JP4261252B2 - Fault diagnosis apparatus and fault diagnosis method for vacuum pump - Google Patents

Fault diagnosis apparatus and fault diagnosis method for vacuum pump Download PDF

Info

Publication number
JP4261252B2
JP4261252B2 JP2003171844A JP2003171844A JP4261252B2 JP 4261252 B2 JP4261252 B2 JP 4261252B2 JP 2003171844 A JP2003171844 A JP 2003171844A JP 2003171844 A JP2003171844 A JP 2003171844A JP 4261252 B2 JP4261252 B2 JP 4261252B2
Authority
JP
Japan
Prior art keywords
vacuum pump
change amount
state change
pump
rotation speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003171844A
Other languages
Japanese (ja)
Other versions
JP2005009337A5 (en
JP2005009337A (en
Inventor
清司 柳澤
知範 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2003171844A priority Critical patent/JP4261252B2/en
Publication of JP2005009337A publication Critical patent/JP2005009337A/en
Publication of JP2005009337A5 publication Critical patent/JP2005009337A5/ja
Application granted granted Critical
Publication of JP4261252B2 publication Critical patent/JP4261252B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Non-Positive Displacement Air Blowers (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体装置や液晶装置の製造プロセス等で使用される各種ガスの排気に用いられる真空ポンプの故障診断装置及び故障診断方法に関するものである。
【0002】
【従来の技術】
半導体デバイスや液晶デバイスの製造プロセス等で使用される真空ポンプの故障診断予測は、定常運転時のモータ電流、電力、温度、振動、音、ポンプ吸気圧力、ポンプ排気圧力、アコースティックエミッション等の物理量の状態をオペレータによる日常点検結果、又はコンピュータを用いた集中監視によって収集し得られた日常運転データから閾値を設定し、その値を目安に真空ポンプの交換を行っている。しかしながら、このような日常運転データの常時監視では、状態変化量(物理量)が小さいため、真空ポンプに発生する異常を見逃してしまい、真空ポンプが故障して突然停止してしまうことが多い。
【0003】
半導体装置や液晶装置の製造プロセス等で使用される真空ポンプは、機械の経年変化、反応副生成物のロータとロータの間、ロータとケーシングの間への噛み込み、腐食性ガスによるロータ及びケーシング材の腐食・表面荒れによる擦動抵抗の増大、排気配管閉塞による背圧上昇等の要因により、突然停止することがある。また、このような真空ポンプの突然の停止が発生すると製造中の半導体ウエハ等に損傷を与えることもある。
【0004】
【特許文献1】
特開2000−110735号公報
【0005】
【発明が解決しようとする課題】
本発明は上述の点に鑑みてなされたもので、上記真空ポンプ停止となる要因を事前に予測し突然の真空ポンプ停止による半導体ウエハ等の損傷を防止することができる真空ポンプの故障診断装置及び故障診断方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記課題を解決するため請求項1に記載の発明は、プロセス装置に接続され、該プロセス装置で使用するプロセスガスを排気する真空ポンプの故障を事前に診断する真空ポンプの故障診断装置であって、プロセス装置のプロセスへの影響がないタイミングに真空ポンプのポンプロータの回転数を変化させるポンプロータ回転数変化手段と、ポンプロータ回転数変化手段によるポンプロータの回転数変化時における真空ポンプの状態変化量を測定する状態変化量測定手段と、真空ポンプの正常時の状態変化量と状態変化量測定手段で測定した状態変化量を比較する状態変化量比較手段と、状態変化量比較手段で正常時の状態変化量と測定した状態変化量とを比較し、その差が所定量大きく又は小さくなった場合、異常と診断する診断手段とを備えたことを特徴とする。ここで正常時とは、真空ポンプを製造し、検査を行い求められた基準を満たした時点である。
【0007】
請求項2に記載の発明は、請求項1に記載の真空ポンプの故障診断装置において、状態変化量は、ポンプロータ回転数変化手段による真空ポンプ起動時のポンプロータの停止から定速回転に達するまでの状態変化量であることを特徴とする。
【0008】
請求項3に記載の発明は、請求項1に記載の真空ポンプの故障診断装置において、状態変化量は、ロータ回転数変化手段による真空ポンプ停止時のポンプロータの定速回転から停止までの状態変化量であることを特徴とする。
【0009】
請求項4に記載の発明は、請求項1に記載の真空ポンプの故障診断装置において、状態変化量は、ロータ回転数変化手段による真空ポンプのポンプロータを定速回転から所定の低速回転に下げた時の状態変化量であることを特徴とする。
【0010】
請求項5に記載の発明は、請求項1に記載の真空ポンプの故障診断装置において、
状態変化量は、ロータ回転数変化手段による真空ポンプのポンプロータを定速回転から所定の高速回転に上げた時の状態変化量であることを特徴とする。
【0011】
請求項6に記載の発明は、プロセス装置に接続され、該プロセス装置で使用するプロセスガスを排気する真空ポンプの故障を事前に診断する真空ポンプの故障診断方法であって、プロセス装置のプロセスへの影響がないタイミングに真空ポンプのポンプロータの回転数を変化させるポンプロータ回転数変化工程と、ポンプロータ回転数変化工程によるポンプロータの回転数変化時における真空ポンプの状態変化量を測定する状態変化量測定工程と、真空ポンプの正常時の状態変化量と状態変化量測定工程で測定した状態変化量を比較する状態変化量比較工程と、状態変化量比較工程で正常時の状態変化量と測定した状態変化量とを比較し、その差が所定量大きく又は小さくなった場合、異常と診断する診断工程とを備えたことを特徴とする。
【0012】
この種の真空ポンプに異常が生じているときの状態量(物理量、モータ電流値等)変化は、ポンプ定常運転時のそれよりも、真空ポンプのポンプロータの回転数が変化する(又は変化させる)ときの方が変化量は顕在化する。即ち、真空ポンプに異常が生じているときの状態変化量は真空ポンプ定常運転時のそれよりもポンプロータの回転数が変化する(或いは変化させる)時の方が変化幅が大きくなる。そこで請求項1に記載のように、ポンプロータの回転数変化時における状態変化量を正常時の状態変化量と比較して、その正常・異常の判定を行うことにより、容易で正確な判断が可能となる。
【0013】
例えば、真空ポンプを起動させたときのポンプロータの起動から定格回転数に達する間の状態量(物理量)を測定し、その変化量に関して出荷時の、フィールド(現場)からフィードバックした(使用条件(圧力、ガス量)等の条件を含んだ)値と比較し異常・正常の判定を行う。
【0014】
また、請求項2又は3に記載の発明のように、真空ポンプ起動時のポンプロータの停止から定格回転に達するまで又は真空ポンプの停止時のポンプロータの定格回転から停止状態に達するまでの状態変化量を測定し、その変化量に関しての出荷時の値、フィールドからフィードバックした(使用条件(圧力、ガス量)等の条件を含んだ)値と比較し異常・正常の判定を行うことにより、容易で且つ正確に正常・異常を判定できる。
【0015】
また、請求項4又は5に記載の発明のように、真空ポンプのポンプロータの回転数を定格回転数よりも意図的に速くし、若しくは遅くしたときの状態変化を測定する。その変化量を使用条件等に合わせて予め設定した値、若しくは使用状態からフィードバックした値と比較し異常・正常の判定を行うことにより、容易で且つ正確に正常・異常を判定できる。
【0016】
【発明の実施の形態】
以下、本発明の実施の形態例を図面に基づいて説明する。図1は本発明に係る真空ポンプの故障診断装置のシステム構成例を示す図である。CVD装置又はエッチング装置等のプロセス装置10には該プロセスで用いるガスを排気するために真空ポンプ11が接続され、該真空ポンプ11で排気されたガスは除害装置12及び工場スクラバ13を通って有害成分が除去された後、排気される。
【0017】
真空ポンプ11には図示しない状態変化量(物理量)、例えばガス温度、ケーシング温度、モータコイル温度、モータ電流、モータ電力、背圧、吸気圧力、規定値に達するまでの時間、アコースティックエミッションAE、振動、回転数等を計測するための各種センサ群14が設けられ、該センサ群14の測定出力が正常・異常判定装置15aに送られる。
【0018】
正常・異常判定装置15aはポンプ制御盤15内に組み込まれているパソコンで構成され、該正常・異常判定装置15aではセンサ群14で測定した測定出力から、各状態変化量を検出し、該検出した各状態変化量と正常時の状態変化量とを比較し、真空ポンプ11の正常・異常を判断し、その結果を警報装置、ポケベル、E−mail16に出力すると共に、プロセス装置10にフィードバックする。
【0019】
真空ポンプ11は半導体デバイス製造プロセスや液晶デバイス製造プロセスにおいて多く使用されているが、下記に示すような原因による突然停止により、製造中のウエハ等に損傷を与えることがある。
【0020】
真空ポンプ11はプロセス装置10のチャンバ内を真空状態にし、同時にプロセスガスを排気するために使用される。このプロセスガスの中には腐食性の強いものや排気途中に配管内や真空ポンプ11内で固体化してしまうガスが含まれる。
【0021】
真空ポンプ11のロータとロータの間、ロータとケーシングの間の隙間は微小であり、このようなプロセスガスによりロータやケーシングが腐食すると、面荒れによりロータとロータの間、ロータとケーシングの間のかじりが発生し、モータに負荷がかかり真空ポンプ11が停止する。
【0022】
また、反応副生成物がロータとロータの間、ロータとケーシングの間に発生し、付着し、成長し、接触したり、配管中で発生した反応副生成物が落ち込んできて噛み込みが発生し、モータに負荷がかかることにより真空ポンプ11が停止するという問題が起る。特に、真空ポンプ11の後段側では気体の圧力が高くなるため、反応副生成物の発生が起こりやすく、その部分へ生成物が付着し、擦動抵抗の増大によりポンプが停止に至る事例が多い。
【0023】
また、潤滑用油の漏れ、ガスによる劣化、経年劣化により軸受が加熱、摩擦等のダメージを受け、その結果モータに負荷がかかり真空ポンプ11が停止することもある。
【0024】
また、軸受の劣化によりスムーズな回転が行われずモータに負荷がかかりポンプ停止に至ることもある。
【0025】
上記のように、真空ポンプ11の突然の停止はこのような機械的、物理的な要因によって引き起こされることが多く、その際には、必ず物理的な信号がポンプから発せられる。但し、真空ポンプ11の通常の運転時に発生されるこのような物理的信号は、変化量が小さく又緩やかに変化するため、真空ポンプ11の異常に起因するものなのか、或いはポンプ使用状況の変化によるものなのか判別がつきにくい。或いは大きな変化が検知されるときには真空ポンプ11の停止直前で、交換するまでに時間的余裕がない。
【0026】
そこで、図1に示すように、故障診断装置を構成し、真空ポンプ11の起動時若しくは停止時の状態変化量、低速回転から高速回転若しくは高速回転から低速回転に移行する間の状態変化量を正常・異常判定装置15aでセンサ群14の各センサの測定出力から検知する。このように回転数を変化させると、状態変化量の絶対値が大きくなり、正常・異常判定装置15aでこの検知した状態変化量と正常時の状態変化量とを比較することにより、異常が検知しやすくなる。
【0027】
また、この正常・異常を判断するための操作は任意のタイミングでおこなうことができるので、プロセスへの影響がないタイミングを選んで実施することが可能である。
【0028】
図2は故障診断装置で真空ポンプの回転数を上下させて故障診断する場合の処理例を示す図である。先ず、ポンプ制御盤15から真空ポンプ11へ回転数上昇・減少の指令を出す(ステップST1)。センサ群14の各センサの出力をポンプ制御盤15の正常・異常判定装置15aへ入力し(ステップST2)、該正常・異常判定装置15aで各センサの測定出力から各状態変化量を検知し、該検知した状態変化量と正常時の状態変化量とを比較し正常・異常の判定を行う(ステップST3)。判定結果が正常であったら、真空ポンプ11の運転状態を回転数を変化させる前の状態に復帰させ(ステップST4)、判定結果が異常であったら、警報装置、ポケベル、E−mail16に警報を出力する(ステップST5)。
【0029】
図3は上記回転数を上下させて故障診断する場合の正常・異常の判定ルーチン例を示す図である。先ず、上記検知した状態変化量が規定値、即ち正常時の状態変化量を所定量超えたか否かを判断する(ステップST11)。規定値を超えなかった場合は正常(OK)であるから、真空ポンプ11の運転を回転数変更前の状態に復帰し(ステップST12)、規定値を超えた場合は回転数を一旦元に戻し(ステップST13)、続いて再度真空ポンプ11へ回転数上昇・減少の指令を出し、回転数を再度変化させる(ステップST14)。
【0030】
続いて、状態変化量が規定値を超えたか否かを判断し(ステップST15)、規定値を超えなかった場合は正常(OK)として真空ポンプ11の運転を回転数変更前の状態に復帰させ(ステップST16)、規定値を超えた場合は前記ステップST13に戻して処理を繰り返す。この処理を所定のN回繰り返す(Nは任意の数)。設定したN回処理を繰り返しても状態変化が規定値、即ち正常時の状態変化量を所定量超えた場合、真空ポンプ11が異常であるとして、上記のように、警報装置、ポケベル、E−mail16に警報を出力する。
【0031】
図4は故障診断装置で真空ポンプを起動若しくは停止させて故障診断する場合の処理例を示す図である。先ず、ポンプ制御盤15から真空ポンプ11へポンプ起動若しくは停止の指令を出力する(ステップST21)。センサ群14の各センサの出力をポンプ制御盤15の正常・異常判定装置15aへ入力し(ステップST22)、該正常・異常判定装置15aで各センサの出力から各状態変化量を検知し、該検知した状態変化量と正常時の状態変化量とを比較し正常・異常の判定を行う(ステップST23)。判定結果が正常であったら、前の状態に復帰させ(ステップST24)、判定結果が異常であったら、警報装置、ポケベル、E−mail16に警報を出力する(ステップST25)。
【0032】
図5は上記真空ポンプを起動若しくは停止させて故障診断する場合の正常・異常の判定ルーチン例を示す図である。先ず、上記検知した状態変化量が規定値、即ち正常時の状態変化量を所定量超えたか否かを判断する(ステップST31)。規定値を超えなかった場合は正常(OK)とし(ステップST32)、規定値を超えた場合は状態を元(起動又は停止)の状態に戻し(ステップST33)、続いて再度真空ポンプ11へポンプ起動若しくは停止の指令を出力する(ステップST34)。
【0033】
続いて、状態変化量が規定値を超えたか否かを判断し(ステップST35)、規定値を超えなかった場合は正常(OK)とし(ステップST36)、規定値を超えた場合は前記ステップST33に戻して処理を繰り返す。この処理を所定の設定したN回繰り返す(Nは任意の数)。設定したN回処理を繰り返しても状態変化が規定値、即ち正常時の状態変化量を所定量超えた場合、真空ポンプ11が異常であるとして、警報装置、ポケベル、E−mail16に警報を出力する。
【0034】
上記真空ポンプの故障診断装置では、ポンプ制御盤15内の正常・異常判定装置(パソコン)15aで正常・異常を判断する場合を示したが、図6に示すように、センサ群14の測定出力をポンプ制御盤15からポンプモニタシステム17に伝送し、ポンプモニタシステム17で真空ポンプ11の正常・異常を判断するようにしてもよい。
【0035】
図7はポンプモニタシステムの構成例を示す図であり、ポンプモニタシステム17はシステム管理パソコン20を具備し、該システム管理パソコン20には各データ収集パソコン21、21(このデータ収集パソコン21はポンプ制御盤15に備えられている)、モニタパソコン22、故障予測判定パソコン23が接続されている。各データ収集パソコン21には各真空ポンプ11に取りつけたセンサ群14の各センサからの測定出力が入力され、各状態変化量が検知される。この検知された状態変化量は各データ収集パソコン21、21からシステム管理パソコン20に送られる。モニタパソコン22は、各真空ポンプ11の状態をモニタし、故障予測判定パソコン23で各真空ポンプ11の状態変化量を基に正常・異常を判断し、異常と判断する場合、警報を出力する。
【0036】
【発明の効果】
以上説明したように各請求項に記載の発明によれば下記のような優れた効果が得られる。
【0037】
請求項1に記載の発明によれば、プロセス装置のプロセスへの影響がないタイミングで真空ポンプのポンプロータの回転数を変化させ、該回転数変化時における状態変化量を正常時の状態変化量と比較して、その正常・異常の判定を行うので、真空ポンプに異常が生じているときの状態変化量はポンプ定常運転時のそれよりも回転数が変化する(或いは変化させる)時の方が変化幅が大きくなるから、容易で正確に正常・異常を判定でき、しかもプロセス装置のプロセスに影響を与えることがない
【0038】
請求項2又は3に記載の発明によれば、真空ポンプ起動時のポンプロータの停止から定格回転に達するまで又は真空ポンプの停止時のポンプロータの定格回転から停止状態に達するまでの状態変化量を測定し、その変化量に関して出荷時の値、フィールドからフィードバックした(使用条件(圧力、ガス量)等の条件を含んだ)値と比較し異常・正常の判定を行うことにより、容易で且つ正確に正常・異常を判定できる。
【0039】
また、請求項4又は5に記載の発明によれば、真空ポンプのポンプロータの回転数を定格回転数よりも意図的に速くし、若しくは遅くしたときの状態変化を測定する。その変化量を使用条件等に合わせて予め設定した値、若しくは使用状態からフィードバックした値と比較し異常・正常の判定を行うことにより、容易で且つ正確に正常・異常を判定できる。
【0040】
また、請求項6に記載の発明によれば、請求項1の発明と同様、プロセス装置のプロセスへの影響がないタイミングで真空ポンプのポンプロータの回転数を変化させ、該回転数変化時における状態変化量を正常時の状態変化量と比較して、その正常・異常の判定を行うので、真空ポンプに異常が生じているときの状態変化量はポンプ定常運転時のそれよりも回転数が変化する(或いは変化させる)時の方が変化幅が大きくなるから、容易で正確に正常・異常を判定でき、しかもプロセス装置のプロセスに影響を与えることがない
【図面の簡単な説明】
【図1】 本発明に係る真空ポンプの故障診断装置のシステム構成例を示す図である。
【図2】 本発明に係る真空ポンプの故障診断装置で真空ポンプの回転数を上下させて故障診断する場合の処理例を示す図である。
【図3】 真空ポンプの回転数を上下させて故障診断する場合の正常・異常の判定ルーチン例を示す図である。
【図4】 本発明に係る真空ポンプの故障診断装置で真空ポンプを起動若しくは停止させて故障診断する場合の処理例を示す図である。
【図5】 真空ポンプを起動若しくは停止させて故障診断する場合の正常・異常の判定ルーチン例を示す図である。
【図6】 本発明に係る真空ポンプの故障診断装置のシステム構成例を示す図である。
【図7】 図6のポンプモニタシステムの構成例を示す図である。
【符号の説明】
10 プロセス装置
11 真空ポンプ
12 除害装置
13 工場スクラバ
14 センサ群
15 ポンプ制御盤
16 警報装置、ポケベル、E−mail
17 ポンプモニタシステム
20 システム管理パソコン
21 データ収集パソコン
22 モニタパソコン
23 故障予測判定パソコン
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a failure diagnosis device and failure diagnosis method for a vacuum pump used for exhausting various gases used in a manufacturing process of a semiconductor device or a liquid crystal device.
[0002]
[Prior art]
Failure diagnosis prediction of vacuum pumps used in the manufacturing process of semiconductor devices and liquid crystal devices is based on physical quantities such as motor current, power, temperature, vibration, sound, pump intake pressure, pump exhaust pressure, and acoustic emission during steady operation. A threshold is set based on the daily check result obtained by the operator or the daily operation data collected by centralized monitoring using a computer, and the vacuum pump is replaced based on the threshold value. However, in such constant monitoring of daily operation data, since the amount of state change (physical quantity) is small, an abnormality occurring in the vacuum pump is often overlooked, and the vacuum pump often fails and suddenly stops.
[0003]
Vacuum pumps used in manufacturing processes of semiconductor devices and liquid crystal devices include mechanical aging, reaction by-products between rotors and between rotors, and between rotors and casings, and rotors and casings caused by corrosive gas. It may stop suddenly due to factors such as increased frictional resistance due to corrosion or surface roughness of the material and increased back pressure due to exhaust pipe blockage. In addition, when such a sudden stop of the vacuum pump occurs, the semiconductor wafer being manufactured may be damaged.
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 2000-110735
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION The present invention has been made in view of the above points. A failure diagnosis apparatus for a vacuum pump capable of predicting in advance the factor causing the vacuum pump stop and preventing damage to the semiconductor wafer or the like due to the sudden vacuum pump stop, and An object is to provide a fault diagnosis method .
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the invention described in claim 1 is a failure diagnosis device for a vacuum pump, which is connected to a process device and diagnoses in advance a failure of a vacuum pump for exhausting a process gas used in the process device. a pump rotor speed change means for changing a rotational speed of the pump rotor of a vacuum pump timing is not affected to the process of the process equipment, state of the vacuum pump during the speed change of the pump rotor by the pump rotor speed change means a state variation measuring means for measuring the amount of change, and the state variation comparing means for comparing the state change amount measured in a normal state when the change amount and the state change amount measuring means of the vacuum pump, the state change amount comparison means in comparing the state change amount measured with the state variation of the normal, if the difference becomes a predetermined amount larger or smaller, Bei and diagnosis means for diagnosing an abnormal Characterized in that was. Here, the normal time is a time when a vacuum pump is manufactured, inspected, and a required standard is satisfied.
[0007]
According to a second aspect of the present invention, in the failure diagnosis device for a vacuum pump according to the first aspect, the state change amount reaches a constant speed rotation from a stop of the pump rotor when the pump pump is started by the pump rotor rotation speed changing means. It is the amount of state change until.
[0008]
According to a third aspect of the present invention, in the failure diagnosis device for a vacuum pump according to the first aspect, the state change amount is a state from a constant speed rotation to a stop of the pump rotor when the vacuum pump is stopped by the rotor rotation speed changing means. It is a change amount.
[0009]
According to a fourth aspect of the present invention, in the vacuum pump failure diagnosis apparatus according to the first aspect, the state change amount is reduced from a constant speed rotation to a predetermined low speed rotation of the pump rotor of the vacuum pump by the rotor rotation speed changing means. It is a state change amount when
[0010]
The invention according to claim 5 is the fault diagnosis device for a vacuum pump according to claim 1,
The state change amount is a state change amount when the pump rotor of the vacuum pump by the rotor rotation speed changing means is raised from a constant speed rotation to a predetermined high speed rotation.
[0011]
The invention according to claim 6 is a vacuum pump failure diagnosis method for diagnosing in advance a failure of a vacuum pump connected to a process apparatus and exhausting a process gas used in the process apparatus. The pump rotor speed changing process for changing the pump rotor speed at a timing that does not affect the pump pump, and the state of measuring the amount of change in the vacuum pump state when the pump rotor speed is changed by the pump rotor speed changing process State change amount comparison step, state change amount of normal state of vacuum pump and state change amount comparison step for comparing state change amount measured in state change amount measurement step, state change amount in normal state in state change amount comparison step A diagnostic step of comparing the measured state change amount and diagnosing an abnormality when the difference becomes larger or smaller by a predetermined amount is provided .
[0012]
The change in the state quantity (physical quantity, motor current value, etc.) when an abnormality occurs in this type of vacuum pump changes (or changes) the rotation speed of the pump rotor of the vacuum pump rather than that during steady pump operation. ) The amount of change becomes more apparent. In other words, the amount of change in the state when the abnormality occurs in the vacuum pump is larger when the rotation speed of the pump rotor is changed (or changed) than that during the steady operation of the vacuum pump. Therefore, as described in claim 1, by comparing the amount of state change when the rotation speed of the pump rotor is changed with the amount of state change at the normal time, and determining the normality / abnormality, an easy and accurate determination can be made. It becomes possible.
[0013]
For example, the state quantity (physical quantity) from when the pump rotor is started up to the rated speed when the vacuum pump is started is measured , and the amount of change is fed back from the field (site) at the time of shipment (use conditions ( Compare with the values including conditions such as pressure and gas volume) and judge whether it is abnormal or normal.
[0014]
Further, as in the invention described in claim 2 or 3, the state from the stop of the pump rotor at the time of starting the vacuum pump until reaching the rated rotation or the state from the rated rotation of the pump rotor at the time of stopping the vacuum pump until reaching the stopped state By measuring the amount of change, comparing it with the value at the time of shipment regarding the amount of change, and the value fed back from the field (including conditions such as usage conditions (pressure, gas amount), etc.) Easy and accurate determination of normality / abnormality.
[0015]
Further, as in the invention described in claim 4 or 5, the state change is measured when the rotational speed of the pump rotor of the vacuum pump is intentionally made faster or slower than the rated rotational speed. By comparing the change amount with a value set in advance according to the use condition or the like, or a value fed back from the use state, and determining abnormality / normality, it is possible to determine normality / abnormality easily and accurately.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing a system configuration example of a vacuum pump failure diagnosis apparatus according to the present invention. A vacuum pump 11 is connected to a process apparatus 10 such as a CVD apparatus or an etching apparatus in order to exhaust gas used in the process, and the gas exhausted by the vacuum pump 11 passes through an abatement apparatus 12 and a factory scrubber 13. After harmful components are removed, it is exhausted.
[0017]
The vacuum pump 11 has a state change amount (physical quantity) not shown, such as gas temperature, casing temperature, motor coil temperature, motor current, motor power, back pressure, intake pressure, time to reach a specified value, acoustic emission AE, vibration. Various sensor groups 14 for measuring the number of revolutions are provided, and the measurement output of the sensor group 14 is sent to the normality / abnormality determination device 15a.
[0018]
The normality / abnormality determination device 15a is composed of a personal computer incorporated in the pump control panel 15, and the normality / abnormality determination device 15a detects each state change amount from the measurement output measured by the sensor group 14, and the detection is performed. Each state change amount is compared with a normal state change amount to determine whether the vacuum pump 11 is normal or abnormal, and the result is output to an alarm device, a pager, an E-mail 16, and fed back to the process device 10. .
[0019]
The vacuum pump 11 is often used in a semiconductor device manufacturing process and a liquid crystal device manufacturing process. However, a sudden stop due to the following causes may damage a wafer or the like being manufactured.
[0020]
The vacuum pump 11 is used for evacuating the chamber of the process apparatus 10 and simultaneously exhausting the process gas. The process gas includes a highly corrosive gas or a gas that solidifies in the pipe or the vacuum pump 11 during exhaustion.
[0021]
The gaps between the rotor and the rotor of the vacuum pump 11 and between the rotor and the casing are very small. When such a process gas corrodes the rotor and the casing, the surface roughness causes a rough surface between the rotor and the rotor. A galling occurs, a load is applied to the motor, and the vacuum pump 11 stops.
[0022]
In addition, reaction by-products are generated between the rotor and the rotor, between the rotor and the casing, and adhere to, grow, contact, and the reaction by-product generated in the piping falls and biting occurs. The problem is that the vacuum pump 11 stops when a load is applied to the motor. In particular, since the pressure of the gas increases on the rear stage side of the vacuum pump 11, reaction by-products are likely to be generated, the product adheres to the portion, and the pump is often stopped due to an increase in frictional resistance. .
[0023]
Further, the bearing may be damaged by heating, friction and the like due to leakage of lubricating oil, deterioration due to gas, and aging, resulting in a load on the motor and the vacuum pump 11 being stopped.
[0024]
In addition, smooth rotation may not be performed due to deterioration of the bearing, and a load may be applied to the motor and the pump may be stopped.
[0025]
As described above, the sudden stop of the vacuum pump 11 is often caused by such mechanical and physical factors, and a physical signal is always generated from the pump. However, since such a physical signal generated during normal operation of the vacuum pump 11 has a small amount of change and changes slowly, it may be caused by an abnormality in the vacuum pump 11 or a change in pump usage status. It is difficult to determine whether it is due to. Alternatively, when a large change is detected, there is no time before the replacement just before the vacuum pump 11 is stopped.
[0026]
Therefore, as shown in FIG. 1, the failure diagnosis apparatus is configured, and the state change amount when the vacuum pump 11 is started or stopped, the state change amount during the transition from the low speed rotation to the high speed rotation or from the high speed rotation to the low speed rotation. The normal / abnormal determination device 15a detects from the measurement output of each sensor of the sensor group 14. When the rotational speed is changed in this way, the absolute value of the state change amount increases, and an abnormality is detected by comparing the detected state change amount with the normal state change amount by the normal / abnormality determination device 15a. It becomes easy to do.
[0027]
In addition, since the operation for determining the normality / abnormality can be performed at an arbitrary timing, it is possible to select and execute a timing that does not affect the process.
[0028]
FIG. 2 is a diagram showing an example of processing when a failure diagnosis is performed by increasing and decreasing the rotation speed of the vacuum pump with the failure diagnosis apparatus. First, a command for increasing / decreasing the rotational speed is issued from the pump control panel 15 to the vacuum pump 11 (step ST1). The output of each sensor of the sensor group 14 is input to the normality / abnormality determination device 15a of the pump control panel 15 (step ST2), and the normality / abnormality determination device 15a detects each state change amount from the measurement output of each sensor. The detected state change amount is compared with the normal state change amount to determine normality / abnormality (step ST3). If the determination result is normal, the operation state of the vacuum pump 11 is returned to the state before changing the rotation speed (step ST4). If the determination result is abnormal, an alarm is given to the alarm device, pager, and E-mail 16. Output (step ST5).
[0029]
FIG. 3 is a diagram showing an example of a normal / abnormal determination routine in the case where a failure diagnosis is performed by increasing or decreasing the rotational speed. First, it is determined whether or not the detected state change amount exceeds a predetermined value, that is, a normal state change amount by a predetermined amount (step ST11). If it does not exceed the specified value, it is normal (OK), so the operation of the vacuum pump 11 is returned to the state before the rotation speed change (step ST12). If the specified value is exceeded, the rotation speed is temporarily restored. (Step ST13) Subsequently, the vacuum pump 11 is again commanded to increase / decrease the rotational speed, and the rotational speed is changed again (step ST14).
[0030]
Subsequently, it is determined whether or not the state change amount exceeds a specified value (step ST15). If the specified value does not exceed the specified value, the operation of the vacuum pump 11 is returned to the state before the rotation speed change as normal (OK). (Step ST16) If the specified value is exceeded, the process returns to Step ST13 and the process is repeated. This process is repeated a predetermined N times (N is an arbitrary number). If the state change exceeds a specified value, that is, a normal state change amount after a predetermined amount even after the set N times of processing, it is determined that the vacuum pump 11 is abnormal, and the alarm device, pager, E- An alarm is output to mail16.
[0031]
FIG. 4 is a diagram illustrating an example of processing when a failure diagnosis is performed by starting or stopping the vacuum pump with the failure diagnosis apparatus. First, a pump start or stop command is output from the pump control panel 15 to the vacuum pump 11 (step ST21). The output of each sensor of the sensor group 14 is input to the normality / abnormality determination device 15a of the pump control panel 15 (step ST22), and the normality / abnormality determination device 15a detects each state change amount from the output of each sensor. The detected state change amount is compared with the normal state change amount to determine normality / abnormality (step ST23). If the determination result is normal, the state is returned to the previous state (step ST24). If the determination result is abnormal, an alarm is output to the alarm device, the pager, and the E-mail 16 (step ST25).
[0032]
FIG. 5 is a diagram showing an example of normal / abnormal determination routines when a failure diagnosis is performed by starting or stopping the vacuum pump. First, it is determined whether or not the detected state change amount exceeds a predetermined value, that is, a normal state change amount by a predetermined amount (step ST31). If the specified value is not exceeded, normal (OK) is set (step ST32). If the specified value is exceeded, the state is returned to the original (started or stopped) state (step ST33), and then pumped again to the vacuum pump 11. A start or stop command is output (step ST34).
[0033]
Subsequently, it is determined whether or not the state change amount exceeds a specified value (step ST35). If the specified value does not exceed the specified value, the state is determined to be normal (OK) (step ST36). Return to and repeat the process. This process is repeated N times with a predetermined setting (N is an arbitrary number). If the state change exceeds the specified value, that is, the normal state change amount after a predetermined amount even after repeating the set N times, the vacuum pump 11 is regarded as abnormal and an alarm is output to the alarm device, pager, and E-mail 16 To do.
[0034]
In the above-described vacuum pump failure diagnosis apparatus, the normality / abnormality determination device (personal computer) 15a in the pump control panel 15 determines normality / abnormality. As shown in FIG. May be transmitted from the pump control panel 15 to the pump monitor system 17, and the pump monitor system 17 may determine whether the vacuum pump 11 is normal or abnormal.
[0035]
FIG. 7 is a diagram showing a configuration example of the pump monitor system. The pump monitor system 17 includes a system management personal computer 20, and the system management personal computer 20 includes data collection personal computers 21 and 21 (the data collection personal computer 21 is a pump). A monitor personal computer 22 and a failure prediction determination personal computer 23 are connected to the control panel 15. Each data collection personal computer 21 receives the measurement output from each sensor of the sensor group 14 attached to each vacuum pump 11 and detects each state change amount. The detected state change amount is sent from each data collection personal computer 21, 21 to the system management personal computer 20. The monitor personal computer 22 monitors the state of each vacuum pump 11, and the failure prediction determination personal computer 23 determines normality / abnormality based on the state change amount of each vacuum pump 11, and outputs an alarm if it is determined abnormal.
[0036]
【The invention's effect】
As described above, according to the invention described in each claim, the following excellent effects can be obtained.
[0037]
According to the first aspect of the present invention, the rotational speed of the pump rotor of the vacuum pump is changed at a timing that does not affect the process of the process apparatus, and the state change amount at the time of the change in the rotational speed is changed to the state change amount at the normal time. Compared with, the normal / abnormal judgment is made, so the amount of state change when the vacuum pump is abnormal is the one when the rotation speed changes (or changes) than that during steady pump operation. However, since the change width becomes large, it is possible to easily and accurately determine normality / abnormality , and it does not affect the process of the process apparatus .
[0038]
According to the invention described in claim 2 or 3, the amount of state change from the stop of the pump rotor when the vacuum pump is started until the rated rotation is reached or the rated rotation of the pump rotor when the vacuum pump is stopped until the stop state is reached. It is easy to measure the change and compare it with the value at the time of shipment and the value fed back from the field (including conditions such as usage conditions (pressure, gas amount) etc.) Normal / abnormal can be determined accurately.
[0039]
According to the invention described in claim 4 or 5, the change in state when the rotational speed of the pump rotor of the vacuum pump is intentionally made faster or slower than the rated rotational speed is measured . By comparing the change amount with a value set in advance according to the use condition or the like, or a value fed back from the use state, and determining abnormality / normality, it is possible to determine normality / abnormality easily and accurately.
[0040]
According to the sixth aspect of the invention, as in the first aspect of the invention, the rotational speed of the pump rotor of the vacuum pump is changed at a timing that does not affect the process of the process device, and the rotational speed is changed. the state variation compared to the state variation of the normal, since the determination of the normal or abnormal, the rotation speed than that of the state variation during pump steady operation when the abnormality in the vacuum pump has occurred When changing (or changing), the range of change becomes larger, so that normality / abnormality can be determined easily and accurately , and the process of the process apparatus is not affected .
[Brief description of the drawings]
FIG. 1 is a diagram showing a system configuration example of a vacuum pump failure diagnosis apparatus according to the present invention.
FIG. 2 is a diagram showing a processing example when a failure diagnosis is performed by increasing or decreasing the number of rotations of the vacuum pump with the vacuum pump failure diagnosis device according to the present invention.
FIG. 3 is a diagram illustrating an example of a normal / abnormal determination routine when a failure diagnosis is performed by increasing or decreasing the number of rotations of the vacuum pump.
FIG. 4 is a diagram showing a processing example when a failure diagnosis is performed by starting or stopping the vacuum pump with the failure diagnosis device for a vacuum pump according to the present invention.
FIG. 5 is a diagram illustrating an example of normal / abnormal determination routines when a failure diagnosis is performed by starting or stopping a vacuum pump.
FIG. 6 is a diagram showing a system configuration example of a vacuum pump failure diagnosis apparatus according to the present invention.
7 is a diagram showing a configuration example of the pump monitor system of FIG. 6. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Process apparatus 11 Vacuum pump 12 Detoxification apparatus 13 Factory scrubber 14 Sensor group 15 Pump control panel 16 Alarm device, pager, E-mail
17 Pump monitor system 20 System management personal computer 21 Data collection personal computer 22 Monitor personal computer 23 Failure prediction judgment personal computer

Claims (6)

プロセス装置に接続され、該プロセス装置で使用するプロセスガスを排気する真空ポンプの故障を事前に診断する真空ポンプの故障診断装置であって、
前記プロセス装置のプロセスへの影響がないタイミングに前記真空ポンプのポンプロータの回転数を変化させるポンプロータ回転数変化手段と、
前記ポンプロータ回転数変化手段によるポンプロータの回転数変化時における前記真空ポンプの状態変化量を測定する状態変化量測定手段と、
前記真空ポンプの正常時の状態変化量と前記状態変化量測定手段で測定した状態変化量を比較する状態変化量比較手段と、
記状態変化量比較手段で正常時の状態変化量と前記測定した状態変化量とを比較し、その差が所定量大きく又は小さくなった場合、異常と診断する診断手段とを備えたことを特徴とする真空ポンプの故障診断装置。
A fault diagnosis device for a vacuum pump that is connected to a process device and diagnoses in advance a failure of a vacuum pump that exhausts a process gas used in the process device,
A pump rotor rotation speed changing means for changing the rotation speed of the pump rotor of the vacuum pump at a timing that does not affect the process of the process apparatus;
State change amount measuring means for measuring a state change amount of the vacuum pump at the time of pump rotor rotation speed change by the pump rotor rotation speed change means;
A state change amount comparison means for comparing the state change amount measured in a normal state when the change amount and the state change amount measuring means of the vacuum pump,
Comparing the pre-Symbol state change state variation of the normal in quantity comparing means and the measured state variation, if the difference becomes a predetermined amount larger or smaller, further comprising a diagnostic means for diagnosing an abnormal A fault diagnosis device for vacuum pumps.
請求項1に記載の真空ポンプの故障診断装置において、
前記状態変化量は、前記ポンプロータ回転数変化手段による前記真空ポンプ起動時のポンプロータの停止から定速回転に達するまでの状態変化量であることを特徴とする真空ポンプの故障診断装置。
In the vacuum pump failure diagnosis device according to claim 1,
The fault diagnosis device for a vacuum pump according to claim 1, wherein the state change amount is a state change amount from the stop of the pump rotor when the vacuum pump is started by the pump rotor rotation speed changing means until reaching a constant speed rotation.
請求項1に記載の真空ポンプの故障診断装置において、
前記状態変化量は、前記ロータ回転数変化手段による前記真空ポンプ停止時のポンプロータの定速回転から停止までの状態変化量であることを特徴とする真空ポンプの故障診断装置。
In the vacuum pump failure diagnosis device according to claim 1,
The vacuum pump failure diagnosis device according to claim 1, wherein the state change amount is a state change amount from a constant speed rotation to a stop of the pump rotor when the vacuum pump is stopped by the rotor rotation speed changing means .
請求項1に記載の真空ポンプの故障診断装置において、
前記状態変化量は、前記ロータ回転数変化手段による前記真空ポンプのポンプロータを定速回転から所定の低速回転に下げた時の状態変化量であることを特徴とする真空ポンプの故障診断装置。
In the vacuum pump failure diagnosis device according to claim 1,
The state change amount is a state change amount when the pump rotor of the vacuum pump is lowered from a constant speed rotation to a predetermined low speed rotation by the rotor rotation speed changing means .
請求項1に記載の真空ポンプの故障診断装置において、
前記状態変化量は、前記ロータ回転数変化手段による前記真空ポンプのポンプロータを定速回転から所定の高速回転に上げた時の状態変化量であることを特徴とする真空ポンプの故障診断装置。
In the vacuum pump failure diagnosis device according to claim 1,
The state change amount is a state change amount when the pump rotor of the vacuum pump is raised from a constant speed rotation to a predetermined high speed rotation by the rotor rotation speed changing means .
プロセス装置に接続され、該プロセス装置で使用するプロセスガスを排気する真空ポンプの故障を事前に診断する真空ポンプの故障診断方法であって、
前記プロセス装置のプロセスへの影響がないタイミングに前記真空ポンプのポンプロータの回転数を変化させるポンプロータ回転数変化工程と、
前記ポンプロータ回転数変化工程によるポンプロータの回転数変化時における前記真空ポンプの状態変化量を測定する状態変化量測定工程と、
前記真空ポンプの正常時の状態変化量と前記状態変化量測定工程で測定した状態変化量を比較する状態変化量比較工程と、
前記状態変化量比較工程で正常時の状態変化量と前記測定した状態変化量とを比較し、その差が所定量大きく又は小さくなった場合、異常と診断する診断工程とを備えたことを特徴とする真空ポンプの故障診断方法。
A vacuum pump failure diagnosis method for diagnosing in advance a failure of a vacuum pump connected to a process device and exhausting a process gas used in the process device,
A pump rotor rotation speed changing step for changing the rotation speed of the pump rotor of the vacuum pump at a timing that does not affect the process of the process apparatus;
A state change amount measuring step for measuring a state change amount of the vacuum pump when the rotation speed of the pump rotor is changed by the pump rotor rotation speed changing step;
A state change amount comparison step for comparing the state change amount of the vacuum pump in a normal state with the state change amount measured in the state change amount measurement step;
Comparing a normal state change amount and the measured state change amount in the state change amount comparison step, and comprising a diagnosis step of diagnosing an abnormality when the difference becomes larger or smaller by a predetermined amount A fault diagnosis method for vacuum pumps.
JP2003171844A 2003-06-17 2003-06-17 Fault diagnosis apparatus and fault diagnosis method for vacuum pump Expired - Fee Related JP4261252B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003171844A JP4261252B2 (en) 2003-06-17 2003-06-17 Fault diagnosis apparatus and fault diagnosis method for vacuum pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003171844A JP4261252B2 (en) 2003-06-17 2003-06-17 Fault diagnosis apparatus and fault diagnosis method for vacuum pump

Publications (3)

Publication Number Publication Date
JP2005009337A JP2005009337A (en) 2005-01-13
JP2005009337A5 JP2005009337A5 (en) 2005-11-24
JP4261252B2 true JP4261252B2 (en) 2009-04-30

Family

ID=34096177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003171844A Expired - Fee Related JP4261252B2 (en) 2003-06-17 2003-06-17 Fault diagnosis apparatus and fault diagnosis method for vacuum pump

Country Status (1)

Country Link
JP (1) JP4261252B2 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101111680B (en) 2005-04-08 2010-12-01 株式会社荏原制作所 Vacuum pump self-diagnosis method, vacuum pump self-diagnosis system, and vacuum pump central monitoring system
JP5555518B2 (en) * 2010-03-24 2014-07-23 株式会社荏原製作所 Operation control device and operation control method for vacuum pump
JP5562144B2 (en) * 2010-06-29 2014-07-30 株式会社荏原製作所 Vacuum pump, operation control device and operation control method thereof
JP5504107B2 (en) * 2010-09-06 2014-05-28 エドワーズ株式会社 Backflow prevention system and vacuum pump equipped with the backflow prevention system
JP6151227B2 (en) 2014-08-25 2017-06-21 株式会社東芝 Anomaly detection system and semiconductor device manufacturing method
JP2017207023A (en) * 2016-05-19 2017-11-24 トヨタ自動車株式会社 Pump diagnosis device
JP6766533B2 (en) * 2016-09-06 2020-10-14 株式会社島津製作所 Sediment monitoring equipment and vacuum pump
JP6865599B2 (en) * 2017-02-15 2021-04-28 株式会社荏原製作所 Information processing equipment, information processing system, information processing method and program
JP6820799B2 (en) * 2017-05-18 2021-01-27 株式会社荏原製作所 Information processing device, reference data determination device, information processing method, reference data determination method and program
JP6835757B2 (en) * 2017-03-17 2021-02-24 株式会社荏原製作所 Information processing equipment, information processing system, information processing method, program and board processing equipment
JP6953249B2 (en) * 2017-09-15 2021-10-27 株式会社荏原製作所 Information processing equipment, information processing system, information processing method and program
US11946470B2 (en) 2017-03-17 2024-04-02 Ebara Corporation Information processing apparatus, information processing system, information processing method, program, substrate processing apparatus, criterion data determination apparatus, and criterion data determination method
CN114151343A (en) * 2017-03-17 2022-03-08 株式会社荏原制作所 Information processing apparatus, information processing system, information processing method, and computer readable medium
JP7046503B2 (en) * 2017-05-18 2022-04-04 株式会社荏原製作所 Information processing device, reference data determination device, information processing method, reference data determination method and program
EP3438460B1 (en) * 2017-08-04 2024-03-20 Pfeiffer Vacuum Gmbh Vacuum pump
JP7019513B2 (en) * 2018-06-05 2022-02-15 株式会社荏原製作所 Control devices, control systems, control methods, programs and machine learning devices
JP6988726B2 (en) * 2018-07-30 2022-01-05 株式会社島津製作所 Sediment monitoring equipment and vacuum pump
CN109398337A (en) * 2018-09-20 2019-03-01 北京长城华冠汽车科技股份有限公司 The control method of electronic vacuum force aid system
EP3653885B1 (en) * 2019-11-06 2022-01-05 Pfeiffer Vacuum Gmbh Method for detecting status information in a vacuum device
JP7349400B2 (en) * 2020-03-31 2023-09-22 新明和工業株式会社 Computer program, blower condition monitoring method, and blower condition monitoring device
CN111365223B (en) * 2020-04-02 2021-03-19 上海熊猫机械(集团)有限公司 Intelligent water pump fault early warning system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0249984A (en) * 1988-08-10 1990-02-20 Toyoda Gosei Co Ltd Pump testing device
JPH08179410A (en) * 1994-12-26 1996-07-12 Canon Inc Camera
JP3474977B2 (en) * 1995-09-08 2003-12-08 リンナイ株式会社 Blower
JP2000110735A (en) * 1998-10-01 2000-04-18 Internatl Business Mach Corp <Ibm> Pump protection system, pump protection method, and pump system

Also Published As

Publication number Publication date
JP2005009337A (en) 2005-01-13

Similar Documents

Publication Publication Date Title
JP4261252B2 (en) Fault diagnosis apparatus and fault diagnosis method for vacuum pump
KR101319250B1 (en) Vacuum line and method for monitoring same
KR100489850B1 (en) Method of estimating lifetime of semiconductor manufacturing equipment
KR100458885B1 (en) Apparatus for predicting life of rotary machine, equipment using the same, method for predicting life and determining repair timing of the same
EP1977202B1 (en) A method and device for determining the occurence of rotating stall in a compressor&#39;s turbine blade ii
US20160223496A1 (en) Method and Arrangement for Monitoring an Industrial Device
JP2005248952A (en) Method and device for determining life of turbo supercharger
JP4149691B2 (en) Method for predicting life of rotating machine for semiconductor manufacturing apparatus and semiconductor manufacturing apparatus
EP1540186B1 (en) Condition monitoring of pumps and pump system
JP2010144727A (en) System and method for monitoring rotor blade health
JP2012530875A (en) Method for predicting rotation failure of vacuum pump rotor and associated pump apparatus
WO2003106960A1 (en) Method and apparatus for diagnosing residual life of rolling element bearing
MX2007012596A (en) System and method of determining centrifugal turbomachinery remaining life.
JP2009116420A (en) Monitoring diagnostic system for rotating machinery
JP2000283056A (en) Vacuum pump abnormality monitoring system
KR20120047789A (en) Diagnosis of bearing thermal anomalies in an electrical machine
JPH10288546A (en) Abnormality judging method for rotating apparatus
JP7401327B2 (en) Diagnostic equipment, diagnostic methods, diagnostic programs and diagnostic systems
GB2314412A (en) Method of monitoring pump performance
US20230152179A1 (en) Fault detection system for vacuum pump
CN115135890A (en) Compressor, air conditioner, refrigerator, and compressor control method
JP5164928B2 (en) Gas turbine abnormality diagnosis device
US7580802B2 (en) Method of determining condition of a turbine blade, and utilizing the collected information for estimation of the lifetime of the blade
JP4511886B2 (en) Abnormality diagnosis device and abnormality diagnosis system for screw compressor
US11796982B2 (en) Method of predicting failure events for reciprocating compressors

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051003

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051003

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051003

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080916

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081117

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees