtightly brazed, two of which are welded with a U-shaped metal rod f, and the other two pins e, A filament g composed of two filament members g ′ and g ′ is stretched between e and the metal rod f, and the filament g is welded and fixed at four points.
[0004]
4 and 5, the three electrical connection pins e are brazed, and a metal disk i is welded to the tip of one of the pins, and the other two pins e. And the disk i, a filament g composed of two filament members g ′ and g ′ is stretched, and in this case, the filament is fixed at four points.
[0005]
The structure shown in FIGS. 2 to 5 has the filament g reciprocated once, and the length of the vacuum gauge can be shortened by reciprocating, which is effective in reducing the size of the vacuum gauge. More than two reciprocations can reduce the size, but the effect of the miniaturization is slight, and two or more reciprocations are carried out because it becomes difficult to suppress the variation between solids of the entire length of the filament. Not.
[0006]
As shown in FIGS. 6 and 7, the filament g is generally welded to the metal bar f or pin e by spot welding, and the metal bar f or the like is placed on the lower electrode j, and further The filament g is placed thereon, the upper electrode k is lowered, the metal bar f and the filament g are sandwiched, and energized to weld the metal bar f and the filament g. Alternatively, electrodes j and k having shapes as shown in FIGS. 8 and 9 are used. In the case of spot welding, in order to facilitate welding, a platinum thin film or the like may be sandwiched between the metal rod f or the like and the filament g.
[0007]
The Pirani gauge is a gauge that uses heat transfer between a gas molecule in a vacuum and a heated filament g, and the filament g is usually heated to a temperature of 100 ° C. or more from room temperature. The heat lost by the filament g is as follows: (1) heat taken away by collision of gas molecules in vacuum, (2) heat taken away by the envelope by thermal radiation of the filament, (3) filament support electrode by heat conduction from the end of the filament There are three types of heat deprived. If the temperature of the filament is controlled to be constant even if the pressure changes and the amount of heat transfer between the gas molecule and the heated filament changes, the heat radiation and heat transfer of (2) and (3) above can be achieved. The amount becomes constant. However, if the filament temperature is controlled to be constant when the pressure changes and the amount of heat transfer between the gas molecules and the heated filament g changes, the power (or voltage) applied to the filament g changes. become. For example, when the pressure increases, the amount of heat transfer between the gas molecules and the heated filament increases, and the power (or voltage) applied to the filament g increases. Conversely, when the pressure is lowered, the amount of heat transfer between the gas molecules and the heated filament is reduced, and the power (or voltage) applied to the filament is reduced. The pressure can be measured by converting the increasing or decreasing power (or voltage) into pressure.
[0008]
[Problems to be solved by the invention]
The response characteristics of the rise and fall of the conventional Pirani gauge are as shown by the curves A and B in FIGS. 23 and 24, and the response characteristics of the diaphragm gauge are shown together with the curves C and D. These responsivenesses were examined in the range of 1.3 × 10 −3 to 26.7 Pa using an ambient temperature of 25 ° C. and nitrogen as a test gas, and a butterfly valve was used to open and close the gas for introduction and exhaust. The pressure in the space where the vacuum gauge was installed was changed abruptly, and the output signal response of the vacuum gauge was examined. If the elapsed time when the output changes to 95% is taken as the response time, the response of the vacuum gauge is about 0.6 seconds at the rise time and about 2.5 seconds at the fall time.
[0009]
For example, in the semiconductor process, the pressure of the vacuum gauge is monitored and process control such as a process gas introduction valve is performed, but it does not deteriorate over time compared to the diaphragm vacuum gauge and can withstand high temperatures of 100 ° C or higher. One of the reasons why the Pirani gauge, which has the advantage of wide range, is difficult to use, is its slow response. For example, when exhausting while introducing gas into a semiconductor device, if the response of the vacuum gauge output is delayed so as to keep the pressure in the device constant, the control of the valve opening / closing degree is delayed, and the pressure in the device is kept constant. This is not preferable because it cannot be maintained and fluctuations occur.
[0010]
Since the diameter of the filament g is usually about several tens of microns, it is easy to cut and difficult to handle. Further, when the filament g is composed of a plurality of filament members g ′, the measurement of each Pirani vacuum gauge varies if individual differences in the total length (total length) are not eliminated. Since the pin e is fixed in a ceramic or glass insulator constituting the terminal, an error is likely to occur in the mounting position, and the manufacturing accuracy of the pin e is not good, so the mounting accuracy of the metal rod cannot be expected. Accurate assembly without variation in the entire length of the filament g is difficult. Filament welding is performed by holding the terminal d by hand or fixing it to the machine and setting it between the electrodes of the spot welder, but it involves complicated operations of moving and swiveling the terminal d in three dimensions. Work becomes difficult, and becomes more difficult as the number of filament members increases. Because spot welding work is difficult, welding tends to be uncertain, the metal rod f is thin and easy to vibrate, and when the Pirani vacuum gauge is vibrated, excessive force is applied to the filament and it is easy to break. is there.
[0011]
An object of the present invention is to provide a Pirani vacuum gauge that has a quick response, and to provide a Pirani vacuum gauge that is easy to manufacture, has good filament durability, and has little individual difference.
[0012]
[Means for Solving the Problems]
[0013]
An object of the present invention is that a filament provided in an envelope of a Pirani vacuum gauge is composed of a plurality of filament members, and a terminal for closing one end of the envelope is connected to two electrical connection pins and one metal. A shaft is embedded, a mounting plate extending into the envelope is provided on the metal shaft, and a conductive terminal plate is provided on the plate surface of the mounting plate, and each filament member is electrically connected between both electrical connection pins. This can also be achieved by welding each end of each filament member to each conductive terminal plate so that they are connected in series. The mounting plate is formed of a metal plate, and the conductive terminal plate is attached to the conductive terminal plate via an electrical insulating material. It may be fixed to a plate and each filament member may be arranged on substantially the same plane.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
A technique related to the present invention will be described with reference to the drawings. In FIGS. 10 to 12, reference numeral 1 denotes a metal cylindrical envelope of a Pirani gauge, 2 denotes a terminal for closing one end of the envelope 1, The terminal 2 is composed of a metal cylinder 3 on the outer periphery, an electrical insulating member 4 made of ceramics, and five electrical connecting pins 5 embedded in the insulating member 4 and airtightly brazed. Two of the pins 5 are welded with L-shaped metal rods 6 to form long electrical connection pins, and four pins are provided between the metal rod 6 and the remaining three short pins 5. A filament 8 composed of a platinum filament member 7 is stretched.
[0015]
Each filament member 7 has a length of 25 mm and is welded to the pin 5 and the metal rod 6 so as to be electrically connected in series, so that a total filament 100 having a total length of 100 mm is formed. . The filament 8 in this case is welded and fixed at eight locations, but the number of the long and short pins 5 is adjusted to make the filament member 7 three, and may be welded at six locations, or five or more at ten locations. May be.
[0016]
This is because the temperature gradient in the length direction of the filament is increased by constructing three or more series connections and increasing the number of welding fixing points, rather than constructing a filament having a total length of Lmm with one or two filament members. Since the heat transfer between the filament member 7 and the pin 5 or the metal rod 6 becomes rapid, the transient time until the filament temperature reaches a steady state when the pressure is suddenly changed is shortened. 10 to 12, the response characteristics as shown by the curves E and F in FIGS. 25 and 26 are obtained. This responsiveness is significantly improved over the conventional example of FIGS. 23 and 24 under the same measurement conditions. In this case, assuming that the elapsed time when the output changes to 95% is the response time, the rise time is about 0.3 seconds and the fall time is about 0.5. Curves C and D are response characteristics of the diaphragm gauge.
[0017]
The filament member 7 is a metal thin wire of about several tens of microns, although easily broken at failure and vibration welding, the embodiment is shown in FIGS. 16 to 22, with a screw terminal 2 in addition to the electrical connection pins 5 The metal shaft 9 is embedded, and an L-shaped mounting plate 10 is fastened to the metal shaft 9 with a nut 11 so as to extend into the envelope, and electrically insulated conductive terminals provided on the plate surface of the mounting plate 10 The end of the filament member 7 was welded to the plate 12 to prevent the disconnection. Since the conductive terminal plate 12 is along the plate surface of the mounting plate 10, it is easy to accurately determine the distance between the conductive terminal plates 12, thereby reducing individual differences in the total length of the filament and eliminating individual differences in the sensitivity of the Pirani gauge. Make it. The metal shaft 9 is 3 mm in diameter, and the mounting plate 10 is a 2.5 mm thick metal plate or electrical insulating plate.
[0018]
In Example shown in FIGS. 16 to 20, made mounting plate 10 is metallic, the hermetic seal 16 consisting of an outer peripheral genus metallic ring 13 and the inside of the glass 14 with an insulating metal pillar 15. shown in FIG. 18 Three conductive terminals 12 were attached to each pillar 15 and the two pillars were connected to the pins 5 by lead wires 17. 21 and FIG. 22, the insulating plate 18 made of ceramics or the like is fixed to the mounting plate 10 by brazing or the like, and the conductive terminal plate 12 is attached thereto by brazing or the like. When an insulating material such as ceramic is used as the mounting plate 10, the conductive terminal plate 12 may be directly brazed.
[0019]
FIG. 13 to FIG. 15 are explanatory views of the welding method of the embodiment of FIG. 21. On the copper spot welding jig 19 placed on the XYZ table and connected to the spot welding electrode cable 20, the conductive terminal plate is shown. 12 and the mounting plate 10 are placed, the filament member 7 is sandwiched between the conductive terminal plate 12 and the upper electrode 21, the filament member 7 and the conductive terminal plate 12 are melted and welded by energization, and the movement of the XYZ table 8 Spot weld the points. Since the spot welded spot is on the same plane along the mounting plate 10, the welding operation is facilitated and accurate and reliable welding can be performed.
[0020]
By providing such an attachment plate 10 and attaching the filament member 7 thereto, it is difficult to apply force to the filament member 7 even when the attachment plate 10 vibrates due to impact when the Pirani vacuum gauge is used. Disconnection is prevented.
[0021]
【The invention's effect】
As described above, in the present invention, since the filament of the Pirani vacuum gauge is composed of a plurality of filament members, the response characteristic to a sudden pressure change is improved, the response characteristic close to the diaphragm vacuum gauge is obtained, and one end of the envelope is obtained. A metal shaft is embedded in the terminal to be closed, a conductive terminal plate is provided on the plate surface of the mounting plate attached to the metal shaft, and each filament member is electrically connected in series between both electrical connection pins. Since both ends of each filament member are welded to each conductive terminal board, a Pirani vacuum gauge with good response characteristics, easy manufacture and resistance to filament breakage due to vibration can be obtained, and it can be conveniently applied to vacuum process control, etc. There is an effect.
[Brief description of the drawings]
FIG. 1 is a cutaway side view of a conventional Pirani vacuum gauge. FIG. 2 is a cutaway side view of another conventional Pirani vacuum gauge. FIG. 3 is a sectional view taken along line 3-3 in FIG. FIG. 5 is a cross-sectional view taken along line 5-5 of FIG. 4. FIG. 6 is a front view of a conventional filament welded state. FIG. 7 is a plan view of FIG. FIG. 9 is a plan view of FIG. 8. FIG. 10 is a front sectional view of a technique related to the present invention. FIG. 11 is a sectional view taken along line 11-11 of FIG. FIG. 13 is an explanatory view of a welding state in the embodiment of the present invention. FIG. 14 is a plan view of FIG. 13. FIG. 15 is a side view of FIG. 17 is a sectional view taken along line 17-17 in FIG. 16. FIG. 18 is an enlarged sectional view of a hermetic seal. FIG. 19 is a front view of still another embodiment of the present invention. 20 is a sectional view taken along line 20-20 in FIG. 19. FIG. 21 is a front view of still another embodiment of the present invention. FIG. 22 is a sectional view taken along line 22-22 in FIG. FIG. 24 is a diagram of the response characteristics of the fall of the conventional Pirani vacuum gauge. FIG. 25 is a chart of the response characteristics of the rise of the Pirani vacuum gauge of the embodiment shown in FIG. 10 relating to the present invention. 26 is a diagram of the falling response characteristic of the Pirani gauge of the embodiment shown in FIG. 10 relating to the present invention.
1 Envelope, 2 Terminal, 5 Electrical connection pin, 6 Metal rod, 7 Filament member, 8 Filament, 9 Metal shaft, 10 Mounting plate, 12 Conductive terminal plate,

Claims (3)

ピラニ真空計のエンベロープ内に設けられるフィラメントを複数本のフィラメント部材で構成したものに於いて、該エンベロープの一端を閉鎖する端子に、2本の電気接続ピンと1本の金属軸を埋設し、該金属軸に該エンベロープの内部へ延びる取付板を設けると共に該取付板の板面に電気絶縁された導電端子板を設け、各フィラメント部材が両電気接続ピン間で電気的に直列に接続されるように各導電端子板に各フィラメント部材の両端部を溶接したことを特徴とするピラニ真空計。The filament provided in the envelope of the Pirani gauge is composed of a plurality of filament members, and two electrical connection pins and one metal shaft are embedded in a terminal that closes one end of the envelope, A mounting plate extending to the inside of the envelope is provided on the metal shaft, and a conductive terminal plate that is electrically insulated is provided on the plate surface of the mounting plate, so that each filament member is electrically connected in series between both electrical connection pins. A Pirani gauge, wherein both ends of each filament member are welded to each conductive terminal plate. 上記取付板を金属板で形成し、上記導電端子板を電気絶縁材を介して該取付板に固定したことを特徴とする請求項1に記載のピラニ真空計。  The Pirani vacuum gauge according to claim 1, wherein the mounting plate is formed of a metal plate, and the conductive terminal plate is fixed to the mounting plate via an electric insulating material. 上記各フィラメント部材を同一平面上に配置したことを特徴とする請求項1に記載のピラニ真空計。  The Pirani vacuum gauge according to claim 1, wherein the filament members are arranged on the same plane.
JP05381599A 1999-03-02 1999-03-02 Pirani vacuum gauge Expired - Fee Related JP4264156B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05381599A JP4264156B2 (en) 1999-03-02 1999-03-02 Pirani vacuum gauge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05381599A JP4264156B2 (en) 1999-03-02 1999-03-02 Pirani vacuum gauge

Publications (2)

Publication Number Publication Date
JP2000249617A JP2000249617A (en) 2000-09-14
JP4264156B2 true JP4264156B2 (en) 2009-05-13

Family

ID=12953303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05381599A Expired - Fee Related JP4264156B2 (en) 1999-03-02 1999-03-02 Pirani vacuum gauge

Country Status (1)

Country Link
JP (1) JP4264156B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106153246A (en) * 2015-05-15 2016-11-23 株式会社爱发科 Pirani ga(u)ge

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100549648C (en) * 2004-11-24 2009-10-14 株式会社爱发科 Pirani ga(u)ge
DE102008029028B3 (en) * 2008-05-14 2009-11-26 Helmholtz-Zentrum Berlin Für Materialien Und Energie Gmbh Vacuum pressure measuring device for a RTP vacuum furnace
JP6595945B2 (en) * 2015-05-15 2019-10-23 株式会社アルバック Pirani vacuum gauge

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106153246A (en) * 2015-05-15 2016-11-23 株式会社爱发科 Pirani ga(u)ge
CN106153246B (en) * 2015-05-15 2019-08-30 株式会社爱发科 Pirani ga(u)ge

Also Published As

Publication number Publication date
JP2000249617A (en) 2000-09-14

Similar Documents

Publication Publication Date Title
US6880969B2 (en) Temperature sensor and production method thereof
TWI388814B (en) Pirani vacuum gauge
JPH0749277A (en) Pressure sensor and manufacture thereof
US4764747A (en) Glass header structure for a semiconductor pressure transducer
JP2004502935A (en) Sensor for helium or hydrogen
JP4264156B2 (en) Pirani vacuum gauge
CN110073187B (en) Temperature sensor
JP3137252U (en) Pressure sensor for sealed container and sealed container
US6123452A (en) Method and apparatus for carrying out a thermal shock test on ceramics
JPH01262402A (en) Clip type capacity strain gauge
KR101904490B1 (en) Joint structure of ceramic heater
US3324706A (en) Apparatus for temperature compensation of strain gages
US20240151601A1 (en) Atmospheric-pressure detecting sensor, atmospheric-pressure detecting device, and method for manufacturing atmospheric-pressure detecting device
JP3045559B2 (en) Pirani vacuum gauge
JP2946254B2 (en) Temperature sensor and method of manufacturing the same
US20230377819A1 (en) Vacuum degree detection device, monitoring system, and vacuum arc extinguishing chamber thereof
JP3066178B2 (en) Electrode for electrochemical measurement and method for producing the same
JP4274662B2 (en) Ceramic gas sensor tube
KR100309067B1 (en) A heat flux gaging apparatus of combustion chamber
JP2003270054A (en) Sealed heat sensing device
RU2052777C1 (en) Method for manufacturing high-temperature piezoelectric pressure gauge
JPS5836999Y2 (en) Pirani vacuum gauge with coaxial vacuum terminal
JP4526099B2 (en) Method for manufacturing sample support and sample high temperature apparatus
JP2004101473A (en) Force detecting device and its manufacturing method
JPH0334385A (en) Manufacture of semiconductor laser element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070518

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4264156

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150220

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees