JP4254126B2 - Ejector for vapor compression refrigeration cycle - Google Patents

Ejector for vapor compression refrigeration cycle Download PDF

Info

Publication number
JP4254126B2
JP4254126B2 JP2002124319A JP2002124319A JP4254126B2 JP 4254126 B2 JP4254126 B2 JP 4254126B2 JP 2002124319 A JP2002124319 A JP 2002124319A JP 2002124319 A JP2002124319 A JP 2002124319A JP 4254126 B2 JP4254126 B2 JP 4254126B2
Authority
JP
Japan
Prior art keywords
pressure
refrigerant
nozzle
chamber
ejector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002124319A
Other languages
Japanese (ja)
Other versions
JP2003279177A (en
Inventor
猛 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2002124319A priority Critical patent/JP4254126B2/en
Publication of JP2003279177A publication Critical patent/JP2003279177A/en
Application granted granted Critical
Publication of JP4254126B2 publication Critical patent/JP4254126B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0012Ejectors with the cooled primary flow at high pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0013Ejector control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0407Refrigeration circuit bypassing means for the ejector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/17Control issues by controlling the pressure of the condenser

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、気圧縮式冷凍サイクル用のエジェクタ関するものである。
【0002】
明が解決しようとする課題】
【0004】
本発明は、電気式のアクチュエータを用いた場合に比べて、安価に高圧側冷媒圧力を制御することを目的とする。
【0005】
【課題を解決するための手段】
本発明は、上記目的を達成するために、請求項1に記載の発明では、圧縮機(10)にて圧縮された高温高圧の冷媒を放冷する高圧側熱交換器(20)、及び減圧された低温低圧の冷媒を蒸発させる蒸発器(30)を有して低温側の熱を高温側に移動させる蒸気圧縮式冷凍サイクルに適用されるエジェクタであって、高圧側熱交換器(20)から流出した高圧の冷媒の圧力エネルギーを速度エネルギーに変換して冷媒を減圧膨張させるノズル(41)と、ノズル(41)から噴射する冷媒と蒸発器(30)から吸引した冷媒とを混合させながら速度エネルギーを圧力エネルギーに変換して冷媒の圧力を昇圧させる昇圧部(42、43)と、ノズル(41)の軸線方向に変位し、ノズル(41)の絞り開度を調節するニードル弁(46)と、高圧側熱交換器(20)から流出してノズル(41)に流入する高圧の冷媒が充満する駆動室(47a)と、駆動室(47a)に隣接配置され、不活性ガスが封入された作動室(47b)と、駆動室(47a)と作動室(47b)とを仕切るとともに、駆動室(47a)内の圧力と作動室(47b)内の圧力との圧力差に応じて変位してニードル弁(46)を変位させる仕切部材(7g)と、駆動室(47a)及び作動室(47b)の外殻を形成するハウジング(47e)とを備え、仕切部材は、シール手段(47h)を介してハウジング(47e)の内面に摺動可能に配置されたピストン(47g)であることを特徴とする。
【0006】
これにより、電気式のアクチュエータを用いた場合に比べて、安価に高圧側冷媒圧力を略一定となるように制御することができる。
【0009】
請求項2に記載の発明では、仕切部材(7g)は、駆動室(47a)内の圧力が作動室(47b)内の圧力より大きくなるとノズル(41)の絞り開度が大きくなるようにニードル弁(46)を変位させ、駆動室(47a)内の圧力が作動室(47b)内の圧力より小さくなるとノズル(41)の絞り開度が小さくなるようにニードル弁(46)を変位させるように構成されていることを特徴とする。
【0010】
また、請求項3に記載の発明のごとく、圧縮機(10)は冷媒を冷媒の臨界圧力以上まで圧縮してもよい。
【0011】
また、請求項4に記載の発明のごとく、冷媒として二酸化炭素を用いてもよい。
【0017】
また、請求項に記載の発明のごとく、仕切部材(47)を駆動室(47a)側に変位させる弾性力を仕切部材(47)に作用させる弾性手段(47j)を備えてもよい。
【0020】
因みに、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示す一例である。
【0021】
【発明の実施の形態】
(第1実施形態)
本実施形態は、ヒートポンプユニット1として、エジェクタ方式の減圧装置を有する蒸気圧縮式冷凍サイクルを用いたもので、図1は本実施形態に係る給湯器の模式図である。
【0022】
圧縮機10は冷媒を吸入圧縮するものであり、水冷媒熱交換器20は圧縮機10から吐出した冷媒と給湯水とを対向流れ状態で熱交換して給湯水を加熱することにより冷媒を冷却する高圧側熱交換器である。
【0023】
なお、圧縮機10は電動モータ(図示せず。)により駆動されており、水冷媒熱交換器20の加熱能力を大きくするときには、圧縮機10の回転数を増大させて圧縮機10から吐出する冷媒の流量を増大させ、一方、加熱能力を小さくするときには、圧縮機10の回転数を低下させて圧縮機10から吐出する冷媒の流量を減少させる。
【0024】
因みに、本実施形態では、冷媒として二酸化炭素を用いているので、水冷媒熱交換器20内の冷媒圧力は冷媒の臨界圧力以上となり、かつ、水冷媒熱交換器20内で冷媒が凝縮することなく、冷媒入口側から冷媒出口側に向かうほど冷媒温度が低下するような温度分布を有する。
【0025】
蒸発器30は室外空気と液相冷媒とを熱交換させて液相冷媒を蒸発させることにより冷媒を蒸発させて室外空気から吸熱する低圧側熱交換器であり、エジェクタ40は冷媒を減圧膨張させて蒸発器30にて蒸発した気相冷媒を吸引するとともに、膨張エネルギーを圧力エネルギーに変換して圧縮機10の吸入圧を上昇させるものである。なお、エジェクタ40の詳細は、後述する。
【0026】
また、気液分離器50はエジェクタ40から流出した冷媒が流入するとともに、その流入した冷媒を気相冷媒と液相冷媒とに分離して冷媒を蓄える気液分離手段であり、気液分離器50の気相冷媒流出口は圧縮機10の吸引側に接続され、液相冷媒流出口は蒸発器30側の流入側に接続される。
【0027】
なお、図2はエジェクタサイクルの全体のマクロ的作動を示すp−h線図であり、そのマクロ的作動は周知のエジェクタサイクルと同じであるので、本実施形態では、エジェクタサイクル全体のマクロ的作動の説明は省略する。因みに、図2の●で示される符号は、図1に示す●で示される符号位置における冷媒の状態を示すものである。
【0028】
次に、図3に基づいてエジェクタ40の構造について述べる。
【0029】
エジェクタ40は、流入する高圧冷媒の圧力エネルギーを速度エネルギーに変換して冷媒を減圧膨張させるノズル41、ノズル41から噴射する高い速度の冷媒流により蒸発器30にて蒸発した気相冷媒を吸引しながら、ノズル41から噴射する冷媒流とを混合する混合部42、及びノズル41から噴射する冷媒と蒸発器30から吸引した冷媒とを混合させながら速度エネルギーを圧力エネルギーに変換して冷媒の圧力を昇圧させるディフューザ43等からなるものである。
【0030】
なお、混合部42においては、ノズル41から噴射する冷媒流の運動量と、蒸発器30からエジェクタ40に吸引される冷媒流の運動量との和が保存されるように混合するので、混合部42においても冷媒の静圧が上昇する。一方、ディフューザ43においては、通路断面積を徐々に拡大することにより、冷媒の動圧を静圧に変換するので、エジェクタ40においては、混合部42及びディフューザ43の両者にて冷媒圧力を昇圧する。そこで、混合部42とディフューザ43とを総称して昇圧部と呼ぶ。
【0031】
つまり、理想的なエジェクタ40においては、混合部42で2種類の冷媒流の運動量の和が保存されるように冷媒圧力が増大し、ディフューザ43でエネルギーが保存されるように冷媒圧力が増大することがのぞましい。
【0032】
因みに、ノズル41の周りには、ボディ44により形成された吸引室45が形成されており、蒸発器30から吸引された気相冷媒は、吸引室45を経由して混合部42に流れる。
【0033】
また、ノズル41は、通路途中に通路面積が最も縮小した喉部を有する末広型のノズルであり、ノズル41の絞り開度、すなわち喉部の開度は、高圧側の冷媒圧力が略一定となるように、ニードル弁46にて制御される。なお、ニードル弁46は先端側が尖った円錐テーパ状のもので、ノズル41内において機械式のアクチュエータ47により軸線方向に変位させる。
【0034】
ここで、機械式のアクチュエータ47は、ノズル41に流入する高圧冷媒が充満する駆動室47aと不活性ガスが封入された作動室47bとを仕切るとともに、駆動室47a内の圧力と作動室47b内の圧力との圧力差に応じて変位してニードル弁46を変位させる仕切部材としてのダイヤフラム47c、ダイヤフラム47cの駆動室47a側に配置されてダイヤフラム47cの最大変位を規制するストッパ47d等、並びに駆動室47a及び作動室47b外殻を形成するステンレス製のハウジング47e等からなるものである。
【0035】
因みに、本実施形態では、不活性ガスとして窒素ガスを用いているが、ヘリウムガスやアルゴンガス等の不活性ガスを用いてもよい。また、本実施形態では、ダイヤフラム47c及びニードル弁46をステンレス製として両者をろう付け接合しているが、本実施形態はこれに限定されるものでない。
【0036】
次に、ニードル弁46の作動を中心に本実施形態に係るエジェクタ40の作動を説明する。
【0037】
駆動室47aと作動室47bとはダイヤフラム47cを挟んで仕切られ、かつ、ニードル弁46はダイヤフラム47cと一体的に変位するように構成されている。このとき、駆動室47a内の圧力は、ノズル41の絞り開度が大きくなる向きにニードル弁46が変位するような力をダイヤフラム47cに対して作用させ、一方、作動室47b内の圧力は、ノズル41の絞り開度が小さくなる向きにニードル弁46が変位するような力をダイヤフラム47cに対して作用させる。
【0038】
そして、駆動室47a内の圧力が上昇して作動室47b内の圧力より大きくなると、図3に示すように、ノズル41の絞り開度が大きくなるようにダイヤフラム47c及びニードル弁46が変位するため、駆動室47a内の圧力、すなわち高圧側の冷媒圧力上昇が抑制され、その圧力は、作動室47b内の圧力と同等となる。
【0039】
逆に、駆動室47a内の圧力が低下して作動室47b内の圧力より小さくなると、図4に示すように、ノズル41の絞り開度が小さくなるようにダイヤフラム47c及びニードル弁46が変位するため、駆動室47a内の圧力、すなわち高圧側の冷媒圧力低下が抑制され、その圧力は、作動室47b内の圧力と同等となる。
【0040】
したがって、ノズル41の絞り開度は、高圧側の冷媒圧力と作動室47b内の圧力と略同一となるように機械的に制御されることとなる。
【0041】
このとき、作動室47b内には、不活性ガスが封入されており、封入されたガスが凝縮しないことに加えて、ダイヤフラム47cの変位量、及び駆動室47aに流入する冷媒の温度変化に対する封入ガスの圧力変化量は微少であるため、作動室47b内の圧力は、実用範囲内においては、略一定となる。したがって、機械式のアクチュエータ47は、高圧側の冷媒圧力が、略一定となるようにノズル41の絞り開度を調節することとなる。
【0042】
次に、本実施形態の作用効果を述べる。
【0043】
「発明が解決しようとする課題」の欄で述べたように、気温の高い夏場には、圧縮機10に流入する冷媒の温度が上昇して圧縮機10に吸入される冷媒のエントロピが小さくなるので、図2に示すように、気温の低い冬場と同等の給湯温度を得るためには、高圧側冷媒圧力、すなわち、圧縮機10の吐出圧を冬場より高くする必要がある。
【0044】
一方、給湯器に求められる給湯要求、すなわち給湯温度及び給湯水量は、年間を通して一定ではなく、気温の高い夏場における給湯要求は、気温の低い冬場における給湯要求に比べて小さい。
【0045】
したがって、本実施形態ごとく、年間を通して高圧側冷媒圧力が略一定となるようにヒートポンプユニット1を制御すれば、気温の高い夏場には給湯温度が気温の低い冬場に比べて低下するものの、実用上問題はなく、むしろ、気温の高い夏場に合わせて水冷媒熱交換器20や圧縮機10等の高圧側機器の耐圧性を必要以上に高める必要がないので、給湯器の製造原価低減を図りつつ、給湯器の耐圧信頼性を高めることができる。
【0046】
また、本実施形態では、作動室47b内に不活性ガスを封入した簡便な構造のアクチュエータ47によりノズル41の絞り開度を制御するので、電気式のアクチュエータを用いた場合に比べて、安価に高圧側冷媒圧力を制御することができる。
【0047】
(第2実施形態)
第1実施形態では、仕切部材を薄膜状のダイヤフラム47cにて構成したが、本実施形態は、図5に示すように、仕切部材を蛇腹状のベローズ47fにて構成したものである。なお、本実施形態では、ベローズ47fの内部が作動室47bとなる。
【0048】
これにより、第1実施形態に比べてニードル弁46の変位量、すなわちストロークを大きく設定することが可能となる。
【0049】
(第3実施形態)
本実施形態は、図6に示すように、仕切部材をOリング等のシール手段47hを介して摺動可能に配置されたピストン47gにて構成したものである。
【0050】
これにより、第1実施形態に比べてニードル弁46の変位量、すなわちストロークを大きく設定することが可能となる。
【0051】
(第4実施形態)
本実施形態は、図7に示すように、不活性ガスに加えて、仕切部材(この例では、ピストン47g)を駆動室47a側に押圧する弾性力を仕切部材に作用させる弾性手段としてのコイルバネ47jを作動室47b内に設けたものである。
【0052】
なお、図7は第3実施形態に本実施形態を適用したものであるが、本実施形態は、これに限定されるものではなく、第1又は第2実施形態に対して本実施形態を適用することができる。
【0053】
また、弾性手段としてのコイルバネ47jの配置場所は、作動室47b内に限定されるものではなく、作動室47b外、例えば第2実施形態では、ベローズ47fの外側や駆動室47a側に配置してもよい。
【0054】
(第5実施形態)
本実施形態は、蒸発器30の除霜運転をすることができるようにしたものである。
【0055】
具体的には、図8に示すように、エジェクタ40にて減圧される前の高温・高圧冷媒を蒸発器30の冷媒入口側(気液分離器50側)に導く除霜回路60を開閉する電磁式の開閉弁61を設けるととともに、除霜回路60にて導かれた高温・高圧冷媒が気液分離器50に流れ込むことを防止する逆止弁62を設けたものである。なお、エジェクタ40は、第1〜4実施形態のいずれのものであってもよい。
【0056】
次に、本実施形態の特徴的作動及びその効果を述べる。
【0057】
1.通常運転(給湯水を加熱する運転)
開閉弁61を閉じて圧縮機10を稼動させる。これにより、第1〜4実施形態で述べたように、高圧側の冷媒圧力が略一定となるように制御された状態でヒートポンプユニット1が運転される。
【0058】
2.除霜運
開閉弁61を開いた状態で圧縮機10を稼動させる。これにより、高圧側の冷媒圧力が低下するので、駆動室47a内の圧力が低下し、図4に示すように、ノズル41の絞り開度が小さくなり、最終的にはノズル41は全閉状態となる。
【0059】
このため、圧縮機10から吐出された高温の冷媒全量が除霜回路60を経由して蒸発器30に流入し、蒸発器30を加熱して蒸発器30の表面に付着した霜を融解させる。
【0060】
そして、蒸発器30を流出した冷媒は、混合部42及びディフューザ43を経由して気液分離器50に流入し、再び、圧縮機10にて加圧される。
【0061】
以上に述べたように、本実施形態では、除霜回路60及び開閉弁61を追加するといった簡単な手段にて除霜運転を行うことができ、給湯器の製造原価上昇を抑制できる。
【0062】
なお、図8では、水冷媒熱交換器20の出口側から除霜回路60に高温の冷媒を導入したが、本実施形態はこれに限定されるものではなく、水冷媒熱交換器20の入口側又は水冷媒熱交換器20の途中から除霜回路60に高温の冷媒を導入してもよい。
【0063】
(その他の実施形態)
上述の実施形態では、冷媒として二酸化炭素を用いたが本発明はこれに限定されるものではなく、例えばフロンを用いてもよい。なお、冷媒をフロンとした場合には、水冷媒熱交換器20内の冷媒圧力は冷媒の臨界圧力以下であり、水冷媒熱交換器20にて冷媒が凝縮する。
【0064】
また、上述の実施形態では、アクチュエータ47及びエジェクタ40をステンレスで形成したが、耐食性及び必要な強度を備える材質であれば、本発明はこれに限定されるものではない。
【図面の簡単な説明】
【図1】本発明の第1実施形態に係る給湯器の模式図である。
【図2】エジェクタサイクルのp−h線図である。
【図3】本発明の第1実施形態に係るエジェクタの模式図である。
【図4】本発明の第1実施形態に係るエジェクタの模式図である。
【図5】本発明の第2実施形態に係るエジェクタの模式図である。
【図6】本発明の第3実施形態に係るエジェクタの模式図である。
【図7】本発明の第4実施形態に係るエジェクタの模式図である。
【図8】本発明の第5実施形態に係る給湯器の模式図である。
【符号の説明】
40…エジェクタ、41…ノズル、42…混合部、43…ディフューザ、
44…ボディ、45…吸引室、46…ニードル弁、
47…アクチュエータ、47a…駆動室、47b…作動室、
47c…ダイヤフラム、47d…ストッパ。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an ejector for vapor compression refrigeration cycle.
[0002]
[Challenges inventions to be Solved]
[0004]
An object of the present invention is to control the high-pressure-side refrigerant pressure at a lower cost than when an electric actuator is used .
[0005]
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention, in the invention described in claim 1, a high-pressure side heat exchanger (20) that cools a high-temperature and high-pressure refrigerant compressed by the compressor (10), and a reduced pressure An ejector that has an evaporator (30) for evaporating the low-temperature and low-pressure refrigerant that is applied to a vapor compression refrigeration cycle that moves low-temperature heat to a high-temperature side, and is a high-pressure heat exchanger (20) The nozzle (41) that converts the pressure energy of the high-pressure refrigerant that has flowed out of the refrigerant into velocity energy and decompresses and expands the refrigerant, and the refrigerant that is injected from the nozzle (41) and the refrigerant that is sucked from the evaporator (30) are mixed. A pressure increasing unit (42, 43) that converts the velocity energy into pressure energy to increase the pressure of the refrigerant, and a needle valve (46) that is displaced in the axial direction of the nozzle (41) and adjusts the throttle opening of the nozzle (41). ) And high A drive chamber (47a) filled with high-pressure refrigerant flowing out from the side heat exchanger (20) and flowing into the nozzle (41), and a working chamber disposed adjacent to the drive chamber (47a) and filled with an inert gas (47b), the drive chamber (47a) and the working chamber (47b) are partitioned, and the needle valve is displaced according to the pressure difference between the pressure in the drive chamber (47a) and the pressure in the working chamber (47b). a partition member for displacing the (46) (4 7g), and a housing forming an outer shell of the drive chamber (47a) and working chamber (47b) (47e), the partition member via the sealing means (47h) The piston (47g) is slidably disposed on the inner surface of the housing (47e) .
[0006]
As a result, the high-pressure side refrigerant pressure can be controlled to be substantially constant at a lower cost than when an electric actuator is used.
[0009]
In the invention described in claim 2, the partition member (4 7 g), as the pressure in the driving chamber (47a) is greater than the pressure in the working chamber (47b) aperture size of the nozzle (41) increases The needle valve (46) is displaced, and when the pressure in the drive chamber (47a) becomes smaller than the pressure in the working chamber (47b), the needle valve (46) is displaced so that the throttle opening of the nozzle (41) becomes smaller. It is comprised as follows.
[0010]
Further, as in the third aspect of the invention, the compressor (10) may compress the refrigerant to a critical pressure or higher.
[0011]
Further, as in the invention described in claim 4, carbon dioxide may be used as the refrigerant.
[0017]
Also, as in the invention described in claim 5, may be provided with elastic means exerting an elastic force for displacing the partition member (47 g) to the drive chamber (47a) side to the partition member (47 g) (47j) .
[0020]
Incidentally, the reference numerals in parentheses of each means described above are an example showing the correspondence with the specific means described in the embodiments described later.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
(First embodiment)
In the present embodiment, a vapor compression refrigeration cycle having an ejector-type decompression device is used as the heat pump unit 1, and FIG. 1 is a schematic diagram of a water heater according to the present embodiment.
[0022]
The compressor 10 sucks and compresses the refrigerant, and the water-refrigerant heat exchanger 20 cools the refrigerant by heating the hot-water supply by exchanging heat between the refrigerant discharged from the compressor 10 and the hot-water supply in an opposed flow state. It is a high-pressure side heat exchanger.
[0023]
The compressor 10 is driven by an electric motor (not shown), and when the heating capacity of the water-refrigerant heat exchanger 20 is increased, the rotation speed of the compressor 10 is increased and discharged from the compressor 10. When increasing the flow rate of the refrigerant and reducing the heating capacity, the flow rate of the refrigerant discharged from the compressor 10 is decreased by decreasing the rotational speed of the compressor 10.
[0024]
Incidentally, in the present embodiment, since carbon dioxide is used as the refrigerant, the refrigerant pressure in the water refrigerant heat exchanger 20 is equal to or higher than the critical pressure of the refrigerant, and the refrigerant is condensed in the water refrigerant heat exchanger 20. The temperature distribution is such that the refrigerant temperature decreases from the refrigerant inlet side toward the refrigerant outlet side.
[0025]
The evaporator 30 is a low-pressure side heat exchanger that evaporates the liquid phase refrigerant by evaporating the liquid phase refrigerant by exchanging heat between the outdoor air and the liquid phase refrigerant, and the ejector 40 decompresses and expands the refrigerant. The vapor phase refrigerant evaporated by the evaporator 30 is sucked and the expansion energy is converted into pressure energy to increase the suction pressure of the compressor 10. Details of the ejector 40 will be described later.
[0026]
The gas-liquid separator 50 is a gas-liquid separator that stores the refrigerant by flowing the refrigerant flowing out from the ejector 40 into the vapor-phase refrigerant and the liquid-phase refrigerant. The 50 gas-phase refrigerant outlets are connected to the suction side of the compressor 10 and the liquid-phase refrigerant outlets are connected to the inflow side on the evaporator 30 side.
[0027]
FIG. 2 is a ph diagram showing the entire macro operation of the ejector cycle. Since the macro operation is the same as the known ejector cycle, in this embodiment, the macro operation of the entire ejector cycle is performed. Description of is omitted. Incidentally, the symbol indicated by ● in FIG. 2 indicates the state of the refrigerant at the symbol position indicated by ● in FIG.
[0028]
Next, the structure of the ejector 40 will be described based on FIG.
[0029]
The ejector 40 sucks the vapor phase refrigerant evaporated in the evaporator 30 by the nozzle 41 that converts the pressure energy of the high-pressure refrigerant that flows into velocity energy to decompress and expand the refrigerant, and the high-speed refrigerant flow that is injected from the nozzle 41. While mixing the refrigerant flow injected from the nozzle 41 and the refrigerant injected from the nozzle 41 and the refrigerant sucked from the evaporator 30, the velocity energy is converted into pressure energy to change the pressure of the refrigerant. It consists of a diffuser 43 and the like for boosting.
[0030]
In the mixing unit 42, since the sum of the momentum of the refrigerant flow injected from the nozzle 41 and the momentum of the refrigerant flow sucked into the ejector 40 from the evaporator 30 is preserved, the mixing unit 42 However, the static pressure of the refrigerant increases. On the other hand, in the diffuser 43, the dynamic pressure of the refrigerant is converted into a static pressure by gradually increasing the passage cross-sectional area. Therefore, in the ejector 40, the refrigerant pressure is increased by both the mixing unit 42 and the diffuser 43. . Therefore, the mixing unit 42 and the diffuser 43 are collectively referred to as a boosting unit.
[0031]
That is, in the ideal ejector 40, the refrigerant pressure increases so that the sum of the momentums of the two refrigerant flows is stored in the mixing unit 42, and the refrigerant pressure increases so that energy is stored in the diffuser 43. I want to see that.
[0032]
Incidentally, a suction chamber 45 formed by the body 44 is formed around the nozzle 41, and the gas-phase refrigerant sucked from the evaporator 30 flows to the mixing unit 42 via the suction chamber 45.
[0033]
The nozzle 41 is a divergent nozzle having a throat portion with the smallest passage area in the middle of the passage. The throttle opening degree of the nozzle 41, that is, the throat opening degree is such that the refrigerant pressure on the high pressure side is substantially constant. It is controlled by the needle valve 46 so as to be. The needle valve 46 has a conical taper shape with a sharp tip, and is displaced in the axial direction by a mechanical actuator 47 in the nozzle 41.
[0034]
Here, the mechanical actuator 47 partitions the driving chamber 47a filled with the high-pressure refrigerant flowing into the nozzle 41 from the working chamber 47b filled with inert gas, and the pressure in the driving chamber 47a and the working chamber 47b. A diaphragm 47c as a partitioning member that displaces the needle valve 46 by displacing it according to a pressure difference with the pressure of the nozzle 47, a stopper 47d that is disposed on the drive chamber 47a side of the diaphragm 47c and restricts the maximum displacement of the diaphragm 47c, and the like The housing 47a and the working chamber 47b are made of a stainless housing 47e that forms the outer shell.
[0035]
Incidentally, although nitrogen gas is used as the inert gas in the present embodiment, an inert gas such as helium gas or argon gas may be used. Moreover, in this embodiment, the diaphragm 47c and the needle valve 46 are made of stainless steel, and both are brazed and joined. However, the present embodiment is not limited to this.
[0036]
Next, the operation of the ejector 40 according to the present embodiment will be described focusing on the operation of the needle valve 46.
[0037]
The drive chamber 47a and the working chamber 47b are partitioned with the diaphragm 47c interposed therebetween, and the needle valve 46 is configured to be displaced integrally with the diaphragm 47c. At this time, the pressure in the drive chamber 47a applies a force to the diaphragm 47c so that the needle valve 46 is displaced in the direction in which the throttle opening of the nozzle 41 increases, while the pressure in the working chamber 47b is A force is applied to the diaphragm 47c so that the needle valve 46 is displaced in a direction in which the throttle opening of the nozzle 41 becomes smaller.
[0038]
When the pressure in the drive chamber 47a rises and becomes larger than the pressure in the working chamber 47b, the diaphragm 47c and the needle valve 46 are displaced so that the throttle opening of the nozzle 41 is increased as shown in FIG. The pressure in the drive chamber 47a, that is, the increase in the refrigerant pressure on the high pressure side is suppressed, and the pressure is equivalent to the pressure in the working chamber 47b.
[0039]
On the contrary, when the pressure in the drive chamber 47a decreases and becomes smaller than the pressure in the working chamber 47b, as shown in FIG. 4, the diaphragm 47c and the needle valve 46 are displaced so that the throttle opening of the nozzle 41 becomes small. Therefore, the pressure in the drive chamber 47a, that is, the refrigerant pressure drop on the high pressure side is suppressed, and the pressure is equivalent to the pressure in the working chamber 47b.
[0040]
Therefore, the throttle opening degree of the nozzle 41 is mechanically controlled so as to be substantially the same as the refrigerant pressure on the high pressure side and the pressure in the working chamber 47b.
[0041]
At this time, an inert gas is sealed in the working chamber 47b, and in addition to the sealed gas not condensing, the amount of displacement of the diaphragm 47c and the temperature change of the refrigerant flowing into the driving chamber 47a are sealed. Since the amount of gas pressure change is very small, the pressure in the working chamber 47b is substantially constant within the practical range. Therefore, the mechanical actuator 47 adjusts the throttle opening of the nozzle 41 so that the refrigerant pressure on the high pressure side is substantially constant.
[0042]
Next, the function and effect of this embodiment will be described.
[0043]
As described in the section “Problems to be Solved by the Invention”, in summer when the temperature is high, the temperature of the refrigerant flowing into the compressor 10 rises and the entropy of the refrigerant sucked into the compressor 10 decreases. Therefore, as shown in FIG. 2, in order to obtain a hot water supply temperature equivalent to that in winter when the temperature is low, the high-pressure side refrigerant pressure, that is, the discharge pressure of the compressor 10 needs to be higher than that in winter.
[0044]
On the other hand, the hot water supply requirement required for the water heater, that is, the hot water supply temperature and the amount of hot water supply is not constant throughout the year, and the hot water supply requirement in summer when the temperature is high is smaller than the hot water requirement in winter when the temperature is low.
[0045]
Therefore, as in the present embodiment, by controlling the heat pump unit 1 as the high-pressure side refrigerant pressure throughout the year is substantially constant, although the hot water supply temperature is high summer of temperature is reduced as compared with the low temperature winter, practical There is no problem, rather, it is not necessary to increase the pressure resistance of the high-pressure side equipment such as the water-refrigerant heat exchanger 20 and the compressor 10 in accordance with the summertime when the temperature is high. However, the pressure resistance reliability of the water heater can be improved.
[0046]
Further, in this embodiment, the throttle opening degree of the nozzle 41 is controlled by the actuator 47 having a simple structure in which the inert gas is sealed in the working chamber 47b, so that it is less expensive than the case where an electric actuator is used. The high-pressure side refrigerant pressure can be controlled.
[0047]
(Second Embodiment)
In the first embodiment, the partition member is configured by a thin film diaphragm 47c, but in the present embodiment, the partition member is configured by a bellows-shaped bellows 47f as shown in FIG. In the present embodiment, the inside of the bellows 47f is the working chamber 47b.
[0048]
Thereby, it becomes possible to set the displacement amount of the needle valve 46, that is, the stroke larger than that of the first embodiment.
[0049]
(Third embodiment)
In the present embodiment, as shown in FIG. 6, the partition member is configured by a piston 47 g slidably disposed via a sealing means 47 h such as an O-ring.
[0050]
Thereby, it becomes possible to set the displacement amount of the needle valve 46, that is, the stroke larger than that of the first embodiment.
[0051]
(Fourth embodiment)
In this embodiment, as shown in FIG. 7, in addition to the inert gas, a coil spring as an elastic means that acts on the partition member with an elastic force that presses the partition member (in this example, the piston 47g) toward the drive chamber 47a. 47j is provided in the working chamber 47b.
[0052]
FIG. 7 shows the case where the present embodiment is applied to the third embodiment. However, the present embodiment is not limited to this, and the present embodiment is applied to the first or second embodiment. can do.
[0053]
Further, the arrangement location of the coil spring 47j as the elastic means is not limited to the inside of the working chamber 47b, and is arranged outside the working chamber 47b, for example, outside the bellows 47f or the driving chamber 47a side in the second embodiment. Also good.
[0054]
(Fifth embodiment)
In the present embodiment, the evaporator 30 can be defrosted.
[0055]
Specifically, as shown in FIG. 8, the defrosting circuit 60 that opens the high-temperature / high-pressure refrigerant before being decompressed by the ejector 40 to the refrigerant inlet side (gas-liquid separator 50 side) of the evaporator 30 is opened and closed. An electromagnetic on-off valve 61 is provided, and a check valve 62 for preventing the high-temperature / high-pressure refrigerant introduced by the defrosting circuit 60 from flowing into the gas-liquid separator 50 is provided. The ejector 40 may be any one of the first to fourth embodiments.
[0056]
Next, the characteristic operation of this embodiment and its effect will be described.
[0057]
1. Normal operation (operation to heat hot water)
The on-off valve 61 is closed and the compressor 10 is operated. Thereby, as described in the first to fourth embodiments, the heat pump unit 1 is operated in a state in which the refrigerant pressure on the high pressure side is controlled to be substantially constant.
[0058]
2. The compressor 10 is operated with open Joshimoun rolling-off valve 61. As a result, the refrigerant pressure on the high pressure side decreases, so the pressure in the drive chamber 47a decreases, and as shown in FIG. 4, the throttle opening of the nozzle 41 decreases, and finally the nozzle 41 is fully closed. It becomes.
[0059]
For this reason, the entire amount of the high-temperature refrigerant discharged from the compressor 10 flows into the evaporator 30 via the defrost circuit 60, and heats the evaporator 30 to melt the frost attached to the surface of the evaporator 30.
[0060]
Then, the refrigerant that has flowed out of the evaporator 30 flows into the gas-liquid separator 50 via the mixing unit 42 and the diffuser 43, and is pressurized again by the compressor 10.
[0061]
As described above, in the present embodiment, the defrosting operation can be performed by simple means such as adding the defrosting circuit 60 and the on-off valve 61, and an increase in the manufacturing cost of the water heater can be suppressed.
[0062]
In FIG. 8, the high-temperature refrigerant is introduced into the defrosting circuit 60 from the outlet side of the water-refrigerant heat exchanger 20, but this embodiment is not limited to this, and the inlet of the water-refrigerant heat exchanger 20. A high-temperature refrigerant may be introduced into the defrosting circuit 60 from the side or in the middle of the water refrigerant heat exchanger 20.
[0063]
(Other embodiments)
In the above-described embodiment, carbon dioxide is used as the refrigerant. However, the present invention is not limited to this, and for example, chlorofluorocarbon may be used. When the refrigerant is chlorofluorocarbon, the refrigerant pressure in the water refrigerant heat exchanger 20 is equal to or lower than the critical pressure of the refrigerant, and the water refrigerant heat exchanger 20 condenses the refrigerant.
[0064]
In the above embodiment, the actuator 47 and the ejector 40 are made of stainless steel. However, the present invention is not limited to this as long as the material has corrosion resistance and necessary strength.
[Brief description of the drawings]
FIG. 1 is a schematic view of a water heater according to a first embodiment of the present invention.
FIG. 2 is a ph diagram of an ejector cycle.
FIG. 3 is a schematic diagram of an ejector according to the first embodiment of the present invention.
FIG. 4 is a schematic diagram of an ejector according to the first embodiment of the present invention.
FIG. 5 is a schematic diagram of an ejector according to a second embodiment of the present invention.
FIG. 6 is a schematic diagram of an ejector according to a third embodiment of the present invention.
FIG. 7 is a schematic diagram of an ejector according to a fourth embodiment of the present invention.
FIG. 8 is a schematic view of a water heater according to a fifth embodiment of the present invention.
[Explanation of symbols]
40 ... ejector, 41 ... nozzle, 42 ... mixing section, 43 ... diffuser,
44 ... Body, 45 ... Suction chamber, 46 ... Needle valve,
47 ... Actuator, 47a ... Drive chamber, 47b ... Working chamber,
47c: Diaphragm, 47d: Stopper.

Claims (5)

圧縮機(10)にて圧縮された高温高圧の冷媒を放冷する高圧側熱交換器(20)、及び減圧された低温低圧の冷媒を蒸発させる蒸発器(30)を有して低温側の熱を高温側に移動させる蒸気圧縮式冷凍サイクルに適用されるエジェクタであって、
前記高圧側熱交換器(20)から流出した高圧の冷媒の圧力エネルギーを速度エネルギーに変換して冷媒を減圧膨張させるノズル(41)と、
前記ノズル(41)から噴射する冷媒と前記蒸発器(30)から吸引した冷媒とを混合させながら速度エネルギーを圧力エネルギーに変換して冷媒の圧力を昇圧させる昇圧部(42、43)と、
前記ノズル(41)の軸線方向に変位し、前記ノズル(41)の絞り開度を調節するニードル弁(46)と、
前記高圧側熱交換器(20)から流出して前記ノズル(41)に流入する高圧の冷媒が充満する駆動室(47a)と、
前記駆動室(47a)に隣接配置され、不活性ガスが封入された作動室(47b)と、 前記駆動室(47a)と前記作動室(47b)とを仕切るとともに、前記駆動室(47a)内の圧力と前記作動室(47b)内の圧力との圧力差に応じて変位して前記ニードル弁(46)を変位させる仕切部材(7g)と
前記駆動室(47a)及び前記作動室(47b)の外殻を形成するハウジング(47e)とを備え、
前記仕切部材は、シール手段(47h)を介して前記ハウジング(47e)の内面に摺動可能に配置されたピストン(47g)であることを特徴とするエジェクタ。
A high-pressure side heat exchanger (20) that cools the high-temperature and high-pressure refrigerant compressed by the compressor (10), and an evaporator (30) that evaporates the decompressed low-temperature and low-pressure refrigerant, An ejector applied to a vapor compression refrigeration cycle for transferring heat to a high temperature side,
A nozzle (41) for converting the pressure energy of the high-pressure refrigerant flowing out of the high-pressure side heat exchanger (20) into velocity energy to decompress and expand the refrigerant;
A pressure increasing section (42, 43) for increasing the pressure of the refrigerant by converting the velocity energy into pressure energy while mixing the refrigerant injected from the nozzle (41) and the refrigerant sucked from the evaporator (30);
A needle valve (46) that is displaced in the axial direction of the nozzle (41) and adjusts a throttle opening of the nozzle (41);
A drive chamber (47a) filled with high-pressure refrigerant flowing out of the high-pressure side heat exchanger (20) and flowing into the nozzle (41);
The working chamber (47b) disposed adjacent to the driving chamber (47a) and filled with an inert gas is partitioned from the driving chamber (47a) and the working chamber (47b), and the driving chamber (47a) of pressure and the working chamber and the partition displaces the needle valve is displaced according to the pressure difference (46) between the pressure in (47b) members (4 7 g),
A housing (47e) forming an outer shell of the drive chamber (47a) and the working chamber (47b);
The ejector according to claim 1, wherein the partition member is a piston (47g) slidably disposed on an inner surface of the housing (47e) via a sealing means (47h) .
前記仕切部材(7g)は、前記駆動室(47a)内の圧力が前記作動室(47b)内の圧力より大きくなると前記ノズル(41)の絞り開度が大きくなるように前記ニードル弁(46)を変位させ、前記駆動室(47a)内の圧力が前記作動室(47b)内の圧力より小さくなると前記ノズル(41)の絞り開度が小さくなるように前記ニードル弁(46)を変位させるように構成されていることを特徴とする請求項1に記載の蒸気圧縮式冷凍サイクル。The partition member (4 7 g), the drive chamber (47a) in pressure the working chamber (47b) in said needle valve such that the diaphragm opening of the larger and the nozzle (41) from the pressure increases in (46 ) And the needle valve (46) is displaced so that the throttle opening of the nozzle (41) becomes smaller when the pressure in the drive chamber (47a) becomes smaller than the pressure in the working chamber (47b). The vapor compression refrigeration cycle according to claim 1, wherein the vapor compression refrigeration cycle is configured as described above. 前記圧縮機(10)は冷媒を冷媒の臨界圧力以上まで圧縮することを特徴とする請求項1又は2に記載のエジェクタ。  The ejector according to claim 1 or 2, wherein the compressor (10) compresses the refrigerant to a critical pressure or higher of the refrigerant. 冷媒として二酸化炭素を用いたことを特徴とする請求項1又は2に記載のエジェクタ。  The ejector according to claim 1 or 2, wherein carbon dioxide is used as a refrigerant. 前記仕切部材(47)を前記駆動室(47a)側に変位させる弾性力を前記仕切部材(47)に作用させる弾性手段(47j)を備えることを特徴とする請求項1ないしのいずれか1つに記載のエジェクタ。Any of the partition member (47 g) the drive chamber claims 1, characterized in that it comprises an elastic means exerting an elastic force for displacing the (47a) side to the partition member (47 g) (47j) 4 The ejector as described in one.
JP2002124319A 2002-01-15 2002-04-25 Ejector for vapor compression refrigeration cycle Expired - Fee Related JP4254126B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002124319A JP4254126B2 (en) 2002-01-15 2002-04-25 Ejector for vapor compression refrigeration cycle

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002005842 2002-01-15
JP2002-5842 2002-01-15
JP2002124319A JP4254126B2 (en) 2002-01-15 2002-04-25 Ejector for vapor compression refrigeration cycle

Publications (2)

Publication Number Publication Date
JP2003279177A JP2003279177A (en) 2003-10-02
JP4254126B2 true JP4254126B2 (en) 2009-04-15

Family

ID=29252870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002124319A Expired - Fee Related JP4254126B2 (en) 2002-01-15 2002-04-25 Ejector for vapor compression refrigeration cycle

Country Status (1)

Country Link
JP (1) JP4254126B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102226542A (en) * 2011-06-03 2011-10-26 北京建筑工程学院 Ejector type heat pump heat transfer set
CN103168203A (en) * 2010-10-18 2013-06-19 三菱电机株式会社 Refrigeration cycle system and refrigerant circulation method
CN103775681A (en) * 2013-04-27 2014-05-07 广州海鸥卫浴用品股份有限公司 Jet shower device
CN103775678A (en) * 2013-04-27 2014-05-07 广州海鸥卫浴用品股份有限公司 Adjustable jet flow valve
CN103775668A (en) * 2013-04-27 2014-05-07 广州海鸥卫浴用品股份有限公司 Jet flow valve element
CN105423399A (en) * 2014-11-01 2016-03-23 熵零股份有限公司 Heat supply method and device

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4561093B2 (en) * 2003-12-22 2010-10-13 株式会社デンソー Heat pump cycle for hot water supply
JP4179231B2 (en) 2004-06-09 2008-11-12 株式会社デンソー Pressure control valve and vapor compression refrigeration cycle
JP2006071177A (en) * 2004-09-01 2006-03-16 Denso Corp Ejector type heat pump cycle
JP4595717B2 (en) * 2005-05-24 2010-12-08 株式会社デンソー Vapor compression refrigeration cycle using ejector
US7779647B2 (en) 2005-05-24 2010-08-24 Denso Corporation Ejector and ejector cycle device
JP4715852B2 (en) * 2008-02-11 2011-07-06 株式会社デンソー Heat pump water heater
JP5334905B2 (en) * 2010-03-31 2013-11-06 三菱電機株式会社 Refrigeration cycle equipment
JP5328713B2 (en) * 2010-04-27 2013-10-30 三菱電機株式会社 Refrigeration cycle equipment
CN102086941B (en) * 2010-08-27 2012-07-18 北京清华阳光能源开发有限责任公司 Water mixing valve
CN111692770B (en) * 2019-03-15 2023-12-19 开利公司 Ejector and refrigeration system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103168203A (en) * 2010-10-18 2013-06-19 三菱电机株式会社 Refrigeration cycle system and refrigerant circulation method
CN103168203B (en) * 2010-10-18 2016-01-20 三菱电机株式会社 Refrigerating circulatory device and refrigerant circulating method
CN102226542A (en) * 2011-06-03 2011-10-26 北京建筑工程学院 Ejector type heat pump heat transfer set
CN102226542B (en) * 2011-06-03 2014-04-23 北京建筑工程学院 Ejector type heat pump heat transfer set
CN103775681A (en) * 2013-04-27 2014-05-07 广州海鸥卫浴用品股份有限公司 Jet shower device
CN103775678A (en) * 2013-04-27 2014-05-07 广州海鸥卫浴用品股份有限公司 Adjustable jet flow valve
CN103775668A (en) * 2013-04-27 2014-05-07 广州海鸥卫浴用品股份有限公司 Jet flow valve element
CN103775678B (en) * 2013-04-27 2014-12-10 广州海鸥卫浴用品股份有限公司 Adjustable jet flow valve
CN103775668B (en) * 2013-04-27 2014-12-24 广州海鸥卫浴用品股份有限公司 Jet flow valve element
CN105423399A (en) * 2014-11-01 2016-03-23 熵零股份有限公司 Heat supply method and device

Also Published As

Publication number Publication date
JP2003279177A (en) 2003-10-02

Similar Documents

Publication Publication Date Title
JP4254126B2 (en) Ejector for vapor compression refrigeration cycle
JP4120296B2 (en) Ejector and ejector cycle
JP4032875B2 (en) Ejector cycle
JP4285060B2 (en) Vapor compression refrigerator
US6651451B2 (en) Variable capacity refrigeration system with a single-frequency compressor
US6904769B2 (en) Ejector-type depressurizer for vapor compression refrigeration system
CN101762109A (en) Ejector-type refrigerant cycle device
JP2000346472A (en) Supercritical steam compression cycle
JP2004085156A (en) Refrigerating cycle
JP2004053028A (en) Refrigeration cycle device
US6931887B2 (en) Ejector decompression device
JPH10288411A (en) Vapor pressure compression type refrigerating cycle
JP2018146219A (en) Ejector module
JP2010038456A (en) Vapor compression refrigeration cycle
JP2009275926A (en) Ejector type refrigerating cycle
JP2005037114A (en) Refrigerating cycle device
JP2008051499A (en) Refrigerating cycle device, and refrigerating cycle
JP3835431B2 (en) Vapor compression refrigerator
JP2001324246A (en) Expansion valve and freezing cycle using it
JP2005265223A (en) Refrigerating cycle device and refrigerating cycle
JP4100000B2 (en) Ejector cycle
JP3855860B2 (en) Vapor compression refrigerator
JP3818150B2 (en) Ejector cycle
JP3826503B2 (en) Pressure control valve
JP4016879B2 (en) Ejector type decompression device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees