JP4258308B2 - Wavelength conversion crystal growing device and crystal made from this device - Google Patents

Wavelength conversion crystal growing device and crystal made from this device Download PDF

Info

Publication number
JP4258308B2
JP4258308B2 JP2003204194A JP2003204194A JP4258308B2 JP 4258308 B2 JP4258308 B2 JP 4258308B2 JP 2003204194 A JP2003204194 A JP 2003204194A JP 2003204194 A JP2003204194 A JP 2003204194A JP 4258308 B2 JP4258308 B2 JP 4258308B2
Authority
JP
Japan
Prior art keywords
crystal
wavelength conversion
melt
conversion crystal
dry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003204194A
Other languages
Japanese (ja)
Other versions
JP2004059423A (en
Inventor
保 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2003204194A priority Critical patent/JP4258308B2/en
Publication of JP2004059423A publication Critical patent/JP2004059423A/en
Application granted granted Critical
Publication of JP4258308B2 publication Critical patent/JP4258308B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、特定の位相整合方位に切出した種結晶を用いて、波長変換結晶を育成する装置及びこの装置から作られた結晶に関する。更に詳しくは、c軸から74±5度だけ傾いた位相整合方位に切出した四ほう酸リチウム種結晶を用いて、チョクラルスキー法により四ほう酸リチウムのNd:YAGレーザの5倍波用波長変換結晶を育成する装置及びこの装置から作られた5倍波用波長変換結晶に関するものである。
【0002】
【従来の技術】
四ほう酸リチウム(Li247)は良質の大型結晶を作り易く、潮解性が低く、安定であり、取扱性に優れており、加工性も良好である等の利点があるため、波長変換素子としての利用が注目されている。
従来、Nd:YAGレーザの5倍波用素子の量産に適した引上げ方位であるc軸から74±5度だけ傾いた位相整合方位に切出した四ほう酸リチウム種結晶を用いて、チョクラルスキー法(CZ法)により単結晶を育成すると、引上げ方向と直角な面が所望のレーザ素子のレーザ光の入射面となるため、育成された一個の単結晶からとれるレーザ素子の数が多くなることが知られている。
【0003】
【発明が解決しようとする課題】
しかし、この量産に適した引上げ方位で四ほう酸リチウム単結晶を育成すると、微小な散乱体が結晶全体に取込まれる問題があった。この散乱体は入射光とSHG(第二次高調波)光の透過ロスを生じ、特にレーザ共振器内部で結晶を使用する場合には、透過ロスは大きな問題となる。また高出力レーザ用の結晶として使用する場合には、結晶の損傷閾値を大幅に低下させる不都合がある。更に紫外用材料として使用する場合には、通常より高品質が求められるため、散乱体は大きな問題となる。
c軸から74±5度以外の結晶方位、例えば<100>、<110>、<001>等の方位、或は4倍波用の結晶方位で育成した結晶には散乱体の取込みは見られないが、引上げ方向と直角でない面がレーザ光の入射面となるため、育成された一個の単結晶からとれるレーザ素子の数が少ない問題点があった。
本発明の目的は、微小な散乱体が波長変換結晶に取込まれることがなく、入射光とSHG光の透過ロスを生ぜずに、結晶の損傷閾値を低下させない波長変換結晶の育成装置及びこの装置から作られた結晶を提供することにある。
【0004】
【課題を解決するための手段】
請求項1に係る発明は、図1に示すように、断熱壁25,26が上部に設けられたるつぼ21内に貯えられた波長変換結晶融液21aに特定の位相整合方位に切出した種結晶10を接触させ、回転・引上げ機構27により、この種結晶10を回転させながら引上げて、波長変換結晶を育成する装置において、上記断熱壁25,26を貫通し先端が融液21aの上面近傍まで延びる乾燥ガスの導入管31,32が設けられ、上記結晶を育成中相対湿度10%以下の乾燥ガスを導入管31,32を通じて融液21aに当るように断熱壁25,26内に流しながら引上げるように構成されたことを特徴とする波長変換結晶の育成装置である。
育成中相対湿度10%以下の乾燥ガスを、断熱壁25,26を貫通した導入管31,32を通じて融液21aに当るように断熱壁25,26内に流しながら引上げることにより、結晶中の散乱体の原因である融液中の残存水分に基づく気泡の量を減らすことができる。その結果、散乱体が結晶に取込まれることを防止できる。
【0005】
請求項2に係る発明は、請求項1に係る発明であって、波長変換結晶が四ほう酸リチウム単結晶であり、種結晶10がc軸から74±5度だけ傾いた位相整合方位に切出されてチョクラルスキー法により育成炉20内でNd:YAGレーザの5倍波用波長変換結晶を育成する装置である。
四ほう酸リチウム単結晶を上記条件で育成した場合、散乱体の結晶への取込みが著しく減少する。
【0006】
請求項3に係る発明は、請求項1又は2に係る発明であって、乾燥ガスが乾燥空気、乾燥アルゴン又は乾燥窒素である育成装置である。
請求項4に係る発明は、請求項1ないし3いずれか記載の育成装置により作られた波長変換結晶である。
【0007】
【発明の実施の形態】
本発明の育成装置では、育成中相対湿度10%以下の乾燥ガスが二重の断熱壁25,26を貫通し先端が融液21aの上面近傍まで延びる導入管31,32を通じて融液に当るように断熱壁25,26内に流される。この相対湿度が5%以下がより好ましく、0(ゼロ)%が最適である。乾燥ガスの相対湿度が10%を超える場合には、結晶中の散乱体の原因である融液中の残存水分の量を減らすことができず、好ましくない。
本発明の波長変換結晶を育成するのに使用する種結晶及び融液を構成する結晶材料としては四ほう酸リチウムが好ましく用いられるが、その他にもBBO(BaB24)、LBO(LiB35)、CLBO(CsLiB318)等が使用できる。種結晶は結晶の種類に応じて、それぞれ特定の位相整合方位に切出したものを使用する。結晶が四ほう酸リチウムであってNd:YAGレーザの5倍波用波長変換結晶の場合、種結晶はc軸から74±5度だけ傾いた位相整合方位に切出したものを使用する。
【0008】
本発明の育成装置の一実施態様を図面に基づいて説明する。即ち、図1及び図2に示すように、チョクラルスキー法では、四ほう酸リチウム単結晶の育成炉20は四ほう酸リチウム多結晶の融液21aが貯えられている白金るつぼ21を有する。四ほう酸リチウムは酸化物の中では低融点であるため、白金るつぼで育成することができる。白金るつぼ21の周囲には断熱材22,23を介してるつぼ21内の四ほう酸リチウム多結晶を融解させるための抵抗加熱ヒータのような加熱装置24が設けられる。るつぼ21内の融液21aの温度は熱電対29により検出される。るつぼ21の上部には断熱壁25,26が二重に設けられており、これらの断熱壁25,26を貫通して回転・引上げ機構27が設けられる。この機構27の先端には種結晶10が配置される。また上記断熱壁25,26を貫通して乾燥ガスの導入管31,32が設けられる。
【0009】
この装置では、加熱装置24によりるつぼ21内の四ほう酸リチウム多結晶が融解した後、この融液21aに種結晶10を接触させ、回転・引上げ機構27により、種結晶10を回転させながら引上げることにより、図示するような四ほう酸リチウム単結晶28が育成される。
本発明の特徴ある構成は、乾燥ガスの導入管31,32を通じて育成中相対湿度10%以下の乾燥ガスを矢印で示すように融液21aに当るように断熱壁25,26内に流しながら結晶を引上げることにある。乾燥ガスは融液21aに当った後に、回転・引上げ機構27と断熱壁25,26との間の空間を通って外部に放出される。その結果、結晶中の散乱体の原因である融液21a中の残存水分に基づく気泡の量を減らすことができ、散乱体が結晶に取込まれることが防止される。
【0010】
【実施例】
次に本発明の実施例を比較例とともに説明する。
<実施例1>
5倍波用波長変換結晶を次の方法で製造した。先ず所定のモル比の純度99.99%の四ほう酸リチウム多結晶原料粉末1300gを、図1に示す直径90mm、高さ100mmの白金るつぼ21に充填し、加熱装置24で原料粉末を融解した後、CZ法で所定の引上げ方位に引上げた。即ち、この例では、種結晶10はc軸から74度でカットしたものを用いた。融液表面と融液直上10mmの温度勾配(降温勾配)を120℃/cmにし、それより上部の降温勾配を20℃/cmにした。また単結晶28の育成速度を0.3〜1mm/時間、回転数を1〜5rpmとし、原料の仕込みと単結晶の育成中に相対湿度0%の乾燥空気を0.6リットル/分の割合で導入管31,32から流しながら引上げて、直径50mm、長さ120mmの四ほう酸リチウム単結晶28を育成した。育成した単結晶を10mm×10mm×10mmのサイコロ状に切出した後、切出し面を光学研磨して実施例1のサンプルを得た。
【0011】
<比較例1>
単結晶の育成中に乾燥空気を流さなかった以外、実施例1と同様にして、5倍波用波長変換結晶である比較例1のサンプルを得た。
【0012】
<比較評価・その1>
実施例1及び比較例1のサンプルの研磨面にそれぞれHe−Neレーザ(632nm)を照射し、散乱体の有無を目視で調べた。その結果を図3の写真(実施例1のサンプル)及び図4の写真(比較例1のサンプル)に示す。また実施例1のサンプルの屈折率変動をレーザ干渉計を用いて測定した。その結果を図5の写真に示す。
図3及び図4から明らかなように、比較例1のサンプルでは散乱体が結晶全体に均一に分布しているのに対し、実施例1のサンプルでは散乱体の量が大幅に減少していることが判った。また図5の屈折率変動は2×10-6/mmであった。このことからこの結晶は高品質であることが判った。
【0013】
<実施例2>
実施例1で用いた四ほう酸リチウム多結晶原料粉末1300gを、図1に示す直径90mm、高さ100mmの白金るつぼ21に充填し、乾燥空気雰囲気中において加熱装置24で原料粉末を融解し、1000℃で1時間保持した後、急冷してガラス化した四ほう酸リチウムのサンプルを得た。
【0014】
<比較例2>
加熱装置24で原料粉末を融解し、1000℃で1時間保持した後、急冷してガラス化した四ほう酸リチウムを調製する場合の雰囲気を乾燥空気雰囲気の代りに相対湿度約65%の大気中とした。それ以外は、実施例2と同様にして、比較例2のガラス化した四ほう酸リチウムのサンプルを得た。
【0015】
<比較評価・その2>
実施例2及び比較例2のそれぞれガラス化した四ほう酸リチウムのサンプルのOH量を赤外分光分析により分析した。その結果、比較例2のサンプルのOH量が1940ppmであるのに対し、実施例2のサンプルのOH量は140ppmであった。即ち、乾燥空気雰囲気中では相対湿度65%の大気中雰囲気と比べて水分量を約1/10以下に低減できるため、結晶中の散乱体の原因である融液中の残存水分に基づく気泡の量を減らすことができ、散乱体が結晶に取込まれることを防止できることが判った。
【0016】
【発明の効果】
以上述べたように、本発明によれば、特定の位相整合方位に切出した種結晶を用いて、波長変換結晶を育成する装置において、育成中相対湿度10%以下の乾燥ガスを、断熱壁を貫通し先端が融液の上面近傍まで延びる導入管を通じて融液に当るように断熱壁内に流しながら結晶を引上げることにより、微小な散乱体が結晶に取込まれる不都合を防ぐことができる。その結果、入射光とSHG光の透過ロスを生ぜずに、結晶の損傷閾値を低下させない効果が得られる。
【図面の簡単な説明】
【図1】本発明のチョクラルスキー法による四ほう酸リチウム単結晶の育成装置の構成図。
【図2】図1のA−A線断面図。
【図3】実施例1のサンプルにHe−Neレーザを照射して得られた写真図。
【図4】比較例1のサンプルにHe−Neレーザを照射して得られた写真図。
【図5】実施例1のサンプルの屈折率変動をレーザ干渉計を用いて測定して得られた写真図。
【符号の説明】
10 種結晶
20 単結晶の育成炉
21a 四ほう酸リチウム融液
28 四ほう酸リチウム単結晶
31,32 乾燥ガスの導入管
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus for growing a wavelength conversion crystal using a seed crystal cut in a specific phase matching orientation, and a crystal made from the apparatus . More specifically, a lithium tetraborate seed crystal cut in a phase matching orientation inclined by 74 ± 5 degrees from the c-axis is used, and a wavelength conversion crystal for a 5th harmonic wave of a lithium tetraborate Nd: YAG laser is obtained by the Czochralski method. it relates growing apparatus and a wavelength conversion crystal for fifth harmonic wave made from this device.
[0002]
[Prior art]
Lithium tetraborate (Li 2 B 4 O 7 ) is easy to make high-quality large crystals, has low deliquescence, is stable, has excellent handleability, and has good workability. The use as a conversion element attracts attention.
Conventionally, a Czochralski method using a lithium tetraborate seed crystal cut in a phase-matching orientation inclined by 74 ± 5 degrees from the c-axis, which is a pulling orientation suitable for mass production of Nd: YAG laser 5th harmonic elements. When a single crystal is grown by the (CZ method), the plane perpendicular to the pulling direction becomes the laser light incident surface of the desired laser element, so that the number of laser elements that can be taken from one grown single crystal may increase. Are known.
[0003]
[Problems to be solved by the invention]
However, when a lithium tetraborate single crystal is grown in a pulling orientation suitable for mass production, there is a problem that a minute scatterer is incorporated into the entire crystal. This scatterer causes a transmission loss of incident light and SHG (second harmonic) light. In particular, when a crystal is used inside the laser resonator, the transmission loss becomes a serious problem. In addition, when used as a crystal for a high-power laser, there is a disadvantage that the damage threshold of the crystal is greatly reduced. Furthermore, when used as an ultraviolet material, a higher quality is required than usual, so that the scatterer is a big problem.
Scatterer uptake is observed in crystals grown in crystal orientations other than 74 ± 5 degrees from the c-axis, such as <100>, <110>, <001>, etc., or crystal orientations for fourth harmonics. However, there is a problem that the number of laser elements that can be taken from one grown single crystal is small because the surface that is not perpendicular to the pulling direction is the incident surface of the laser beam.
An object of the present invention is to provide a wavelength conversion crystal growth apparatus that does not reduce the damage threshold of the crystal without causing a minute scattering body to be taken into the wavelength conversion crystal, causing no transmission loss of incident light and SHG light, and this The object is to provide crystals made from the device .
[0004]
[Means for Solving the Problems]
In the invention according to claim 1, as shown in FIG. 1, a seed crystal cut out in a specific phase matching orientation in a wavelength conversion crystal melt 21a stored in a crucible 21 provided with heat insulating walls 25 and 26 on the top. 10, in a device for growing the wavelength conversion crystal by rotating the seed crystal 10 while rotating the seed crystal 10 by the rotation / pull-up mechanism 27 and penetrating through the heat insulating walls 25 and 26, the tip is close to the upper surface of the melt 21 a. Extending drying gas introduction pipes 31 and 32 are provided, and during the growth of the crystal, the drying gas having a relative humidity of 10% or less is drawn through the introduction pipes 31 and 32 while flowing into the heat insulating walls 25 and 26 so as to hit the melt 21a. 1. A wavelength conversion crystal growth apparatus characterized by being configured to be raised.
During the growth, a dry gas having a relative humidity of 10% or less is pulled up while flowing into the heat insulating walls 25 and 26 so as to hit the melt 21a through the introduction pipes 31 and 32 penetrating the heat insulating walls 25 and 26, thereby increasing It is possible to reduce the amount of bubbles based on the residual moisture in the melt that is the cause of the scatterer. As a result, the scatterer can be prevented from being taken into the crystal.
[0005]
The invention according to claim 2 is the invention according to claim 1, wherein the wavelength conversion crystal is a lithium tetraborate single crystal, and the seed crystal 10 is cut out in a phase matching direction inclined by 74 ± 5 degrees from the c-axis. This is an apparatus for growing a wavelength conversion crystal for 5th harmonics of an Nd: YAG laser in the growth furnace 20 by the Czochralski method.
When a lithium tetraborate single crystal is grown under the above conditions, the incorporation of scatterers into the crystal is significantly reduced.
[0006]
The invention according to claim 3 is the growth apparatus according to claim 1 or 2, wherein the dry gas is dry air, dry argon or dry nitrogen.
The invention according to claim 4 is a wavelength conversion crystal made by the growing apparatus according to any one of claims 1 to 3.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
In the growing apparatus according to the present invention, a dry gas having a relative humidity of 10% or less passes through the double heat insulating walls 25 and 26 and the tip of the growing apparatus hits the melt through the introduction pipes 31 and 32 extending to the vicinity of the upper surface of the melt 21a. In the heat insulating walls 25 and 26. The relative humidity is more preferably 5% or less, and 0 (zero)% is optimal. When the relative humidity of the dry gas exceeds 10%, it is not preferable because the amount of residual moisture in the melt that is a cause of scatterers in the crystal cannot be reduced.
Lithium tetraborate is preferably used as the seed material used for growing the wavelength conversion crystal of the present invention and the crystal material constituting the melt. In addition, BBO (BaB 2 O 4 ), LBO (LiB 3 O 5 ), CLBO (CsLiB 3 O 18 ) and the like can be used. A seed crystal cut into a specific phase matching orientation is used according to the type of crystal. When the crystal is lithium tetraborate and a wavelength conversion crystal for Nd: YAG laser 5th harmonic, a seed crystal cut in a phase matching direction inclined by 74 ± 5 degrees from the c-axis is used.
[0008]
One embodiment of the growing apparatus of the present invention will be described with reference to the drawings. That is, as shown in FIGS. 1 and 2, in the Czochralski method, a lithium tetraborate single crystal growth furnace 20 has a platinum crucible 21 in which a lithium tetraborate polycrystal melt 21a is stored. Since lithium tetraborate has a low melting point among oxides, it can be grown in a platinum crucible. Around the platinum crucible 21, a heating device 24 such as a resistance heater for melting the lithium tetraborate polycrystal in the crucible 21 is provided via heat insulating materials 22 and 23. The temperature of the melt 21 a in the crucible 21 is detected by a thermocouple 29. The upper part of the crucible 21 is provided with double heat insulating walls 25, 26, and a rotation / lifting mechanism 27 is provided through the heat insulating walls 25, 26. A seed crystal 10 is disposed at the tip of the mechanism 27. Further, dry gas introduction pipes 31 and 32 are provided through the heat insulating walls 25 and 26.
[0009]
In this apparatus , after the lithium tetraborate polycrystal in the crucible 21 is melted by the heating device 24, the seed crystal 10 is brought into contact with the melt 21 a, and the seed crystal 10 is pulled up while being rotated by the rotation / pull-up mechanism 27. As a result, a lithium tetraborate single crystal 28 as shown is grown.
The characteristic structure of the present invention is that crystals are produced while flowing dry gas having a relative humidity of 10% or less through the dry gas introduction pipes 31 and 32 into the heat insulating walls 25 and 26 so as to hit the melt 21a as indicated by arrows. Is to raise. The dry gas hits the melt 21a and is then discharged to the outside through the space between the rotation / lifting mechanism 27 and the heat insulating walls 25 and 26. As a result, the amount of bubbles based on the residual moisture in the melt 21a that is the cause of the scatterer in the crystal can be reduced, and the scatterer is prevented from being taken into the crystal.
[0010]
【Example】
Next, examples of the present invention will be described together with comparative examples.
<Example 1>
A wavelength conversion crystal for 5th harmonic was produced by the following method. First, 1300 g of a lithium tetraborate polycrystalline raw material powder having a purity of 99.99% in a predetermined molar ratio is filled in a platinum crucible 21 having a diameter of 90 mm and a height of 100 mm shown in FIG. Then, it was pulled up to a predetermined pulling direction by the CZ method. That is, in this example, the seed crystal 10 cut at 74 degrees from the c-axis was used. The temperature gradient (temperature decrease gradient) 10 mm immediately above the melt surface and the melt was 120 ° C./cm, and the temperature decrease gradient above it was 20 ° C./cm. The growth rate of the single crystal 28 is 0.3 to 1 mm / hour, the rotation speed is 1 to 5 rpm, and the rate of 0.6 liter / min of dry air with a relative humidity of 0% during the raw material charging and the single crystal growth. Then, the lithium tetraborate single crystal 28 having a diameter of 50 mm and a length of 120 mm was grown. The grown single crystal was cut into a 10 mm × 10 mm × 10 mm dice, and then the cut surface was optically polished to obtain a sample of Example 1.
[0011]
<Comparative Example 1>
A sample of Comparative Example 1 which is a wavelength conversion crystal for 5th harmonic was obtained in the same manner as in Example 1 except that dry air was not passed during the growth of the single crystal.
[0012]
<Comparison evaluation, part 1>
The polished surfaces of the samples of Example 1 and Comparative Example 1 were each irradiated with a He—Ne laser (632 nm), and the presence or absence of a scatterer was visually examined. The results are shown in the photograph of FIG. 3 (sample of Example 1) and the photograph of FIG. 4 (sample of Comparative Example 1). Further, the refractive index variation of the sample of Example 1 was measured using a laser interferometer. The result is shown in the photograph of FIG.
As apparent from FIGS. 3 and 4, in the sample of Comparative Example 1, the scatterers are uniformly distributed throughout the crystal, whereas in the sample of Example 1, the amount of scatterers is greatly reduced. I found out. The refractive index variation in FIG. 5 was 2 × 10 −6 / mm. This indicates that the crystals are of high quality.
[0013]
<Example 2>
1300 g of the lithium tetraborate polycrystalline raw material powder used in Example 1 is filled in a platinum crucible 21 having a diameter of 90 mm and a height of 100 mm shown in FIG. 1, and the raw material powder is melted with a heating device 24 in a dry air atmosphere. A sample of lithium tetraborate that was held at 1 ° C. for 1 hour and then rapidly cooled to vitrify was obtained.
[0014]
<Comparative example 2>
The raw material powder is melted with the heating device 24, held at 1000 ° C. for 1 hour, and then rapidly cooled to prepare vitrified lithium tetraborate in the atmosphere having a relative humidity of about 65% instead of the dry air atmosphere. did. Otherwise, in the same manner as in Example 2, a vitrified lithium tetraborate sample of Comparative Example 2 was obtained.
[0015]
<Comparison evaluation, part 2>
The OH content of the vitrified lithium tetraborate samples of Example 2 and Comparative Example 2 was analyzed by infrared spectroscopy. As a result, the OH amount of the sample of Comparative Example 2 was 1940 ppm, whereas the OH amount of the sample of Example 2 was 140 ppm. That is, in a dry air atmosphere, the amount of water can be reduced to about 1/10 or less in comparison with an atmospheric atmosphere having a relative humidity of 65%, so that bubbles based on residual moisture in the melt, which is a cause of scatterers in the crystal, are reduced. It has been found that the amount can be reduced and scatterers can be prevented from being incorporated into the crystal.
[0016]
【The invention's effect】
As described above, according to the present invention, in a device for growing a wavelength conversion crystal using a seed crystal cut out in a specific phase matching orientation, a dry gas having a relative humidity of 10% or less during By pulling up the crystal while flowing into the heat insulating wall so as to hit the melt through the introduction tube penetrating and extending to the vicinity of the upper surface of the melt, it is possible to prevent inconvenience that a minute scatterer is taken into the crystal. As a result, it is possible to obtain an effect of not reducing the crystal damage threshold without causing a transmission loss of incident light and SHG light.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of an apparatus for growing a lithium tetraborate single crystal by the Czochralski method of the present invention.
FIG. 2 is a cross-sectional view taken along line AA in FIG.
FIG. 3 is a photograph obtained by irradiating the sample of Example 1 with a He—Ne laser.
4 is a photograph obtained by irradiating the sample of Comparative Example 1 with a He—Ne laser. FIG.
FIG. 5 is a photograph obtained by measuring the refractive index variation of the sample of Example 1 using a laser interferometer.
[Explanation of symbols]
10 Seed crystal 20 Single crystal growth furnace 21a Lithium tetraborate melt 28 Lithium tetraborate single crystal 31, 32 Drying gas introduction tube

Claims (4)

断熱壁(25,26)が上部に設けられたるつぼ(21)内に貯えられた波長変換結晶融液(21a)に特定の位相整合方位に切出した種結晶(10)を接触させ、回転・引上げ機構(27)により、前記種結晶(10)を回転させながら引上げて、波長変換結晶を育成する装置において、
前記断熱壁(25,26)を貫通し先端が前記融液(21a)の上面近傍まで延びる乾燥ガスの導入管(31,32)が設けられ、前記結晶を育成中相対湿度10%以下の乾燥ガスを前記導入管(31,32)を通じて前記融液(21a)に当るように前記断熱壁(25,26)内に流しながら引上げるように構成されたことを特徴とする波長変換結晶の育成装置
A seed crystal (10) cut in a specific phase matching orientation is brought into contact with the wavelength conversion crystal melt (21a) stored in a crucible (21) provided with an insulating wall (25, 26) at the top, In the apparatus for growing the wavelength conversion crystal by pulling up the seed crystal (10) by the pulling mechanism (27),
Dry gas introduction pipes (31, 32) that penetrate the heat insulating walls (25, 26) and whose tips extend to the vicinity of the top surface of the melt (21a) are provided, and the crystals are dried at a relative humidity of 10% or less during growth. Growing a wavelength conversion crystal characterized by being configured to pull up gas while flowing into the heat insulating wall (25, 26) so as to hit the melt (21a) through the introduction pipe (31, 32) Equipment .
波長変換結晶が四ほう酸リチウム単結晶であり、種結晶(10)がc軸から74±5度だけ傾いた位相整合方位に切出されてチョクラルスキー法により育成炉(20)内でNd:YAGレーザの5倍波用波長変換結晶を育成する請求項1記載の育成装置The wavelength conversion crystal is a lithium tetraborate single crystal, and the seed crystal (10) is cut into a phase matching orientation inclined by 74 ± 5 degrees from the c-axis, and Nd: in the growth furnace (20) by the Czochralski method. The growth apparatus according to claim 1, wherein a wavelength conversion crystal for a fifth harmonic of a YAG laser is grown. 乾燥ガスが乾燥空気、乾燥アルゴン又は乾燥窒素である請求項1又は2記載の育成装置The growth apparatus according to claim 1 or 2, wherein the dry gas is dry air, dry argon, or dry nitrogen. 請求項1ないし3いずれか1項に記載の育成装置により作られた波長変換結晶。A wavelength conversion crystal made by the growth apparatus according to any one of claims 1 to 3.
JP2003204194A 2003-07-31 2003-07-31 Wavelength conversion crystal growing device and crystal made from this device Expired - Fee Related JP4258308B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003204194A JP4258308B2 (en) 2003-07-31 2003-07-31 Wavelength conversion crystal growing device and crystal made from this device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003204194A JP4258308B2 (en) 2003-07-31 2003-07-31 Wavelength conversion crystal growing device and crystal made from this device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP04966699A Division JP3480490B2 (en) 1999-02-26 1999-02-26 How to grow a wavelength conversion crystal

Publications (2)

Publication Number Publication Date
JP2004059423A JP2004059423A (en) 2004-02-26
JP4258308B2 true JP4258308B2 (en) 2009-04-30

Family

ID=31944761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003204194A Expired - Fee Related JP4258308B2 (en) 2003-07-31 2003-07-31 Wavelength conversion crystal growing device and crystal made from this device

Country Status (1)

Country Link
JP (1) JP4258308B2 (en)

Also Published As

Publication number Publication date
JP2004059423A (en) 2004-02-26

Similar Documents

Publication Publication Date Title
Kouta et al. β-BaB2O4 single crystal growth by Czochralski method. II
Fukuda et al. Preparation of KNbO3 single crystal for optical applications
CN102076892A (en) Doped low temperature phase BaB204 single crystal, the manufacturing method thereof and wave changing elements therefrom
JP4061797B2 (en) BORATE SINGLE CRYSTAL, GROWTH METHOD THEREOF, AND LASER DEVICE USING THE SAME
WO2000071786A1 (en) Method and apparatus for growing high quality single crystal
JP4258308B2 (en) Wavelength conversion crystal growing device and crystal made from this device
JP3480490B2 (en) How to grow a wavelength conversion crystal
JP2008050240A (en) Method for producing cesium boric acid compound crystal and cesium boric acid compound obtained by the same
Wang et al. Growth and properties of KBe2BO3F2 crystal
JPH05270992A (en) Lithium niobate single crystal free from optical damage
Aggarwal et al. Modified czochralski growth of nonlinear optical organic crystals
CN115198343B (en) Scandium rubidium lithium fluosilicate nonlinear optical crystal and preparation method and application thereof
JP3317338B2 (en) Wavelength conversion crystal, method of manufacturing the same, and laser device using the same
CN106958041A (en) A kind of xTeO2·P2O5(x=2,4) preparation method and preparation facilities of crystal
JP3136812B2 (en) Single crystal manufacturing method
CN113277525A (en) Yttrium rubidium borate compound, yttrium rubidium borate nonlinear optical crystal, and preparation methods and applications thereof
JP3261649B2 (en) Growth method of lithium tetraborate single crystal for optics
JP2008169095A (en) Method for producing lithium tetraborate single crystal for optical application
JPH04325496A (en) Manufacture of magnesium added lithium niobade single crystal
Hu et al. Characterization of growth defects in Nd: YCa4O (BO3) 3 crystals by transmission synchrotron topography
Gao et al. Inhomogeneity of composition in near‐stoichiometric LiNbO3 single crystal grown from Li rich melt
JP2881737B2 (en) Manufacturing method of optical single crystal
JPH0411513B2 (en)
Hashim et al. Growth and Characterization of Titanium Doped Lithium Niobate Single Crystal Using Czochralski Technique
JP3001067B2 (en) Barium titanate single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090126

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees