JP4258916B2 - Laminate production method - Google Patents

Laminate production method Download PDF

Info

Publication number
JP4258916B2
JP4258916B2 JP30052999A JP30052999A JP4258916B2 JP 4258916 B2 JP4258916 B2 JP 4258916B2 JP 30052999 A JP30052999 A JP 30052999A JP 30052999 A JP30052999 A JP 30052999A JP 4258916 B2 JP4258916 B2 JP 4258916B2
Authority
JP
Japan
Prior art keywords
filler
thermosetting resin
resin composition
weight
laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30052999A
Other languages
Japanese (ja)
Other versions
JP2001096668A (en
Inventor
勲夫 平田
茂浩 岡田
明義 野末
信之 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Corp
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Works Ltd filed Critical Panasonic Corp
Priority to JP30052999A priority Critical patent/JP4258916B2/en
Publication of JP2001096668A publication Critical patent/JP2001096668A/en
Application granted granted Critical
Publication of JP4258916B2 publication Critical patent/JP4258916B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電気用積層板の連続的な製造方法に関する。
【0002】
【従来の技術】
近年、プリント配線板の製造に使用される金属箔張積層板等の積層板を、含浸から成形まで連続的に行って連続的に得る方法が検討され実施されるようになっている。
この連続的方法としては、たとえば、内部や表面に空隙を有するガラス(不)織布等の基材を連続的に供給し、この基材に樹脂組成物を含浸した樹脂含浸基材を所要枚数重ねると共に、その両表層に連続的に供給した樹脂含浸ガラス織布や金属箔を重ねたものをラミネートロールで圧着し、次いでその圧着物を引き出しロールで引っ張って進行させながら加熱硬化炉で加熱して圧着物中の樹脂組成物を硬化させた後、カッターで所定の大きさに切断するという方法が行われている。
【0003】
積層板の強度を高めるために、充填材を含む樹脂組成物をガラスクロスに含浸させることが検討されているが、得られる積層板に反りが生じたり、はんだ耐熱性が低いという問題があった。
【0004】
【発明が解決しようとする課題】
本発明が解決しようとする課題は、反りが生じにくく、はんだ耐熱性が良好な積層板の製造方法を提供することである。
【0005】
【課題を解決するための手段】
上記課題を解決するために、本発明者らは、積層板に反りが生じる原因を追究した結果、充填材がガラス織布や不織布中に均一に分散していないことが原因であることを見いだした。そこで、発明者らは、充填材を均一に分散させるために、充填材を含む熱硬化性樹脂組成物に湿潤分散剤をさらに含ませ、その含有量を最適化してはんだ耐熱性を高め、本発明を完成させた。
【0006】
すなわち、本発明の請求項1にかかる積層板の製造方法(第1の製造方法)は、ガラス不織布を連続的に供給して充填材を含む熱硬化性樹脂組成物を含浸しつつ、前記ガラス不織布の両表面に熱硬化性樹脂含浸ガラス織布を連続的に積層した後、この積層物をロールで圧着し加熱するコンポジット型の積層板の製造方法において、前記熱硬化性樹脂組成物が湿潤分散剤としての不飽和ポリカルボン酸ポリマーをさらに含み、その配合量が充填材に対し0.05〜5wt%であり、前記充填材の配合量が熱硬化性樹脂100重量部に対し100〜250重量部であることを特徴とする。
【0007】
本発明の請求項2にかかる製造方法は、請求項1に加えて、前記充填材が充填材全体の5〜15wt%に相当するタルクを含むのである。
本発明の請求項3にかかる積層板の製造方法(第2の製造方法)は、ガラス織布を連続的に供給して充填材を含む熱硬化性樹脂組成物を含浸しつつ、前記ガラス織布を連続的に積層した後、この積層物をロールで圧着し加熱する積層板の製造方法において、前記熱硬化性樹脂組成物が湿潤分散剤としての不飽和ポリカルボン酸ポリマーをさらに含み、その配合量が充填材に対し0.05〜5wt%であり、前記充填材の配合量が熱硬化性樹脂100重量部に対し10〜100重量部であることを特徴とする。
【0008】
本発明の請求項4にかかる積層板の製造方法は、請求項3に加えて、前記充填材が充填材全体の5〜20wt%に相当するタルクを含むのである。
本発明の請求項5にかかる積層板の製造方法は、請求項3に加えて、前記充填材が全量シリカである
【0009】
本発明の請求項にかかる積層板の製造方法は、請求項1からまでのいずれかに加えて、前記湿潤分散剤の配合量が充填材に対し0.1〜2wt%である。
【0010】
【発明の実施の形態】
本発明の第1の製造方法では、まず、連続的に供給したガラス不織布に、充填材を含む熱硬化性樹脂組成物を含浸させる。また、本発明の第2の製造方法では、まず、連続的に供給したガラス織布に、充填材を含む熱硬化性樹脂組成物を含浸させる。熱硬化性樹脂組成物は、熱硬化性樹脂、充填材および湿潤分散剤を必須成分として含む。
【0011】
第1の製造方法で用いるガラス不織布は、ガラス繊維製のペーパーであり、連続的に供給することができる長尺物であって、内部や表面に空隙を有し、熱硬化性樹脂組成物を含浸可能なものであれば特に限定はない。ガラス不織布の厚みとしては、0.03〜0.4mmが一般的であるが、この厚みのものに限定されない。
【0012】
第2の製造方法で用いるガラス織布は、ガラス繊維製のガラス製の織布であり、連続的に供給することができる長尺物であって、内部や表面に空隙を有し、熱硬化性樹脂組成物を含浸可能なものであれば特に限定はない。ガラス織布の厚みとしては、0.05〜0.25mmが一般的であるが、この厚みのものに限定されない。
【0013】
第1および第2の製造方法で用いる熱硬化性樹脂としては、たとえば、ビニルエステル樹脂、不飽和ポリエステル樹脂、フェノール樹脂、エポキシ樹脂、メラミン樹脂、ジアリルフタレート樹脂などを単独でまたは2種以上併用したものが挙げられる。
第1および第2の製造方法で用いる充填材としては、たとえば、タルク、シリカ、カーボンブラック、マイカ、水酸化アルミニウム、クレー、酸化チタン、チタン酸バリウムなどを単独でまたは2種以上併用したものが挙げられる。これらのうちでも、反りが生じにくいという点では、第1の製造方法および第2の製造方法のいずれでもタルクが好ましく用いられる。充填材中のタルクの含有量は、第1の製造方法では充填材全体の5〜15wt%が良く、一方、第2の製造方法では充填材全体の5〜20wt%が良い。他方、第2の製造方法では全量をシリカとすると、誘電率が低く、高周波特性が高い積層板を得ることができる。
【0014】
第1および第2の製造方法で用いる湿潤分散剤は、第1および第2の製造方法で用いる熱硬化性樹脂組成物中に含まれる充填材の分散性を高め、ガラス不織布やガラス織布中に充填材を均一に分散させて、得られる積層板の反りを生じにくくする作用を有する。湿潤分散剤としては、高分子量不飽和ポリガルボン酸、ポリエステル変成ジメチルポリシロキサンコポリマー等の常温硬化性不飽和ポリエステル樹脂に用いられる湿潤分散剤や、脱泡剤、粘度低減剤、スチレン低揮散剤などを単独でまたは2種以上併用したものが挙げられる。これらのうちでも、常温硬化性不飽和ポリエステル樹脂に用いられる湿潤分散剤は、充填材の表面に吸着して、充填材同士の凝集を防ぎ、湿潤分散剤同士が絡み合って充填材の沈降等を防止するため、好ましい。
【0015】
熱硬化性樹脂組成物は、上記熱硬化性樹脂、充填材および湿潤分散剤以外に、スチレン、ジアリルフタレート等のラジカル重合性モノマー;硬化剤;硬化促進剤;溶剤;染料などの着色剤;難燃剤などの成分が適宜配合されたものでもよい。
熱硬化性樹脂組成物に含まれる湿潤分散剤の配合量は、第1および第2の製造方法のいずれでも、充填材に対して0.05〜5wt%であり、好ましくは0.1〜2wt%である。湿潤分散剤の配合量が0.05wt%未満であると、積層板の反りが生じやすくなる。他方、湿潤分散剤の配合量が5wt%を超えると、はんだ耐熱性が低下し、劣化し易くなる。
【0016】
熱硬化性樹脂組成物に含まれる充填材の配合量は、第1の製造方法では、熱硬化性樹脂100重量部に対して100〜250重量部であり、好ましくは150〜200重量部である。充填材の配合量が100重量部未満であると、コンポジット型の積層板の強度が低下する。他方、充填材の配合量が250重量部を超えると、コンポジット型の積層板の反りが生じやすくなる。また、第2の製造方法では、熱硬化性樹脂100重量部に対して10〜100重量部であり、好ましくは30〜60重量部である。充填材の配合量が10重量部未満であると、積層板の強度が低下する。他方、充填材の配合量が100重量部を超えると、積層板の反りが生じやすくなる。
【0017】
本発明の第1の製造方法では、熱硬化性樹脂組成物を含浸させたガラス不織布の両表面に熱硬化性樹脂含浸ガラス織布を連続的に積層し、この積層物をロールで圧着し加熱してコンポジット型の積層板を製造する。ここで、ガラス不織布を1枚または複数枚を重ね合わせて用いてもよい。
第1の製造方法で用いる熱硬化性樹脂含浸ガラス織布は、上記で説明した熱硬化性樹脂のいずれかを含浸させてなるガラス製の織布であり、連続的に供給することができる長尺物であって、内部や表面に空隙を有する。ガラス織布の厚みとしては、0.015〜0.25mmが一般的であるが、この厚みのものに限定されない。
【0018】
本発明の第1の製造方法では、熱硬化性樹脂含浸ガラス織布も1枚または複数枚重ね合わせて用いてもよい。さらに、その片面または両面の表層に金属箔を積層してもよい。金属箔としては、連続的に供給することができる長尺の金属製の箔であれば特に限定するものではなく、銅箔、ニッケル箔等が挙げられる。金属箔の厚みとしては、0.012〜0.07mmが一般的であるが、この厚みのものに限定されない。
【0019】
本発明の第2の製造方法では、熱硬化性樹脂組成物を含浸させたガラス織布を連続的に積層し、この積層物をロールで圧着し加熱して、積層板を製造する。
本発明の第1および第2の製造方法は、従来公知の連続的方法により製造することができ、バッチ方法で行うことも可能である。
〔第1の製造方法の1実施形態〕
本発明の第1の製造方法の1実施形態を図1を用いて説明する。この実施形態では、図1みるように、熱硬化性樹脂、充填材および湿潤分散剤を含む熱硬化性樹脂組成物11を連続的に供給されるガラス不織布10に含浸させた2枚の熱硬化性樹脂含浸ガラス不織布12と、連続的に供給される2枚の熱硬化性樹脂含浸ガラス織布21と、連続的に供給される2枚の金属箔13とを、樹脂含浸ガラス不織布12をコアにし、その両側(上下)に熱硬化性樹脂含浸ガラス織布21を配置し、さらにその両表層に金属箔13が配置されるように積層する。その後、その積層した積層物をラミネートロール14で圧着し、次いでその圧着した圧着物15を引き出しロール18で引っ張って進行させながら、加熱硬化炉17でその圧着物15中の樹脂組成物11が硬化する温度に圧着物15を加熱して硬化させた後、カッター19で所定の大きさに切断して連続的に金属箔が表面に積層されたコンポジット積層板20を得るのである。
【0020】
熱硬化性樹脂組成物11が従来のごときものであれば、この加熱硬化によりコンポジット積層板20が反ってしまうが、熱硬化性樹脂組成物が湿潤分散剤を含み、その配合量が充填材に対し0.05〜5wt%であり、充填材の配合量が熱硬化性樹脂100重量部に対し100〜250重量部であると、充填材が樹脂含浸ガラス不織布12中に均一に分散するようになるので、反りが生じにくく、はんだ耐熱性が高まる。
【0021】
なお、ラミネートロール14で圧着する条件としては特に限定はなく、用いた基材10の種類や熱硬化性樹脂組成物11の粘度等に応じて適宜調整され得る。また、加熱硬化の温度や時間などの条件は、特に限定はなく、使用する樹脂組成物11の成分配合やその硬化させたい硬化程度に応じて適宜設定され得る。切断後、更にこの積層板20の硬化を進めるために加熱する(アフターキュアーする)ようにしてもよい。
【0022】
上記実施形態は樹脂含浸ガラス不織布12の枚数が2枚の場合であったが、樹脂含浸ガラス不織布12の枚数は1枚でもよく、3枚以上でもよい。また、上記実施形態では金属箔13の枚数は2枚であったが、1枚であってもよいし、樹脂含浸ガラス不織布12が複数枚の場合には、樹脂含浸ガラス不織布同士の間にさらに金属箔を積層するようにしてもよい。
〔第2の製造方法の1実施形態〕
本発明の第2の製造方法の1実施形態を図2を用いて説明する。この実施形態では、図2みるように、熱硬化性樹脂、充填材および湿潤分散剤を含む熱硬化性樹脂組成物11を連続的に供給されるガラス織布101に含浸させた2枚の熱硬化性樹脂含浸ガラス織布121と、連続的に供給される2枚の金属箔13とを、樹脂含浸ガラス織布121をコアにし、その両表層に金属箔13が配置されるように積層する。その後、その積層した積層物をラミネートロール14で圧着し、次いでその圧着した圧着物151を引き出しロール18で引っ張って進行させながら、加熱硬化炉17でその圧着物151中の樹脂組成物11が硬化する温度に圧着物151を加熱して硬化させた後、カッター19で所定の大きさに切断して連続的に金属箔が表面に積層された積層板201を得るのである。
【0023】
熱硬化性樹脂組成物11が従来のごときものであれば、この加熱硬化により積層板201が反ってしまうが、熱硬化性樹脂組成物が湿潤分散剤を含み、その配合量が充填材に対し0.05〜5wt%であり、充填材の配合量が熱硬化性樹脂100重量部に対し10〜100重量部であると、充填材が樹脂含浸ガラス織布121中に均一に分散するようになるので、反りが生じにくく、はんだ耐熱性が高まる。
【0024】
なお、ラミネートロール14で圧着する条件としては特に限定はなく、用いた基材10の種類や熱硬化性樹脂組成物11の粘度等に応じて適宜調整され得る。また、加熱硬化の温度や時間などの条件は、特に限定はなく、使用する樹脂組成物11の成分配合やその硬化させたい硬化程度に応じて適宜設定され得る。切断後、更にこの積層板20の硬化を進めるために加熱する(アフターキュアーする)ようにしてもよい。
【0025】
上記実施形態は樹脂含浸ガラス織布121の枚数が2枚の場合であったが、樹脂含浸ガラス織布121の枚数は3枚以上でもよい。また、上記実施形態では金属箔13の枚数は2枚であったが、1枚であってもよいし、樹脂含浸ガラス織布121同士の間にさらに金属箔を積層するようにしてもよい。
【0026】
【実施例】
以下に、本発明の具体的な実施例および比較例を示すが、本発明は下記実施例に限定されない。
(実施例1−1)
図1に示す装置で、以下のガラス不織布10、熱硬化性樹脂組成物11、熱硬化性樹脂含浸ガラス織布21および金属箔13を用いて連続的にコンポジット積層板を製造した。
【0027】
ガラス不織布10:日本バイリーン社製ガラスペーパー(秤量45g/m2 )。
熱硬化性樹脂組成物11:ビニルエステル樹脂(昭和高分子社製「S510」)100重量部、硬化剤(日本油脂社製「パーブチルO」)1重量部、水酸化アルミニウム(住友化学工業社製「CL−310」)150重量部、および、常温硬化性不飽和ポリエステル樹脂用湿潤分散剤(ビックケミー社製「BYK−P105」)1.5重量部の配合のもの。
【0028】
熱硬化性樹脂含浸ガラス織布21:ビニルエステル樹脂(昭和高分子社製「S510」)100重量部および硬化剤(日本油脂社製「パーブチルO」)1重量部を配合した樹脂液を、ガラス織布(日東紡績社製、厚み0.18mmのガラスクロス「WEA7628」)に含浸させたもの。
金属箔13:銅箔。
【0029】
図1では、加熱硬化炉17の温度は約100℃であり、加熱硬化に要した時間は、25分間であった。さらに、加熱温度160℃、加熱時間30分間の条件でアフターキュアーも行い、コンポジット積層板(1)を得て、反り量およびはんだ耐熱性を以下の試験方法で評価したところ、反り量は1.5mmであり、はんだ耐熱性は外観異常がなく、良好であった。
反り量
コンポジット積層板(1)両面の金属泊をエッチングし、得られた基板の縦方向33cm×横方向25cmに切断し、これを170℃30分間加熱した後、反り量を測定した。
はんだ耐熱性
はんだ耐熱性はコンポジット積層板を2.5cm×2.5cmに切断し、これを260℃のはんだ槽に浮かべて外観異常がないかどうかを評価した。
【0030】
(実施例1−2)
実施例1−1で、熱硬化性樹脂組成物11を以下のものに変更する以外は、実施例1−1と同様にして、コンポジット積層板(2)を得て、その評価を行った。反り量は1mmであり、はんだ耐熱性は外観異常がなく、良好であった。熱硬化性樹脂組成物にタルクを配合することによって、反りがさらに生じにくくなった。
【0031】
熱硬化性樹脂組成物11:ビニルエステル樹脂(昭和高分子社製「S510」)100重量部、硬化剤(日本油脂社製「パーブチルO」)1重量部、水酸化アルミニウム(住友化学工業社製「CL−310」)135重量部、タルク(富士タルク工業社製「LMR−100」)15重量部、および、常温硬化性不飽和ポリエステル樹脂用湿潤分散剤(ビックケミー社製「BYK−P105」)1.5重量部の配合のもの。
【0032】
(比較例1−1)
実施例1−1の熱硬化性樹脂組成物11で、これに湿潤分散剤を配合しない以外は、実施例1−1と同様にして、比較コンポジット積層板(1)を得て、その評価を行った。はんだ耐熱性は外観異常がなく、良好であったが、湿潤分散剤を熱硬化性樹脂組成物11に配合しなかったため、反り量は8mmと大きかった。
【0033】
(比較例1−2)
実施例1−1の熱硬化性樹脂組成物11で、湿潤分散剤の配合量を水酸化アルミニウムに対して10wt%に変更する以外は、実施例1−1と同様にして、比較コンポジット積層板(2)を得て、その評価を行った。反り量は1.5mmであったが、はんだ耐熱性は、湿潤分散剤を多く配合しすぎたため、悪かった。
【0034】
(比較例1−3)
実施例1−1で、熱硬化性樹脂組成物11を以下のものに変更する以外は、実施例1−1と同様にして、比較コンポジット積層板(3)を得て、その評価を行った。はんだ耐熱性は外観異常がなく、良好であったが、水酸化アルミニウムの配合量が多すぎたため、反り量は5mmと大きかった。
【0035】
熱硬化性樹脂組成物11:ビニルエステル樹脂(昭和高分子社製「S510」)100重量部、硬化剤(日本油脂社製「パーブチルO」)1重量部、水酸化アルミニウム(住友化学工業社製「CL−310」)300重量部、および、常温硬化性不飽和ポリエステル樹脂用湿潤分散剤(ビックケミー社製「BYK−P105」)3重量部の配合のもの。
【0036】
(実施例2−1)
図2に示す装置で、以下のガラス織布101、熱硬化性樹脂組成物11および金属箔13を用いて連続的に積層板を製造した。
ガラス織布101:ガラス織布(日東紡績社製、厚み0.18mmのガラスクロス「WEA7628」)。
【0037】
熱硬化性樹脂組成物11:ビニルエステル樹脂(昭和高分子社製「S510」)100重量部、硬化剤(日本油脂社製「パーブチルO」)1重量部、水酸化アルミニウム(住友化学工業社製「CL−310」)50重量部、および、常温硬化性不飽和ポリエステル樹脂用湿潤分散剤(ビックケミー社製「BYK−P105」)0.5重量部の配合のもの。
【0038】
金属箔13:銅箔。
図2では、加熱硬化炉17の温度は約100℃であり、加熱硬化に要した時間は、25分間であった。さらに、加熱温度160℃、加熱時間30分間の条件でアフターキュアーも行い、積層板(1)を得て、反り量およびはんだ耐熱性を実施例1−1と同様の方法で評価した。また、積層板(1)の誘電率を測定した。これらの結果を表1に示す。
【0039】
(実施例2−2)
実施例2−1で、湿潤分散剤を0.05重量部に変更する以外は、実施例2−1と同様にして、積層板(2)を得て、その評価を行った。これらの結果を表1に示す。
(実施例2−3)
実施例2−1で、湿潤分散剤を5重量部に変更する以外は、実施例2−1と同様にして、積層板(3)を得て、その評価を行った。これらの結果を表1に示す。
【0040】
(実施例2−4)
実施例2−1で、熱硬化性樹脂組成物11を以下のものに変更する以外は、実施例2−1と同様にして、積層板(4)を得て、その評価を行った。これらの結果を表1に示す。
熱硬化性樹脂組成物11:ビニルエステル樹脂(昭和高分子社製「S510」)100重量部、硬化剤(日本油脂社製「パーブチルO」)1重量部、水酸化アルミニウム(住友化学工業社製「CL−310」)10重量部、および、常温硬化性不飽和ポリエステル樹脂用湿潤分散剤(ビックケミー社製「BYK−P105」)0.5重量部の配合のもの。
【0041】
(実施例2−5)
実施例2−1で、熱硬化性樹脂組成物11を以下のものに変更する以外は、実施例2−1と同様にして、積層板(5)を得て、その評価を行った。これらの結果を表1に示す。
熱硬化性樹脂組成物11:ビニルエステル樹脂(昭和高分子社製「S510」)100重量部、硬化剤(日本油脂社製「パーブチルO」)1重量部、水酸化アルミニウム(住友化学工業社製「CL−310」)100重量部、および、常温硬化性不飽和ポリエステル樹脂用湿潤分散剤(ビックケミー社製「BYK−P105」)0.5重量部の配合のもの。
【0042】
(実施例2−6)
実施例2−1で、熱硬化性樹脂組成物11を以下のものに変更する以外は、実施例2−1と同様にして、積層板(6)を得て、その評価を行った。これらの結果を表1に示す。
熱硬化性樹脂組成物11:ビニルエステル樹脂(昭和高分子社製「S510」)100重量部、硬化剤(日本油脂社製「パーブチルO」)1重量部、水酸化アルミニウム(住友化学工業社製「CL−310」)40重量部、タルク(富士タルク工業社製「LMR−100」)10重量部、および、常温硬化性不飽和ポリエステル樹脂用湿潤分散剤(ビックケミー社製「BYK−P105」)0.5重量部の配合のもの。
【0043】
(実施例2−7)
実施例2−1で、熱硬化性樹脂組成物11を以下のものに変更する以外は、実施例2−1と同様にして、積層板(7)を得て、その評価を行った。これらの結果を表1に示す。
熱硬化性樹脂組成物11:ビニルエステル樹脂(昭和高分子社製「S510」)100重量部、硬化剤(日本油脂社製「パーブチルO」)1重量部、シリカ(日本化学社製MK040)50重量部、および、常温硬化性不飽和ポリエステル樹脂用湿潤分散剤(ビックケミー社製「BYK−P105」)0.5重量部の配合のもの。
【0044】
(比較例2−1)
実施例2−1の熱硬化性樹脂組成物11で、これに湿潤分散剤を配合しない以外は、実施例2−1と同様にして、比較積層板(1)を得て、その評価を行った。これらの結果を表1に示す。
(比較例2−2)
実施例2−1の熱硬化性樹脂組成物11で、湿潤分散剤の配合量を水酸化アルミニウムに対して10wt%に変更する以外は、実施例2−1と同様にして、比較積層板(2)を得て、その評価を行った。これらの結果を表1に示す。
【0045】
(比較例2−3)
実施例2−1で、熱硬化性樹脂組成物11を以下のものに変更する以外は、実施例2−1と同様にして、比較積層板(3)を得て、その評価を行った。これらの結果を表1に示す。
熱硬化性樹脂組成物11:ビニルエステル樹脂(昭和高分子社製「S510」)100重量部、硬化剤(日本油脂社製「パーブチルO」)1重量部、水酸化アルミニウム(住友化学工業社製「CL−310」)150重量部、および、常温硬化性不飽和ポリエステル樹脂用湿潤分散剤(ビックケミー社製「BYK−P105」)0.5重量部の配合のもの。
【0046】
【表1】

Figure 0004258916
【0047】
【発明の効果】
本発明の第1および第2の製造方法は、いずれも、反りが生じにくく、はんだ耐熱性が良好な積層板を製造することができる方法である。
熱硬化性樹脂組成物に含まれる湿潤分散剤が常温硬化性不飽和ポリエステル樹脂に用いられる湿潤分散剤であると、充填材の表面に吸着して、充填材同士の凝集を防ぎ、湿潤分散剤同士が絡み合って充填材の沈降等を防止するためと、ガラス不織布中の充填材が均一に分散するために、積層板の反りに対して効果的である。
【0048】
湿潤分散剤の配合量が充填材に対し0.1〜2wt%であると、さらに反りが生じにくく、且つ、はんだ耐熱性が低下しにくい。
充填材がタルクを含み、その含有量が第1の製造方法では充填材全体の5〜15wt%に相当する量であり、また、第2の製造方法では、充填材全体の5〜20wt%に相当する量であると、反りが一層生じにくくなる。また、第2の製造方法では、充填材として全量をシリカとすると、誘電率が低く高周波特性が高い積層板が得られる。
【図面の簡単な説明】
【図1】本発明の第1の製造方法の1実施形態を表す正面図である。
【図2】本発明の第2の製造方法の1実施形態を表す正面図である。
【符号の説明】
10 ガラス不織布
11 熱硬化性樹脂組成物
12 熱硬化性樹脂含浸ガラス不織布
13 金属箔
14 ラミネートロール
15 圧着物
20 コンポジット積層板
21 熱硬化性樹脂含浸ガラス織布
101 ガラス織布
121 熱硬化性樹脂含浸ガラス織布
151 圧着物
201 積層板[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a continuous manufacturing method of an electrical laminate.
[0002]
[Prior art]
In recent years, a method of continuously obtaining a laminated board such as a metal foil-clad laminated board used for manufacturing a printed wiring board from impregnation to molding has been studied and implemented.
As this continuous method, for example, a required number of resin-impregnated base materials in which a base material such as a glass (non-woven) cloth having voids in the interior or the surface is continuously supplied and the base material is impregnated with the resin composition are required. Laminate and press and laminate the resin-impregnated glass woven fabric and metal foil continuously supplied to both surface layers with a laminating roll, and then heat it in a heat-curing furnace while pulling it with a pulling roll. Then, after curing the resin composition in the pressure-bonded product, a method of cutting to a predetermined size with a cutter is performed.
[0003]
In order to increase the strength of the laminate, it has been studied to impregnate a glass cloth with a resin composition containing a filler, but there is a problem that the resulting laminate is warped or has low solder heat resistance. .
[0004]
[Problems to be solved by the invention]
The problem to be solved by the present invention is to provide a method for producing a laminated board which is less likely to warp and has good solder heat resistance.
[0005]
[Means for Solving the Problems]
In order to solve the above problems, the present inventors have investigated the cause of warping of the laminate, and as a result, found that the filler is not uniformly dispersed in the glass woven fabric or nonwoven fabric. It was. Therefore, in order to uniformly disperse the filler, the inventors further include a wetting and dispersing agent in the thermosetting resin composition containing the filler, and optimizing its content to improve solder heat resistance. Completed the invention.
[0006]
That is, in the manufacturing method (first manufacturing method) of the laminated board according to claim 1 of the present invention, the glass nonwoven fabric is continuously supplied and the glass is impregnated with the thermosetting resin composition containing the filler. In a method for producing a composite laminate, in which a thermosetting resin-impregnated glass woven fabric is continuously laminated on both surfaces of a nonwoven fabric, and then the laminate is pressure-bonded with a roll and heated, the thermosetting resin composition is wet It further contains an unsaturated polycarboxylic acid polymer as a dispersant, the blending amount is 0.05 to 5 wt% with respect to the filler, and the blending amount of the filler is 100 to 250 with respect to 100 parts by weight of the thermosetting resin. It is a weight part.
[0007]
In addition to claim 1, the manufacturing method according to claim 2 of the present invention includes talc corresponding to 5 to 15 wt% of the entire filler.
According to a third aspect of the present invention, there is provided a method for manufacturing a laminated board (second manufacturing method), wherein the glass woven fabric is supplied while glass woven fabric is continuously supplied and impregnated with a thermosetting resin composition containing a filler. In the method for producing a laminate in which the fabric is continuously laminated and then the laminate is pressure-bonded with a roll and heated, the thermosetting resin composition further includes an unsaturated polycarboxylic acid polymer as a wetting and dispersing agent, The blending amount is 0.05 to 5 wt% with respect to the filler, and the blending amount of the filler is 10 to 100 parts by weight with respect to 100 parts by weight of the thermosetting resin.
[0008]
In addition to claim 3, the manufacturing method of the laminated board concerning Claim 4 of this invention contains the talc which the said filler corresponds to 5-20 wt% of the whole filler.
In addition to Claim 3, the manufacturing method of the laminated board concerning Claim 5 of this invention WHEREIN: The said filler is the whole quantity silica .
[0009]
In addition to any one of Claims 1-5 , the manufacturing method of the laminated board concerning Claim 6 of this invention is a compounding quantity of the said wet dispersing agent is 0.1 to 2 wt% with respect to a filler.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
In the first production method of the present invention, first, the glass nonwoven fabric supplied continuously is impregnated with a thermosetting resin composition containing a filler. Moreover, in the 2nd manufacturing method of this invention, the thermosetting resin composition containing a filler is first impregnated into the glass woven fabric supplied continuously. The thermosetting resin composition contains a thermosetting resin, a filler, and a wetting and dispersing agent as essential components.
[0011]
The glass nonwoven fabric used in the first production method is a paper made of glass fiber, is a long product that can be continuously supplied, has voids inside and on the surface, and has a thermosetting resin composition. There is no particular limitation as long as it can be impregnated. The thickness of the glass nonwoven fabric is generally 0.03 to 0.4 mm, but is not limited to this thickness.
[0012]
The glass woven fabric used in the second production method is a glass woven fabric made of glass fiber, which is a long product that can be continuously supplied, has voids inside and on the surface, and is thermoset. There is no particular limitation as long as it can be impregnated with the conductive resin composition. The thickness of the glass woven fabric is generally 0.05 to 0.25 mm, but is not limited to this thickness.
[0013]
As the thermosetting resin used in the first and second production methods, for example, vinyl ester resin, unsaturated polyester resin, phenol resin, epoxy resin, melamine resin, diallyl phthalate resin, etc. are used alone or in combination of two or more. Things.
Examples of the filler used in the first and second production methods include, for example, talc, silica, carbon black, mica, aluminum hydroxide, clay, titanium oxide, barium titanate, etc., alone or in combination. Can be mentioned. Among these, talc is preferably used in both the first manufacturing method and the second manufacturing method in that warpage hardly occurs. The content of talc in the filler is preferably 5 to 15 wt% of the entire filler in the first manufacturing method, and 5 to 20 wt% of the entire filler in the second manufacturing method. On the other hand, in the second manufacturing method, when the total amount is silica, a laminate having a low dielectric constant and high frequency characteristics can be obtained.
[0014]
The wetting and dispersing agent used in the first and second production methods increases the dispersibility of the filler contained in the thermosetting resin composition used in the first and second production methods, and in the glass nonwoven fabric and the glass woven fabric. In this case, the filler is uniformly dispersed, and the resulting laminate is less likely to warp. Wetting and dispersing agents include wetting and dispersing agents used in room temperature curable unsaturated polyester resins such as high molecular weight unsaturated polygalbonic acid and polyester-modified dimethylpolysiloxane copolymers, defoaming agents, viscosity reducing agents, and styrene low volatilizing agents. These may be used alone or in combination of two or more. Among these, the wetting and dispersing agent used for the room temperature curable unsaturated polyester resin is adsorbed on the surface of the filler to prevent aggregation between the fillers, and the wetting and dispersing agents are entangled with each other to cause sedimentation of the filler. In order to prevent, it is preferable.
[0015]
In addition to the above thermosetting resin, filler and wetting and dispersing agent, the thermosetting resin composition is a radical polymerizable monomer such as styrene or diallyl phthalate; a curing agent; a curing accelerator; a solvent; a colorant such as a dye; A component such as a flame retardant may be appropriately blended.
The blending amount of the wetting and dispersing agent contained in the thermosetting resin composition is 0.05 to 5 wt%, preferably 0.1 to 2 wt% with respect to the filler in both the first and second production methods. %. When the blending amount of the wetting and dispersing agent is less than 0.05 wt%, the warp of the laminated board is likely to occur. On the other hand, when the blending amount of the wetting and dispersing agent exceeds 5 wt%, the solder heat resistance is lowered and the deterioration tends to occur.
[0016]
In the first production method, the blending amount of the filler contained in the thermosetting resin composition is 100 to 250 parts by weight, preferably 150 to 200 parts by weight, with respect to 100 parts by weight of the thermosetting resin. . When the blending amount of the filler is less than 100 parts by weight, the strength of the composite type laminate is lowered. On the other hand, when the blending amount of the filler exceeds 250 parts by weight, warping of the composite type laminate is likely to occur. Moreover, in the 2nd manufacturing method, it is 10-100 weight part with respect to 100 weight part of thermosetting resins, Preferably it is 30-60 weight part. The intensity | strength of a laminated board falls that the compounding quantity of a filler is less than 10 weight part. On the other hand, if the blending amount of the filler exceeds 100 parts by weight, the warp of the laminated plate tends to occur.
[0017]
In the first production method of the present invention, a thermosetting resin-impregnated glass woven fabric is continuously laminated on both surfaces of a glass nonwoven fabric impregnated with a thermosetting resin composition, and the laminate is pressure-bonded with a roll and heated. Thus, a composite type laminate is manufactured. Here, one or more glass nonwoven fabrics may be used in an overlapping manner.
The thermosetting resin-impregnated glass woven fabric used in the first production method is a glass woven fabric impregnated with any of the thermosetting resins described above, and can be continuously supplied. It is a scale and has voids inside and on the surface. The thickness of the glass woven fabric is generally 0.015 to 0.25 mm, but is not limited to this thickness.
[0018]
In the first production method of the present invention, one or a plurality of thermosetting resin-impregnated glass woven fabrics may be used. Furthermore, you may laminate | stack metal foil on the surface layer of the single side | surface or both surfaces. The metal foil is not particularly limited as long as it is a long metal foil that can be continuously supplied, and examples thereof include copper foil and nickel foil. The thickness of the metal foil is generally 0.012 to 0.07 mm, but is not limited to this thickness.
[0019]
In the 2nd manufacturing method of this invention, the glass woven fabric impregnated with the thermosetting resin composition is laminated | stacked continuously, this laminated body is crimped | bonded with a roll, it heats, and a laminated board is manufactured.
The first and second production methods of the present invention can be produced by a conventionally known continuous method, and can also be carried out by a batch method.
[One Embodiment of First Manufacturing Method]
An embodiment of the first manufacturing method of the present invention will be described with reference to FIG. In this embodiment, as shown in FIG. 1, two thermosets in which a glass nonwoven fabric 10 continuously supplied is impregnated with a thermosetting resin composition 11 containing a thermosetting resin, a filler, and a wetting and dispersing agent. Resin-impregnated glass nonwoven fabric 12, two thermosetting resin-impregnated glass woven fabrics 21 supplied continuously, and two metal foils 13 supplied continuously, and resin-impregnated glass nonwoven fabric 12 as a core Then, the thermosetting resin-impregnated glass woven fabric 21 is disposed on both sides (upper and lower sides), and further laminated so that the metal foil 13 is disposed on both surface layers. Thereafter, the laminated laminate is pressure-bonded by the laminating roll 14, and the resin composition 11 in the pressure-bonded material 15 is cured in the heat curing furnace 17 while the pressure-bonded pressure-bonded material 15 is pulled and advanced by the drawing roll 18. After heating the pressure-bonded article 15 to a temperature to be cured and cutting it to a predetermined size with a cutter 19, a composite laminate 20 having a metal foil continuously laminated on the surface is obtained.
[0020]
If the thermosetting resin composition 11 is a conventional one, the composite laminate 20 is warped by this heat curing, but the thermosetting resin composition contains a wetting and dispersing agent, and its blending amount is in the filler. On the other hand, when it is 0.05 to 5 wt% and the blending amount of the filler is 100 to 250 parts by weight with respect to 100 parts by weight of the thermosetting resin, the filler is uniformly dispersed in the resin-impregnated glass nonwoven fabric 12. As a result, warpage is unlikely to occur and solder heat resistance is increased.
[0021]
In addition, there is no limitation in particular as conditions for crimping | bonding by the laminate roll 14, According to the kind of used base material 10, the viscosity of the thermosetting resin composition 11, etc., it can adjust suitably. Moreover, conditions, such as heat curing temperature and time, are not particularly limited, and can be appropriately set according to the composition of the resin composition 11 to be used and the degree of curing to be cured. After cutting, the laminate 20 may be heated (aftercured) to further cure the laminated plate 20.
[0022]
In the above embodiment, the number of the resin-impregnated glass nonwoven fabric 12 is two, but the number of the resin-impregnated glass nonwoven fabric 12 may be one or three or more. Further, in the above embodiment, the number of the metal foils 13 is two, but may be one, and when there are a plurality of the resin-impregnated glass nonwoven fabrics 12, the metal foil 13 is further interposed between the resin-impregnated glass nonwoven fabrics. You may make it laminate | stack metal foil.
[One Embodiment of Second Manufacturing Method]
An embodiment of the second manufacturing method of the present invention will be described with reference to FIG. In this embodiment, as shown in FIG. 2, two sheets of heat are produced by impregnating a glass woven fabric 101 continuously supplied with a thermosetting resin composition 11 containing a thermosetting resin, a filler, and a wetting and dispersing agent. The curable resin-impregnated glass woven fabric 121 and the two metal foils 13 that are continuously supplied are stacked so that the resin-impregnated glass woven fabric 121 serves as a core and the metal foil 13 is disposed on both surface layers. . Thereafter, the laminated laminate is pressure-bonded by the laminate roll 14, and the resin composition 11 in the pressure-bonded article 151 is cured in the heat-curing furnace 17 while the pressure-bonded article 151 is pulled and advanced by the drawing roll 18. The pressure-bonded material 151 is heated and cured at a temperature to be obtained, and then cut into a predetermined size by the cutter 19 to obtain a laminated plate 201 in which a metal foil is continuously laminated on the surface.
[0023]
If the thermosetting resin composition 11 is a conventional one, the laminate 201 is warped by this heat curing, but the thermosetting resin composition contains a wetting and dispersing agent, and its blending amount is relative to the filler. When the blending amount of the filler is 0.05 to 5 wt% and 10 to 100 parts by weight with respect to 100 parts by weight of the thermosetting resin, the filler is uniformly dispersed in the resin-impregnated glass woven fabric 121. As a result, warpage is unlikely to occur and solder heat resistance is increased.
[0024]
In addition, there is no limitation in particular as conditions for crimping | bonding by the laminate roll 14, According to the kind of used base material 10, the viscosity of the thermosetting resin composition 11, etc., it can adjust suitably. Moreover, conditions, such as heat curing temperature and time, are not particularly limited, and can be appropriately set according to the composition of the resin composition 11 to be used and the degree of curing to be cured. After cutting, the laminate 20 may be heated (aftercured) to further cure the laminated plate 20.
[0025]
In the above embodiment, the number of the resin-impregnated glass woven fabric 121 is two, but the number of the resin-impregnated glass woven fabric 121 may be three or more. In the above embodiment, the number of the metal foils 13 is two, but may be one, or a metal foil may be further laminated between the resin-impregnated glass woven fabrics 121.
[0026]
【Example】
Specific examples and comparative examples of the present invention are shown below, but the present invention is not limited to the following examples.
(Example 1-1)
With the apparatus shown in FIG. 1, a composite laminate was continuously produced using the following glass nonwoven fabric 10, thermosetting resin composition 11, thermosetting resin-impregnated glass woven fabric 21, and metal foil 13.
[0027]
Glass nonwoven fabric 10: Glass paper manufactured by Nippon Vilene (weighing 45 g / m 2 ).
Thermosetting resin composition 11: 100 parts by weight of vinyl ester resin (“S510” manufactured by Showa Polymer Co., Ltd.), 1 part by weight of curing agent (“Perbutyl O” manufactured by NOF Corporation), aluminum hydroxide (manufactured by Sumitomo Chemical Co., Ltd.) "CL-310") 150 parts by weight, and a mixture of 1.5 parts by weight of a room temperature curable unsaturated polyester resin wetting and dispersing agent ("BYK-P105" manufactured by Big Chemie).
[0028]
Thermosetting resin-impregnated glass woven fabric 21: A resin liquid containing 100 parts by weight of vinyl ester resin (“S510” manufactured by Showa Polymer Co., Ltd.) and 1 part by weight of a curing agent (“Perbutyl O” manufactured by Nippon Oil & Fats Co., Ltd.) What was impregnated with a woven fabric (manufactured by Nitto Boseki Co., Ltd., 0.18 mm thick glass cloth “WEA7628”).
Metal foil 13: Copper foil.
[0029]
In FIG. 1, the temperature of the heat curing furnace 17 was about 100 ° C., and the time required for the heat curing was 25 minutes. Further, after-curing was performed under the conditions of a heating temperature of 160 ° C. and a heating time of 30 minutes to obtain a composite laminate (1), and the warpage amount and solder heat resistance were evaluated by the following test methods. The solder heat resistance was good with no appearance abnormality.
Warpage amount Composite laminate (1) Etching the metal stays on both sides, cutting the obtained substrate to 33cm in the vertical direction x 25cm in the horizontal direction, heating it at 170C for 30 minutes, and then measuring the warpage amount did.
Solder heat resistance The solder heat resistance was evaluated by checking whether or not the composite laminate was cut into 2.5 cm x 2.5 cm and floated in a solder bath at 260 ° C for appearance abnormality.
[0030]
(Example 1-2)
A composite laminate (2) was obtained and evaluated in the same manner as in Example 1-1, except that the thermosetting resin composition 11 was changed to the following in Example 1-1. The amount of warpage was 1 mm, and the solder heat resistance was good with no appearance abnormality. By adding talc to the thermosetting resin composition, warpage is further less likely to occur.
[0031]
Thermosetting resin composition 11: 100 parts by weight of vinyl ester resin (“S510” manufactured by Showa Polymer Co., Ltd.), 1 part by weight of curing agent (“Perbutyl O” manufactured by NOF Corporation), aluminum hydroxide (manufactured by Sumitomo Chemical Co., Ltd.) 135 parts by weight of “CL-310”), 15 parts by weight of talc (“LMR-100” manufactured by Fuji Talc Kogyo Co., Ltd.), and a wetting and dispersing agent for room temperature-curable unsaturated polyester resin (“BYK-P105” manufactured by BYK Chemie) Formulated with 1.5 parts by weight.
[0032]
(Comparative Example 1-1)
A comparative composite laminate (1) was obtained in the same manner as in Example 1-1 except that the thermosetting resin composition 11 of Example 1-1 was not mixed with a wetting and dispersing agent. went. The solder heat resistance was good with no appearance abnormality, but the amount of warpage was as large as 8 mm because the wetting and dispersing agent was not blended with the thermosetting resin composition 11.
[0033]
(Comparative Example 1-2)
Comparative composite laminate in the same manner as in Example 1-1 except that the thermosetting resin composition 11 of Example 1-1 was changed to 10 wt% of the wet dispersant with respect to aluminum hydroxide. (2) was obtained and evaluated. The amount of warpage was 1.5 mm, but the solder heat resistance was poor because too much wetting and dispersing agent was added.
[0034]
(Comparative Example 1-3)
A comparative composite laminate (3) was obtained and evaluated in the same manner as in Example 1-1 except that the thermosetting resin composition 11 was changed to the following in Example 1-1. . The solder heat resistance was good with no appearance abnormality, but the amount of warpage was as large as 5 mm because the amount of aluminum hydroxide was too large.
[0035]
Thermosetting resin composition 11: 100 parts by weight of vinyl ester resin (“S510” manufactured by Showa Polymer Co., Ltd.), 1 part by weight of curing agent (“Perbutyl O” manufactured by NOF Corporation), aluminum hydroxide (manufactured by Sumitomo Chemical Co., Ltd.) "CL-310") 300 parts by weight and a mixture of 3 parts by weight of a wetting and dispersing agent for room temperature curable unsaturated polyester resin ("BYK-P105" manufactured by Big Chemie).
[0036]
(Example 2-1)
With the apparatus shown in FIG. 2, a laminate was continuously produced using the following glass woven fabric 101, thermosetting resin composition 11 and metal foil 13.
Glass woven fabric 101: Glass woven fabric (manufactured by Nitto Boseki Co., Ltd., 0.18 mm thick glass cloth “WEA 7628”).
[0037]
Thermosetting resin composition 11: 100 parts by weight of vinyl ester resin (“S510” manufactured by Showa Polymer Co., Ltd.), 1 part by weight of curing agent (“Perbutyl O” manufactured by NOF Corporation), aluminum hydroxide (manufactured by Sumitomo Chemical Co., Ltd.) "CL-310") 50 parts by weight and a room temperature curable unsaturated polyester resin wetting and dispersing agent ("BYK-P105" manufactured by Big Chemie) 0.5 parts by weight.
[0038]
Metal foil 13: Copper foil.
In FIG. 2, the temperature of the heat curing furnace 17 is about 100 ° C., and the time required for the heat curing is 25 minutes. Furthermore, after-curing was also performed under the conditions of a heating temperature of 160 ° C. and a heating time of 30 minutes to obtain a laminate (1), and the amount of warpage and solder heat resistance were evaluated in the same manner as in Example 1-1. Further, the dielectric constant of the laminate (1) was measured. These results are shown in Table 1.
[0039]
(Example 2-2)
A laminate (2) was obtained and evaluated in the same manner as in Example 2-1, except that the wet dispersant was changed to 0.05 parts by weight in Example 2-1. These results are shown in Table 1.
(Example 2-3)
A laminate (3) was obtained and evaluated in the same manner as in Example 2-1, except that the wet dispersant was changed to 5 parts by weight in Example 2-1. These results are shown in Table 1.
[0040]
(Example 2-4)
A laminate (4) was obtained and evaluated in the same manner as in Example 2-1, except that the thermosetting resin composition 11 was changed to the following in Example 2-1. These results are shown in Table 1.
Thermosetting resin composition 11: 100 parts by weight of vinyl ester resin (“S510” manufactured by Showa Polymer Co., Ltd.), 1 part by weight of curing agent (“Perbutyl O” manufactured by NOF Corporation), aluminum hydroxide (manufactured by Sumitomo Chemical Co., Ltd.) "CL-310") 10 parts by weight and a mixture of 0.5 parts by weight of a room temperature curable unsaturated polyester resin wetting and dispersing agent ("BYK-P105" manufactured by Big Chemie).
[0041]
(Example 2-5)
A laminate (5) was obtained and evaluated in the same manner as in Example 2-1, except that in Example 2-1, the thermosetting resin composition 11 was changed to the following. These results are shown in Table 1.
Thermosetting resin composition 11: 100 parts by weight of vinyl ester resin (“S510” manufactured by Showa Polymer Co., Ltd.), 1 part by weight of curing agent (“Perbutyl O” manufactured by NOF Corporation), aluminum hydroxide (manufactured by Sumitomo Chemical Co., Ltd.) "CL-310") 100 parts by weight and 0.5 parts by weight of a room temperature curable unsaturated polyester resin wetting and dispersing agent ("BYK-P105" manufactured by Big Chemie).
[0042]
(Example 2-6)
A laminate (6) was obtained and evaluated in the same manner as in Example 2-1, except that in Example 2-1, the thermosetting resin composition 11 was changed to the following. These results are shown in Table 1.
Thermosetting resin composition 11: 100 parts by weight of vinyl ester resin (“S510” manufactured by Showa Polymer Co., Ltd.), 1 part by weight of curing agent (“Perbutyl O” manufactured by NOF Corporation), aluminum hydroxide (manufactured by Sumitomo Chemical Co., Ltd.) "CL-310") 40 parts by weight, talc ("LMR-100" manufactured by Fuji Talc Kogyo Co., Ltd.) 10 parts by weight, and a wetting and dispersing agent for room temperature curable unsaturated polyester resin ("BYK-P105" manufactured by BYK Chemie) Formulated with 0.5 parts by weight.
[0043]
(Example 2-7)
A laminate (7) was obtained and evaluated in the same manner as in Example 2-1, except that the thermosetting resin composition 11 was changed to the following in Example 2-1. These results are shown in Table 1.
Thermosetting resin composition 11: 100 parts by weight of vinyl ester resin (“S510” manufactured by Showa Polymer Co., Ltd.), 1 part by weight of curing agent (“Perbutyl O” manufactured by Nippon Oil & Fats Co., Ltd.), 50 silica (MK040 manufactured by Nippon Kagaku Co., Ltd.) 1 part by weight and 0.5 part by weight of a wetting and dispersing agent for room temperature curable unsaturated polyester resin ("BYK-P105" manufactured by Big Chemie).
[0044]
(Comparative Example 2-1)
A comparative laminate (1) was obtained and evaluated in the same manner as in Example 2-1, except that the thermosetting resin composition 11 of Example 2-1 was not mixed with a wetting and dispersing agent. It was. These results are shown in Table 1.
(Comparative Example 2-2)
In the thermosetting resin composition 11 of Example 2-1, in the same manner as in Example 2-1, except that the amount of the wetting and dispersing agent is changed to 10 wt% with respect to aluminum hydroxide, a comparative laminate ( 2) was obtained and evaluated. These results are shown in Table 1.
[0045]
(Comparative Example 2-3)
A comparative laminate (3) was obtained and evaluated in the same manner as in Example 2-1, except that the thermosetting resin composition 11 was changed to the following in Example 2-1. These results are shown in Table 1.
Thermosetting resin composition 11: 100 parts by weight of vinyl ester resin (“S510” manufactured by Showa Polymer Co., Ltd.), 1 part by weight of curing agent (“Perbutyl O” manufactured by NOF Corporation), aluminum hydroxide (manufactured by Sumitomo Chemical Co., Ltd.) "CL-310") 150 parts by weight, and a mixture of 0.5 parts by weight of a wetting and dispersing agent for room temperature curable unsaturated polyester resin ("BYK-P105" manufactured by BYK Chemie).
[0046]
[Table 1]
Figure 0004258916
[0047]
【The invention's effect】
Both the first and second production methods of the present invention are methods capable of producing a laminated board that hardly warps and has good solder heat resistance.
When the wetting and dispersing agent contained in the thermosetting resin composition is a wetting and dispersing agent used for a room temperature curable unsaturated polyester resin, it is adsorbed on the surface of the filler to prevent aggregation between the fillers, and the wetting and dispersing agent. In order to prevent the filler from sinking and the like by being entangled with each other and to uniformly disperse the filler in the glass nonwoven fabric, it is effective against the warp of the laminate.
[0048]
When the blending amount of the wetting and dispersing agent is 0.1 to 2 wt% with respect to the filler, warpage is less likely to occur and solder heat resistance is less likely to decrease.
The filler contains talc, and its content is equivalent to 5 to 15 wt% of the entire filler in the first manufacturing method, and in the second manufacturing method it is 5 to 20 wt% of the entire filler. When the amount is equivalent, warpage is further less likely to occur. Further, in the second manufacturing method, when the total amount is silica as the filler, a laminate having a low dielectric constant and high high frequency characteristics can be obtained.
[Brief description of the drawings]
FIG. 1 is a front view showing an embodiment of a first manufacturing method of the present invention.
FIG. 2 is a front view showing an embodiment of the second manufacturing method of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Glass nonwoven fabric 11 Thermosetting resin composition 12 Thermosetting resin impregnation glass nonwoven fabric 13 Metal foil 14 Laminating roll 15 Press-bonded material 20 Composite laminated board 21 Thermosetting resin impregnation glass woven fabric 101 Glass woven fabric 121 Thermosetting resin impregnation Glass woven fabric 151 Press-bonded material 201 Laminate

Claims (6)

ガラス不織布を連続的に供給して充填材を含む熱硬化性樹脂組成物を含浸しつつ、前記ガラス不織布の両表面に熱硬化性樹脂含浸ガラス織布を連続的に積層した後、この積層物をロールで圧着し加熱するコンポジット型の積層板の製造方法において、前記熱硬化性樹脂組成物が湿潤分散剤としての不飽和ポリカルボン酸ポリマーをさらに含み、その配合量が充填材に対し0.05〜5wt%であり、前記充填材の配合量が熱硬化性樹脂100重量部に対し100〜250重量部であることを特徴とする、積層板の製造方法。The glass nonwoven fabric is continuously supplied and impregnated with the thermosetting resin composition containing the filler, and the thermosetting resin impregnated glass woven fabric is continuously laminated on both surfaces of the glass nonwoven fabric. In the method for producing a composite laminate, which is pressure-bonded with a roll and heated, the thermosetting resin composition further comprises an unsaturated polycarboxylic acid polymer as a wetting and dispersing agent, and the blending amount thereof is set to 0. The manufacturing method of a laminated board characterized by being 0.5-5 wt% and the compounding quantity of the said filler being 100-250 weight part with respect to 100 weight part of thermosetting resins. 前記充填材が充填材全体の5〜15wt%に相当するタルクを含む、請求項1に記載の積層板の製造方法。  The manufacturing method of the laminated board of Claim 1 with which the said filler contains the talc equivalent to 5-15 wt% of the whole filler. ガラス織布を連続的に供給して充填材を含む熱硬化性樹脂組成物を含浸しつつ、前記ガラス織布を連続的に積層した後、この積層物をロールで圧着し加熱する積層板の製造方法において、前記熱硬化性樹脂組成物が湿潤分散剤としての不飽和ポリカルボン酸ポリマーをさらに含み、その配合量が充填材に対し0.05〜5wt%であり、前記充填材の配合量が熱硬化性樹脂100重量部に対し10〜100重量部であることを特徴とする、積層板の製造方法。The laminated glass sheet is continuously laminated with the glass woven fabric impregnated with the thermosetting resin composition containing the filler, and the laminated glass fabric is laminated and then heated by pressing the laminate with a roll. In the production method, the thermosetting resin composition further includes an unsaturated polycarboxylic acid polymer as a wetting and dispersing agent, and its blending amount is 0.05 to 5 wt% with respect to the filler, and the blending amount of the filler Is 10 to 100 parts by weight with respect to 100 parts by weight of the thermosetting resin. 前記充填材が充填材全体の5〜20wt%に相当するタルクを含む、請求項3に記載の積層板の製造方法。  The manufacturing method of the laminated board of Claim 3 with which the said filler contains the talc equivalent to 5-20 wt% of the whole filler. 前記充填材が全量シリカである、請求項3に記載の積層板の製造方法。  The manufacturing method of the laminated board of Claim 3 whose said filler is the whole quantity silica. 前記湿潤分散剤の配合量が充填材に対し0.1〜2wt%である、請求項1からまでのいずれかに記載の積層板の製造方法。Amount of the wetting and dispersing agent is 0.1~2Wt% relative filler, method for producing a laminate according to any one of claims 1 to 5.
JP30052999A 1999-07-23 1999-10-22 Laminate production method Expired - Fee Related JP4258916B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30052999A JP4258916B2 (en) 1999-07-23 1999-10-22 Laminate production method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-209871 1999-07-23
JP20987199 1999-07-23
JP30052999A JP4258916B2 (en) 1999-07-23 1999-10-22 Laminate production method

Publications (2)

Publication Number Publication Date
JP2001096668A JP2001096668A (en) 2001-04-10
JP4258916B2 true JP4258916B2 (en) 2009-04-30

Family

ID=26517720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30052999A Expired - Fee Related JP4258916B2 (en) 1999-07-23 1999-10-22 Laminate production method

Country Status (1)

Country Link
JP (1) JP4258916B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003171482A (en) * 2001-09-25 2003-06-20 Sumitomo Bakelite Co Ltd Method for producing composite laminated board
JP6395047B2 (en) * 2014-12-16 2018-09-26 株式会社リコー Transfer belt and image forming apparatus

Also Published As

Publication number Publication date
JP2001096668A (en) 2001-04-10

Similar Documents

Publication Publication Date Title
KR102141432B1 (en) Resin composition, prepreg, and laminate
JP4258916B2 (en) Laminate production method
JPS607796A (en) Copper-lined laminated board for printed circuit and method of producing same
JPH07108943B2 (en) Laminated board and manufacturing method thereof
JPH05318640A (en) Laminated sheet
JP2002348754A (en) Glass cloth, prepreg, laminated sheet, and printed wiring board
JP2555818B2 (en) Laminated board and manufacturing method thereof
JP3171360B2 (en) Prepreg
JP3239716B2 (en) Manufacturing method of laminated board
JPH0716089B2 (en) Electric laminate
JPH07115444B2 (en) Copper clad laminate
JP3861495B2 (en) Manufacturing method of composite laminate
JPH04259543A (en) Manufacture of laminated board for printed circuit
JP2002192520A (en) Prepreg, laminated sheet and multilayered printed wiring board
JP3364782B2 (en) Prepreg and laminate for printed wiring board production
JPH0846309A (en) Insulating board and laminated board for printed-wiring board
JP2002192521A (en) Prepreg, laminated sheet and multilayered printed wiring board
JPH10287755A (en) Production of prepreg sheet
JPH05162246A (en) Laminated sheet for printed circuit
JPH03139896A (en) Manufacture of laminate sheet for printed circuit
JPH02133441A (en) Production of electrical laminate
JPH0679722A (en) Glass cloth, resin-impregnated medium and wiring substrate
JPH06909A (en) Composite laminate
JPS6330538A (en) Production of laminated sheet
JPH0382192A (en) Electric laminated board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090202

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees