JP3855860B2 - Vapor compression refrigerator - Google Patents

Vapor compression refrigerator Download PDF

Info

Publication number
JP3855860B2
JP3855860B2 JP2002182873A JP2002182873A JP3855860B2 JP 3855860 B2 JP3855860 B2 JP 3855860B2 JP 2002182873 A JP2002182873 A JP 2002182873A JP 2002182873 A JP2002182873 A JP 2002182873A JP 3855860 B2 JP3855860 B2 JP 3855860B2
Authority
JP
Japan
Prior art keywords
refrigerant
pressure
vapor compression
low
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002182873A
Other languages
Japanese (ja)
Other versions
JP2004028402A5 (en
JP2004028402A (en
Inventor
猛 酒井
進 川村
明宏 岩瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2002182873A priority Critical patent/JP3855860B2/en
Publication of JP2004028402A publication Critical patent/JP2004028402A/en
Publication of JP2004028402A5 publication Critical patent/JP2004028402A5/ja
Application granted granted Critical
Publication of JP3855860B2 publication Critical patent/JP3855860B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0012Ejectors with the cooled primary flow at high pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0013Ejector control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、低温側の熱を高温側に移動させる蒸気圧縮式冷凍機に関するもので、温熱を利用する給湯装置や暖房装置に適用して有効である。
【0002】
【従来の技術及び発明が解決しようとする課題】
例えば、蒸気圧縮式冷凍機により給湯水を加熱する給湯装置では、低温側熱交換器をなす蒸発器にて外気から吸熱して冷媒を蒸発させ、蒸発した気相冷媒を圧縮機にて圧縮して温度を上昇させることにより外気から吸熱した熱量を給湯水に与えている。
【0003】
このとき、外気温度が低い冬場等では、十分な量の熱量を外気から吸熱するために冷媒の蒸発温度を氷点下とする場合が多いので、蒸発器の表面に霜が付着してしまう。そして、蒸発器の表面に霜が付着すると、吸熱能力が低下するので、通常、外気温度が低い冬場等では、定期的に圧縮機から吐出した高温冷媒(ホットガス)を減圧することなく蒸発器に導いて、蒸発器の表面に付着した霜を融解除去する除霜運転を行っている。
【0004】
しかし、この除霜方法では、ホットガスを減圧することなく蒸発器に導くバイパス通路及びバイパス通路の連通状態を制御するバルブ等を必要とするため、蒸気圧縮式冷凍機の部品点数が増大してその構造が複雑になり、組み立て工数の増大及び製造原価上昇を招いてしまう。
【0005】
本発明は、上記点に鑑み、第1には、従来と異なる新規な蒸気圧縮式冷凍機を提供し、第2には、簡便な手段にて除霜運転を行うことを目的とする。
【0006】
【課題を解決するための手段】
本発明は、上記目的を達成するために、請求項1に記載の発明では、低温側の熱を高温側に移動させる蒸気圧縮式冷凍機であって、冷媒を圧縮する圧縮機(10)と、高圧冷媒の熱を放熱する高圧側熱交換器(20)と、高圧冷媒を減圧膨脹させる減圧手段(40)と、低圧冷媒を蒸発させて吸熱する低圧側熱交換器(30)と、圧縮機(10)の冷媒吸入側に設けられ、流入した冷媒を気相冷媒と液相冷媒とに分離するとともに、気相冷媒を圧縮機(10)の吸入側に供給する気液分離器(50)とを備え、減圧手段は、高圧冷媒を等エントロピ的に減圧膨張させるとともに絞り開度を変更可能なノズル(41)、及び減圧膨張時に低下したエンタルピを圧力エネルギに変換する昇圧部(42、43)を有するエジェクタ(40)で構成され、エジェクタ(40)を流出した冷媒は気液分離器(50)に流入し、さらに、エジェクタ(40)のポンプ作用により気液分離器(50)から低圧側熱交換器(30)に直接冷媒が供給されるようになっており、低圧側熱交換器(30)の表面に付着した霜を除去する除霜運転時には、ノズル(41)の絞り開度を、除霜運転を行う前に比べて大きくして低圧冷媒の圧力を上昇させることを特徴とする。
【0007】
これにより、ノズル(41)の絞り開度を大きくするといった簡便な手段にて除霜運転を行うことができるので、蒸気圧縮式冷凍機の部品点数増大、構造の複雑化、組み立て工数の増大を防止できる。延いては、蒸気圧縮式冷凍機の製造原価低減を図ることができるともに、従来と異なる新規な蒸気圧縮式冷凍機を得ることができる。
【0010】
そして、低圧側熱交換器(30)の表面に付着した霜は勿論のこと、気液分離器(50)の表面に付着した霜も融解除去することができる。
【0012】
請求項に記載の発明では、除霜運転以外の運転モードにおいては、ノズル(41)の絞り開度は、熱負荷に応じて制御されることを特徴とするものである。
【0013】
請求項に記載の発明では、除霜運転時における低圧冷媒の圧力は、冷媒の飽和温度が0℃以上となる圧力であることを特徴とするものである。
【0014】
請求項に記載の発明では、高圧冷媒の圧力は、冷媒の臨界圧力以上であることを特徴とするものである。
【0015】
請求項に記載の発明では、冷媒として二酸化炭素が用いられていることを特徴とするものである。
【0016】
因みに、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示す一例である。
【0017】
【発明の実施の形態】
(第1実施形態)
本実施形態は、本発明に係る蒸気圧縮式冷凍機を給湯器装置に適用したもので、図1は本実施形態に係る給湯器装置の模式図である。
【0018】
圧縮機10は冷媒を吸入圧縮するものであり、放熱器20は圧縮機10から吐出した冷媒と給湯水とを熱交換して給湯水を加熱することにより冷媒を冷却する高圧側熱交換器である。
【0019】
ここで、圧縮機10は電動モータ(図示せず。)により駆動されており、放熱器20での加熱能力を大きくするときには、圧縮機10の回転数を増大させて圧縮機10から吐出する冷媒の流量を増大させ、一方、加熱能力を小さくするときには、圧縮機10の回転数を低下させて圧縮機10から吐出する冷媒の流量を減少させる。
【0020】
なお、本実施形態では、冷媒として二酸化炭素を用いており、圧縮機10は放熱器20の冷媒入口での冷媒温度が80℃〜90℃以上となるように、冷媒を臨界圧力以上まで加圧している。
【0021】
因みに、放熱器20内の圧力は臨界圧力以上であるので、冷媒は、放熱器20内で冷媒が凝縮することなく、冷媒入口側から冷媒出口側に向かうほど冷媒温度を低下させながらエンタルピを低下させていく。
【0022】
また、蒸発器30は室外空気と液相冷媒とを熱交換させて液相冷媒を蒸発させることにより冷媒を蒸発させて室外空気から吸熱する低圧側熱交換器であり、エジェクタ40は冷媒を減圧膨張させて蒸発器30にて蒸発した気相冷媒を吸引するとともに、膨張エネルギーを圧力エネルギーに変換して圧縮機10の吸入圧を上昇させるものである。なお、エジェクタ40の詳細は、後述する。
【0023】
また、気液分離器50はエジェクタ40から流出した冷媒が流入するとともに、その流入した冷媒を気相冷媒と液相冷媒とに分離して冷媒を蓄える気液分離手段であり、気液分離器50のうち気相冷媒流出口は圧縮機10の吸引側に接続され、液相流出口は蒸発器30側の流入側に接続される。
【0024】
次に、エジェクタ40の構造について述べる。
【0025】
エジェクタ40は、図2に示すように、流入する高圧冷媒の圧力エネルギーを速度エネルギーに変換して冷媒を等エントロピ的に減圧膨張させるノズル41、ノズル41から噴射する高い速度の冷媒流の巻き込み作用により蒸発器30にて蒸発した気相冷媒を吸引しながら、ノズル41から噴射する冷媒流とを混合する混合部42、及びノズル41から噴射する冷媒と蒸発器30から吸引した冷媒とを混合させながら速度エネルギーを圧力エネルギーに変換して冷媒の圧力を昇圧させるディフューザ43等からなるものである。
【0026】
なお、混合部42においては、ノズル41から噴射する冷媒流の運動量と、蒸発器30からエジェクタ40に吸引される冷媒流の運動量との和が保存されるように混合するので、混合部42においても冷媒の静圧が上昇する。一方、ディフューザ43においては、通路断面積を徐々に拡大することにより、冷媒の動圧を静圧に変換するので、エジェクタ40においては、混合部42及びディフューザ43の両者にて冷媒圧力を昇圧する。そこで、混合部42とディフューザ43とを総称して昇圧部と呼ぶ。
【0027】
つまり、理想的なエジェクタ40においては、混合部42で2種類の冷媒流の運動量の和が保存されるように冷媒圧力が増大し、ディフューザ43でエネルギーが保存されるように冷媒圧力が増大するようにして、減圧膨脹時に低下したエンタルピを圧力エネルギとして回収することが望ましい。
【0028】
また、ノズル41は、通路途中に通路面積が最も縮小した喉部41a、及び喉部41a以降は内径が徐々に拡大する末広部41bを有するラバールノズル(流体工学(東京大学出版会)参照)であり、ノズル41の絞り開度は、ニードル弁44をアクチュエータ45によりノズル41内でノズル41の軸線方向に変位させることによって可変制御される。
【0029】
なお、本実施形態では、アクチュエータ45として、ねじ機構を用いたステッピングモータやリニアソレノイド等の電気式のアクチュエータを採用している。
【0030】
次に、本実施形態に係る給湯装置の特徴的作動及びその効果を述べる。
【0031】
1.通常運転(吸熱運転)モード(図3参照)
このモードは、外気から吸熱して給湯水を加熱する運転モードである。
【0032】
具体的には、蒸発器30内の圧力、つまり蒸発圧力が外気温度以下の所定温度に対応する圧力となり、かつ、高圧側の冷媒圧力を検出する圧力センサ(図示せず。)の検出した圧力が所定圧力となるようにノズル41の絞り開度を制御している。
【0033】
これにより、熱負荷(外気温度)によらず、所定温度以上の給湯水を貯湯タンクに供給するこができる。
【0034】
なお、この運転モードにおける巨視的な冷媒挙動は、以下の通りである。
【0035】
すなわち、圧縮機10から吐出した冷媒は、放熱器20にて給湯水を加熱しながら自身は冷却される。そして、放熱器20にて冷却された冷媒は、エジェクタ40のノズル41にて等エントロピ的に減圧膨張して、音速以上の速度で混合部42内に流入する。
【0036】
そして、混合部42に流入した高速冷媒の巻き込み作用に伴うポンプ作用により、蒸発器30内で蒸発した冷媒が混合部42内に吸引されるため、低圧側の冷媒が気液分離器50→蒸発器30→エジェクタ40(昇圧部)→気液分離器50の順に循環し、外気から吸熱する。
【0037】
一方、蒸発器30から吸引された冷媒(吸引流)とノズル41から吹き出す冷媒(駆動流)とは、混合部42にて混合しながらディフューザ43にてその動圧が静圧に変換されて気液分離器50に戻る。
【0038】
2.除霜運転モード(図4参照)
このモードは、蒸発器30の表面に付着した霜を除去する運転モードである。
【0039】
具体的には、ノズル41の絞り開度を、除霜運転モードを行う前、つまり通常運転モード時に比べて大きくすることにより、蒸発器30における冷媒の飽和温度が0℃以上となる圧力まで低圧冷媒の圧力を上昇させる。なお、冷媒流れは通常運転モードと同じである。
【0040】
このとき、除霜運転モードを開始した直後においては、ホットガスが直接に蒸発器30内に流入しないので、蒸発器30に流れ込む冷媒の温度が外気温度以下の低温のままであり、蒸発器30に付着した霜を融解させることができない。
【0041】
しかし、ノズル41の絞り開度が大きくなってノズル41から噴射される冷媒の温度が通常運転モード時に比べて高くなっていることに加えて、蒸発器30内の圧力が0℃以上となる圧力まで上昇しているので、次第に、気液分離器50内の冷媒の温度も上昇して蒸発器30に流入する冷媒の温度が0℃以上となる。
【0042】
したがって、蒸発器30の表面に付着した霜、及び気液分離器50の表面に付着した霜が融解除去される。
【0043】
以上に述べたように、本実施形態では、ホットガスを減圧することなく蒸発器30に導くバイパス通路及びバイパス通路の連通状態を制御するバルブ等を設けることなく、ノズル41の絞り開度を大きくするといった簡便な手段にて除霜運転を行うことができるので、蒸気圧縮式冷凍機の部品点数増大、構造の複雑化、組み立て工数の増大を防止できる。延いては、蒸気圧縮式冷凍機、つまり給湯装置の製造原価低減を図ることができる。
【0044】
(第2実施形態)
第1実施形態では、減圧手段40としてエジェクタを用いたが、本実施形態は、図5に示すように、減圧手段40として、冷媒を等エンタルピ的に減圧膨脹させる膨脹弁を採用したものである。
【0045】
なお、図5では、気液分離器50を圧縮機10の吸入側に設けたアキュムレータサイクルであるが、本実施形態はこれに限定されるものではなく、気液分離器50を放熱器20の出口側に設けたレシーバサイクルとしてもよいことは言うまでもない。
【0046】
(その他の実施形態)
上述の実施形態では、冷媒を二酸化炭素として高圧側圧力を臨界圧力以上まで加圧したが、本発明はこれに限定されるものではなく、例えば冷媒をフロン(R134a)として放熱器20内の冷媒圧力を冷媒の臨界圧力以下としてもよい。
【0047】
また、第1実施形態では、ラバールノズルを採用しているが、先細ノズルを採用してもよい。
【0048】
また、アクチュエータ45は、上述の実施形態に示されたものに限定されるものではなく、例えば不活性ガスのガス圧を用いた機械的なものやピエゾ素子を用いた非電磁力的な電気式のものであってもよい。
【0049】
また、上述の実施形態では、本発明に係る蒸気圧縮式冷凍機を給湯装置に適用したが、本発明の適用はこれに限定されるものではなく、空調装置、冷凍庫、冷蔵庫等にも適用することができる。
【図面の簡単な説明】
【図1】本発明の第1実施形態に係る蒸気圧縮式冷凍機の模式図である。
【図2】本発明の第1実施形態に係るエジェクタの模式図である。
【図3】本発明の第1実施形態に係る蒸気圧縮式冷凍機の作動説明図である。
【図4】本発明の第1実施形態に係る蒸気圧縮式冷凍機の作動説明図である。
【図5】本発明の第2実施形態に係る蒸気圧縮式冷凍機の模式図である。
【符号の説明】
10…圧縮機、20…放熱器(水−冷媒熱交換器)、30…蒸発器、
40…エジェクタ、50…気液分離器。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vapor compression refrigerator that moves low-temperature heat to a high-temperature side, and is effective when applied to a hot-water supply device or a heating device that uses warm heat.
[0002]
[Prior art and problems to be solved by the invention]
For example, in a hot water supply apparatus that heats hot water using a vapor compression refrigerator, heat is absorbed from outside air by an evaporator that forms a low-temperature side heat exchanger, the refrigerant is evaporated, and the vapor phase refrigerant that has been evaporated is compressed by the compressor. Thus, the amount of heat absorbed from the outside air is given to the hot water supply by raising the temperature.
[0003]
At this time, in winter when the outside air temperature is low, the refrigerant evaporating temperature is often below freezing in order to absorb a sufficient amount of heat from the outside air, so frost adheres to the surface of the evaporator. And if frost adheres to the surface of the evaporator, the heat absorption capacity is lowered. Usually, in the winter where the outside air temperature is low, the evaporator does not depressurize the high-temperature refrigerant (hot gas) periodically discharged from the compressor. The defrosting operation is performed to melt and remove the frost adhering to the surface of the evaporator.
[0004]
However, this defrosting method requires a bypass passage that guides the hot gas to the evaporator without reducing the pressure, and a valve that controls the communication state of the bypass passage, which increases the number of components of the vapor compression refrigerator. The structure becomes complicated, leading to an increase in assembly man-hours and an increase in manufacturing costs.
[0005]
In view of the above points, the present invention firstly provides a novel vapor compression refrigerator that is different from the conventional one, and secondly, it is intended to perform a defrosting operation with simple means.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides, in the invention described in claim 1, a vapor compression refrigerator that moves low-temperature heat to a high-temperature side, and a compressor (10) that compresses a refrigerant; A high pressure side heat exchanger (20) that dissipates the heat of the high pressure refrigerant, a decompression means (40) that decompresses and expands the high pressure refrigerant, a low pressure side heat exchanger (30) that absorbs heat by evaporating the low pressure refrigerant, and a compression The gas-liquid separator (50) is provided on the refrigerant suction side of the machine (10) and separates the flowing refrigerant into a gas phase refrigerant and a liquid phase refrigerant and supplies the gas phase refrigerant to the suction side of the compressor (10). ), And the decompression means decompresses and expands the high-pressure refrigerant in an isentropic manner and can change the throttle opening , and the booster (42, 42) that converts the enthalpy reduced during the decompression and expansion into pressure energy. is composed of the ejector (40) having a 43) The refrigerant that has flowed out of the ejector (40) flows into the gas-liquid separator (50), and further, directly from the gas-liquid separator (50) to the low-pressure side heat exchanger (30) by the pump action of the ejector (40). In the defrosting operation for removing frost adhered to the surface of the low pressure side heat exchanger (30), the throttle opening of the nozzle (41) is compared with that before performing the defrosting operation. And increasing the pressure of the low-pressure refrigerant.
[0007]
As a result, the defrosting operation can be performed by a simple means such as increasing the throttle opening of the nozzle (41), so that the number of parts of the vapor compression refrigerator is increased, the structure is complicated, and the number of assembling steps is increased. Can be prevented. In its turn, it can be obtained and the monitor can be achieved reducing manufacturing costs of the vapor compression type refrigerator, an unconventional new vapor compression refrigerator.
[0010]
And the frost adhering to the surface of a gas-liquid separator (50) can also be thawed and removed as well as the frost adhering to the surface of the low-pressure side heat exchanger (30).
[0012]
The invention according to claim 2 is characterized in that, in the operation mode other than the defrosting operation, the throttle opening degree of the nozzle (41) is controlled according to the heat load.
[0013]
The invention according to claim 3 is characterized in that the pressure of the low-pressure refrigerant during the defrosting operation is a pressure at which the saturation temperature of the refrigerant becomes 0 ° C. or higher.
[0014]
The invention according to claim 4 is characterized in that the pressure of the high-pressure refrigerant is equal to or higher than the critical pressure of the refrigerant.
[0015]
The invention according to claim 5 is characterized in that carbon dioxide is used as the refrigerant.
[0016]
Incidentally, the reference numerals in parentheses of each means described above are an example showing the correspondence with the specific means described in the embodiments described later.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
(First embodiment)
In the present embodiment, the vapor compression refrigerator according to the present invention is applied to a water heater device, and FIG. 1 is a schematic view of the water heater device according to the present embodiment.
[0018]
The compressor 10 sucks and compresses refrigerant, and the radiator 20 is a high-pressure side heat exchanger that cools the refrigerant by exchanging heat between the refrigerant discharged from the compressor 10 and hot water and heating the hot water. is there.
[0019]
Here, the compressor 10 is driven by an electric motor (not shown), and when the heating capacity of the radiator 20 is increased, the refrigerant discharged from the compressor 10 by increasing the rotation speed of the compressor 10. On the other hand, when the heating capacity is reduced, the rotational speed of the compressor 10 is decreased to reduce the flow rate of the refrigerant discharged from the compressor 10.
[0020]
In this embodiment, carbon dioxide is used as the refrigerant, and the compressor 10 pressurizes the refrigerant to a critical pressure or higher so that the refrigerant temperature at the refrigerant inlet of the radiator 20 is 80 ° C. to 90 ° C. or higher. ing.
[0021]
Incidentally, since the pressure in the radiator 20 is equal to or higher than the critical pressure, the refrigerant reduces the enthalpy while decreasing the refrigerant temperature from the refrigerant inlet side toward the refrigerant outlet side without condensing the refrigerant in the radiator 20. I will let you.
[0022]
The evaporator 30 is a low-pressure heat exchanger that evaporates the refrigerant by heat-exchanging the outdoor air and the liquid-phase refrigerant to evaporate the liquid-phase refrigerant and absorbs heat from the outdoor air. The ejector 40 decompresses the refrigerant. The gas phase refrigerant that is expanded and evaporated in the evaporator 30 is sucked, and the expansion energy is converted into pressure energy to increase the suction pressure of the compressor 10. Details of the ejector 40 will be described later.
[0023]
The gas-liquid separator 50 is a gas-liquid separator that stores the refrigerant by flowing the refrigerant flowing out from the ejector 40 into the vapor-phase refrigerant and the liquid-phase refrigerant. 50, the gas phase refrigerant outlet is connected to the suction side of the compressor 10, and the liquid phase outlet is connected to the inlet side of the evaporator 30 side.
[0024]
Next, the structure of the ejector 40 will be described.
[0025]
As shown in FIG. 2, the ejector 40 converts the pressure energy of the flowing high-pressure refrigerant into velocity energy to cause the refrigerant to be isentropically decompressed and expanded, and the entraining action of the high-speed refrigerant flow ejected from the nozzle 41. While mixing the vapor-phase refrigerant evaporated in the evaporator 30 by the mixing unit 42 for mixing the refrigerant flow ejected from the nozzle 41, the refrigerant ejected from the nozzle 41 and the refrigerant sucked from the evaporator 30 are mixed. However, it comprises a diffuser 43 or the like for increasing the pressure of the refrigerant by converting velocity energy into pressure energy.
[0026]
In the mixing unit 42, since the sum of the momentum of the refrigerant flow injected from the nozzle 41 and the momentum of the refrigerant flow sucked into the ejector 40 from the evaporator 30 is preserved, the mixing unit 42 However, the static pressure of the refrigerant increases. On the other hand, in the diffuser 43, the dynamic pressure of the refrigerant is converted into a static pressure by gradually increasing the passage cross-sectional area. Therefore, in the ejector 40, the refrigerant pressure is increased by both the mixing unit 42 and the diffuser 43. . Therefore, the mixing unit 42 and the diffuser 43 are collectively referred to as a boosting unit.
[0027]
That is, in the ideal ejector 40, the refrigerant pressure increases so that the sum of the momentums of the two refrigerant flows is stored in the mixing unit 42, and the refrigerant pressure increases so that energy is stored in the diffuser 43. In this way, it is desirable to recover enthalpy that has been reduced during expansion under reduced pressure as pressure energy.
[0028]
The nozzle 41 is a Laval nozzle (see Fluid Engineering (Tokyo University Press)) having a throat portion 41a having the smallest passage area in the middle of the passage and a divergent portion 41b in which the inner diameter gradually increases after the throat portion 41a. The throttle opening of the nozzle 41 is variably controlled by displacing the needle valve 44 within the nozzle 41 by the actuator 45 in the axial direction of the nozzle 41.
[0029]
In the present embodiment, an electrical actuator such as a stepping motor using a screw mechanism or a linear solenoid is employed as the actuator 45.
[0030]
Next, the characteristic operation and effect of the hot water supply apparatus according to the present embodiment will be described.
[0031]
1. Normal operation (endothermic operation) mode (see Fig. 3)
This mode is an operation mode in which the hot water is heated by absorbing heat from the outside air.
[0032]
Specifically, the pressure in the evaporator 30, that is, the pressure corresponding to a predetermined temperature equal to or lower than the outside air temperature, and the pressure detected by a pressure sensor (not shown) that detects the refrigerant pressure on the high pressure side. The throttle opening degree of the nozzle 41 is controlled so that becomes a predetermined pressure.
[0033]
As a result, hot water having a predetermined temperature or higher can be supplied to the hot water storage tank regardless of the heat load (outside air temperature).
[0034]
The macroscopic refrigerant behavior in this operation mode is as follows.
[0035]
That is, the refrigerant discharged from the compressor 10 is cooled while the hot water is heated by the radiator 20. Then, the refrigerant cooled by the radiator 20 is isentropically decompressed and expanded at the nozzle 41 of the ejector 40 and flows into the mixing unit 42 at a speed equal to or higher than the speed of sound.
[0036]
The refrigerant evaporated in the evaporator 30 is sucked into the mixing part 42 by the pump action accompanying the entrainment action of the high-speed refrigerant flowing into the mixing part 42, so that the low-pressure side refrigerant is evaporated from the gas-liquid separator 50 → evaporation. It circulates in the order of the vessel 30 → the ejector 40 (pressure increase unit) → the gas-liquid separator 50 and absorbs heat from the outside air.
[0037]
On the other hand, the refrigerant sucked from the evaporator 30 (suction flow) and the refrigerant blown out from the nozzle 41 (driving flow) are mixed by the mixing unit 42 and the dynamic pressure thereof is converted into static pressure by the diffuser 43. Return to the liquid separator 50.
[0038]
2. Defrosting operation mode (see Fig. 4)
This mode is an operation mode for removing frost adhering to the surface of the evaporator 30.
[0039]
Specifically, the throttle opening of the nozzle 41 is increased before the defrosting operation mode, that is, compared with the normal operation mode, so that the refrigerant saturation temperature in the evaporator 30 is reduced to a pressure at which the refrigerant saturation temperature becomes 0 ° C. or higher. Increase refrigerant pressure. The refrigerant flow is the same as in the normal operation mode.
[0040]
At this time, immediately after the start of the defrosting operation mode, the hot gas does not flow directly into the evaporator 30, so that the temperature of the refrigerant flowing into the evaporator 30 remains at a low temperature equal to or lower than the outside air temperature. The frost that adheres to the surface cannot be melted.
[0041]
However, the pressure at which the pressure in the evaporator 30 becomes 0 ° C. or higher in addition to the fact that the throttle opening of the nozzle 41 is increased and the temperature of the refrigerant injected from the nozzle 41 is higher than that in the normal operation mode. Therefore, the temperature of the refrigerant in the gas-liquid separator 50 gradually increases, and the temperature of the refrigerant flowing into the evaporator 30 becomes 0 ° C. or higher.
[0042]
Therefore, the frost adhering to the surface of the evaporator 30 and the frost adhering to the surface of the gas-liquid separator 50 are melted and removed.
[0043]
As described above, in the present embodiment, the throttle opening of the nozzle 41 is increased without providing a bypass passage for guiding the hot gas to the evaporator 30 without reducing the pressure and a valve for controlling the communication state of the bypass passage. Since the defrosting operation can be performed by simple means such as, it is possible to prevent an increase in the number of parts, a complicated structure, and an increase in the number of assembly steps of the vapor compression refrigerator. As a result, it is possible to reduce the manufacturing cost of the vapor compression refrigerator, that is, the hot water supply apparatus.
[0044]
(Second Embodiment)
In the first embodiment, an ejector is used as the decompression means 40. However, in this embodiment, as shown in FIG. 5, an expansion valve that decompresses and expands the refrigerant is enthalpy is adopted as the decompression means 40. .
[0045]
FIG. 5 shows an accumulator cycle in which the gas-liquid separator 50 is provided on the suction side of the compressor 10, but the present embodiment is not limited to this, and the gas-liquid separator 50 is connected to the radiator 20. It goes without saying that a receiver cycle provided on the outlet side may be used.
[0046]
(Other embodiments)
In the above-described embodiment, the refrigerant is carbon dioxide and the high-pressure side pressure is increased to the critical pressure or more. However, the present invention is not limited to this, and for example, the refrigerant is the refrigerant in the radiator 20 using the refrigerant (R134a). The pressure may be lower than the critical pressure of the refrigerant.
[0047]
In the first embodiment, a Laval nozzle is used, but a tapered nozzle may be used.
[0048]
Further, the actuator 45 is not limited to that shown in the above-described embodiment. For example, a mechanical one using a gas pressure of an inert gas or a non-electromagnetic power electric type using a piezo element. It may be.
[0049]
In the above-described embodiment, the vapor compression refrigerator according to the present invention is applied to the hot water supply apparatus. However, the application of the present invention is not limited to this, and is also applied to an air conditioner, a freezer, a refrigerator, and the like. be able to.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a vapor compression refrigerator according to a first embodiment of the present invention.
FIG. 2 is a schematic diagram of an ejector according to the first embodiment of the present invention.
FIG. 3 is an operation explanatory diagram of the vapor compression refrigerator according to the first embodiment of the present invention.
FIG. 4 is an operation explanatory diagram of the vapor compression refrigerator according to the first embodiment of the present invention.
FIG. 5 is a schematic diagram of a vapor compression refrigerator according to a second embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Compressor, 20 ... Radiator (water-refrigerant heat exchanger), 30 ... Evaporator,
40 ... ejector, 50 ... gas-liquid separator.

Claims (5)

低温側の熱を高温側に移動させる蒸気圧縮式冷凍機であって、
冷媒を圧縮する圧縮機(10)と、
高圧冷媒の熱を放熱する高圧側熱交換器(20)と、
高圧冷媒を減圧膨脹させる減圧手段(40)と、
低圧冷媒を蒸発させて吸熱する低圧側熱交換器(30)と
前記圧縮機(10)の冷媒吸入側に設けられ、流入した冷媒を気相冷媒と液相冷媒とに分離するとともに、気相冷媒を前記圧縮機(10)の吸入側に供給する気液分離器(50)とを備え、
前記減圧手段は、高圧冷媒を等エントロピ的に減圧膨張させるとともに絞り開度を変更可能なノズル(41)、及び減圧膨張時に低下したエンタルピを圧力エネルギに変換する昇圧部(42、43)を有するエジェクタ(40)で構成され、
前記エジェクタ(40)を流出した冷媒は前記気液分離器(50)に流入し、さらに、前記エジェクタ(40)のポンプ作用により前記気液分離器(50)から前記低圧側熱交換器(30)に直接冷媒が供給されるようになっており、
前記低圧側熱交換器(30)の表面に付着した霜を除去する除霜運転時には、前記ノズル(41)の絞り開度を、前記除霜運転を行う前に比べて大きくして低圧冷媒の圧力を上昇させることを特徴とする蒸気圧縮式冷凍機。
A vapor compression refrigerator that moves the heat on the low temperature side to the high temperature side,
A compressor (10) for compressing the refrigerant;
A high-pressure side heat exchanger (20) that dissipates the heat of the high-pressure refrigerant;
Decompression means (40) for decompressing and expanding the high-pressure refrigerant;
A low pressure side heat exchanger (30) that absorbs heat by evaporating the low pressure refrigerant ;
Gas-liquid separation is provided on the refrigerant suction side of the compressor (10) and separates the flowing refrigerant into a gas phase refrigerant and a liquid phase refrigerant and supplies the gas phase refrigerant to the suction side of the compressor (10). A vessel (50) ,
The decompression means has a nozzle (41) that can expand and decompress the high-pressure refrigerant in an isentropic manner, and a pressure-increasing section (42, 43) that converts enthalpy that has decreased during decompression expansion into pressure energy. Consists of ejector (40) ,
The refrigerant that has flowed out of the ejector (40) flows into the gas-liquid separator (50), and further, from the gas-liquid separator (50) to the low-pressure side heat exchanger (30) by the pump action of the ejector (40). ) Is directly supplied with refrigerant,
During the defrosting operation for removing frost adhering to the surface of the low pressure side heat exchanger (30), the throttle opening degree of the nozzle (41) is made larger than that before the defrosting operation to increase the pressure of the low pressure refrigerant. A vapor compression refrigerator that raises the pressure.
前記除霜運転以外の運転モードにおいては、前記ノズル(41)の絞り開度は、熱負荷に応じて制御されることを特徴とする請求項に記載の蒸気圧縮式冷凍機。Wherein in the operating mode other than the defrosting operation, throttle opening degree of the nozzle (41) is a vapor compression type refrigerator according to claim 1, characterized in that it is controlled according to the heat load. 前記除霜運転時における低圧冷媒の圧力は、冷媒の飽和温度が0℃以上となる圧力であることを特徴とする請求項1または2に記載の蒸気圧縮式冷凍機。The vapor compression refrigerator according to claim 1 or 2 , wherein the pressure of the low-pressure refrigerant during the defrosting operation is a pressure at which the saturation temperature of the refrigerant becomes 0 ° C or higher. 高圧冷媒の圧力は、冷媒の臨界圧力以上であることを特徴とする請求項1ないし3のいずれか1つに記載の蒸気圧縮式冷凍機。The vapor compression refrigerator according to any one of claims 1 to 3 , wherein the pressure of the high-pressure refrigerant is equal to or higher than the critical pressure of the refrigerant. 冷媒として二酸化炭素が用いられていることを特徴とする請求項1ないし4のいずれか1つに記載の蒸気圧縮式冷凍機。The vapor compression refrigerator according to any one of claims 1 to 4 , wherein carbon dioxide is used as the refrigerant.
JP2002182873A 2002-06-24 2002-06-24 Vapor compression refrigerator Expired - Fee Related JP3855860B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002182873A JP3855860B2 (en) 2002-06-24 2002-06-24 Vapor compression refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002182873A JP3855860B2 (en) 2002-06-24 2002-06-24 Vapor compression refrigerator

Publications (3)

Publication Number Publication Date
JP2004028402A JP2004028402A (en) 2004-01-29
JP2004028402A5 JP2004028402A5 (en) 2005-06-09
JP3855860B2 true JP3855860B2 (en) 2006-12-13

Family

ID=31179253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002182873A Expired - Fee Related JP3855860B2 (en) 2002-06-24 2002-06-24 Vapor compression refrigerator

Country Status (1)

Country Link
JP (1) JP3855860B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4270098B2 (en) * 2004-10-19 2009-05-27 株式会社デンソー Ejector cycle
JP2007285669A (en) * 2006-04-20 2007-11-01 Denso Corp Heat exchanger and refrigerating cycle

Also Published As

Publication number Publication date
JP2004028402A (en) 2004-01-29

Similar Documents

Publication Publication Date Title
JP4120296B2 (en) Ejector and ejector cycle
US7779647B2 (en) Ejector and ejector cycle device
JP4254217B2 (en) Ejector cycle
JP4522641B2 (en) Vapor compression refrigerator
JP2003083622A (en) Ejector cycle
JP4096824B2 (en) Vapor compression refrigerator
JP4042637B2 (en) Ejector cycle
JP2004324955A (en) Vapor compression type refrigerating machine
JP2003114063A (en) Ejector cycle
JP4254126B2 (en) Ejector for vapor compression refrigeration cycle
KR100555944B1 (en) Vapor compression refrigerant cycle system
JP2005009774A (en) Ejector cycle
JP2004198045A (en) Vapor compression type refrigerator
JP2004239493A (en) Heat pump cycle
US6931887B2 (en) Ejector decompression device
JP2006097930A (en) Heat pump type heating device
JP2003097868A (en) Ejector cycle
JP3855860B2 (en) Vapor compression refrigerator
JP2010038456A (en) Vapor compression refrigeration cycle
JP3835431B2 (en) Vapor compression refrigerator
JP4259092B2 (en) Ejector cycle, air conditioner, and vehicle air conditioner
JP5012706B2 (en) Heat pump cycle
JP4561093B2 (en) Heat pump cycle for hot water supply
JP2009030905A (en) Heat pump type heating device
JP2003262413A (en) Ejector cycle

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040906

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060904

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees