CN111430203A - 一种一体化制冷相对论磁控管 - Google Patents

一种一体化制冷相对论磁控管 Download PDF

Info

Publication number
CN111430203A
CN111430203A CN202010313251.0A CN202010313251A CN111430203A CN 111430203 A CN111430203 A CN 111430203A CN 202010313251 A CN202010313251 A CN 202010313251A CN 111430203 A CN111430203 A CN 111430203A
Authority
CN
China
Prior art keywords
cooling liquid
anode
integrated refrigeration
outer cylinder
anode block
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010313251.0A
Other languages
English (en)
Inventor
王冬
秦奋
雷芳燕
张勇
徐莎
雷禄容
鞠炳全
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Applied Electronics of CAEP
Original Assignee
Institute of Applied Electronics of CAEP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Applied Electronics of CAEP filed Critical Institute of Applied Electronics of CAEP
Priority to CN202010313251.0A priority Critical patent/CN111430203A/zh
Publication of CN111430203A publication Critical patent/CN111430203A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J23/00Details of transit-time tubes of the types covered by group H01J25/00
    • H01J23/02Electrodes; Magnetic control means; Screens
    • H01J23/027Collectors
    • H01J23/033Collector cooling devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J25/00Transit-time tubes, e.g. klystrons, travelling-wave tubes, magnetrons
    • H01J25/50Magnetrons, i.e. tubes with a magnet system producing an H-field crossing the E-field

Landscapes

  • Microwave Tubes (AREA)

Abstract

本发明公开了一种一体化制冷相对论磁控管,包括由内向外依次同轴排布的阴极、阳极块、用于实现阳极块降温的一体化制冷阳极外筒、磁体,所述阳极块与一体化制冷阳极外筒的内表面接触,所述阳极块的后端设置有用于将高功率微波能量提取输出到下游的输出结构。本发明中的一体化制冷阳极外筒充分利用了磁控管的内部空间,不增加系统横向尺寸,且不占用磁体空间,提高了系统的轻小型化水平,另外本发明在一体化制冷阳极外筒内设置冷却液回形导流通道,保证了冷却液在冷却液槽内形成均匀的折叠流,在工作过程中可以将阳极块上不同角向位置所产生的热量一次带走,不会由于冷却液分布不均而导致局部温度过高。

Description

一种一体化制冷相对论磁控管
技术领域
本发明属于高功率微波技术领域,具体地说涉及一种一体化制冷相对论磁控管。
背景技术
高功率微波(High Power Microwave,HPM)是指峰值功率大于100MW,频率介于1GHz到300GHz之间的电磁波。它是本世纪70年代以来随着脉冲功率技术、相对论电子学和等离子体物理等学科的发展而发展起来的一个新的研究领域。高功率微波源主要是利用相对论电子束产生高功率微波辐射的器件,是高功率微波系统中的关键部件之一。很多应用场合要求高功率微波源尽量提高转换效率、缩小系统的功耗、体积和重量。同时为了适应实际应用需求,高功率微波源还需要具备较长时间的工作寿命及连续长时间工作的能力。因此,长寿命轻小型化高功率微波源成为高功率微波技术研究领域的一大热点。相对论磁控管(RM)具有结构简单、运行磁场低、具备高效率、高功率与重复脉冲工作能力等优点,是最有实用价值的轻小型化高功率微波源之一。
作为正交场器件,相对论磁控管阴极电子发射区域与阳极轴向位置重合,阴极产生的强流电子在与阳极块慢波结构决定的高频微波模式交换能量后直接轰击到阳极表面被阳极收集。在长时间运行时,强流电子的持续轰击会导致阳极温度升高,如果不采取冷却措施就会导致阳极表面烧蚀而影响其正常工作。同时,由于相对论磁控管的整个阳极区域均为电子收集区域,在长时间工作时必须对整个阳极区域进行制冷。
相对论磁控管的阳极外部区域均设置有励磁磁体;为了实现系统的轻小型化及低功耗,其磁体内径一般设置的较小,这使得在阳极块外围与磁体之间空间较小,冷却结构设计较为困难。
因此,现有技术还有待于进一步发展和改进。
发明内容
针对现有技术的种种不足,为了实现相对论磁控管制冷组件与阳极外筒一体化设计,以降低长时间运行高功率微波源系统的体积重量,满足多种应用需求,现提出一种一体化制冷相对论磁控管,该一体化制冷磁控管具有制冷均匀、系统可长时间稳定工作、冷却液加载简单方便以及系统紧凑的特点。
为实现上述目的,本发明提供如下技术方案:
一种一体化制冷相对论磁控管,包括由内向外依次同轴排布的阴极、阳极块、用于实现阳极块降温的一体化制冷阳极外筒、磁体,所述阳极块与一体化制冷阳极外筒的内表面接触,所述磁体与一体化制冷阳极外筒紧贴。
进一步地,还包括用于将一体化制冷阳极外筒内部产生的高功率微波能量提取输出到下游的输出结构,所述输出结构设置于阳极块的后端。
进一步地,所述一体化制冷阳极外筒的内部设有填充冷却液的冷却液槽,所述冷却液槽内设置有用于实现冷却液持续均匀流动的导流通道。
进一步地,所述一体化制冷阳极外筒包括内筒、冷却液外壳,所述冷却液外壳与内筒同轴排布并分别构成冷却液槽的上下边界。
进一步地,所述冷却液外壳外表面一侧端部设置冷却液入口及冷却液出口,所述冷却液入口及冷却液出口并列排布且分别与冷却液槽之间相互连通。
优选的,所述冷却液入口及冷却液出口均设置于冷却液槽前端。
进一步地,所述冷却液槽内设置隔板及若干导流板,通过隔板及若干导流板形成导流通道,所述隔板设置于冷却液入口和冷却液出口之间实现冷却液由冷却液入口经由导流通道输送至冷却液出口。
优选的,各导流板在冷却液槽内轴向排布,相邻导流板的轴向端部位置交替设置一个导流口形成回形导流通道。
优选的,各导流板长度相等,相邻导流板之间间距相等。
进一步地,所述阴极沿一体化制冷阳极外筒轴线分布。
优选的,磁体为永磁体、电磁体或者永磁/电磁混合磁体。
本发明的一种一体化制冷相对论磁控管的工作原理是:在相对论磁控管阴阳极间开始工作之前,在冷却液入口处根据需要持续通入一定流速的冷却液;冷却液在进入冷却液槽后沿着回形导流通道形成均匀的折叠流流向冷却液出口位置;当冷却液到达冷却液出口位置后,在阴阳极之间加上高压电脉冲形成径向电场,与磁体所形成的轴向磁场正交;由阴极发射的电子在该正交电磁场作用下沿角向漂移,形成电子轮辐;当电子轮辐在互作用空间的旋转与调谐到特定频率高频场的相速同步时,电子将能量交给高频场产生高功率微波;高功率微波能量通过输出结构提取输出到下游;在微波产生的过程中,电子束持续轰击阳极块,电子剩余能量的绝大部分以热能的形式交给阳极;阳极的热量通过热传导到一体化制冷阳极外筒上并被持续流动的冷却液将热能带走,保证相对论磁控管长时间运行时阳极温度维持在磁体及阳极本身可接受的范围内。
有益效果
本发明提供了一种一体化相对论磁控管,与现有技术相比具有如下有益效果:
(1)该一体化相对论磁控管中的一体化制冷阳极外筒充分利用了磁控管的内部空间,不增加系统横向尺寸,且不占用磁体空间,提高了系统的轻小型化水平。
(2)本发明中采用回形导流通道保证冷却液在冷却液槽内形成了均匀的折叠流,在工作过程中可以将阳极上不同角向位置所产生的热量一次带走,不会导致由于冷却液分布不均而产生的局部温度过高。
(3)本发明提出的一体化制冷相对论磁控管能很好地应用于结构紧凑、长时间运行的高功率微波系统之中。
附图说明
以下结合附图对本发明的几个优选实施例进行具体的描述。
图1为本发明具体实施例1中一体化制冷相对论磁控管的结构示意图;
图2为本发明具体实施例1中一体化制冷阳极外筒的三维剖视图;
图3为本发明具体实施例1中一体化制冷阳极外筒除冷却液外壳外的三维结构示意图;
图4为本发明具体实施例1中的一体化相对论磁控管的三维剖视图;
图5为本发明具体实施实施例2中一体化制冷阳极外筒的部分结构示意图。
附图中:1-一体化制冷阳极外筒、2-阳极块、3-阴极、4-磁体、5-输出结构、6-内筒、7-冷却液外壳、8-冷却液槽、9-冷却液入口、10-冷却液出口、11-隔板、12-导流板、13-螺旋形导流板。
具体实施方式
为了使本领域的人员更好地理解本发明的技术方案,下面结合本发明的附图,对本发明的技术方案进行清楚、完整的描述,基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的其它类同实施例,都应当属于本申请保护的范围。此外,以下实施例中提到的方向用词,例如“上”“下”“左”“右”等仅是参考附图的方向,因此,使用的方向用词是用来说明而非限制本发明创造。
具体实施例1
一种一体化制冷相对论磁控管,如图1所示,包括由内向外依次同轴排布的阴极3、阳极块2、用于实现阳极块2降温的一体化制冷阳极外筒1、磁体4。
优选的,磁体4为永磁体、电磁体或者永磁/电磁混合磁体。
磁体4共轴紧贴设置于一体化制冷阳极外筒1的外部,阴极3共轴设置于一体化制冷阳极外筒1内部。
阳极块2固定于一体化制冷阳极外筒1的内表面上。
阳极块2由多块沿角向均布结构相同的扇形块组成,各扇形块环绕阴极3均匀排布于一体化制冷阳极外筒1内表面上。
阳极块2的后端设置有用于将一体化制冷阳极外筒1内部产生的高功率微波能量提取输出到下游的输出结构5,输出结构5由多块内外张角渐变的扇形块及一个输出外筒组成,张角渐变扇形块数量与阳极块2中扇形块数量相同。
如图2所示,一体化制冷阳极外筒1的内部设有填充冷却液的冷却液槽8,冷却液槽8内设置有用于实现冷却液持续均匀流动的导流通道。具体的,一体化制冷阳极外筒1包括内筒6、冷却液外壳7,冷却液外壳7的内表面与内筒6的外表面同轴排布并分别构成冷却液槽8的上下边界。冷却液外壳7的外表面一侧端部设置冷却液入口9及冷却液出口10,其中,冷却液入口9及冷却液出口10并列排布且分别与冷却液槽8之间相互连通。
优选的,冷却液入口9及冷却液出口10均设置于冷却液槽8前端。
优选的,冷却液入口9和冷却液出口10的直径相等。
优选的,如图3所示,在冷却液槽8内设置隔板11及若干导流板12,通过隔板11及若干导流板12形成导流通道,隔板11设置于冷却液入口9和冷却液出口10之间实现冷却液由冷却液入口9经由导流通道输送至冷却液出口10。
优选的,各导流板12在冷却液槽8内轴向排布,相邻导流板12的轴向端部位置交替设置一个导流口形成回形导流通道,保证冷却液在回形导流通道内形成均匀的折叠流,在工作过程中可以将阳极块2上不同角向位置所产生的热量一次带走,不会导致由于冷却液分布不均而产生的局部温度过高。
优选的,位于导流口处的导流板轴向端部设置倒角,以减少冷却液流经导流口时的流动阻力,便于冷却液顺利流入相邻导流通道内。
优选的,导流口的口径与相邻导流板12之间的间距相等,各导流板12长度相等,相邻导流板12之间间距相等,以实现流经导流口的冷却液可以以相同的流量、相同的流速同时进入到相邻的导流通道内,保证导流通道之间的冷却液分布均匀、稳定,实现冷却液槽8内的整体冷却液分布均匀,避免因冷却液分布不均而导致的局部温度过高。
具体设计时,优选的,如图4所示,所述阳极块2由6个沿角向均布结构相同的扇形块组成,每个扇形块的内半径为35mm,外半径为67mm,轴向长度为110mm,张角为40°,输出结构5由6块内外张角渐变的扇形块及一个输出外筒组成,起始内外半径分别于阳极块2的内外半径相同,即输出结构5的扇形块的内外半径分别为35mm和67mm,之后其内外半径分别以32°和17.5°的张角渐变扩大,到内外半径均等于160mm位置扇形块与输出外筒相连。一体化一体化制冷阳极外筒1内部由1块隔板11和35块导流板12形成回形导流通道,冷却液槽8内外半径分别为71mm和77.5mm,冷却液槽8宽为241mm,隔板11长为241mm,导流板12长为231mm,相邻导流板12之间的间距为10mm,隔板11与导流板12厚度均为2mm,隔板11与导流板12高度均为6.5mm,冷却液入口9与冷却液出口10均为直径10mm的圆孔。
当本实施例提出的一体化相对论磁控管开始工作之前,在冷却液入口9处根据需要持续通入一定流速的冷却液,冷却液在进入冷却液槽8后沿着回形导流通道形成均匀的折叠流流向冷却液出口10位置,当冷却液到达冷却液出口10位置后,在阴阳极块之间加上高压电脉冲形成径向电场,与磁体4所形成的轴向磁场正交,由阴极3发射的电子在该正交电磁场作用下沿角向漂移,形成电子轮辐,当电子轮辐在互作用空间的旋转与调谐到特定频率高频场的相速同步时,电子将能量交给高频场产生高功率微波,高功率微波能量通过输出结构提取输出到下游,在微波产生的过程中,电子束持续轰击阳极块2,电子剩余能量的绝大部分以热能的形式交给阳极块3;阳极块3的热量通过热传导到一体化制冷阳极外筒1上并被持续流动的冷却液将热能带走,保证相对论磁控管长时间运行时阳极块2温度维持在磁体4及阳极块2本身可接受的范围内。
具体实施例2
基于具体实施例1提出另一种较佳的的实施例,与具体实施例相同的部分不再赘述,不同的是,本实施例中导流通道的形成方式及冷却液入口9、冷却液出口10的设置位置。
具体的,如图5所示,在冷却液槽8内设置有用于实现冷却液持续均匀流动的螺旋形导流通道,该螺旋形导流通道通过设置于冷却液槽8内的螺旋形导流板13实现。所述螺旋形导流板13为一体成型板,螺旋形导流板13中相邻螺纹之间的螺距相等。所述螺旋形导流板13的一端相邻冷却液入口9设置,另一端相邻冷却液出口10设置,以实现冷却液由冷却液入口9经由螺旋形导流通道流向冷却液出口10,最终实现冷却液在冷夜液槽内的均匀流动。
当本实施例提出的一体化相对论磁控管开始工作之前,在冷却液入口9处根据需要持续通入一定流速的冷却液,冷却液在进入冷却液槽8后沿着螺旋形导流通道形成均匀的螺旋流流向冷却液出口10位置,当冷却液到达冷却液出口10位置后,在阴阳极块之间加上高压电脉冲形成径向电场,与磁体4所形成的轴向磁场正交,由阴极发射的电子在该正交电磁场作用下沿角向漂移,形成电子轮辐,当电子轮辐在互作用空间的旋转与调谐到特定频率高频场的相速同步时,电子将能量交给高频场产生高功率微波,高功率微波能量通过输出结构提取输出到下游,在微波产生的过程中,电子束持续轰击阳极块2,电子剩余能量的绝大部分以热能的形式交给阳极块2;阳极块2的热量通过热传导到一体化制冷阳极外筒1上并被持续流动的冷却液将热能带走,保证相对论磁控管长时间运行时阳极块2温度维持在磁体4及阳极块2本身可接受的范围内。
基于以上一体化制冷相对论磁控管结构,在脉冲功率源上开展了长时间连续运行实验。实验中采用恒流电磁线圈作为励磁磁体,线圈及一体化制冷外筒1中均通自来水作为冷却介质,本发明提出的这种一体化制冷相对论磁控管在GW级微波功率输出条件下以10Hz重复频率连续运行20分钟时间后阳极块2与磁体4温度不超过45°,并且无性能退化的现象,这表明该发明可以应用于对轻小型化要求严格的长时间运行高功率微波系统之中。
以上已将本发明做一详细说明,以上所述,仅为本发明之较佳实施例而已,当不能限定本发明实施范围,即凡依本申请范围所作均等变化与修饰,皆应仍属本发明涵盖范围内。

Claims (7)

1.一种一体化制冷相对论磁控管,其特征在于,包括由内向外依次同轴排布的阴极、阳极块、用于实现阳极块降温的一体化制冷阳极外筒、磁体,所述阳极块与一体化制冷阳极外筒的内表面接触。
2.根据权利要求1所述的一体化制冷相对论磁控管,其特征在于,所述一体化制冷阳极外筒的内部设有填充冷却液的冷却液槽,所述冷却液槽内设置有用于实现冷却液持续均匀流动的导流通道。
3.根据权利要求2所述的一体化制冷相对论磁控管,其特征在于,所述一体化制冷阳极外筒包括内筒、冷却液外壳,所述冷却液外壳与内筒同轴排布并分别构成冷却液槽的上下边界。
4.根据权利要求3所述的一体化制冷相对论磁控管,其特征在于,所述冷却液外壳外表面一侧端部设置冷却液入口及冷却液出口,所述冷却液入口及冷却液出口并列排布且分别与冷却液槽之间相互连通。
5.根据权利要求4所述的一体化制冷相对论磁控管,其特征在于,所述冷却液槽内设置隔板及若干导流板,通过隔板及若干导流板形成导流通道,所述隔板设置于冷却液入口和冷却液出口之间实现冷却液由冷却液入口经由导流通道输送至冷却液出口。
6.根据权利要求5所述的一体化制冷相对论磁控管,其特征在于,各导流板在冷却液槽内轴向排布,相邻导流板的轴向端部位置交替设置一个导流口形成回形导流通道。
7.根据权利要求6所述的一体化制冷相对论磁控管,其特征在于,各导流板长度相等,相邻导流板之间间距相等。
CN202010313251.0A 2020-04-20 2020-04-20 一种一体化制冷相对论磁控管 Pending CN111430203A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010313251.0A CN111430203A (zh) 2020-04-20 2020-04-20 一种一体化制冷相对论磁控管

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010313251.0A CN111430203A (zh) 2020-04-20 2020-04-20 一种一体化制冷相对论磁控管

Publications (1)

Publication Number Publication Date
CN111430203A true CN111430203A (zh) 2020-07-17

Family

ID=71554113

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010313251.0A Pending CN111430203A (zh) 2020-04-20 2020-04-20 一种一体化制冷相对论磁控管

Country Status (1)

Country Link
CN (1) CN111430203A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116261251A (zh) * 2023-03-28 2023-06-13 北京机械工业自动化研究所有限公司 一种轻量化x波段无损检测用电子直线加速器

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03297034A (ja) * 1990-04-16 1991-12-27 Hitachi Ltd マグネトロン
JP2002163992A (ja) * 2000-11-22 2002-06-07 Sanyo Electric Co Ltd マグネトロン
JP2003100224A (ja) * 2001-09-19 2003-04-04 Matsushita Electric Ind Co Ltd マグネトロン装置
JP2004134160A (ja) * 2002-10-09 2004-04-30 Hitachi Displays Ltd マグネトロン
WO2011111396A1 (ja) * 2010-03-12 2011-09-15 パナソニック株式会社 マグネトロン及びマイクロ波利用機器
CN104992892A (zh) * 2015-07-17 2015-10-21 中国工程物理研究院应用电子学研究所 一种永磁包装相对论磁控管
CN105590819A (zh) * 2016-03-11 2016-05-18 中国工程物理研究院应用电子学研究所 一种全腔提取相对论磁控管的混合励磁系统
CN106384856A (zh) * 2016-11-16 2017-02-08 东莞市文轩五金制品有限公司 一种用于动力电池的循环流道液冷板及其加工方法
JP6110988B1 (ja) * 2016-09-30 2017-04-05 株式会社日立パワーソリューションズ マグネトロン
CN109243944A (zh) * 2018-10-26 2019-01-18 中国工程物理研究院应用电子学研究所 一种可调谐多天线轴向输出相对论磁控管
CN208779999U (zh) * 2018-09-11 2019-04-23 明春梅 三维交叉式热交换的液-气介质蓄换热结构

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03297034A (ja) * 1990-04-16 1991-12-27 Hitachi Ltd マグネトロン
JP2002163992A (ja) * 2000-11-22 2002-06-07 Sanyo Electric Co Ltd マグネトロン
JP2003100224A (ja) * 2001-09-19 2003-04-04 Matsushita Electric Ind Co Ltd マグネトロン装置
JP2004134160A (ja) * 2002-10-09 2004-04-30 Hitachi Displays Ltd マグネトロン
WO2011111396A1 (ja) * 2010-03-12 2011-09-15 パナソニック株式会社 マグネトロン及びマイクロ波利用機器
CN104992892A (zh) * 2015-07-17 2015-10-21 中国工程物理研究院应用电子学研究所 一种永磁包装相对论磁控管
CN105590819A (zh) * 2016-03-11 2016-05-18 中国工程物理研究院应用电子学研究所 一种全腔提取相对论磁控管的混合励磁系统
JP6110988B1 (ja) * 2016-09-30 2017-04-05 株式会社日立パワーソリューションズ マグネトロン
CN106384856A (zh) * 2016-11-16 2017-02-08 东莞市文轩五金制品有限公司 一种用于动力电池的循环流道液冷板及其加工方法
CN208779999U (zh) * 2018-09-11 2019-04-23 明春梅 三维交叉式热交换的液-气介质蓄换热结构
CN109243944A (zh) * 2018-10-26 2019-01-18 中国工程物理研究院应用电子学研究所 一种可调谐多天线轴向输出相对论磁控管

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116261251A (zh) * 2023-03-28 2023-06-13 北京机械工业自动化研究所有限公司 一种轻量化x波段无损检测用电子直线加速器

Similar Documents

Publication Publication Date Title
CN106253031B (zh) 亚微秒级长脉冲高效率相对论切伦科夫振荡器
CN106449337B (zh) 一种长脉冲相对论返波振荡器
CN103137399A (zh) 同轴提取长脉冲相对论返波振荡器
CN109587926B (zh) 一种小型化强流中子发生器
CN105190822B (zh) 磁控管
CN207783240U (zh) 一种双等离子体离子源
CN111584330B (zh) 一种频率在c、x波段转换的切伦科夫微波发生器
CN110379691A (zh) 一种紧凑型高效率轴向输出te51模式相对论磁控管
CN111430203A (zh) 一种一体化制冷相对论磁控管
CN110806148B (zh) 一种用于车船迫停的紧凑型窄带高功率微波源
CN107946156A (zh) 可工作在长脉冲状态下同轴渡越时间振荡器电子收集极
CN109148244B (zh) 一种轴向可调谐相对论磁控管
US8487556B2 (en) Ultra-high vacuum photoelectron linear accelerator
Miao et al. Experimental demonstration of dual-mode relativistic backward wave oscillator with a beam filtering ring packaged with permanent magnet
CN101728182A (zh) 一种椭圆形带状注电子枪结构
CN105719925B (zh) 一种高频段磁绝缘线振荡器
CN211529910U (zh) 一种相对论磁控管的一体化制冷阳极外筒
CN114883162B (zh) 基于大半径环形电子束的l波段高功率长脉冲rbwo
CN103050355B (zh) 一种用于行波管的慢波结构
CN109755084B (zh) X波段双模多注速调管
Duan et al. Operation of HL-2A tokamak
CN115762951B (zh) 一种用于产生过滤磁场的介入式稀疏回旋线圈结构
Welton et al. The design of high power, external antennas for radio frequency multicusp ion sources
CN102931047A (zh) 一种长寿命电子回旋共振离子源
Jongewaard et al. The next linear collider klystron development program

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200717

RJ01 Rejection of invention patent application after publication