JP4263896B2 - マグネトロン - Google Patents

マグネトロン Download PDF

Info

Publication number
JP4263896B2
JP4263896B2 JP2002295848A JP2002295848A JP4263896B2 JP 4263896 B2 JP4263896 B2 JP 4263896B2 JP 2002295848 A JP2002295848 A JP 2002295848A JP 2002295848 A JP2002295848 A JP 2002295848A JP 4263896 B2 JP4263896 B2 JP 4263896B2
Authority
JP
Japan
Prior art keywords
anode
magnetron
cooling jacket
yoke
magnetic pole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002295848A
Other languages
English (en)
Other versions
JP2004134160A (ja
Inventor
真澄 久我
徹 森池
Original Assignee
株式会社日立ディスプレイデバイシズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ディスプレイデバイシズ filed Critical 株式会社日立ディスプレイデバイシズ
Priority to JP2002295848A priority Critical patent/JP4263896B2/ja
Publication of JP2004134160A publication Critical patent/JP2004134160A/ja
Application granted granted Critical
Publication of JP4263896B2 publication Critical patent/JP4263896B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Microwave Tubes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、マイクロ波を発生させるマグネトロンに係り、特に低周波発振に好適な磁路構造を有するマグネトロンに関し、詳細には陽極本体の外周部を冷却液を用いて直接冷却する冷却構造を備えたマグネトロンに関するものである。
【0002】
【従来の技術】
一般にマグネトロンは、高周波出力を効率良く発生できることから、レーダ装置,医療機器,電子レンジ等の調理器,半導体製造装置またはその他のマイクロ波応用機器等の分野で広く用いられている。
【0003】
この種のマグネトロンにおいては、発振周波数として2450MHzと915MHzとの2種類のタイプが実用化されており、特に前者の2450MHzタイプが多用されている。この2450MHzタイプのマグネトロンは、加工室,被加工物の大きさ及び導波管の寸法などを小型化できる特徴を有することから、業務用,家庭用等の電子レンジのような加熱装置はもとより、半導体製造装置として例えば薄膜のドライエッチング装置,マイクロ波プラズマCVD装置などにも使用されている。
【0004】
ところが、この2450MHzタイプのマグネトロンを用いた加工装置では、例えば加熱装置に用いた場合、大きな加熱物,厚物加熱物,解凍物では加熱むらが発生し易い。すなわち、被加熱物の外表面から中心部までを短時間で均一加熱が出来難いという問題があった。また、半導体製造装置として例えば薄膜のドライエッチング装置,マイクロ波プラズマCVD装置等に用いた場合には、加工室へ供給される出力の変動が生じ易く、フィードバック回路を備えた精密な制御を行っても均一な加工が困難であり、半導体ウエハーに大きな損傷を与える恐れがあった。
【0005】
一方、915MHzタイプのマグネトロンは、大型の電磁石を用いる構造のマグネトロンであり、数十KW以上の大出力の工業用加熱装置などに用いられている。この915MHzタイプのマグネトロンを通常のマグネトロン構造で構成すると、その発振周波数が低いことにより共振空洞が大きくなり、全体の形状が大型となる。
【0006】
このような背景の下にマグネトロン自体の寸法の巨大化を回避するため、磁束の発生手段として永久磁石を用いて発振周波数を400MHz乃至600MHzタイプのマグネトロンを構成する試みがなされ、近年、実用化される段階になっている。
【0007】
例えば、450MHzタイプのマグネトロンの開発においては、管球本体(アノード)の外径が必然的に大きくなるので、冷却するには相応の大きい冷却ブロックが必要であった。さらに、管球本体と冷却ブロックの双方を取り囲む磁気回路もその形状が大きくなるので、磁気効率が低下する。このため、磁気回路を小型化できる冷却構造が必要となる。
【0008】
このような問題を解決したものとしては、例えば、下記特許文献1に開示されているように陽極部及び永久磁石を囲むように設けられたヨークには、内側が気密封止された空間となるように冷却用ジャケットが形成され、このヨーク内の気密封止はヨークの合わせ面を溶接し、また、陽極部と永久磁石との間にゴムパッキンを配設し、さらに、永久磁石とヨークとの接触面に接着剤を塗布して冷却液が漏れないように形成されている。また、ヨークには空間に冷却を供給する供給口及び排出する排出口を設けることにより、陽極部,永久磁石及びヨークを冷却液で直接冷却することで磁気回路の小型化を図っている。
【0009】
【特許文献1】
特開平4−4544
【特許文献2】
特開平4−10331
【特許文献3】
特開平4−28147
【特許文献4】
特開平4−181685
【0010】
【発明が解決しようとする課題】
しかしながら、このように構成される冷却構造を有するマグネトロンは、マグネトロン本体が異種金属間に封着部を有する気密構造を用いており、そのシール部材として鉄を採用しているので、長期間の使用に対して冷却液の接触による腐食が発生し易くなり、信頼性を低下させるなどの問題があった。
【0011】
また、このように構成されるマグネトロンは、450MHzタイプのマグネトロンの開発において、管球本体(陽極部)の外径寸法が大きくなり、冷却するには相応の冷却構造が必要となり、さらに管球本体及び冷却構造の双方を取り囲む磁気回路の形状が大きくなり、磁気効率が低下するという問題があった。
【0012】
したがって、本発明は、前述した従来の課題を解決するためになされたものであり、その目的は、永久磁石を磁束源として用いたマグネトロンにおける封着部分の腐食を回避し、長期間の使用に対して信頼性を向上させた低周波発振のマグネトロンを提供することにある。
【0013】
また、本発明の他の目的は、管球本体に冷却構造を有するマグネトロンにおける管球本体の形状を大きくし、マグネトロン本体の形状の小型化を実現可能とする低周波発振のマグネトロンを提供することにある。
【0014】
【課題を解決するための手段】
このような目的を達成するために本発明によるマグネトロンは、陽極部の外壁面と対向するヨークの内壁面に周方向に沿って形成されたリング状の密封空間からなる冷却ジャケツトと、ヨークに設置されて冷却ジャケット内に連通し冷却ジャケット内に循環させる冷却液を供給する供給口と、ヨークに設置されて冷却ジャケット内に連通し冷却ジャケット内を循環する冷却液を外部に排出する排出口と、供給口と排出口との間に周方向に隣接して設置されて冷却ジャケット内の一部を管軸方向に塞ぐように配設された強磁性体からなる仕切り板とを設けることにより、冷却ジャケット内に冷却液を循環させることで冷却液が直接陽極円筒及びヨークに接触するので、陽極部が効率良く冷却されることになる。
【0015】
また、本発明によるマグネトロンは上記構成において、陽極部の外径寸法をD1とし、永久磁石の外径寸法をD2としたとき、D1>D2に設定することにより共振空洞が大きく形成できる。
【0016】
また、本発明によるマグネトロンは、上記構成において、ヨークの陽極円筒と接合する管軸方向の両端部に周方向に沿ってシーリングを介在させたことにより、冷却液と接触する封着部分が存在しなくなる。
【0017】
【発明の実施の形態】
以下、本発明の実施の形態について、実施例の図面を参照して詳細に説明する。図1は、本発明によるマグネトロンの一実施例を説明する要部断面図である。このマグネトロンは、マイクロ波の発振周波数が450MHzである。図1において、参照符号1はタングステン線を螺旋状に形成して構成された陰極フィラメントの上下端をエンドシールドにより支持固定された熱電子放出源となる陰極部、2は中心部に陰極部1を囲むようにシリンダ状に形成された銅部材からなる陽極円筒、3は陽極円筒2の内壁面に所定の角度を有して放射状に配設された銅部材からなる複数枚の陽極ベイン、4a,4bは陰極部1の上下方向に配設された軟鉄材などの強磁性体からなる磁極、5a,5bは陽極円筒2の上下端に配設された封止板である。
【0018】
また、6は陽極円筒2の外周面に密着して配設された軟鉄材などの強磁性体からなる円筒ジャケット、6a,6bは円筒ジャケット6の内壁面でその両端側に断面が凹状に形成されたリング状の溝、7aは円筒ジャケット6の上端に配設された軟鉄材などの強磁性体からなる上板、7bは円筒ジャケット6の下端に配設された軟鉄材などの強磁性体からなる下板、8a,8bは円環状に形成された一対の永久磁石、9は円筒ジャケット6両端面に上板7aと下板7bとを密着固定するネジである。なお、この円筒ジャケット6と上板7aと下板7bとで外部磁路を形成するヨークを構成している。
【0019】
また、10a,10bは円筒ジャケット6の内壁面にそれぞれ形成されたリング状の溝6a,6b内に挿入された耐熱性シールである。なお、このマグネトロンの発振周波数は450MHzであり、このために共振空洞の外径である陽極円筒2の外径寸法をD1とし、永久磁石8a,8bの外径寸法をD2としたとき、発振波長に合わせてD1>D2の関係を有して設定されている。
【0020】
また、11は円筒ジャケット6の陽極円筒2の外壁面と対向する内壁面に内周方向に沿って断面が凹状に形成されたリング状の密封空間からなる冷却ジャケット、12a,12bは図2に要部斜視図で示すように円筒ジャケット6の外壁面に形成された冷却水の供給口,排出口であり、これらの供給口12a及び排出口12bは密封空間状の冷却ジャケット11内に連通する構造となっている。13は円筒ジャケット6の供給口12と排出口12aとの隣接間で密封空間の一部を管軸方向に沿って塞ぐように圧入により配設された仕切り板である。
【0021】
また、14はアンテナリード、15はアンテナ、16はアンテナカバー、17a,17bは帽子状に形成された強磁性体からなる出力側封着体、17bは帽子状に形成された強磁性体からなる入力側封着体、18は出力側絶縁体,19a,19bは陰極リード、20は陰極リード19a,19bを支持する入力側絶縁体、21a,21bは外部導出リード、22はチョークコイル、23は貫通コンデンサ、24はフィルタケース、25は蓋体である。
【0022】
このような構成において、螺旋状の陰極部1を構成する陰極フィラメントの周縁部には複数枚、例えば8枚の陽極ベイン3が陽極円筒2と蝋付けなどにより固着されている。また、この陽極円筒2の上下端には軟鉄などの強磁性体からなる磁極4a,4b及び円環状の永久磁石8a,8bが配置されている。この永久磁石8a,8bから発生した磁束は、内部磁路を形成する磁極4a,4bを通して陰極部1と陽極ベイン3との間に形成される作用空間に入り、管軸方向に必要な直流磁界を与える。
【0023】
また、上板7a,円筒ジャケット6及び下板7bは、永久磁石8a,8bの磁束が通る磁気回路(外部磁路)を形成し、永久磁石8a,8bで発生する磁束は、外部磁路である上板7aと円筒ジャケット6と下板7bと内部磁路を形成する封着体17a,17bと磁極4a,4bとを通る。負の高電圧が印加される陰極部1から放出された電子は、電界及び磁界の作用を受けて円運動をしながら、各陽極ベイン3に高周波電界を形成する。形成された高周波電界、すなわちマイクロ波はアンテナリード14を通してアンテナ15に到り、アンテナカバー16から図示しない同軸管を通して外部機器に出力される。
【0024】
また、円筒ジャケット6には、陽極円筒2の外周面と対向する内壁面にその内周方向に沿って気密封止されたリング状の密封空間からなる冷却ジャケット11が一体的に形成されており、この円筒ジャケット6の外壁面には密封空間状の冷却ジャケット11内に連通する供給口12及び排出口12aが周方向に沿って隣接して形成されている。また、この円筒ジャケット6には、互いに隣接して形成された供給口12aと排出口12bとの間に管軸方向に沿ってその密封空間内に連通する切り込み部12cが形成され、この切り込み部12c内には強磁性体からなる仕切り板13が圧入により挿入されている。この仕切り板13はリング状に形成された冷却ジャケット11内の密封空間の一部を管軸方向に沿って塞ぐ機能を有している。
【0025】
また、この円筒ジャケット6の陽極円筒2と対向する内壁面には、冷却ジャケット11の上下部分に周方向に沿って断面が凹状となるリング状の溝6a,6bが形成されており、この溝6a,6b内にはそれぞれ耐熱性シール10a,10bが挿入され、円筒ジャケット6と陽極円筒2との接合面を密着させ、冷却ジャケット11の密封空間のリークを防止させている。なお、円筒ジャケット6にそれぞれ形成されるこれらの冷却ジャケット11,溝10a,溝10b,供給口12a,排出口12b,仕切り板13を挿入する管軸方向の切り込み12c部などは、切削加工などの手法により形成されている。
【0026】
なお、陰極部1を構成する陰極フィラメントは、電子放射特性及び加工性などを考慮して一般的には酸化ナトリウムを約1%含むタングステン線が用いられ、上側エンドシールドと下側エンドシールド及び陰極リード19a,19bにより支持されている。なお、この陰極リード19a,19bは、耐熱性及び加工性などを考慮して一般的にはモリブデンが採用され、入力側絶縁体20の上面に銀蝋付けされた端子板でチョークコイル22に接続する外部導出リード21a,21bに接続される。
【0027】
また、マグネトロンの下部側には、チョークコイル22と、貫通コンデンサ23を支持するフィルタケース24と、このフィルタケース24を閉じる蓋体25とからなるフィルタ構体が取り付けられている。さらに、外部導出リード21a,21bに接続されたチョークコイル22は、貫通コンデンサ23とでL−Cフィルタを構成し、陰極リード19a,19bから伝播されてくる低周波成分を抑制する。なお、高周波成分はフィルタケース24とその蓋体25でシールドされる。
【0028】
このような構成において、マグネトロンの動作時に円筒ジャケット6内に形成された密封空間状の冷却ジャケット11内に供給口12aより冷却水を供給することにより、冷却ジャケット11内を循環させ、陰極部1,陽極円筒2及び各陽極ベイン3の加熱により温められた水が仕切り板13により遮られ、供給口12a側に逆流することなく、排出口12bより排出されることにより、陽極円筒2,各陽極ベイン3及び円筒ジャケット6、特に陽極円筒2の外周壁が直接冷却水により強制的に冷却されるので、極めて高い冷却効果が得られ、マグネトロンの諸特性、特に温度ドリフト特性を大幅に向上させることができる。
【0029】
また、このような構成において、冷却水を循環させる冷却ジャケット11内及びその周辺部も含めて冷却水と接触する封着部分が存在しない冷却構造となるので、長期間の使用に対して冷却水による腐食の発生が皆無となる。
【0030】
また、このような構成において、陽極円筒2の外壁面と対向する円筒ジャケット6の内壁面に冷却ジャケット11を設けたことにより、冷却構造が円筒型に構成できるので、マグネトロン本体の全体形状を小型化させることができる。
【0031】
また、このような構成において、陽極円筒2及び陽極ベイン3などを含む陽極部の冷却構造をその外壁面側に配設される円筒ジャケット6内にリング状の冷却ジャケット11として円筒型に構成できるので、冷却構造が小型化され、その分陽極円筒2の外径寸法を大きく形成することが可能となり、これによって450MHzタイプの低周波発振に好適なマグネトロンが実現可能となる。
【0032】
なお、前述した実施例においては、450MHzタイプのマグネトロンについて説明したが、本発明はこれに限定されるものではなく、発振周波数が400MHz乃至600MHzタイプのマグネトロンに適用しても前述と同様に効果が得られることは勿論である。
【0033】
なお、前述した実施例において、冷却液として冷却水を用いたが、冷却水に代えて各種の冷媒を用いても良いことは言うまでもない。
【0034】
【発明の効果】
以上、説明したように本発明によるマグネトロンによれば、管軸の中心部に設置して熱電子源を有する陰極部と、この陰極部を中心とし、かつ陰極部に対して一端を離間させて作用空間を形成し、管軸と平行かつ放射状に配置した複数枚の陽極ベイン及びこの陽極ベインの他端を結合した陽極円筒とで複数の放射状の共振空洞を形成する陽極部と、共振空洞を管軸方向から挟む位置に設けられて作用空間を通る内部磁路を形成する強磁性体からなる一対の磁極と、陽極円筒を管軸方向かつ磁極の共振空洞とは反対側の両端部で封止する強磁性体からなる一対の封着体と、磁極と同軸かつ磁極に対して封止板とは反対側に設置した一対の円環状の永久磁石と、永久磁石に対して磁極とは反対側で磁極と共に前記永久磁石の外部磁路を形成する強磁性体からなるヨークと、陽極円筒の外壁面と対向するヨークの内壁面に周方向に沿って形成された密封空間からなる冷却ジャケツトと、ヨークに設置されて冷却ジャケット内に連通し冷却ジャケット内に循環させる冷却液を供給する供給口と、ヨークに設置されて冷却ジャケット内に連通し冷却ジャケット内を循環する冷却液を外部に排出する排出口と、供給口と排出口との間に周方向に隣接して設置されて冷却ジャケット内の一部を管軸方向に塞ぐように配設された強磁性体からなる仕切り板とを設けたことにより、冷却ジャケット内を循環する冷却液と接触する封着部分が皆無となる構造となるので、冷却液との接触による腐食の発生がなくなり、長期間の使用に対して信頼性を大幅に向上させることができる
【0035】
また、本発明によるマグネトロンによれば、内部磁路及び外部磁路が円筒型に構成できるので、作用空間を通過する磁束が全方位に対称となり、作用空間に対してバランスの良い磁界分布が得られ、これにより、マグネトロンの諸特性を大幅に向上させることができるという極めて優れた効果が得られる。
【0036】
また、本発明によるマグネトロンによれば、陽極部の外壁面と対向するヨークの内壁面に周方向に沿って形成された密封空間からなる冷却ジャケツトを設けたことにより、円筒型磁気回路に加えて冷却回路が円筒型に一体構成できるので、管球本体の形状を大きくしてマグネトロン本体の全体形状を小型化できるという極めて優れた効果が得られる。
【0037】
また、本発明によるマグネトロンによれば、冷却回路を円筒型に構成し、陽極部の外径寸法をD1とし、永久磁石の外径寸法をD2としたとき、D1>D2に設定することにより、陽極部の外径を大きく構成することで共振空洞を大きく形成できるので、低周波発振に好適なマグネトロンが実現可能となるという極めて優れた効果が得られる。
【0038】
また、本発明によるマグネトロンによれば、ヨークの陽極円筒と接合する管軸方向の両端部に周方向に沿ってシーリングを介在させたことにより、冷却ジャケット内を循環する冷却液のリークを確実に防止することができるので、信頼性をさらに大幅に向上させることができるという極めて優れた効果が得られる。
【図面の簡単な説明】
【図1】本発明によるマグネトロンの一実施例により構成を説明する断面図である。
【図2】図1に示した円筒ジャケットの構成を説明する斜視図である。
【符号の説明】
1 陰極部
2 陽極円筒
3 陽極ベイン
4a 磁極
4b 磁極
5a 封止板
5b 封止板
6 円筒ジャケット
6a 溝
6b 溝
7a 上板
7b 下板
8a 永久磁石
8b 永久磁石
9 ネジ
10a 耐熱性シール
10b 耐熱性シール
11 冷却ジャケット
12a 供給口
12b 排出口
12c 切り込み部
13 仕切り板
14 アンテナリード
15 アンテナ
16 アンテナカバー
17a 出力側封着体
17b 入力側封着体
18 出力側絶縁体
19a 陰極リード
19b 陰極リード
20 入力側絶縁体
21a 外部導出リード
21b 外部導出リード
22 チョークコイル
23 貫通コンデンサ
24 フィルタケース
25 蓋体

Claims (3)

  1. 管軸の中心部に設置して熱電子源を有する陰極部と、
    前記陰極部を中心とし、かつ前記陰極部に対して一端を離間させて作用空間を形成し、管軸と平行かつ放射状に配置した複数枚の陽極ベイン及び前記陽極ベインの他端を結合した陽極円筒とで複数の放射状の共振空洞を形成する陽極部と、
    前記共振空洞を管軸方向から挟む位置に設けられて前記作用空間をとおる内部磁路を形成する強磁性体からなる一対の磁極と、
    前記陽極円筒を管軸方向かつ前記磁極の前記共振空洞とは反対側の両端部で封止する強磁性体からなる一対の封止板と、
    前記磁極と同軸かつ前記磁極に対して前記封止板とは反対側に設置した一対の円環状の永久磁石と、
    前記永久磁石に対して前記磁極とは反対側で前記磁極と共に前記永久磁石の外部磁路を形成する強磁性体からなるヨークと、
    前記陽極円筒の外壁面と対向する前記ヨークの内壁面に周方向に沿って形成されたリング状の密封空間からなる冷却ジャケットと、
    前記ヨークに設置されて前記冷却ジャケット内に連通し前記冷却ジャケット内に循環させる冷却液を供給する供給口と、
    前記ヨークに設置されて前記冷却ジャケット内に連通し前記冷却ジャケット内を循環する前記冷却液を外部に排出する排出口と、
    前記供給口と前記排出口との間に周方向に隣接して設置されて前記冷却ジャケット内の一部を管軸方向に塞ぐように配設された強磁性体からなる仕切り板と、
    を備えたことを特徴とするマグネトロン。
  2. 前記陽極円筒の外径寸法をD1とし、前記永久磁石の外径寸法をD2としたとき、
    D1>D2
    に設定したことを特徴とする請求項1に記載のマグネトロン。
  3. 前記ヨークの前記陽極円筒と接合する管軸方向の両端部に周方向に沿ってシーリングを介在させたことを特徴とする請求項1乃至請求項2に記載のマグネトロン。
JP2002295848A 2002-10-09 2002-10-09 マグネトロン Expired - Fee Related JP4263896B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002295848A JP4263896B2 (ja) 2002-10-09 2002-10-09 マグネトロン

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002295848A JP4263896B2 (ja) 2002-10-09 2002-10-09 マグネトロン

Publications (2)

Publication Number Publication Date
JP2004134160A JP2004134160A (ja) 2004-04-30
JP4263896B2 true JP4263896B2 (ja) 2009-05-13

Family

ID=32285980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002295848A Expired - Fee Related JP4263896B2 (ja) 2002-10-09 2002-10-09 マグネトロン

Country Status (1)

Country Link
JP (1) JP4263896B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010073456A (ja) * 2008-09-18 2010-04-02 Tohoku Univ マグネトロン
JP6118112B2 (ja) 2013-01-07 2017-04-19 新日本無線株式会社 同軸型マグネトロン及びその組立方法
KR102421690B1 (ko) * 2017-11-23 2022-07-18 한국전기연구원 고출력 마그네트론에서의 자기장 가변장치
JP2019218313A (ja) 2018-06-21 2019-12-26 沢井製薬株式会社 プソイドエフェドリン又はその薬学的に許容される塩を含有する徐放製剤
CN111430203A (zh) * 2020-04-20 2020-07-17 中国工程物理研究院应用电子学研究所 一种一体化制冷相对论磁控管

Also Published As

Publication number Publication date
JP2004134160A (ja) 2004-04-30

Similar Documents

Publication Publication Date Title
US6653788B2 (en) Magnetron having a lowered oscillation frequency and processing equipment employing the same
KR101974742B1 (ko) 마그네트론
US2489131A (en) Electron discharge device of the cavity resonator type
JP4263896B2 (ja) マグネトロン
KR20000035553A (ko) 마그네트론장치 및 그 제조방법
JP2005209426A (ja) マグネトロン
WO2022024692A1 (ja) マグネトロン
KR100451235B1 (ko) 마그네트론의 입력부 차폐구조
JPH0559736U (ja) マグネトロンのカソード組立体の下端シールド固定構造
KR100539815B1 (ko) 마그네트론의 가스켓 링 결합구조
KR100763387B1 (ko) 마그네트론
WO2012120903A1 (ja) マグネトロンおよびマイクロ波利用機器
JP2001023531A (ja) マグネトロン
KR200169605Y1 (ko) 마그네트론
KR19990033680A (ko) 마그네트론의 필터 박스 조립체
JP2003045346A (ja) マグネトロン
KR20040110569A (ko) 마그네트론의 양극 실린더 조립구조
JPH0554806A (ja) マグネトロン
KR20040106151A (ko) 마그네트론의 초크 구조
JPH0574355A (ja) マグネトロン
JP2000011904A (ja) マグネトロン
KR20040106731A (ko) 마그네트론의 상부 폴피스 조립구조
KR20000003781U (ko) 마그네트론
KR19990010071A (ko) 마그네트론
KR20040110571A (ko) 마그네트론의 a-실 고정구조

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051005

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20051005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090213

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees