JP3480490B2 - How to grow a wavelength conversion crystal - Google Patents

How to grow a wavelength conversion crystal

Info

Publication number
JP3480490B2
JP3480490B2 JP04966699A JP4966699A JP3480490B2 JP 3480490 B2 JP3480490 B2 JP 3480490B2 JP 04966699 A JP04966699 A JP 04966699A JP 4966699 A JP4966699 A JP 4966699A JP 3480490 B2 JP3480490 B2 JP 3480490B2
Authority
JP
Japan
Prior art keywords
crystal
wavelength conversion
melt
conversion crystal
growing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04966699A
Other languages
Japanese (ja)
Other versions
JP2000247791A (en
Inventor
保 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP04966699A priority Critical patent/JP3480490B2/en
Publication of JP2000247791A publication Critical patent/JP2000247791A/en
Application granted granted Critical
Publication of JP3480490B2 publication Critical patent/JP3480490B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、特定の位相整合方
位に切出した種結晶を用いて、波長変換結晶を育成する
法に関する。更に詳しくは、c軸から74±5度だけ
傾いた位相整合方位に切出した四ほう酸リチウム種結晶
を用いて、チョクラルスキー法により四ほう酸リチウム
のNd:YAGレーザの5倍波用波長変換結晶を育成す
る方法に関するものである。
The present invention relates to, using the seed crystal cut in a particular phase matching orientation relates to <br/> how to grow a wavelength conversion crystal. More specifically, by using a lithium tetraborate seed crystal cut out in a phase matching orientation inclined by 74 ± 5 degrees from the c-axis, a wavelength conversion crystal for the fifth harmonic of a lithium tetraborate Nd: YAG laser is manufactured by the Czochralski method. it relates to how to cultivate.

【0002】[0002]

【従来の技術】四ほう酸リチウム(Li247)は良
質の大型結晶を作り易く、潮解性が低く、安定であり、
取扱性に優れており、加工性も良好である等の利点があ
るため、波長変換素子としての利用が注目されている。
従来、Nd:YAGレーザの5倍波用素子の量産に適し
た引上げ方位であるc軸から74±5度だけ傾いた位相
整合方位に切出した四ほう酸リチウム種結晶を用いて、
チョクラルスキー法(CZ法)により単結晶を育成する
と、引上げ方向と直角な面が所望のレーザ素子のレーザ
光の入射面となるため、育成された一個の単結晶からと
れるレーザ素子の数が多くなることが知られている。
2. Description of the Related Art Lithium tetraborate (Li 2 B 4 O 7 ) is easy to form large crystals of good quality, has low deliquescent property, and is stable.
Since it has advantages such as excellent handleability and good workability, its use as a wavelength conversion element is drawing attention.
Conventionally, using a lithium tetraborate seed crystal cut out in a phase matching azimuth tilted by 74 ± 5 degrees from the c-axis which is a pulling azimuth suitable for mass production of an Nd: YAG laser 5th harmonic element,
When a single crystal is grown by the Czochralski method (CZ method), the plane perpendicular to the pulling direction becomes the laser light incident surface of the desired laser element, so the number of laser elements that can be obtained from one grown single crystal is reduced. It is known to increase.

【0003】[0003]

【発明が解決しようとする課題】しかし、この量産に適
した引上げ方位で四ほう酸リチウム単結晶を育成する
と、微小な散乱体が結晶全体に取込まれる問題があっ
た。この散乱体は入射光とSHG(第二次高調波)光の
透過ロスを生じ、特にレーザ共振器内部で結晶を使用す
る場合には、透過ロスは大きな問題となる。また高出力
レーザ用の結晶として使用する場合には、結晶の損傷閾
値を大幅に低下させる不都合がある。更に紫外用材料と
して使用する場合には、通常より高品質が求められるた
め、散乱体は大きな問題となる。c軸から74±5度以
外の結晶方位、例えば<100>、<110>、<00
1>等の方位、或は4倍波用の結晶方位で育成した結晶
には散乱体の取込みは見られないが、引上げ方向と直角
でない面がレーザ光の入射面となるため、育成された一
個の単結晶からとれるレーザ素子の数が少ない問題点が
あった。本発明の目的は、微小な散乱体が波長変換結晶
に取込まれることがなく、入射光とSHG光の透過ロス
を生ぜずに、結晶の損傷閾値を低下させない波長変換結
晶の育成方法を提供することにある。
However, when a lithium tetraborate single crystal is grown in a pulling direction suitable for mass production, there is a problem that minute scatterers are incorporated into the entire crystal. This scatterer causes a transmission loss of incident light and SHG (second harmonic) light, and the transmission loss becomes a serious problem especially when a crystal is used inside the laser resonator. Further, when used as a crystal for a high-power laser, there is a disadvantage that the damage threshold of the crystal is significantly lowered. Further, when it is used as an ultraviolet material, higher quality than usual is required, and the scatterer poses a serious problem. Crystal orientations other than 74 ± 5 degrees from the c-axis, for example, <100>, <110>, <00
The crystal grown in the orientation such as 1> or in the crystal orientation for the 4th harmonic has no uptake of the scatterer, but the surface which is not perpendicular to the pulling direction is the incident surface of the laser beam, so it was grown. There is a problem that the number of laser elements that can be obtained from one single crystal is small. An object of the present invention, without a minute scattering body is taken into the wavelength conversion crystal, without rise to transmission loss of the incident light and SHG light, development how the wavelength conversion crystal which does not reduce the damage threshold of the crystal To provide.

【0004】[0004]

【課題を解決するための手段】請求項1に係る発明は、
図1に示すように、断熱壁25,26が上部に設けられ
たるつぼ21内に貯えられた波長変換結晶融液21aに
特定の位相整合方位に切出した種結晶10を接触させ、
回転・引上げ機構27により、この種結晶10を回転さ
せながら引上げて、波長変換結晶を育成する方法におい
て、上記断熱壁25,26を貫通し先端が融液21aの
上面近傍まで延びる乾燥ガスの導入管31,32が設け
られ、上記結晶を育成中相対湿度10%以下の乾燥ガス
導入管31,32を通じて融液21aに当るように
熱壁25,26内に流しながら引上げることを特徴とす
る波長変換結晶の育成方法である。育成中相対湿度10
%以下の乾燥ガスを、断熱壁25,26を貫通した導入
管31,32を通じて融液21aに当るように断熱壁2
5,26内に流しながら引上げることにより、結晶中の
散乱体の原因である融液中の残存水分に基づく気泡の量
を減らすことができる。その結果、散乱体が結晶に取込
まれることを防止できる。
The invention according to claim 1 is
As shown in FIG. 1, heat insulating walls 25 and 26 are provided on the upper part.
The wavelength conversion crystal melt 21a stored in the crucible 21 is brought into contact with the seed crystal 10 cut out in a specific phase matching orientation ,
The seed crystal 10 is rotated by the rotation / pulling mechanism 27.
In the method of pulling up while raising the wavelength conversion crystal, the heat insulating walls 25 and 26 are penetrated and the tip of the melt 21a is formed.
Provided with dry gas introduction pipes 31 and 32 extending to the vicinity of the upper surface
Is, the cross-sectional to hit the melt 21a through the introduction pipe 31 and 32 to foster a relative humidity of 10% or less of the dry gas the crystal
While flow in thermal wall in 25,26 is a growth method of a wavelength conversion crystal, wherein the pulling. Relative humidity during cultivation 10
% Or less of dry gas is introduced through the heat insulating walls 25 and 26.
Insulating wall 2 so as to hit melt 21a through pipes 31 and 32
By pulled while the flow into the 5,26, it is possible to reduce the amount of air bubbles based on the residual moisture in the melt responsible for the scattering of the crystal. As a result, it is possible to prevent the scatterer from being taken up by the crystal.

【0005】請求項2に係る発明は、請求項1に係る発
明であって、波長変換結晶が四ほう酸リチウム単結晶で
あり、種結晶10がc軸から74±5度だけ傾いた位相
整合方位に切出されてチョクラルスキー法により育成炉
20内でNd:YAGレーザの5倍波用波長変換結晶を
育成する方法である。四ほう酸リチウム単結晶を上記条
件で育成した場合、散乱体の結晶への取込みが著しく減
少する。
The invention according to claim 2 is the invention according to claim 1, wherein the wavelength conversion crystal is a lithium tetraborate single crystal, and the seed crystal 10 is a phase matching orientation tilted by 74 ± 5 degrees from the c-axis. It is a method of growing a wavelength conversion crystal for the fifth harmonic of an Nd: YAG laser in the growth furnace 20 by cutting out into the Czochralski method. When a lithium tetraborate single crystal is grown under the above conditions, the uptake of the scatterer into the crystal is significantly reduced.

【0006】請求項3に係る発明は、請求項1又は2に
係る発明であって、乾燥ガスが乾燥空気、乾燥アルゴン
又は乾燥窒素である育成方法である
The invention according to claim 3 is the invention according to claim 1 or 2, wherein the dry gas is dry air, dry argon or dry nitrogen .

【0007】[0007]

【発明の実施の形態】本発明の育成方法では、育成中相
対湿度10%以下の乾燥ガスが二重の断熱壁25,26
を貫通し先端が融液21aの上面近傍まで延びる導入管
31,32を通じて融液に当るように断熱壁25,26
内に流される。この相対湿度が5%以下がより好まし
く、0(ゼロ)%が最適である。乾燥ガスの相対湿度が
10%を超える場合には、結晶中の散乱体の原因である
融液中の残存水分の量を減らすことができず、好ましく
ない。本発明の波長変換結晶を育成するのに使用する種
結晶及び融液を構成する結晶材料としては四ほう酸リチ
ウムが好ましく用いられるが、その他にもBBO(Ba
24)、LBO(LiB35)、CLBO(CsLi
318)等が使用できる。種結晶は結晶の種類に応じ
て、それぞれ特定の位相整合方位に切出したものを使用
する。結晶が四ほう酸リチウムであってNd:YAGレ
ーザの5倍波用波長変換結晶の場合、種結晶はc軸から
74±5度だけ傾いた位相整合方位に切出したものを使
用する。
BEST MODE FOR CARRYING OUT THE INVENTION In the growing method of the present invention, a dry gas having a relative humidity of 10% or less is used as a double insulating wall 25, 26 during growth.
Pipe that penetrates through the pipe and extends to the vicinity of the upper surface of the melt 21a
Insulation walls 25, 26 so as to hit the melt through 31, 32
Shed inside. The relative humidity is more preferably 5% or less, and 0 (zero)% is optimal. If the relative humidity of the dry gas exceeds 10%, the amount of residual water in the melt that is the cause of the scatterers in the crystal cannot be reduced, which is not preferable. Lithium tetraborate is preferably used as the crystal material constituting the seed crystal and the melt used for growing the wavelength conversion crystal of the present invention, but in addition, BBO (Ba
B 2 O 4 ), LBO (LiB 3 O 5 ), CLBO (CsLi
B 3 O 18 ) etc. can be used. As the seed crystal, one cut out in a specific phase matching orientation is used according to the type of crystal. When the crystal is lithium tetraborate and is a wavelength conversion crystal for the fifth harmonic of an Nd: YAG laser, a seed crystal cut out in a phase matching orientation inclined by 74 ± 5 degrees from the c-axis is used.

【0008】本発明の育成方法の一実施態様を図面に基
づいて説明する。即ち、図1及び図2に示すように、チ
ョクラルスキー法では、四ほう酸リチウム単結晶の育成
炉20は四ほう酸リチウム多結晶の融液21aが貯えら
れている白金るつぼ21を有する。四ほう酸リチウムは
酸化物の中では低融点であるため、白金るつぼで育成す
ることができる。白金るつぼ21の周囲には断熱材2
2,23を介してるつぼ21内の四ほう酸リチウム多結
晶を融解させるための抵抗加熱ヒータのような加熱装置
24が設けられる。るつぼ21内の融液21aの温度は
熱電対29により検出される。るつぼ21の上部には断
熱壁25,26が二重に設けられており、これらの断熱
壁25,26を貫通して回転・引上げ機構27が設けら
れる。この機構27の先端には種結晶10が配置され
る。また上記断熱壁25,26を貫通して乾燥ガスの導
入管31,32が設けられる。
An embodiment of the growing method of the present invention will be described with reference to the drawings. That is, as shown in FIGS. 1 and 2, in the Czochralski method, the lithium tetraborate single crystal growth furnace 20 has a platinum crucible 21 in which a lithium tetraborate polycrystal melt 21a is stored. Since lithium tetraborate has a low melting point among oxides, it can be grown in a platinum crucible. Insulating material 2 around the platinum crucible 21
A heating device 24, such as a resistance heater, for melting the lithium tetraborate polycrystal in the crucible 21 via 2, 23 is provided. The temperature of the melt 21a in the crucible 21 is detected by the thermocouple 29. Double heat insulating walls 25 and 26 are provided on the upper part of the crucible 21, and a rotating / pulling mechanism 27 is provided through the heat insulating walls 25 and 26. The seed crystal 10 is arranged at the tip of the mechanism 27. Further, dry gas introducing pipes 31 and 32 are provided to penetrate the heat insulating walls 25 and 26.

【0009】この方法では、加熱装置24によりるつぼ
21内の四ほう酸リチウム多結晶が融解した後、この融
液21aに種結晶10を接触させ、回転・引上げ機構2
7により、種結晶10を回転させながら引上げることに
より、図示するような四ほう酸リチウム単結晶28が育
成される。本発明の特徴ある構成は、乾燥ガスの導入管
31,32を通じて育成中相対湿度10%以下の乾燥ガ
スを矢印で示すように融液21aに当るように断熱壁2
5,26内に流しながら結晶を引上げることにある。乾
燥ガスは融液21aに当った後に、回転・引上げ機構2
7と断熱壁25,26との間の空間を通って外部に放出
される。その結果、結晶中の散乱体の原因である融液2
1a中の残存水分に基づく気泡の量を減らすことがで
き、散乱体が結晶に取込まれることが防止される。
In this method, after the lithium tetraborate polycrystal in the crucible 21 is melted by the heating device 24, the seed crystal 10 is brought into contact with the melt 21a to rotate and pull up the mechanism 2.
7, by pulling the seed crystal 10 while rotating it, a lithium tetraborate single crystal 28 as shown in the figure is grown. The characteristic construction of the present invention is that the heat insulating wall 2 is provided so that the dry gas having a relative humidity of 10% or less during the growth hits the melt 21a through the dry gas introducing pipes 31 and 32 as shown by the arrow.
While it flows in the 5,26 lies in pulling the crystal. After the dry gas hits the melt 21a, the rotating / pulling mechanism 2
It is discharged to the outside through the space between 7 and the heat insulating walls 25 and 26. As a result, the melt 2 which is the cause of the scatterer in the crystal
The amount of bubbles based on the residual water content in 1a can be reduced, and the scatterer can be prevented from being taken into the crystal.

【0010】[0010]

【実施例】次に本発明の実施例を比較例とともに説明す
る。 <実施例1>5倍波用波長変換結晶を次の方法で製造し
た。先ず所定のモル比の純度99.99%の四ほう酸リ
チウム多結晶原料粉末1300gを、図1に示す直径9
0mm、高さ100mmの白金るつぼ21に充填し、加
熱装置24で原料粉末を融解した後、CZ法で所定の引
上げ方位に引上げた。即ち、この例では、種結晶10は
c軸から74度でカットしたものを用いた。融液表面と
融液直上10mmの温度勾配(降温勾配)を120℃/
cmにし、それより上部の降温勾配を20℃/cmにし
た。また単結晶28の育成速度を0.3〜1mm/時
間、回転数を1〜5rpmとし、原料の仕込みと単結晶
の育成中に相対湿度0%の乾燥空気を0.6リットル/
分の割合で導入管31,32から流しながら引上げて、
直径50mm、長さ120mmの四ほう酸リチウム単結
晶28を育成した。育成した単結晶を10mm×10m
m×10mmのサイコロ状に切出した後、切出し面を光
学研磨して実施例1のサンプルを得た。
EXAMPLES Next, examples of the present invention will be described together with comparative examples. <Example 1> A wavelength conversion crystal for 5th harmonic was manufactured by the following method. First, 1300 g of lithium tetraborate polycrystal raw material powder having a purity of 99.99% in a predetermined molar ratio was mixed with a diameter 9 shown in FIG.
It was filled in a platinum crucible 21 having a height of 0 mm and a height of 100 mm, the raw material powder was melted by a heating device 24, and then pulled in a predetermined pulling direction by a CZ method. That is, in this example, the seed crystal 10 used was cut at 74 degrees from the c-axis. A temperature gradient (decreasing temperature gradient) of 10 mm directly above the melt surface and 120 ° C /
cm, and the temperature decreasing gradient above it was 20 ° C./cm. Further, the growth rate of the single crystal 28 was 0.3 to 1 mm / hour, the rotation speed was 1 to 5 rpm, and 0.6 liter / dry air with a relative humidity of 0% was used during raw material charging and single crystal growth.
Pull up while flowing from the introduction pipes 31 and 32 at a rate of
A lithium tetraborate single crystal 28 having a diameter of 50 mm and a length of 120 mm was grown. 10 mm x 10 m of grown single crystal
After being cut into m × 10 mm dice, the cut surface was optically polished to obtain a sample of Example 1.

【0011】<比較例1>単結晶の育成中に乾燥空気を
流さなかった以外、実施例1と同様にして、5倍波用波
長変換結晶である比較例1のサンプルを得た。
<Comparative Example 1> A sample of Comparative Example 1 which is a wavelength conversion crystal for fifth harmonic wave was obtained in the same manner as in Example 1 except that dry air was not flown during the growth of the single crystal.

【0012】<比較評価・その1>実施例1及び比較例
1のサンプルの研磨面にそれぞれHe−Neレーザ(6
32nm)を照射し、散乱体の有無を目視で調べた。そ
の結果を図3の写真(実施例1のサンプル)及び図4の
写真(比較例1のサンプル)に示す。また実施例1のサ
ンプルの屈折率変動をレーザ干渉計を用いて測定した。
その結果を図5の写真に示す。図3及び図4から明らか
なように、比較例1のサンプルでは散乱体が結晶全体に
均一に分布しているのに対し、実施例1のサンプルでは
散乱体の量が大幅に減少していることが判った。また図
5の屈折率変動は2×10-6/mmであった。このこと
からこの結晶は高品質であることが判った。
<Comparative Evaluation / Part 1> He-Ne lasers (6) were prepared on the polished surfaces of the samples of Example 1 and Comparative Example 1, respectively.
32 nm) and the presence or absence of scatterers was visually inspected. The results are shown in the photograph of FIG. 3 (sample of Example 1) and the photograph of FIG. 4 (sample of Comparative Example 1). Further, the refractive index fluctuation of the sample of Example 1 was measured using a laser interferometer.
The result is shown in the photograph of FIG. As is clear from FIGS. 3 and 4, in the sample of Comparative Example 1, the scatterers are uniformly distributed throughout the crystal, whereas in the sample of Example 1, the amount of the scatterers is significantly reduced. I knew that. The variation in refractive index in FIG. 5 was 2 × 10 −6 / mm. From this, it was found that this crystal was of high quality.

【0013】<実施例2>実施例1で用いた四ほう酸リ
チウム多結晶原料粉末1300gを、図1に示す直径9
0mm、高さ100mmの白金るつぼ21に充填し、乾
燥空気雰囲気中において加熱装置24で原料粉末を融解
し、1000℃で1時間保持した後、急冷してガラス化
した四ほう酸リチウムのサンプルを得た。
Example 2 1300 g of the lithium tetraborate polycrystal raw material powder used in Example 1 was treated with a diameter 9 shown in FIG.
A platinum crucible 21 having a height of 0 mm and a height of 100 mm was filled, the raw material powder was melted by a heating device 24 in a dry air atmosphere, held at 1000 ° C. for 1 hour, and then rapidly cooled to obtain a vitrified sample of lithium tetraborate. It was

【0014】<比較例2>加熱装置24で原料粉末を融
解し、1000℃で1時間保持した後、急冷してガラス
化した四ほう酸リチウムを調製する場合の雰囲気を乾燥
空気雰囲気の代りに相対湿度約65%の大気中とした。
それ以外は、実施例2と同様にして、比較例2のガラス
化した四ほう酸リチウムのサンプルを得た。
Comparative Example 2 The raw material powder was melted by the heating device 24, held at 1000 ° C. for 1 hour, and then rapidly cooled to prepare vitrified lithium tetraborate. The humidity was about 65% in the atmosphere.
Other than that was carried out similarly to Example 2, and obtained the sample of the vitrified lithium tetraborate of the comparative example 2.

【0015】<比較評価・その2>実施例2及び比較例
2のそれぞれガラス化した四ほう酸リチウムのサンプル
のOH量を赤外分光分析により分析した。その結果、比
較例2のサンプルのOH量が1940ppmであるのに
対し、実施例2のサンプルのOH量は140ppmであ
った。即ち、乾燥空気雰囲気中では相対湿度65%の大
気中雰囲気と比べて水分量を約1/10以下に低減でき
るため、結晶中の散乱体の原因である融液中の残存水分
に基づく気泡の量を減らすことができ、散乱体が結晶に
取込まれることを防止できることが判った。
<Comparison Evaluation-Part 2> The OH content of the vitrified lithium tetraborate samples of Example 2 and Comparative Example 2 were analyzed by infrared spectroscopy. As a result, the OH amount of the sample of Comparative Example 2 was 1940 ppm, whereas the OH amount of the sample of Example 2 was 140 ppm. That is, in the dry air atmosphere, the amount of water can be reduced to about 1/10 or less as compared with the atmosphere in the atmosphere having a relative humidity of 65%, so that bubbles due to residual water in the melt, which is a cause of scatterers in the crystal, It has been found that the amount can be reduced and the scatterers can be prevented from being incorporated into the crystal.

【0016】[0016]

【発明の効果】以上述べたように、本発明によれば、特
定の位相整合方位に切出した種結晶を用いて、波長変換
結晶を育成する方法において、育成中相対湿度10%以
下の乾燥ガスを、断熱壁を貫通し先端が融液の上面近傍
まで延びる導入管を通じて融液に当るように断熱壁内に
しながら結晶を引上げることにより、微小な散乱体が
結晶に取込まれる不都合を防ぐことができる。その結
果、入射光とSHG光の透過ロスを生ぜずに、結晶の損
傷閾値を低下させない効果が得られる。
As described above, according to the present invention, in a method for growing a wavelength conversion crystal using a seed crystal cut out in a specific phase matching orientation, a dry gas having a relative humidity of 10% or less during growth is used. Through the heat insulation wall and the tip is near the upper surface of the melt
By pulling it the crystals while <br/> flow into the insulating wall so as to strike the melt through inlet tube extending to, it is possible to prevent a disadvantage that small scatterers is taken into the crystal. As a result, the effect of not lowering the damage threshold of the crystal can be obtained without causing the transmission loss of the incident light and the SHG light.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のチョクラルスキー法による四ほう酸リ
チウム単結晶の育成装置の構成図。
FIG. 1 is a configuration diagram of a lithium tetraborate single crystal growth apparatus according to the Czochralski method of the present invention.

【図2】図1のA−A線断面図。FIG. 2 is a sectional view taken along line AA of FIG.

【図3】実施例1のサンプルにHe−Neレーザを照射
して得られた写真図。
FIG. 3 is a photographic view obtained by irradiating the sample of Example 1 with a He—Ne laser.

【図4】比較例1のサンプルにHe−Neレーザを照射
して得られた写真図。
FIG. 4 is a photographic view obtained by irradiating the sample of Comparative Example 1 with a He—Ne laser.

【図5】実施例1のサンプルの屈折率変動をレーザ干渉
計を用いて測定して得られた写真図。
FIG. 5 is a photographic diagram obtained by measuring the refractive index fluctuation of the sample of Example 1 using a laser interferometer.

【符号の説明】[Explanation of symbols]

10 種結晶 20 単結晶の育成炉 21a 四ほう酸リチウム融液 28 四ほう酸リチウム単結晶 31,32 乾燥ガスの導入管 10 seed crystals 20 Single crystal growth furnace 21a Lithium tetraborate melt 28 Lithium tetraborate single crystal 31, 32 Dry gas inlet pipe

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平8−225399(JP,A) 特開 平10−259096(JP,A) 特開 昭63−69796(JP,A) 特開 平5−201797(JP,A) 特開 平7−138016(JP,A) 特開 平7−138095(JP,A) 特開 平7−138096(JP,A) 特開 平9−48697(JP,A) (58)調査した分野(Int.Cl.7,DB名) C30B 1/00 - 35/00 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-8-225399 (JP, A) JP-A-10-259096 (JP, A) JP-A-63-69796 (JP, A) JP-A-5- 201797 (JP, A) JP 7-138016 (JP, A) JP 7-138095 (JP, A) JP 7-138096 (JP, A) JP 9-48697 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) C30B 1/00-35/00

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 断熱壁(25,26)が上部に設けられたるつ
ぼ(21)内に貯えられた波長変換結晶融液(21a)に特定の
位相整合方位に切出した種結晶(10)を接触させ、回転・
引上げ機構(27)により、前記種結晶(10)を回転させなが
ら引上げて、波長変換結晶を育成する方法において、 前記断熱壁(25,26)を貫通し先端が前記融液(21a)の上面
近傍まで延びる乾燥ガスの導入管(31,32)が設けられ、
前記結晶を育成中相対湿度10%以下の乾燥ガスを前記
導入管(31,32)を通じて前記融液(21a)に当るように前記
断熱壁(25,26)内に流しながら引上げることを特徴とす
る波長変換結晶の育成方法。
1. A seed crystal (10) cut out in a specific phase matching orientation in a wavelength conversion crystal melt (21a) stored in a crucible (21) provided with an adiabatic wall (25, 26) at the top. Contact and rotate
By the pulling mechanism (27), while pulling while rotating the seed crystal (10), in the method of growing a wavelength conversion crystal, the tip penetrates the heat insulating walls (25, 26) the top surface of the melt (21a) Dry gas introduction pipes (31, 32) extending to the vicinity are provided,
During the growth of the crystal, a dry gas having a relative humidity of 10% or less is pulled up while flowing into the heat insulating wall (25, 26) so as to hit the melt (21a) through the introduction pipe (31, 32). And a method for growing a wavelength conversion crystal.
【請求項2】 波長変換結晶が四ほう酸リチウム単結晶
であり、種結晶(10)がc軸から74±5度だけ傾いた位
相整合方位に切出されてチョクラルスキー法により育成
炉(20)内でNd:YAGレーザの5倍波用波長変換結晶
を育成する請求項1記載の育成方法。
2. The wavelength conversion crystal is a lithium tetraborate single crystal, and the seed crystal (10) is cut out in a phase matching direction inclined by 74 ± 5 degrees from the c-axis and grown by a Czochralski method. The growing method according to claim 1, wherein the wavelength conversion crystal for the fifth harmonic of the Nd: YAG laser is grown in ().
【請求項3】 乾燥ガスが乾燥空気、乾燥アルゴン又は
乾燥窒素である請求項1又は2記載の育成方法
3. The growing method according to claim 1, wherein the dry gas is dry air, dry argon or dry nitrogen .
JP04966699A 1999-02-26 1999-02-26 How to grow a wavelength conversion crystal Expired - Fee Related JP3480490B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04966699A JP3480490B2 (en) 1999-02-26 1999-02-26 How to grow a wavelength conversion crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04966699A JP3480490B2 (en) 1999-02-26 1999-02-26 How to grow a wavelength conversion crystal

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2003204194A Division JP4258308B2 (en) 2003-07-31 2003-07-31 Wavelength conversion crystal growing device and crystal made from this device

Publications (2)

Publication Number Publication Date
JP2000247791A JP2000247791A (en) 2000-09-12
JP3480490B2 true JP3480490B2 (en) 2003-12-22

Family

ID=12837508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04966699A Expired - Fee Related JP3480490B2 (en) 1999-02-26 1999-02-26 How to grow a wavelength conversion crystal

Country Status (1)

Country Link
JP (1) JP3480490B2 (en)

Also Published As

Publication number Publication date
JP2000247791A (en) 2000-09-12

Similar Documents

Publication Publication Date Title
Kouta et al. β-BaB2O4 single crystal growth by Czochralski method. II
CN102076892B (en) Doped low temperature phase BaB204 single crystal, the manufacturing method thereof and wave changing elements therefrom
Fukuda et al. Preparation of KNbO3 single crystal for optical applications
US6146553A (en) Nonlinear optical crystal of compound R2 MB10 O19 and producing method and producing method and uses thereof
CN108301045A (en) Calcium metaborate birefringece crystal and preparation method and purposes
WO2000071786A1 (en) Method and apparatus for growing high quality single crystal
JP3480490B2 (en) How to grow a wavelength conversion crystal
JP4258308B2 (en) Wavelength conversion crystal growing device and crystal made from this device
Wang et al. Growth and properties of KBe2BO3F2 crystal
Sakata et al. Preparation of low-temperature Li3VO4 single crystal by floating zone technique
Finch et al. Growth of single-crystal Mn2SiO4 (tephroite) by czochralski and edge-defined film-fed (EFG) techniques
Solé et al. Growth of KTiOPO4 films on KTi1-xGexOPO4 substrates by liquid-phase epitaxy
CN115198343B (en) Scandium rubidium lithium fluosilicate nonlinear optical crystal and preparation method and application thereof
Aggarwal et al. Modified czochralski growth of nonlinear optical organic crystals
CN115198364B (en) Scandium rubidium lithium fluorogermanate nonlinear optical crystal, and preparation method and application thereof
JP3136812B2 (en) Single crystal manufacturing method
JP3317338B2 (en) Wavelength conversion crystal, method of manufacturing the same, and laser device using the same
JP2546131B2 (en) Lithium niobate single crystal thick film and method for producing the same
JPH05270992A (en) Lithium niobate single crystal free from optical damage
JP3261649B2 (en) Growth method of lithium tetraborate single crystal for optics
Hu et al. Characterization of growth defects in Nd: YCa4O (BO3) 3 crystals by transmission synchrotron topography
Zhao et al. Formation mechanism of scattering centers in BaMgF4 single crystals
Hutton et al. Growth Studies and X-Ray Topographical Assessment of KTP
Gao et al. Inhomogeneity of composition in near‐stoichiometric LiNbO3 single crystal grown from Li rich melt
JP3001067B2 (en) Barium titanate single crystal

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030610

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030910

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081010

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081010

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091010

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091010

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101010

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees