JP2005037114A - Refrigerating cycle device - Google Patents

Refrigerating cycle device Download PDF

Info

Publication number
JP2005037114A
JP2005037114A JP2004081383A JP2004081383A JP2005037114A JP 2005037114 A JP2005037114 A JP 2005037114A JP 2004081383 A JP2004081383 A JP 2004081383A JP 2004081383 A JP2004081383 A JP 2004081383A JP 2005037114 A JP2005037114 A JP 2005037114A
Authority
JP
Japan
Prior art keywords
pressure
refrigerant
heat exchanger
ejector
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004081383A
Other languages
Japanese (ja)
Inventor
Tomohiko Tsuruta
知彦 鶴田
Yukikatsu Ozaki
幸克 尾崎
Toru Muramatsu
徹 村松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc filed Critical Denso Corp
Priority to JP2004081383A priority Critical patent/JP2005037114A/en
Publication of JP2005037114A publication Critical patent/JP2005037114A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02792Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using reversing valve changing the refrigerant flow direction due to pressure differences of the refrigerant and not by external actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0012Ejectors with the cooled primary flow at high pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To easily switch cooling medium flow passages at the time of switching between a heating side and a cooling side in a refrigerating cycle using an ejector 5. <P>SOLUTION: High pressure inflow switching valves 8a, 8b and a low pressure inflow switching valve 9 which switch flow passages for a cooling medium which flows into an ejector 5 using a pressure difference therebetween are provided on the upstream sides of a high pressure inflow part 5a and a low pressure inflow part 5b, respectively, of the ejector, so that the high pressure cooling medium always flows into the high pressure inflow part 5a and the low pressure cooling medium always flows into the low pressure inflow part 5b even when a four-way valve 2 is switched. By virtue of such a simple configuration, the flow passages for the cooling medium which flows into the ejector 5 are automatically switched, so that the high pressure cooling medium always flows into the high pressure inflow part 5a and the low pressure cooling medium always flows into the low pressure inflow part 5b. Due to this, in the refrigerating cycle using the ejector 5, the switching between the heating side and the cooling side can be easily attained simply by providing the four-way valve 2 at an outlet of a compressor 1 to change the flowing direction of the cooling medium. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、エジェクタを用いた冷凍サイクル装置に関するものであり、特に加熱側と冷却側とを切り換える際の冷媒流路の切り換えを容易とした冷凍サイクル装置に関するものである。   The present invention relates to a refrigeration cycle apparatus using an ejector, and more particularly to a refrigeration cycle apparatus that facilitates switching of a refrigerant flow path when switching between a heating side and a cooling side.

エジェクタを用いない冷凍サイクルでの加熱側と冷却側との切り換えは、特許文献1にもあるように、冷媒の流れ方向が逆になっても減圧機能を有する減圧装置を用いれば、圧縮機出口に冷媒の流れ方向を換える四方弁を設けるだけで良い。しかし、冷凍サイクルの効率を向上させるためにエジェクタを用いた場合、冷媒の流入部が高圧側と低圧側とで二つとなるため、単に流れを逆向きにしただけではエジェクタが作動しなくなってしまう。   The switching between the heating side and the cooling side in a refrigeration cycle that does not use an ejector can be performed by using a decompression device that has a decompression function even if the refrigerant flow direction is reversed, as disclosed in Patent Document 1. It is only necessary to provide a four-way valve for changing the flow direction of the refrigerant. However, when an ejector is used to improve the efficiency of the refrigeration cycle, there are two refrigerant inflow portions on the high pressure side and the low pressure side, so the ejector will not operate simply by reversing the flow. .

このようなエジェクタを用いた冷凍サイクルで加熱側と冷却側とを切り換える従来技術として、特許文献2に示されるものがある。これは、三方弁等の切換手段を多数用いて冷媒流路を切り換え、加熱側と冷却側とを切り換えるようにしたものである。
特開平8−254372号公報 特開2002−286326号公報
As a conventional technique for switching between a heating side and a cooling side in a refrigeration cycle using such an ejector, there is one disclosed in Patent Document 2. In this system, a large number of switching means such as a three-way valve are used to switch the refrigerant flow path so as to switch between the heating side and the cooling side.
JP-A-8-254372 JP 2002-286326 A

しかしながら上記の従来技術では、切換手段が多数必要となるうえ、その多数の切換手段を運転モードに応じて切換制御しなければならないことから構成が複雑となりコストアップを招くという問題点がある。本発明は、この従来技術の問題点に鑑みて成されたものであり、その目的は、エジェクタを用いた冷凍サイクルにおいて、加熱側と冷却側とを切り換える際の冷媒流路の切り換えを容易とした冷凍サイクル装置を提供することにある。   However, the above-described conventional technique has a problem that a large number of switching means are required and the switching means must be switched according to the operation mode, resulting in a complicated configuration and an increase in cost. The present invention has been made in view of the problems of the prior art, and its purpose is to facilitate switching of the refrigerant flow path when switching between the heating side and the cooling side in a refrigeration cycle using an ejector. An object of the present invention is to provide a refrigeration cycle apparatus.

本発明は上記目的を達成するために、請求項1ないし請求項8に記載の技術的手段を採用する。すなわち、請求項1に記載の発明では、冷凍サイクル内の気相冷媒を吸入し高圧に加圧して吐出する圧縮機(1)と、圧縮機(1)から吐出される冷媒の流路を切り換える四方弁(2)と、四方弁(2)からの冷媒と外気との熱交換を行う第1熱交換器(3)と、四方弁(2)からの冷媒と被冷熱流体との熱交換を行う第2熱交換器(4)と、圧縮機(1)で加圧された高圧冷媒を減圧して第1熱交換器(3)もしくは第2熱交換器(4)からの冷媒を吸引し混合し昇圧して吐出するエジェクタ(5)と、エジェクタ(5)が吐出する気液二相冷媒を気液分離して気相冷媒は圧縮機(1)に供給し液相冷媒は第1熱交換器(3)もしくは第2熱交換器(4)に供給する気液分離器(6)とを備えて成る冷凍サイクル装置において、
エジェクタ(5)の高圧流入部(5a)と低圧流入部(5b)とのそれぞれ上流に、冷媒の圧力差を利用してエジェクタ(5)へ流入する冷媒流路を切り換える高圧流入切換手段(8a、8b、10)と低圧流入切換手段(9)とを設け、四方弁(2)を切り換えても高圧冷媒は常に高圧流入部(5a)へ流入し、低圧冷媒は常に低圧流入部(5b)へ流入するようにしたことを特徴としている。
In order to achieve the above object, the present invention employs technical means described in claims 1 to 8. That is, in the first aspect of the present invention, the compressor (1) that sucks the gas-phase refrigerant in the refrigeration cycle, pressurizes it to high pressure and discharges it, and the refrigerant flow path that is discharged from the compressor (1) are switched. Heat exchange between the four-way valve (2), the first heat exchanger (3) for exchanging heat between the refrigerant from the four-way valve (2) and the outside air, and the refrigerant and the cooled fluid from the four-way valve (2). The second heat exchanger (4) to be performed and the high-pressure refrigerant pressurized by the compressor (1) are decompressed to suck the refrigerant from the first heat exchanger (3) or the second heat exchanger (4). The ejector (5) that is mixed, pressurized and discharged, and the gas-liquid two-phase refrigerant discharged from the ejector (5) are gas-liquid separated, the gas-phase refrigerant is supplied to the compressor (1), and the liquid-phase refrigerant is the first heat. A refrigeration cycle apparatus comprising a gas-liquid separator (6) to be supplied to the exchanger (3) or the second heat exchanger (4);
High pressure inflow switching means (8a) for switching the refrigerant flow path flowing into the ejector (5) using the pressure difference of the refrigerant upstream of the high pressure inflow portion (5a) and the low pressure inflow portion (5b) of the ejector (5). 8b, 10) and a low-pressure inflow switching means (9), and the high-pressure refrigerant always flows into the high-pressure inflow portion (5a) even when the four-way valve (2) is switched, and the low-pressure refrigerant is always in the low-pressure inflow portion (5b). It is characterized by having flowed into

この請求項1に記載の発明によれば、冷媒の圧力差を利用した高圧流入切換手段(8a、8b、10)と低圧流入切換手段(9)とを設けた簡素な構成で、エジェクタ(5)へ流入する冷媒流路は自動的に切り換わり、高圧冷媒は常に高圧流入部(5a)へ流入し、低圧冷媒は常に低圧流入部(5b)へ流入するようになる。これにより、エジェクタ(5)を用いた冷凍サイクルにおいても膨張弁等を用いた冷凍サイクルと同様に、圧縮機(1)の出口に四方弁(2)を設けて冷媒の流れ方向を換えるだけで容易に加熱側と冷却側とを切り換えることができることとなる。   According to the first aspect of the present invention, the ejector (5) has a simple configuration including the high pressure inflow switching means (8a, 8b, 10) and the low pressure inflow switching means (9) using the pressure difference of the refrigerant. ) Automatically flows into the refrigerant flow path, so that the high-pressure refrigerant always flows into the high-pressure inflow portion (5a) and the low-pressure refrigerant always flows into the low-pressure inflow portion (5b). Thus, in the refrigeration cycle using the ejector (5), just like the refrigeration cycle using the expansion valve or the like, the four-way valve (2) is provided at the outlet of the compressor (1), and the refrigerant flow direction is changed. The heating side and the cooling side can be easily switched.

また、請求項2記載の発明では、冷凍サイクル内の気相冷媒を吸入し高圧に加圧して吐出する圧縮機(1)と、圧縮機(1)から吐出される冷媒の流路を切り換える四方弁(2)と、四方弁(2)からの冷媒と外気との熱交換を行う第1熱交換器(3)と、四方弁(2)からの冷媒と被冷熱流体との熱交換を行う第2熱交換器(4)と、圧縮機(1)で加圧された高圧冷媒を減圧して気液分離器(6)からの液相冷媒を吸引し混合し昇圧して第1熱交換器(3)もしくは第2熱交換器(4)へ吐出するエジェクタ(5)と、第1熱交換器(3)もしくは第2熱交換器(4)から流出する冷媒を気液分離して気相冷媒は圧縮機(1)に供給し液相冷媒はエジェクタ(5)に供給する気液分離器(6)とを備えて成る冷凍サイクル装置において、
エジェクタ(5)の高圧流入部(5a)の上流に冷媒の圧力差を利用してエジェクタ(5)へ流入する冷媒流路を切り換える高圧流入切換手段(10)と、エジェクタ(5)の吐出部(5f)の下流に冷媒の圧力差を利用してエジェクタ(5)から流出した冷媒の流路を切り換える低圧流出切換手段(9)とを設け、四方弁(2)を切り換えた場合、高圧冷媒は常に高圧流入部(5a)へ流入し、エジェクタ(5)が吐出する気液二相冷媒は低圧側となる第1熱交換器(3)もしくは第2熱交換器(4)に流入するようにしたことを特徴としている。
According to the second aspect of the present invention, the compressor (1) that sucks the gas-phase refrigerant in the refrigeration cycle, pressurizes it to high pressure and discharges it, and the four-way switching of the refrigerant flow path discharged from the compressor (1). The heat exchange between the valve (2), the first heat exchanger (3) that exchanges heat between the refrigerant from the four-way valve (2) and the outside air, and the refrigerant and the cooled fluid from the four-way valve (2) The second heat exchanger (4) and the high-pressure refrigerant pressurized by the compressor (1) are depressurized, and the liquid-phase refrigerant from the gas-liquid separator (6) is sucked and mixed, and the pressure is increased to perform the first heat exchange. The ejector (5) discharged to the heat exchanger (3) or the second heat exchanger (4) and the refrigerant flowing out from the first heat exchanger (3) or the second heat exchanger (4) are separated into gas and liquid. In the refrigeration cycle apparatus comprising a gas-liquid separator (6) for supplying the phase refrigerant to the compressor (1) and supplying the liquid phase refrigerant to the ejector (5),
High pressure inflow switching means (10) for switching the refrigerant flow path flowing into the ejector (5) using the pressure difference of the refrigerant upstream of the high pressure inflow portion (5a) of the ejector (5), and a discharge portion of the ejector (5) When the four-way valve (2) is switched by providing low-pressure outflow switching means (9) for switching the flow path of the refrigerant flowing out from the ejector (5) using the pressure difference of the refrigerant downstream of (5f), the high-pressure refrigerant Always flows into the high pressure inflow section (5a) so that the gas-liquid two-phase refrigerant discharged from the ejector (5) flows into the first heat exchanger (3) or the second heat exchanger (4) on the low pressure side. It is characterized by that.

上記請求項1の冷凍サイクルでエジェクタ(5)は、低圧側となる第1熱交換器(3)もしくは第2熱交換器(4)から流出した冷媒を吸引している。この構成では、高低圧差が小さいときなどの膨張動力の小さい場合や、吸引流の流れる部分(低圧側熱交換器や接続配管)の流路抵抗がエジェクタ(5)の昇圧性能より大きい場合などには低圧側(蒸発側)熱交換器に必要な冷媒流量を流すことができず、冷凍サイクルの運転が困難となる。   In the refrigeration cycle according to the first aspect, the ejector (5) sucks the refrigerant flowing out from the first heat exchanger (3) or the second heat exchanger (4) on the low pressure side. In this configuration, when the expansion power is small, such as when the difference between high and low pressures is small, or when the flow resistance of the portion where the suction flow flows (low-pressure side heat exchanger or connecting pipe) is greater than the boosting performance of the ejector (5). Cannot flow the refrigerant flow rate required for the low pressure side (evaporation side) heat exchanger, making it difficult to operate the refrigeration cycle.

脱フロン冷媒として注目されているCO冷媒では、エジェクタ(5)の昇圧性能が0.数MPa有るのに対してR134aやR410aなどのフロン系の冷媒では昇圧性能が0.1MPa以下と小さいため、特に影響が大きい。また、フロン系冷媒は家庭用のルームエアコンで一般的に使われるが、この冷凍サイクルでは室内機と室外機の高低差が10m以上有ったり、配管長が長くなったりして、エジェクタ(5)の昇圧性能不足が特に影響し易い。 In a CO 2 refrigerant that has been attracting attention as a de-fluorocarbon refrigerant, the pressure increase performance of the ejector (5) is 0. In contrast to the fact that it is several MPa, a CFC-based refrigerant such as R134a or R410a has a particularly high influence because the pressure increase performance is as low as 0.1 MPa or less. In addition, fluorocarbon refrigerants are generally used in room air conditioners for home use. In this refrigeration cycle, the height difference between the indoor unit and the outdoor unit is 10 m or more, the pipe length is increased, and the ejector (5 ) Is particularly susceptible to the lack of boosting performance.

これに対して請求項2の冷凍サイクルは、圧縮機(1)で駆動される冷媒流れが低圧側熱交換器を通るようにし、低圧側熱交換器に流入する冷媒にエジェクタ(5)を使って気液分離器(6)に貯まった液相冷媒を吸引して注入する構成とした冷凍サイクルである。冷媒を再循環させることで低圧側熱交換器に乾き度の高い気液二相冷媒を流入し、沸騰熱伝達を向上させている。この請求項2に記載の発明によれば、エジェクタ(5)の昇圧能力の低いもの、低圧側熱交換器の流路抵抗やエジェクタ(5)と低圧側熱交換器間の高低差が大きなものに対しても確実に作動する。   On the other hand, the refrigeration cycle of claim 2 allows the refrigerant flow driven by the compressor (1) to pass through the low-pressure side heat exchanger, and uses the ejector (5) as the refrigerant flowing into the low-pressure side heat exchanger. This is a refrigeration cycle configured to suck and inject the liquid refrigerant stored in the gas-liquid separator (6). By recirculating the refrigerant, a gas-liquid two-phase refrigerant having a high degree of dryness flows into the low-pressure side heat exchanger to improve boiling heat transfer. According to the second aspect of the present invention, the ejector (5) has a low boosting capability, a low-pressure side heat exchanger having a large flow path resistance, and a large height difference between the ejector (5) and the low-pressure side heat exchanger. Will work reliably.

また、冷媒の圧力差を利用した高圧流入切換手段(10)と低圧流出切換手段(9)とを設けた簡素な構成で、エジェクタ(5)へ流入する冷媒流路と低圧側熱交換器へ流出する冷媒流路とは自動的に切り換わり、高圧冷媒は常に高圧流入部(5a)へ流入し、エジェクタ(5)が吐出する気液二相冷媒は低圧側となる第1熱交換器(3)もしくは第2熱交換器(4)に流入するようになる。これにより、エジェクタ(5)を用いた冷凍サイクルにおいても膨張弁等を用いた冷凍サイクルと同様に、圧縮機(1)の出口に四方弁(2)を設けて冷媒の流れ方向を換えるだけで容易に加熱側と冷却側とを切り換えることができることとなる。   Further, with a simple configuration including a high pressure inflow switching means (10) and a low pressure outflow switching means (9) using the refrigerant pressure difference, the refrigerant flow path flowing into the ejector (5) and the low pressure side heat exchanger are provided. The refrigerant flow path is automatically switched, the high-pressure refrigerant always flows into the high-pressure inflow portion (5a), and the gas-liquid two-phase refrigerant discharged from the ejector (5) is the low-pressure side first heat exchanger ( 3) or the second heat exchanger (4). Thus, in the refrigeration cycle using the ejector (5), just like the refrigeration cycle using the expansion valve or the like, the four-way valve (2) is provided at the outlet of the compressor (1), and the refrigerant flow direction is changed. The heating side and the cooling side can be easily switched.

また、請求項3記載の発明では、冷凍サイクル内の気相冷媒を吸入し高圧に加圧して吐出する圧縮機(1)と、圧縮機(1)から吐出される冷媒の流路を切り換える四方弁(2)と、四方弁(2)からの冷媒と外気との熱交換を行う第1熱交換器(3)と、四方弁(2)からの冷媒と被冷熱流体との熱交換を行う第2熱交換器(4)と、圧縮機(1)で加圧された高圧冷媒を減圧して低圧側となる第1熱交換器(3)もしくは第2熱交換器(4)から流出した冷媒の一部を吸引し混合し昇圧して再度第1熱交換器(3)もしくは第2熱交換器(4)へ吐出するエジェクタ(5)とを備えて成る冷凍サイクル装置において、
エジェクタ(5)の高圧流入部(5a)の上流に冷媒の圧力差を利用してエジェクタ(5)へ流入する冷媒流路を切り換える高圧流入切換手段(10)と、エジェクタ(5)の吐出部(5f)の下流に冷媒の圧力差を利用してエジェクタ(5)から流出した冷媒の流路を切り換える低圧流出切換手段(9)とを設け、四方弁(2)を切り換えた場合、高圧冷媒は常に高圧流入部(5a)へ流入し、エジェクタ(5)が吐出する気液二相冷媒は低圧側となる第1熱交換器(3)もしくは第2熱交換器(4)に流入するようにしたことを特徴としている。
According to the third aspect of the present invention, the compressor (1) that sucks the gas-phase refrigerant in the refrigeration cycle, pressurizes it to high pressure and discharges it, and the four-way switching of the refrigerant flow path discharged from the compressor (1). The heat exchange between the valve (2), the first heat exchanger (3) that exchanges heat between the refrigerant from the four-way valve (2) and the outside air, and the refrigerant and the cooled fluid from the four-way valve (2) The high pressure refrigerant pressurized by the second heat exchanger (4) and the compressor (1) is depressurized and flows out of the first heat exchanger (3) or the second heat exchanger (4) on the low pressure side. In a refrigeration cycle apparatus comprising an ejector (5) that sucks, mixes, boosts pressure of a refrigerant, and discharges the refrigerant again to the first heat exchanger (3) or the second heat exchanger (4).
High pressure inflow switching means (10) for switching the refrigerant flow path flowing into the ejector (5) using the pressure difference of the refrigerant upstream of the high pressure inflow portion (5a) of the ejector (5), and a discharge portion of the ejector (5) When the four-way valve (2) is switched by providing low-pressure outflow switching means (9) for switching the flow path of the refrigerant flowing out from the ejector (5) using the pressure difference of the refrigerant downstream of (5f), the high-pressure refrigerant Always flows into the high pressure inflow section (5a) so that the gas-liquid two-phase refrigerant discharged from the ejector (5) flows into the first heat exchanger (3) or the second heat exchanger (4) on the low pressure side. It is characterized by that.

請求項3の冷凍サイクルは、上記請求項2の冷凍サイクルから気液分離器(6)を取り除いて構成したものである。この請求項3に記載の発明によっても、上記請求項2の冷凍サイクルと同様の作用と効果が得られるうえ、冷凍サイクルをより簡素に構成することができる。   The refrigeration cycle of claim 3 is configured by removing the gas-liquid separator (6) from the refrigeration cycle of claim 2. According to the third aspect of the invention, the same operation and effect as the refrigeration cycle of the second aspect can be obtained, and the refrigeration cycle can be configured more simply.

また、請求項4記載の発明では、高圧流入切換手段(8a、8b)として、第1熱交換器(3)側の冷媒圧力と第2熱交換器(4)側の冷媒圧力とを受け、第1熱交換器(3)側の冷媒圧力が高い場合に開弁する第1逆止弁(8a)と、第2熱交換器(4)側の冷媒圧力が高い場合に開弁する第2逆止弁(8b)とを組み合わせて用い、四方弁(2)を切り換えても高圧冷媒は常に高圧流入部(5a)へ流入するようにしたことを特徴としている。   In the invention according to claim 4, as the high pressure inflow switching means (8a, 8b), the refrigerant pressure on the first heat exchanger (3) side and the refrigerant pressure on the second heat exchanger (4) side are received, A first check valve (8a) that opens when the refrigerant pressure on the first heat exchanger (3) side is high, and a second valve that opens when the refrigerant pressure on the second heat exchanger (4) side is high. A high-pressure refrigerant always flows into the high-pressure inflow portion (5a) even when the four-way valve (2) is switched by using the check valve (8b) in combination.

この請求項4に記載の発明によれば、簡単な逆止弁(8a、8b)を組み合わせることにより、高圧冷媒は常に高圧流入部(5a)へ流入するようにした高圧流入切換手段(8a、8b)を構成することができる。   According to the invention described in claim 4, the high pressure inflow switching means (8a, 8b) is configured such that the high pressure refrigerant always flows into the high pressure inflow portion (5a) by combining simple check valves (8a, 8b). 8b) can be configured.

また、請求項5記載の発明では、低圧流入切換手段(9)として、第1熱交換器(3)側の冷媒圧力と第2熱交換器(4)側の冷媒圧力とを受けて可動する弁体(92)を備えていずれかの高い冷媒圧力によって冷媒圧力の高い側の流路を閉弁して冷媒圧力の低い側の流路を開弁する低圧側差圧切換弁(9)を用い、四方弁(2)を切り換えても低圧冷媒は常に前記低圧流入部(5b)へ流入するようにしたことを特徴としている。   In the fifth aspect of the invention, the low pressure inflow switching means (9) is movable by receiving the refrigerant pressure on the first heat exchanger (3) side and the refrigerant pressure on the second heat exchanger (4) side. A low pressure side differential pressure switching valve (9) provided with a valve body (92) that closes the flow path on the higher refrigerant pressure side by any high refrigerant pressure and opens the flow path on the lower refrigerant pressure side; The low-pressure refrigerant always flows into the low-pressure inflow portion (5b) even when the four-way valve (2) is switched.

この請求項5に記載の発明によれば、差圧により弁体(92)が可動して圧力の低い側を連通させる簡単な差圧切換弁(9)を用いることにより、低圧冷媒は常に低圧流入部(5b)へ流入するようにした低圧流入切換手段(9)とすることができ、サイクル構成の簡素化を図ることができる。   According to the fifth aspect of the present invention, by using the simple differential pressure switching valve (9) in which the valve body (92) is moved by the differential pressure and the low pressure side is communicated, the low-pressure refrigerant is always low in pressure. Low pressure inflow switching means (9) adapted to flow into the inflow portion (5b) can be provided, and the cycle configuration can be simplified.

また、請求項6記載の発明では、低圧流出切換手段(9)として、第1熱交換器(3)側の冷媒圧力と第2熱交換器(4)側の冷媒圧力とを受けて可動する弁体(92)を備えていずれかの高い冷媒圧力によって冷媒圧力の高い側の流路を閉弁して冷媒圧力の低い側の流路を開弁する低圧側差圧切換弁(9)を用い、四方弁(2)を切り換えた場合、エジェクタ(5)が吐出する気液二相冷媒は低圧側となる第1熱交換器(3)もしくは第2熱交換器(4)に流入するようにしたことを特徴としている。   In the invention described in claim 6, the low-pressure outflow switching means (9) is movable by receiving the refrigerant pressure on the first heat exchanger (3) side and the refrigerant pressure on the second heat exchanger (4) side. A low pressure side differential pressure switching valve (9) provided with a valve body (92) that closes the flow path on the higher refrigerant pressure side by any high refrigerant pressure and opens the flow path on the lower refrigerant pressure side; When the four-way valve (2) is switched, the gas-liquid two-phase refrigerant discharged from the ejector (5) flows into the first heat exchanger (3) or the second heat exchanger (4) on the low pressure side. It is characterized by that.

この請求項6に記載の発明によれば、差圧により弁体(92)が可動して圧力の低い側を連通させる簡単な差圧切換弁(9)用いることにより、エジェクタ(5)が吐出する気液二相冷媒は低圧側となる第1熱交換器(3)もしくは第2熱交換器(4)に流入するようにした低圧流出切換手段(9)とすることができ、サイクル構成の簡素化を図ることができる。   According to the sixth aspect of the present invention, by using the simple differential pressure switching valve (9) in which the valve body (92) is moved by the differential pressure and the low pressure side is communicated, the ejector (5) is discharged. The gas-liquid two-phase refrigerant can be low-pressure outflow switching means (9) adapted to flow into the first heat exchanger (3) or the second heat exchanger (4) on the low-pressure side. Simplification can be achieved.

また、請求項7記載の発明では、高圧流入切換手段(10)として、第1熱交換器(3)側の冷媒圧力と第2熱交換器(4)側の冷媒圧力とを受けて可動する弁体(102)を備えていずれかの高い冷媒圧力によって冷媒圧力の高い側の流路を開弁して冷媒圧力の低い側の流路を閉弁する高圧側差圧切換弁(10)を用い、四方弁(2)を切り換えても高圧冷媒は常に高圧流入部(5a)へ流入するようにしたことを特徴としている。   In the seventh aspect of the invention, the high pressure inflow switching means (10) is movable by receiving the refrigerant pressure on the first heat exchanger (3) side and the refrigerant pressure on the second heat exchanger (4) side. A high pressure side differential pressure switching valve (10) provided with a valve body (102) that opens a flow path on a higher refrigerant pressure side by any high refrigerant pressure and closes a flow path on a lower refrigerant pressure side. The high-pressure refrigerant always flows into the high-pressure inflow part (5a) even when the four-way valve (2) is switched.

この請求項7に記載の発明によれば、差圧により弁体(102)が可動して圧力の高い側を連通させる簡単な差圧切換弁(10)用いることにより、高圧冷媒は常に高圧流入部(5a)へ流入するようにした高圧流入切換手段(10)とすることができ、サイクル構成の簡素化を図ることができる。   According to the seventh aspect of the present invention, by using the simple differential pressure switching valve (10) in which the valve body (102) is moved by the differential pressure and the high pressure side is communicated, the high pressure refrigerant always flows into the high pressure flow. It can be set as the high voltage | pressure inflow switching means (10) made to flow into a part (5a), and simplification of a cycle structure can be achieved.

また、請求項8記載の発明では、エジェクタ(5)に、低圧側差圧切換弁(9)または高圧側差圧切換弁(10)もしくはその両方の差圧切換弁(9、10)を一体にして構成したことを特徴としている。この請求項8に記載の発明によれば、差圧切換弁(9、10)を一体として冷媒流路もエジェクタ(5)のハウジング内に形成することで、エジェクタ(5)と差圧切換弁(9、10)とを小型に構成できるうえ、これらのコストを抑えることができる。   In the invention described in claim 8, the low pressure side differential pressure switching valve (9) and / or the high pressure side differential pressure switching valve (10) or both differential pressure switching valves (9, 10) are integrated with the ejector (5). It is characterized by having made it. According to the eighth aspect of the present invention, the refrigerant flow path is also formed in the housing of the ejector (5) by integrating the differential pressure switching valve (9, 10), so that the ejector (5) and the differential pressure switching valve are formed. (9, 10) can be configured in a small size, and these costs can be reduced.

また、冷媒流路の接続も加熱側と冷却側とを固定したサイクルと同様に、冷媒吐出側を気液分離器(6)に接続したうえ、この差圧弁一体エジェクタ(50)を第1熱交換器(3)と第2熱交換器(4)との間に接続するだけで良くなる。これにより、各機能部品間の接続配管および接続作業を省くことができ、小型に構成できるうえ、これらのコストを抑えることができる。ちなみに、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示す一例である。   Further, the refrigerant flow path is connected to the gas-liquid separator (6) on the refrigerant discharge side in the same manner as in the cycle in which the heating side and the cooling side are fixed, and the differential pressure valve integrated ejector (50) is connected to the first heat. It is only necessary to connect between the exchanger (3) and the second heat exchanger (4). As a result, it is possible to omit connection piping and connection work between the functional components, and it is possible to reduce the cost as well as to reduce the size. Incidentally, the reference numerals in parentheses of the above means are examples showing the correspondence with the specific means described in the embodiments described later.

(第1実施形態)
次に、本発明の実施の形態を、図面に基づき説明する。図1は、本発明の第1実施形態における冷凍サイクル装置の模式図である。尚、本実施形態は本発明の冷凍サイクル装置を、室内熱交換器4で室内空気を加熱・冷却して室内の暖房・冷房を行う空調装置に適用したものとして説明するが、被冷熱流体は水等でも良く、給湯・温蔵・冷蔵・冷凍等を行う装置に適用しても良い。
(First embodiment)
Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram of a refrigeration cycle apparatus according to a first embodiment of the present invention. In addition, although this embodiment demonstrates the refrigeration cycle apparatus of this invention as what is applied to the air-conditioning apparatus which heats / cools indoor air with the indoor heat exchanger 4, and heats and cools indoors, It may be water or the like, and may be applied to a device that performs hot water supply, warm storage, refrigeration, freezing, and the like.

まず1は、冷凍サイクル内の気相冷媒を吸入し高圧に加圧して吐出する圧縮機であり、2は、圧縮機1から吐出されるガス冷媒の流路を暖房時と冷房時とで切り換えると共に、後述する気液分離器6に溜まっている液冷媒の流路を暖房時と冷房時とで切り換える四方弁である。また3は、四方弁2からの冷媒と外気との熱交換を行う室外熱交換器(第1熱交換器)であり、4は、同じく四方弁2からの冷媒と室内空気との熱交換を行う室内熱交換器(第2熱交換器)である。   First, reference numeral 1 denotes a compressor that sucks gas pressure refrigerant in the refrigeration cycle, pressurizes the refrigerant to high pressure, and discharges it. Reference numeral 2 denotes a flow path of gas refrigerant discharged from the compressor 1 between heating and cooling. At the same time, it is a four-way valve that switches the flow path of the liquid refrigerant accumulated in the gas-liquid separator 6 to be described later between heating and cooling. 3 is an outdoor heat exchanger (first heat exchanger) for exchanging heat between the refrigerant from the four-way valve 2 and the outside air, and 4 is a heat exchange between the refrigerant from the four-way valve 2 and the indoor air. It is the indoor heat exchanger (2nd heat exchanger) to perform.

5は、圧縮機1で加圧された高圧冷媒を減圧して室外熱交換器3もしくは室内熱交換器4からの冷媒を吸引し混合し昇圧して吐出するエジェクタであり、6は、エジェクタ5が吐出する気液二相冷媒を気液分離して気相冷媒は圧縮機1に供給し、液相冷媒は室外熱交換器3もしくは室内熱交換器4に供給する気液分離器である。また、7は絞りで、気液分離器6から流出する液冷媒を減圧するものである。   Reference numeral 5 denotes an ejector that decompresses the high-pressure refrigerant pressurized by the compressor 1, sucks and mixes the refrigerant from the outdoor heat exchanger 3 or the indoor heat exchanger 4, and pressurizes and discharges the refrigerant. The gas-liquid two-phase refrigerant discharged from the gas-liquid separator is gas-liquid separated, the gas-phase refrigerant is supplied to the compressor 1, and the liquid-phase refrigerant is supplied to the outdoor heat exchanger 3 or the indoor heat exchanger 4. Reference numeral 7 denotes a throttle which depressurizes the liquid refrigerant flowing out of the gas-liquid separator 6.

ここで、本発明の前提構成であるエジェクタ5の構造について、の断面模式図にて説明する。エジェクタ5は、高圧流入部5aから流入する高圧冷媒の圧力エネルギーを速度エネルギーに変換して、冷媒を等エントロピ的に減圧膨張させるノズル51と、そのノズル51から噴射する高い速度の冷媒流の巻き込み作用により低圧流入部5bより流入する気相冷媒を吸引部5cから吸引しながら、ノズル51から噴射する冷媒流とを混合する混合部5d、およびノズル51から噴射する冷媒と低圧流入部5bから吸引した冷媒とを混合させながら速度エネルギーを圧力エネルギーに変換して冷媒の圧力を昇圧させるディフューザ部5e、吐出部5fなどから成るものである。   Here, the structure of the ejector 5 which is a premise of the present invention will be described with reference to a schematic cross-sectional view. The ejector 5 converts the pressure energy of the high-pressure refrigerant flowing from the high-pressure inflow portion 5a into velocity energy, and entrains the high-speed refrigerant flow ejected from the nozzle 51, which isentropically decompressed and expanded. While sucking the gas-phase refrigerant flowing in from the low-pressure inflow portion 5b by the action from the suction portion 5c, the mixing portion 5d that mixes the refrigerant flow injected from the nozzle 51, and the refrigerant injected from the nozzle 51 and the low-pressure inflow portion 5b It comprises a diffuser portion 5e, a discharge portion 5f, and the like that increase the pressure of the refrigerant by converting velocity energy into pressure energy while mixing with the refrigerant.

この時、混合部5dにおいては、駆動流の運動量と吸引流の運動量との和が保存されるように駆動流と吸引流とが混合するので、混合部5dにおいても冷媒の圧力(静圧)が上昇する。一方、ディフューザ部5eにおいては、通路断面積を徐々に拡大することにより冷媒の速度エネルギー(動圧)を圧力エネルギー(静圧)に変換するので、エジェクタ5においては、混合部5dおよびディフューザ部5eの両者にて冷媒圧力を昇圧する。そこで、混合部5dとディフューザ部5eとを合わせて昇圧部と呼ぶ。   At this time, in the mixing unit 5d, the driving flow and the suction flow are mixed so that the sum of the momentum of the driving flow and the momentum of the suction flow is preserved, so that the refrigerant pressure (static pressure) also exists in the mixing unit 5d. Rises. On the other hand, in the diffuser portion 5e, the velocity energy (dynamic pressure) of the refrigerant is converted into pressure energy (static pressure) by gradually increasing the cross-sectional area of the passage. Therefore, in the ejector 5, the mixing portion 5d and the diffuser portion 5e. Both increase the refrigerant pressure. Therefore, the mixing unit 5d and the diffuser unit 5e are collectively referred to as a boosting unit.

ちなみに、本実施形態では、ノズル51から噴出する冷媒の速度を音速以上まで加速するために、通路途中に通路面積が最も縮小した喉部51aを有するラバールノズル(流体工学(東京大学出版会)参照)を採用しているが、勿論、先細ノズルを採用しても良いことは言うまでもない。   By the way, in this embodiment, in order to accelerate the speed of the refrigerant ejected from the nozzle 51 to a sound speed or higher, a Laval nozzle having a throat portion 51a whose passage area is most reduced in the middle of the passage (see Fluid Engineering (Tokyo University Press)) Of course, it goes without saying that a tapered nozzle may be adopted.

次に、本実施形態において本発明に係る要部構成について説明する。まず、本実施形態ではエジェクタ5の高圧流入部5aと低圧流入部5bとのそれぞれ上流に、冷媒の圧力差を利用してエジェクタ5へ流入する冷媒流路を切り換える高圧流入切換手段8a・8bと低圧流入切換手段9とを設けている。高圧流入切換手段8a・8bとして具体的には、室外熱交換器3側の冷媒圧力と室内熱交換器4側の冷媒圧力とを受け、室外熱交換器3側の冷媒圧力が高い場合に開弁する第1逆止弁8aと、室内熱交換器4側の冷媒圧力が高い場合に開弁する第2逆止弁8bとを組み合わせて用いている。   Next, the configuration of the main part according to the present invention in this embodiment will be described. First, in the present embodiment, high-pressure inflow switching means 8a and 8b for switching the refrigerant flow path that flows into the ejector 5 using the pressure difference of the refrigerant upstream of the high-pressure inflow portion 5a and the low-pressure inflow portion 5b of the ejector 5, respectively. Low pressure inflow switching means 9 is provided. Specifically, the high pressure inflow switching means 8a and 8b are opened when the refrigerant pressure on the outdoor heat exchanger 3 side and the refrigerant pressure on the indoor heat exchanger 4 side are received and the refrigerant pressure on the outdoor heat exchanger 3 side is high. The first check valve 8a to be valved and the second check valve 8b to be opened when the refrigerant pressure on the indoor heat exchanger 4 side is high are used in combination.

それぞれの逆止弁8a・8bの構造は、ハウジング81の両端に連通側流入部81aと封止側流入部81bとが設けられたうえ、内部で連通側流入部81a側に向けて弁体82がばね83にて押し当てられている。これにより、連通側流入部81aからの圧力が高いと弁体82を押し下げて封止側流入部81bへの連通が成され、封止側流入部81bからの圧力が高いと弁体82を連通側流入部81a側に押し付けて封止が成される。   Each check valve 8a, 8b has a structure in which a communication side inflow portion 81a and a sealing side inflow portion 81b are provided at both ends of the housing 81, and the valve body 82 faces toward the communication side inflow portion 81a. Is pressed by a spring 83. Accordingly, when the pressure from the communication side inflow portion 81a is high, the valve body 82 is pushed down to establish communication with the sealing side inflow portion 81b, and when the pressure from the sealing side inflow portion 81b is high, the valve body 82 is communicated. Sealing is performed by pressing against the side inflow portion 81a side.

そして、2個の逆止弁8a・8bを図1に示すように高圧流入部5aの上流に対向して配置することにより、室外熱交換器3の圧力が室内熱交換器4の圧力よりも高い時には第1逆止弁8aが開いて室外熱交換器3の冷媒を高圧流入部5aへ流すと共に、第2逆止弁8bは閉じて室内熱交換器4への逆流を防ぐ。また逆に、室内熱交換器4の圧力が室外熱交換器3の圧力よりも高い時には第2逆止弁8bが開いて室内熱交換器4の冷媒を高圧流入部5aへ流すと共に、第1逆止弁8aは閉じて室外熱交換器3への逆流を防ぐこととなる。   As shown in FIG. 1, the two check valves 8 a and 8 b are arranged opposite to the upstream side of the high pressure inflow portion 5 a so that the pressure of the outdoor heat exchanger 3 is higher than the pressure of the indoor heat exchanger 4. When the temperature is high, the first check valve 8a is opened to flow the refrigerant in the outdoor heat exchanger 3 to the high-pressure inflow portion 5a, and the second check valve 8b is closed to prevent backflow to the indoor heat exchanger 4. Conversely, when the pressure in the indoor heat exchanger 4 is higher than the pressure in the outdoor heat exchanger 3, the second check valve 8b is opened to allow the refrigerant in the indoor heat exchanger 4 to flow to the high-pressure inflow portion 5a. The check valve 8a is closed to prevent backflow to the outdoor heat exchanger 3.

また、低圧流入切換手段9として、室外熱交換器3側の冷媒圧力と室内熱交換器4側の冷媒圧力とを受けて可動する弁体92を備え、いずれかの高い冷媒圧力によって冷媒圧力の高い側の流路を閉弁して冷媒圧力の低い側の流路を開弁する低圧側差圧切換弁9を用いている。図3は、本発明の一実施形態における低圧側差圧切換弁9の構造を説明する模式図であり、(a)は(b)中のA−A断面図である。   The low-pressure inflow switching means 9 includes a valve body 92 that is movable in response to the refrigerant pressure on the outdoor heat exchanger 3 side and the refrigerant pressure on the indoor heat exchanger 4 side. A low pressure side differential pressure switching valve 9 is used that closes the high flow path and opens the low refrigerant pressure flow path. FIG. 3 is a schematic diagram for explaining the structure of the low-pressure side differential pressure switching valve 9 in one embodiment of the present invention, and (a) is a cross-sectional view taken along line AA in (b).

具体的に、ハウジング91の両端に第1流入部91aと第2流入部91bとが設けられており、それぞれ室外熱交換器3と室内熱交換器4とに連通していて冷媒が流入する。また、ハウジング91の中央側面には流出部91cが設けられており、エジェクタ5の低圧流入部5bに連通していて室外熱交換器3もしくは室内熱交換器4からの低圧冷媒を流出するようになっている。   Specifically, a first inflow portion 91a and a second inflow portion 91b are provided at both ends of the housing 91, and the refrigerant flows into the outdoor heat exchanger 3 and the indoor heat exchanger 4 respectively. Further, an outflow portion 91c is provided on the central side surface of the housing 91, and communicates with the low pressure inflow portion 5b of the ejector 5 so that the low pressure refrigerant from the outdoor heat exchanger 3 or the indoor heat exchanger 4 flows out. It has become.

91dは弁座、92は弁体で、両流入部91a・91bから流入する冷媒の差圧により、高圧側の流入部を閉じて低圧側の流入部と流出部91cとを連通するようになっている。92aはスライドするうえでのガイド部であり、そのガイド部92aの間に冷媒通路92bが設けられている。次に、上記構成の冷凍サイクル装置における、各運転モードでの冷媒の流れを説明する。   91d is a valve seat, and 92 is a valve body. The high pressure side inflow portion is closed and the low pressure side inflow portion and the outflow portion 91c are communicated with each other by the differential pressure of the refrigerant flowing in from both inflow portions 91a and 91b. ing. Reference numeral 92a denotes a guide part for sliding, and a refrigerant passage 92b is provided between the guide parts 92a. Next, the refrigerant flow in each operation mode in the refrigeration cycle apparatus configured as described above will be described.

<暖房運転>
図1は、室内熱交換器4での暖房(加熱)運転状態を表している。尚、以降のサイクル模式図において、冷媒が流れる経路は太線で表し、圧力だけ加わっている経路は細線で表す。暖房モードでは、圧縮機1を出た高温の冷媒は四方弁2にて室内熱交換器4側に供給される。これにより、室内熱交換器4側の冷媒圧力は室外熱交換器3側の冷媒圧力よりも高くなることから、第2逆止弁8bは開弁して第1逆止弁8aは閉弁する。また、低圧側差圧切換弁9においては、第2流入部91b側が高圧、第1流入部91a側が低圧となるので、弁体92は第2流入部91b側に押し付けられて閉じ、第1流入部91aと流出部91cとが連通する。
<Heating operation>
FIG. 1 shows a heating (heating) operation state in the indoor heat exchanger 4. In the following schematic cycle diagrams, the path through which the refrigerant flows is indicated by a thick line, and the path to which only pressure is applied is indicated by a thin line. In the heating mode, the high-temperature refrigerant exiting the compressor 1 is supplied to the indoor heat exchanger 4 side by the four-way valve 2. As a result, the refrigerant pressure on the indoor heat exchanger 4 side becomes higher than the refrigerant pressure on the outdoor heat exchanger 3 side, so the second check valve 8b is opened and the first check valve 8a is closed. . Further, in the low pressure side differential pressure switching valve 9, since the second inflow portion 91b side is high pressure and the first inflow portion 91a side is low pressure, the valve body 92 is pressed against the second inflow portion 91b side to close, The portion 91a and the outflow portion 91c communicate with each other.

各弁が上記のように作動することにより、圧縮機1を出た高温の冷媒は四方弁2を通り、室内熱交換器4で室内空気に放熱して暖房する。その後、第2逆止弁8bを通り、高圧側流入部5aからエジェクタ5へ入り、低圧側流入部5bから流入した冷媒と混合した後、気液分離器6で気相冷媒と液相冷媒に分離される。そして、気相冷媒は再び圧縮機1で圧縮される。一方、液相冷媒は絞り7で減圧された後、四方弁2から室外熱交換器3に至り外気から吸熱する。その後、低圧側差圧切換弁9を通りエジェクタ5の低圧側流入部5bに至る流れと成る。   When each valve operates as described above, the high-temperature refrigerant exiting the compressor 1 passes through the four-way valve 2 and is radiated to the indoor air by the indoor heat exchanger 4 to be heated. Then, after passing through the second check valve 8b and entering the ejector 5 from the high pressure side inflow portion 5a and mixing with the refrigerant flowing in from the low pressure side inflow portion 5b, the gas-liquid separator 6 converts the refrigerant into a gas phase refrigerant and a liquid phase refrigerant. To be separated. Then, the gas phase refrigerant is compressed again by the compressor 1. On the other hand, the liquid refrigerant is decompressed by the throttle 7 and then reaches the outdoor heat exchanger 3 from the four-way valve 2 and absorbs heat from the outside air. Thereafter, the flow passes through the low pressure side differential pressure switching valve 9 and reaches the low pressure side inflow portion 5 b of the ejector 5.

<冷房運転>
図4は、室内熱交換器4での冷房(冷却)運転状態を表している。冷房モードでは、圧縮機1を出た高温の冷媒は四方弁2にて室外熱交換器3側に供給される。これにより、室外熱交換器3側の冷媒圧力は室内熱交換器4側の冷媒圧力よりも高くなることから、第1逆止弁8aは開弁して第2逆止弁8bは閉弁する。また、低圧側差圧切換弁9においては、第1流入部91a側が高圧、第2流入部91b側が低圧となるので、弁体92は第1流入部91a側に押し付けられて閉じ、第2流入部91bと流出部91cが連通する。
<Cooling operation>
FIG. 4 shows a cooling (cooling) operation state in the indoor heat exchanger 4. In the cooling mode, the high-temperature refrigerant exiting the compressor 1 is supplied to the outdoor heat exchanger 3 side by the four-way valve 2. As a result, the refrigerant pressure on the outdoor heat exchanger 3 side becomes higher than the refrigerant pressure on the indoor heat exchanger 4 side, so the first check valve 8a is opened and the second check valve 8b is closed. . Further, in the low pressure side differential pressure switching valve 9, since the first inflow portion 91a side is high pressure and the second inflow portion 91b side is low pressure, the valve body 92 is pressed against the first inflow portion 91a side to close, The part 91b and the outflow part 91c communicate.

各弁が上記のように作動することにより、圧縮機1を出た高温の冷媒は四方弁2を通り、室外熱交換器3側で外気に放熱する。その後、第1逆止弁8aを通り、高圧側流入部5aからエジェクタ5へ入り、低圧側流入部5bから流入した冷媒と混合した後、気液分離器6で気相冷媒と液相冷媒に分離される。そして、気相冷媒は再び圧縮機1で圧縮される。一方、液相冷媒は絞り7で減圧された後、四方弁2から室内熱交換器4に至り室内空気から吸熱して冷房する。その後、低圧側差圧切換弁9を通りエジェクタ5の低圧側流入部5bに至る流れと成る。   When each valve operates as described above, the high-temperature refrigerant exiting the compressor 1 passes through the four-way valve 2 and radiates heat to the outside air on the outdoor heat exchanger 3 side. Then, after passing through the first check valve 8a and entering the ejector 5 from the high pressure side inflow portion 5a and mixing with the refrigerant flowing in from the low pressure side inflow portion 5b, the gas-liquid separator 6 converts the refrigerant into a gas phase refrigerant and a liquid phase refrigerant. To be separated. Then, the gas phase refrigerant is compressed again by the compressor 1. On the other hand, the liquid refrigerant is depressurized by the throttle 7, and then reaches the indoor heat exchanger 4 from the four-way valve 2 and absorbs heat from the room air to cool it. Thereafter, the flow passes through the low pressure side differential pressure switching valve 9 and reaches the low pressure side inflow portion 5 b of the ejector 5.

次に、本実施形態での特徴について述べる。まず、エジェクタ5の高圧流入部5aと低圧流入部5bとのそれぞれ上流に、冷媒の圧力差を利用してエジェクタ5へ流入する冷媒流路を切り換える高圧流入切換手段8a・8bと低圧流入切換手段9とを設け、四方弁2を切り換えても高圧冷媒は常に高圧流入部5aへ流入し、低圧冷媒は常に低圧流入部5bへ流入するようにしている。   Next, features in this embodiment will be described. First, the high pressure inflow switching means 8a and 8b and the low pressure inflow switching means for switching the refrigerant flow path flowing into the ejector 5 using the pressure difference of the refrigerant upstream of the high pressure inflow portion 5a and the low pressure inflow portion 5b of the ejector 5, respectively. 9 so that the high-pressure refrigerant always flows into the high-pressure inflow portion 5a and the low-pressure refrigerant always flows into the low-pressure inflow portion 5b even when the four-way valve 2 is switched.

これにより、冷媒の圧力差を利用した高圧流入切換手段8a・8bと低圧流入切換手段9とを設けた簡素な構成で、エジェクタ5へ流入する冷媒流路は自動的に切り換わり、高圧冷媒は常に高圧流入部5aへ流入し、低圧冷媒は常に低圧流入部5bへ流入するようになる。これにより、エジェクタ5を用いた冷凍サイクルにおいても膨張弁等を用いた冷凍サイクルと同様に、圧縮機1の出口に四方弁2を設けて冷媒の流れ方向を換えるだけで容易に加熱側と冷却側とを切り換えることができることとなる。   Thereby, the refrigerant flow path flowing into the ejector 5 is automatically switched with a simple configuration in which the high pressure inflow switching means 8a and 8b and the low pressure inflow switching means 9 using the pressure difference of the refrigerant are provided. The low-pressure refrigerant always flows into the high-pressure inflow portion 5a, and the low-pressure refrigerant always flows into the low-pressure inflow portion 5b. As a result, in the refrigeration cycle using the ejector 5, similarly to the refrigeration cycle using an expansion valve or the like, the four-way valve 2 is provided at the outlet of the compressor 1 and the refrigerant can be easily cooled by simply changing the flow direction of the refrigerant. Can be switched to the other side.

また、高圧流入切換手段8a・8bとして、室外熱交換器3側の冷媒圧力と室内熱交換器4側の冷媒圧力とを受け、室外熱交換器3側の冷媒圧力が高い場合に開弁する第1逆止弁8aと、室内熱交換器4側の冷媒圧力が高い場合に開弁する第2逆止弁8bとを組み合わせて用い、四方弁2を切り換えても高圧冷媒は常に高圧流入部5aへ流入するようにしている。これにより、簡単な逆止弁8a・8bを組み合わせることにより、高圧冷媒は常に高圧流入部5aへ流入するようにした高圧流入切換手段8a・8bを構成することができる。   The high pressure inflow switching means 8a and 8b are opened when the refrigerant pressure on the outdoor heat exchanger 3 side and the refrigerant pressure on the indoor heat exchanger 4 side are received and the refrigerant pressure on the outdoor heat exchanger 3 side is high. Even if the first check valve 8a and the second check valve 8b that opens when the refrigerant pressure on the indoor heat exchanger 4 side is high are used in combination, and the four-way valve 2 is switched, the high-pressure refrigerant is always in the high-pressure inflow section. It flows into 5a. Thus, by combining the simple check valves 8a and 8b, the high-pressure inflow switching means 8a and 8b can be configured such that the high-pressure refrigerant always flows into the high-pressure inflow portion 5a.

また、低圧流入切換手段9として、室外熱交換器3側の冷媒圧力と室内熱交換器4側の冷媒圧力とを受けて可動する弁体92を備えていずれかの高い冷媒圧力によって冷媒圧力の高い側の流路を閉弁して冷媒圧力の低い側の流路を開弁する低圧側差圧切換弁9を用い、四方弁2を切り換えても低圧冷媒は常に前記低圧流入部5bへ流入するようにしている。このように、差圧により弁体92が可動して圧力の低い側を連通させる簡単な差圧切換弁9用いることにより、低圧冷媒は常に低圧流入部5bへ流入するようにした低圧流入切換手段9とすることができ、サイクル構成の簡素化を図ることができる。   The low-pressure inflow switching means 9 includes a valve body 92 that is movable in response to the refrigerant pressure on the outdoor heat exchanger 3 side and the refrigerant pressure on the indoor heat exchanger 4 side. Even when the four-way valve 2 is switched using the low pressure side differential pressure switching valve 9 that closes the high flow path and opens the low refrigerant pressure flow path, the low pressure refrigerant always flows into the low pressure inflow portion 5b. Like to do. Thus, by using the simple differential pressure switching valve 9 in which the valve body 92 is moved by the differential pressure to communicate the low pressure side, the low pressure inflow switching means is configured so that the low pressure refrigerant always flows into the low pressure inflow portion 5b. The cycle configuration can be simplified.

(第2実施形態)
図5は、本発明の第2実施形態における冷凍サイクル装置の模式図である。上述した第1実施形態とは、エジェクタ5の高圧流入部5a上流に設ける高圧流入切換手段10の構造のみ異なる。本実施形態では高圧流入切換手段10として、室外熱交換器3側の冷媒圧力と室内熱交換器4側の冷媒圧力とを受けて可動する弁体102を備え、いずれかの高い冷媒圧力によって冷媒圧力の高い側の流路を開弁して冷媒圧力の低い側の流路を閉弁する高圧側差圧切換弁10を用いている。
(Second Embodiment)
FIG. 5 is a schematic diagram of a refrigeration cycle apparatus according to the second embodiment of the present invention. Only the structure of the high pressure inflow switching means 10 provided upstream of the high pressure inflow portion 5a of the ejector 5 is different from the first embodiment described above. In the present embodiment, the high-pressure inflow switching means 10 includes a valve body 102 that is movable in response to the refrigerant pressure on the outdoor heat exchanger 3 side and the refrigerant pressure on the indoor heat exchanger 4 side. A high pressure side differential pressure switching valve 10 is used that opens the flow path on the high pressure side and closes the flow path on the low refrigerant pressure side.

図6は、本発明の一実施形態における高圧側差圧切換弁10の構造を説明する断面模式図である。具体的に、ハウジング101の両端に第1流入部101aと第2流入部101bとが設けられており、それぞれ室外熱交換器3と室内熱交換器4とに連通していて冷媒が流入する。また、ハウジング101の中央側面には流出部101cが設けられており、エジェクタ5の高圧流入部5aに連通していて室外熱交換器3もしくは室内熱交換器4からの高圧冷媒を流出するようになっている。   FIG. 6 is a schematic cross-sectional view illustrating the structure of the high-pressure side differential pressure switching valve 10 in one embodiment of the present invention. Specifically, a first inflow portion 101a and a second inflow portion 101b are provided at both ends of the housing 101, and the refrigerant flows into the outdoor heat exchanger 3 and the indoor heat exchanger 4 respectively. Further, an outflow portion 101c is provided on the central side surface of the housing 101 and communicates with the high pressure inflow portion 5a of the ejector 5 so that the high pressure refrigerant from the outdoor heat exchanger 3 or the indoor heat exchanger 4 flows out. It has become.

102は球状弁体で、両流入部101a・101bから流入する冷媒の差圧により、高圧側の流入部を開いて流出部101cと連通させ、低圧側の流入部を閉じるようになっている。次に、上記構成の冷凍サイクル装置における、各運転モードでの冷媒の流れを説明する。   A spherical valve body 102 is configured to open the high-pressure side inflow portion and communicate with the outflow portion 101c and close the low-pressure side inflow portion by the differential pressure of the refrigerant flowing in from both inflow portions 101a and 101b. Next, the refrigerant flow in each operation mode in the refrigeration cycle apparatus configured as described above will be described.

<暖房運転>
図5は、室内熱交換器4での暖房(加熱)運転状態を表している。暖房モードでは、圧縮機1を出た高温の冷媒は四方弁2にて室内熱交換器4側に供給される。これにより、室内熱交換器4側の冷媒圧力は室外熱交換器3側の冷媒圧力よりも高くなることから、高圧側差圧切換弁10においては、第1流入部101a側が高圧、第2流入部101b側が低圧となるので、弁体102は第2流入部101b側に押し付けられて閉じ、第1流入部101aと流出部101cとが連通する。また、低圧側差圧切換弁9においては、第2流入部91b側が高圧、第1流入部91a側が低圧となるので、弁体92は第2流入部91b側に押し付けられて閉じ、第1流入部91aと流出部91cとが連通する。
<Heating operation>
FIG. 5 shows a heating (heating) operation state in the indoor heat exchanger 4. In the heating mode, the high-temperature refrigerant exiting the compressor 1 is supplied to the indoor heat exchanger 4 side by the four-way valve 2. Accordingly, the refrigerant pressure on the indoor heat exchanger 4 side becomes higher than the refrigerant pressure on the outdoor heat exchanger 3 side. Therefore, in the high-pressure side differential pressure switching valve 10, the first inflow portion 101a side has a high pressure and the second inflow Since the part 101b side becomes a low pressure, the valve body 102 is pressed and closed to the second inflow part 101b side, and the first inflow part 101a and the outflow part 101c communicate with each other. Further, in the low pressure side differential pressure switching valve 9, since the second inflow portion 91b side is high pressure and the first inflow portion 91a side is low pressure, the valve body 92 is pressed against the second inflow portion 91b side to close, The portion 91a and the outflow portion 91c communicate with each other.

各弁が上記のように作動することにより、圧縮機1を出た高温の冷媒は四方弁2を通り、室内熱交換器4で室内空気に放熱して暖房する。その後、高圧側差圧切換弁10を通り、高圧側流入部5aからエジェクタ5へ入り、低圧側流入部5bから流入した冷媒と混合した後、気液分離器6で気相冷媒と液相冷媒に分離される。そして、気相冷媒は再び圧縮機1で圧縮される。一方、液相冷媒は絞り7で減圧された後、四方弁2から室外熱交換器3に至り外気から吸熱する。その後、低圧側差圧切換弁9を通りエジェクタ5の低圧側流入部5bに至る流れと成る。   When each valve operates as described above, the high-temperature refrigerant exiting the compressor 1 passes through the four-way valve 2 and is radiated to the indoor air by the indoor heat exchanger 4 to be heated. Then, after passing through the high-pressure side differential pressure switching valve 10 and entering the ejector 5 from the high-pressure side inflow portion 5a and mixing with the refrigerant flowing in from the low-pressure side inflow portion 5b, the gas-liquid separator 6 and the gas-phase refrigerant and liquid-phase refrigerant are mixed. Separated. Then, the gas phase refrigerant is compressed again by the compressor 1. On the other hand, the liquid refrigerant is decompressed by the throttle 7 and then reaches the outdoor heat exchanger 3 from the four-way valve 2 and absorbs heat from the outside air. Thereafter, the flow passes through the low pressure side differential pressure switching valve 9 and reaches the low pressure side inflow portion 5 b of the ejector 5.

<冷房運転>
図7は、室内熱交換器4での冷房(冷却)運転状態を表している。冷房モードでは、圧縮機1を出た高温の冷媒は四方弁2にて室外熱交換器3側に供給される。これにより、室外熱交換器3側の冷媒圧力は室内熱交換器4側の冷媒圧力よりも高くなることから、高圧側差圧切換弁10においては、第2流入部101b側が高圧、第1流入部101a側が低圧となるので、弁体102は第1流入部101a側に押し付けられて閉じ、第1流入部101aと流出部101cとが連通する。また、低圧側差圧切換弁9においては、第1流入部91a側が高圧、第2流入部91b側が低圧となるので、弁体92は第1流入部91a側に押し付けられて閉じ、第2流入部91bと流出部91cが連通する。
<Cooling operation>
FIG. 7 shows a cooling (cooling) operation state in the indoor heat exchanger 4. In the cooling mode, the high-temperature refrigerant exiting the compressor 1 is supplied to the outdoor heat exchanger 3 side by the four-way valve 2. Accordingly, the refrigerant pressure on the outdoor heat exchanger 3 side becomes higher than the refrigerant pressure on the indoor heat exchanger 4 side. Therefore, in the high-pressure side differential pressure switching valve 10, the second inflow portion 101b side has a high pressure and the first inflow Since the part 101a side becomes a low pressure, the valve body 102 is pressed and closed to the first inflow part 101a side, and the first inflow part 101a and the outflow part 101c communicate with each other. Further, in the low pressure side differential pressure switching valve 9, since the first inflow portion 91a side is high pressure and the second inflow portion 91b side is low pressure, the valve body 92 is pressed against the first inflow portion 91a side to close, The part 91b and the outflow part 91c communicate.

各弁が上記のように作動することにより、圧縮機1を出た高温の冷媒は四方弁2を通り、室外熱交換器3側で外気に放熱する。その後、高圧側差圧切換弁10を通り、高圧側流入部5aからエジェクタ5へ入り、低圧側流入部5bから流入した冷媒と混合した後、気液分離器6で気相冷媒と液相冷媒に分離される。そして、気相冷媒は再び圧縮機1で圧縮される。一方、液相冷媒は絞り7で減圧された後、四方弁2から室内熱交換器4に至り室内空気から吸熱して冷房する。その後、低圧側差圧切換弁9を通りエジェクタ5の低圧側流入部5bに至る流れと成る。   When each valve operates as described above, the high-temperature refrigerant exiting the compressor 1 passes through the four-way valve 2 and radiates heat to the outside air on the outdoor heat exchanger 3 side. Then, after passing through the high-pressure side differential pressure switching valve 10 and entering the ejector 5 from the high-pressure side inflow portion 5a and mixing with the refrigerant flowing in from the low-pressure side inflow portion 5b, the gas-liquid separator 6 and the gas-phase refrigerant and liquid-phase refrigerant are mixed. Separated. Then, the gas phase refrigerant is compressed again by the compressor 1. On the other hand, the liquid refrigerant is depressurized by the throttle 7, and then reaches the indoor heat exchanger 4 from the four-way valve 2 and absorbs heat from the room air to cool it. Thereafter, the flow passes through the low pressure side differential pressure switching valve 9 and reaches the low pressure side inflow portion 5 b of the ejector 5.

次に、本実施形態での特徴について述べる。高圧流入切換手段10として、室外熱交換器3側の冷媒圧力と室内熱交換器4側の冷媒圧力とを受けて可動する弁体102を備えていずれかの高い冷媒圧力によって冷媒圧力の高い側の流路を開弁して冷媒圧力の低い側の流路を閉弁する高圧側差圧切換弁10を用い、四方弁2を切り換えても高圧冷媒は常に高圧流入部5aへ流入するようにしている。このように、差圧により弁体102が可動して圧力の高い側を連通させる簡単な差圧切換弁10用いることにより、高圧冷媒は常に高圧流入部5aへ流入するようにした高圧流入切換手段10とすることができ、サイクル構成の簡素化を図ることができる。   Next, features in this embodiment will be described. The high-pressure inflow switching means 10 includes a valve body 102 that is movable in response to the refrigerant pressure on the outdoor heat exchanger 3 side and the refrigerant pressure on the indoor heat exchanger 4 side. Even when the four-way valve 2 is switched, the high-pressure refrigerant always flows into the high-pressure inflow portion 5a using the high-pressure side differential pressure switching valve 10 that opens the flow path of the refrigerant and closes the flow path on the low refrigerant pressure side. ing. Thus, by using the simple differential pressure switching valve 10 in which the valve body 102 is moved by the differential pressure and the high pressure side is communicated, the high pressure inflow switching means is configured so that the high pressure refrigerant always flows into the high pressure inflow portion 5a. The cycle configuration can be simplified.

(第3実施形態)
図8は、本発明の第3実施形態における冷凍サイクル装置の模式図である。上述した第1・第2実施形態の冷凍サイクルでエジェクタ5は、低圧側となる室外熱交換器3もしくは室内熱交換器4から流出した冷媒を吸引している。この構成では、高低圧差が小さいときなどの膨張動力の小さい場合や、吸引流の流れる部分(低圧側熱交換器や接続配管)の流路抵抗がエジェクタ5の昇圧性能より大きい場合などには低圧側(蒸発側)熱交換器に必要な冷媒流量を流すことができず、冷凍サイクルの運転が困難となる。
(Third embodiment)
FIG. 8 is a schematic diagram of a refrigeration cycle apparatus according to the third embodiment of the present invention. In the refrigeration cycle of the first and second embodiments described above, the ejector 5 sucks the refrigerant flowing out of the outdoor heat exchanger 3 or the indoor heat exchanger 4 on the low pressure side. In this configuration, when the expansion power is small, such as when the high-low pressure difference is small, or when the flow resistance of the portion where the suction flow flows (low-pressure side heat exchanger or connection pipe) is larger than the boosting performance of the ejector 5, the low pressure The refrigerant flow required for the side (evaporation side) heat exchanger cannot be flowed, and the operation of the refrigeration cycle becomes difficult.

脱フロン冷媒として注目されているCO冷媒では、エジェクタ5の昇圧性能が0.数MPa有るのに対してR134aやR410aなどのフロン系の冷媒では昇圧性能が0.1MPa以下と小さいため、特に影響が大きい。また、フロン系冷媒は家庭用のルームエアコンで一般的に使われるが、この冷凍サイクルでは室内機と室外機の高低差が10m以上有ったり、配管長が長くなったりして、エジェクタ5の昇圧性能不足が特に影響し易い。 With a CO 2 refrigerant that has been attracting attention as a de-fluorocarbon refrigerant, the pressurization performance of the ejector 5 is 0. In contrast to the fact that it is several MPa, a CFC-based refrigerant such as R134a or R410a has a particularly high influence because the pressure increase performance is as low as 0.1 MPa or less. In addition, chlorofluorocarbon refrigerants are generally used in room air conditioners for home use. In this refrigeration cycle, the height difference between the indoor unit and the outdoor unit is 10 m or more, the pipe length is long, and the ejector 5 Insufficient boosting performance is particularly susceptible.

これに対して本実施形態の冷凍サイクルは、圧縮機1で駆動される冷媒流れが低圧側熱交換器を通るようにし、低圧側熱交換器に流入する冷媒にエジェクタ5を使って気液分離器6に貯まった液相冷媒を吸引して注入する構成とした冷凍サイクルである。冷媒を再循環させることで低圧側熱交換器に乾き度の高い気液二相冷媒を流入し、沸騰熱伝達を向上させている。   In contrast, the refrigeration cycle of the present embodiment allows the refrigerant flow driven by the compressor 1 to pass through the low-pressure side heat exchanger, and uses the ejector 5 for the refrigerant flowing into the low-pressure side heat exchanger to perform gas-liquid separation. This is a refrigeration cycle configured to suck and inject liquid phase refrigerant stored in the vessel 6. By recirculating the refrigerant, a gas-liquid two-phase refrigerant having a high degree of dryness flows into the low-pressure side heat exchanger to improve boiling heat transfer.

気液分離器6において流入・流出するエネルギバランスを考えると、定常状態においては流入する気相冷媒・液相冷媒の流量が流出する気相冷媒・液相冷媒の流量と一致しなければならないので、圧縮機1に気相冷媒のみが流出し、エジェクタ5に液相冷媒のみが流出すると、気液分離器6に流入する液相冷媒の流量はエジェクタ5に向けて流出する液相冷媒の流量と一致する。すなわち、エジェクタ5で吸引した液相冷媒の分だけ蒸発器である低圧側熱交換器内を流れる冷媒の乾き度が小さくなり、更に、冷媒流量の増加により流速が速くなる。   Considering the energy balance of inflow / outflow in the gas-liquid separator 6, in a steady state, the flow rate of the inflowing gas phase / liquid phase refrigerant must match the outflow of the gas phase / liquid phase refrigerant. When only the gas-phase refrigerant flows out into the compressor 1 and only the liquid-phase refrigerant flows out into the ejector 5, the flow rate of the liquid-phase refrigerant flowing into the gas-liquid separator 6 is the flow rate of the liquid-phase refrigerant flowing out toward the ejector 5. Matches. That is, the dryness of the refrigerant flowing in the low-pressure side heat exchanger, which is the evaporator, is reduced by the amount of the liquid-phase refrigerant sucked by the ejector 5, and the flow rate is increased by increasing the refrigerant flow rate.

冷媒の熱伝達率は気相冷媒よりも液相冷媒の方が大きく、更に流速が大きい方が温度境界層が薄くなってより熱伝達率が大きくなるので、低圧側熱交換器の熱交換性能が向上し、低圧側熱交換器と熱交換する流体(本実施形態の場合は空気)との温度差が小さくなって低圧側熱交換器内圧力が高くなる。そのため、圧縮機1の吸入圧力が上昇し圧縮動力が低減されCOPの向上を図ることができる。   The heat transfer coefficient of the refrigerant is higher for the liquid phase refrigerant than for the gas phase refrigerant, and the higher the flow rate, the thinner the temperature boundary layer and the higher the heat transfer coefficient. As a result, the temperature difference between the fluid that exchanges heat with the low-pressure side heat exchanger (in the case of this embodiment, air) is reduced, and the internal pressure of the low-pressure side heat exchanger is increased. Therefore, the suction pressure of the compressor 1 is increased, the compression power is reduced, and the COP can be improved.

また、冷凍サイクルの高低圧差が小さく、エジェクタ5の昇圧能力が弱い場合や、室内熱交換器4とエジェクタ5や気液分離器6との距離が遠かったり、室内熱交換器4が高いところにあったりして第1・第2実施形態の冷凍サイクルではエジェクタ5で十分な冷媒流量を室内熱交換器4に流せないような場合にも、本実施形態によれば、室内熱交換器4を流れる冷媒は圧縮機1で駆動できるため、エジェクタ5で吸引する液冷媒流量が小さくなるだけでサイクルとして運転できない状況に陥ることはない。次に、上記構成の冷凍サイクル装置における、各運転モードでの冷媒の流れを説明する。   Further, when the difference between the high and low pressures of the refrigeration cycle is small and the boosting capacity of the ejector 5 is weak, the distance between the indoor heat exchanger 4 and the ejector 5 or the gas-liquid separator 6 is long, or the indoor heat exchanger 4 is high. Even if the refrigeration cycle of the first and second embodiments does not allow the ejector 5 to flow a sufficient refrigerant flow rate to the indoor heat exchanger 4, according to the present embodiment, the indoor heat exchanger 4 is Since the flowing refrigerant can be driven by the compressor 1, the liquid refrigerant flow sucked by the ejector 5 is only reduced, so that it does not fall into a situation where it cannot be operated as a cycle. Next, the refrigerant flow in each operation mode in the refrigeration cycle apparatus configured as described above will be described.

<暖房運転>
図8は、室内熱交換器4での暖房(加熱)運転状態を表している。暖房モードでは、圧縮機1を出た高温の冷媒は四方弁2にて室内熱交換器4側に供給される。これにより、室内熱交換器4側の冷媒圧力は室外熱交換器3側の冷媒圧力よりも高くなることから、高圧側差圧切換弁10においては、第1流入部101a側が高圧、第2流入部101b側が低圧となるので、弁体102は第2流入部101b側(室外熱交換器3側)に押し付けられて閉じ、第1流入部101a(室内熱交換器4側)と流出部101cとが連通する。
<Heating operation>
FIG. 8 shows a heating (heating) operation state in the indoor heat exchanger 4. In the heating mode, the high-temperature refrigerant exiting the compressor 1 is supplied to the indoor heat exchanger 4 side by the four-way valve 2. Accordingly, the refrigerant pressure on the indoor heat exchanger 4 side becomes higher than the refrigerant pressure on the outdoor heat exchanger 3 side. Therefore, in the high-pressure side differential pressure switching valve 10, the first inflow portion 101a side has a high pressure and the second inflow Since the part 101b side becomes low pressure, the valve body 102 is pressed against the second inflow part 101b side (outdoor heat exchanger 3 side) and closed, and the first inflow part 101a (indoor heat exchanger 4 side), the outflow part 101c, Communicate.

また、低圧側差圧切換弁9においては、第1・第2実施形態と流入・流出の関係が逆となり、第1流出部91a側が高圧、第2流出部91b側が低圧となるので、弁体92は第1流出部91a(室内熱交換器4側)側に押し付けられて閉じ、流入部91cと第2流出部91b(室外熱交換器3側)とが連通する。   Further, in the low pressure side differential pressure switching valve 9, the relationship between the inflow / outflow is opposite to that in the first and second embodiments, the first outflow portion 91a side is at a high pressure, and the second outflow portion 91b side is at a low pressure. 92 is pressed and closed to the first outflow part 91a (indoor heat exchanger 4 side) side, and the inflow part 91c and the second outflow part 91b (outdoor heat exchanger 3 side) communicate with each other.

各弁が上記のように作動することにより、圧縮機1を出た高温の冷媒は四方弁2を通り、室内熱交換器4で室内空気に放熱して暖房する。その後、高圧側差圧切換弁10を通り、高圧側流入部5aからエジェクタ5へ入り、低圧側流入部5bから気液分離器6に貯まった液相冷媒を吸引して混合・昇圧される。そして吐出部5fから吐出された冷媒は低圧側差圧切換弁9を通って室外熱交換器3に至り外気から吸熱する。その後再び四方弁2を通って気液分離器6で気相冷媒と液相冷媒に分離され、気相冷媒は再び圧縮機1で圧縮される一方、液相冷媒はエジェクタ5の低圧側流入部5bに吸引される。   When each valve operates as described above, the high-temperature refrigerant exiting the compressor 1 passes through the four-way valve 2 and is radiated to the indoor air by the indoor heat exchanger 4 to be heated. Thereafter, the refrigerant passes through the high-pressure side differential pressure switching valve 10 and enters the ejector 5 from the high-pressure side inflow portion 5a, and the liquid-phase refrigerant stored in the gas-liquid separator 6 is sucked from the low-pressure side inflow portion 5b to be mixed and pressurized. Then, the refrigerant discharged from the discharge unit 5f passes through the low pressure side differential pressure switching valve 9, reaches the outdoor heat exchanger 3, and absorbs heat from the outside air. Thereafter, the gas-liquid separator 6 separates the gas-phase refrigerant and the liquid-phase refrigerant again through the four-way valve 2, and the gas-phase refrigerant is compressed again by the compressor 1, while the liquid-phase refrigerant is in the low pressure side inflow portion of the ejector 5. Suctioned to 5b.

<冷房運転>
図9は、室内熱交換器4での冷房(冷却)運転状態を表している。冷房モードでは、圧縮機1を出た高温の冷媒は四方弁2にて室外熱交換器3側に供給される。これにより、室外熱交換器3側の冷媒圧力は室内熱交換器4側の冷媒圧力よりも高くなることから、高圧側差圧切換弁10においては、第2流入部101b側が高圧、第1流入部101a側が低圧となるので、弁体102は第1流入部101a側(室内熱交換器4側)に押し付けられて閉じ、第2流入部101b(室外熱交換器3側)と流出部101cとが連通する。
<Cooling operation>
FIG. 9 shows a cooling (cooling) operation state in the indoor heat exchanger 4. In the cooling mode, the high-temperature refrigerant exiting the compressor 1 is supplied to the outdoor heat exchanger 3 side by the four-way valve 2. Accordingly, the refrigerant pressure on the outdoor heat exchanger 3 side becomes higher than the refrigerant pressure on the indoor heat exchanger 4 side. Therefore, in the high-pressure side differential pressure switching valve 10, the second inflow portion 101b side has a high pressure and the first inflow Since the part 101a side becomes a low pressure, the valve body 102 is pressed and closed to the first inflow part 101a side (indoor heat exchanger 4 side), the second inflow part 101b (outdoor heat exchanger 3 side), the outflow part 101c, Communicate.

また、低圧側差圧切換弁9においては、第1流出部91a側が低圧、第2流出部91b側が高圧となるので、弁体92は第2流出部91b側(室外熱交換器3側)に押し付けられて閉じ、第1流出部91b(室内熱交換器4側)と流入部91cが連通する。   Further, in the low pressure side differential pressure switching valve 9, since the first outflow portion 91a side is low pressure and the second outflow portion 91b side is high pressure, the valve body 92 is on the second outflow portion 91b side (outdoor heat exchanger 3 side). The first outflow portion 91b (inside the indoor heat exchanger 4) and the inflow portion 91c communicate with each other by being pressed and closed.

各弁が上記のように作動することにより、圧縮機1を出た高温の冷媒は四方弁2を通り、室外熱交換器3側で外気に放熱する。その後、高圧側差圧切換弁10を通り、高圧側流入部5aからエジェクタ5へ入り、低圧側流入部5bから気液分離器6に貯まった液相冷媒を吸引して混合・昇圧される。そして吐出部5fから吐出された冷媒は低圧側差圧切換弁9を通って室内熱交換器4に至り室内空気から吸熱して冷房する。その後再び四方弁2を通って気液分離器6で気相冷媒と液相冷媒に分離され、気相冷媒は再び圧縮機1で圧縮される一方、液相冷媒はエジェクタ5の低圧側流入部5bに吸引される。   When each valve operates as described above, the high-temperature refrigerant exiting the compressor 1 passes through the four-way valve 2 and radiates heat to the outside air on the outdoor heat exchanger 3 side. Thereafter, the refrigerant passes through the high-pressure side differential pressure switching valve 10 and enters the ejector 5 from the high-pressure side inflow portion 5a, and the liquid-phase refrigerant stored in the gas-liquid separator 6 is sucked from the low-pressure side inflow portion 5b to be mixed and pressurized. Then, the refrigerant discharged from the discharge part 5f passes through the low pressure side differential pressure switching valve 9, reaches the indoor heat exchanger 4, and absorbs heat from the room air to cool it. Thereafter, the gas-liquid separator 6 separates the gas-phase refrigerant and the liquid-phase refrigerant again through the four-way valve 2, and the gas-phase refrigerant is compressed again by the compressor 1, while the liquid-phase refrigerant is in the low pressure side inflow portion of the ejector 5. Suctioned to 5b.

次に、本実施形態での特徴について述べる。エジェクタ5の高圧流入部5aの上流に冷媒の圧力差を利用してエジェクタ5へ流入する冷媒流路を切り換える高圧側差圧切換弁10と、エジェクタ5の流出部5fの下流に冷媒の圧力差を利用してエジェクタ5から流出した冷媒の流路を切り換える低圧側差圧切換弁9とを設け、四方弁2を切り換えた場合、高圧冷媒は常に高圧流入部5aへ流入し、エジェクタ5が吐出する気液二相冷媒は低圧側となる室外熱交換器3もしくは室内熱交換器4に流入するようになっている。これによれば、エジェクタ5の昇圧能力の低いもの、低圧側熱交換器の流路抵抗やエジェクタ5と低圧側熱交換器間の高低差が大きなものに対しても確実に作動する。   Next, features in this embodiment will be described. A high pressure side differential pressure switching valve 10 that switches a refrigerant flow path that flows into the ejector 5 using a pressure difference of the refrigerant upstream of the high pressure inflow portion 5a of the ejector 5, and a refrigerant pressure difference downstream of the outflow portion 5f of the ejector 5 When the four-way valve 2 is switched by providing a low pressure side differential pressure switching valve 9 that switches the flow path of the refrigerant that has flowed out of the ejector 5 by using the high pressure refrigerant, the high pressure refrigerant always flows into the high pressure inflow portion 5a, and the ejector 5 discharges The gas-liquid two-phase refrigerant to flow into the outdoor heat exchanger 3 or the indoor heat exchanger 4 on the low pressure side. According to this, even if the ejector 5 has a low boosting capability, the flow resistance of the low-pressure side heat exchanger or the height difference between the ejector 5 and the low-pressure side heat exchanger is surely operated.

また、冷媒の圧力差を利用した高圧側差圧切換弁10と低圧側差圧切換弁9とを設けた簡素な構成で、エジェクタ5へ流入する冷媒流路と低圧側熱交換器へ流出する冷媒流路とは自動的に切り換わり、高圧冷媒は常に高圧流入部5aへ流入し、エジェクタ5が吐出する気液二相冷媒は低圧側となる室外熱交換器3もしくは室内熱交換器4に流入するようになる。これにより、エジェクタ5を用いた冷凍サイクルにおいても膨張弁等を用いた冷凍サイクルと同様に、圧縮機1の出口に四方弁2を設けて冷媒の流れ方向を換えるだけで容易に加熱側と冷却側とを切り換えることができることとなる。   Further, with a simple configuration provided with a high-pressure side differential pressure switching valve 10 and a low-pressure side differential pressure switching valve 9 utilizing the pressure difference of the refrigerant, the refrigerant flows into the ejector 5 and flows out to the low-pressure side heat exchanger. The refrigerant flow automatically switches, the high-pressure refrigerant always flows into the high-pressure inflow portion 5a, and the gas-liquid two-phase refrigerant discharged from the ejector 5 enters the outdoor heat exchanger 3 or the indoor heat exchanger 4 on the low pressure side. Inflow. As a result, in the refrigeration cycle using the ejector 5, similarly to the refrigeration cycle using an expansion valve or the like, the four-way valve 2 is provided at the outlet of the compressor 1 and the refrigerant can be easily cooled by simply changing the refrigerant flow direction. Can be switched to the other side.

(第4実施形態)
図10は本発明の第4実施形態における冷凍サイクル装置の模式図であり、室内熱交換器4での暖房運転状態を表す。また、図11は図10の冷凍サイクル装置における室内熱交換器4での冷房運転状態を表すものである。本実施形態の冷凍サイクルは、上記第3実施形態の冷凍サイクルから気液分離器6を取り除いて構成したものである。この構成によっても、上記第3実施形態の冷凍サイクルと同様の作用と効果が得られるうえ、冷凍サイクルをより簡素に構成することができる。
(Fourth embodiment)
FIG. 10 is a schematic diagram of the refrigeration cycle apparatus according to the fourth embodiment of the present invention, and shows a heating operation state in the indoor heat exchanger 4. FIG. 11 shows a cooling operation state in the indoor heat exchanger 4 in the refrigeration cycle apparatus of FIG. The refrigeration cycle of the present embodiment is configured by removing the gas-liquid separator 6 from the refrigeration cycle of the third embodiment. Also with this configuration, the same operation and effect as the refrigeration cycle of the third embodiment can be obtained, and the refrigeration cycle can be configured more simply.

(第5実施形態)
図12は、本発明の第5実施形態における切換弁一体エジェクタ50の構造を説明する断面模式図である。これは、第1・第2実施形態で説明した低圧側差圧切換弁9、または高圧側差圧切換弁10、もしくはその両方の差圧切換弁9・10を、エジェクタ5の本体ハウジング内に一体にして構成したものである。
(Fifth embodiment)
FIG. 12 is a schematic cross-sectional view illustrating the structure of the selector valve integrated ejector 50 according to the fifth embodiment of the present invention. This is because the low pressure side differential pressure switching valve 9, the high pressure side differential pressure switching valve 10, or both of the differential pressure switching valves 9, 10 described in the first and second embodiments are placed in the main body housing of the ejector 5. It is constructed integrally.

室外熱交換器3に連通する第1流入部50aは、内部で分岐して低圧側差圧切換弁9の第1流入部91aと高圧側差圧切換弁10の第2流入部101bとに連通している。また、室内熱交換器4に連通する第2流入部50bは、内部で分岐して低圧側差圧切換弁9の第2流入部91bと高圧側差圧切換弁10の第1流入部101aとに連通している。そして、低圧側差圧切換弁9の流出部91cはエジェクタ5の低圧側流入部5bと連通しており、高圧側差圧切換弁10の流出部101cはエジェクタ5の低圧側流入部5aと連通している。   The first inflow portion 50 a communicating with the outdoor heat exchanger 3 branches inside and communicates with the first inflow portion 91 a of the low pressure side differential pressure switching valve 9 and the second inflow portion 101 b of the high pressure side differential pressure switching valve 10. is doing. In addition, the second inflow portion 50 b communicating with the indoor heat exchanger 4 is branched inside to the second inflow portion 91 b of the low pressure side differential pressure switching valve 9 and the first inflow portion 101 a of the high pressure side differential pressure switching valve 10. Communicating with The outflow portion 91 c of the low pressure side differential pressure switching valve 9 communicates with the low pressure side inflow portion 5 b of the ejector 5, and the outflow portion 101 c of the high pressure side differential pressure switching valve 10 communicates with the low pressure side inflow portion 5 a of the ejector 5. is doing.

92・102は、それぞれの両流入部から流入する冷媒の差圧によって作動する弁体である。そして、図13は図12の切換弁一体エジェクタ50を用いた冷凍サイクル装置の模式図であり、室内熱交換器4での冷房運転状態を表している。作動については上述の第1・第2実施形態と同様なので説明を省く。   Reference numerals 92 and 102 denote valve bodies that are operated by the differential pressure of the refrigerant flowing in from both the inflow portions. FIG. 13 is a schematic diagram of a refrigeration cycle apparatus using the selector valve integrated ejector 50 of FIG. 12, and shows a cooling operation state in the indoor heat exchanger 4. Since the operation is the same as in the first and second embodiments described above, a description thereof will be omitted.

次に、本実施形態での特徴について述べる。エジェクタ5に、低圧側差圧切換弁9、または前記高圧側差圧切換弁10、もしくはその両方の差圧切換弁9・10を一体にして構成している。このように、差圧切換弁9・10を一体として冷媒流路もエジェクタ5のハウジング内に形成することで、エジェクタ5と差圧切換弁9・10とを小型に構成できるうえ、これらのコストを抑えることができる。   Next, features in this embodiment will be described. A low pressure side differential pressure switching valve 9, a high pressure side differential pressure switching valve 10, or both differential pressure switching valves 9, 10 are integrally formed in the ejector 5. Thus, by forming the differential pressure switching valves 9 and 10 together with the refrigerant flow path in the housing of the ejector 5, the ejector 5 and the differential pressure switching valves 9 and 10 can be configured in a small size, and their costs are also reduced. Can be suppressed.

また、冷媒流路の接続も加熱側と冷却側とを固定したサイクルと同様に、冷媒吐出側を気液分離器6に接続したうえ、この差圧弁一体エジェクタ50を室外熱交換器3と室内熱交換器4との間に接続するだけで良くなる。これにより、各機能部品間の接続配管および接続作業を省くことができ、小型に構成できるうえ、これらのコストを抑えることができる。   Similarly to the cycle in which the refrigerant flow path is fixed on the heating side and the cooling side, the refrigerant discharge side is connected to the gas-liquid separator 6, and the differential pressure valve integrated ejector 50 is connected to the outdoor heat exchanger 3 and the indoor heat exchanger 3. Simply connecting to the heat exchanger 4 is sufficient. As a result, it is possible to omit connection piping and connection work between the functional components, and it is possible to reduce the cost as well as to reduce the size.

(その他の実施形態)
上述の第1実施形態では、第1逆止弁8aと第2逆止弁8bとの二つを組み合わせて高圧流入切換手段としているが、もちろん、この第1逆止弁8aと第2逆止弁8bとを一体化して一つのハウジングに二つの流入部と二つの弁体部と一つの流出部としても良い。また、高圧側差圧切換弁10の弁体102は球状に限るものではなく、例えば円筒形等であっても良い。
(Other embodiments)
In the first embodiment described above, the first check valve 8a and the second check valve 8b are combined to form the high pressure inflow switching means. Of course, the first check valve 8a and the second check valve 8a are combined. The valve 8b may be integrated to form two inflow portions, two valve body portions, and one outflow portion in one housing. Further, the valve body 102 of the high-pressure side differential pressure switching valve 10 is not limited to a spherical shape, and may be, for example, a cylindrical shape.

本発明の第1実施形態における冷凍サイクル装置の模式図であり、室内熱交換器4での暖房運転状態を表す。It is a schematic diagram of the refrigeration cycle apparatus in 1st Embodiment of this invention, and represents the heating operation state in the indoor heat exchanger 4. FIG. エジェクタ5の構造を説明する断面模式図である。It is a cross-sectional schematic diagram explaining the structure of the ejector 5. FIG. 本発明の一実施形態における低圧側差圧切換弁9の構造を説明する模式図であり、(a)は(b)中のA−A断面図である。It is a schematic diagram explaining the structure of the low pressure side differential pressure switching valve 9 in one Embodiment of this invention, (a) is AA sectional drawing in (b). 図1の冷凍サイクル装置における室内熱交換器4での冷房運転状態を表す。The cooling operation state in the indoor heat exchanger 4 in the refrigeration cycle apparatus of FIG. 1 is represented. 本発明の第2実施形態における冷凍サイクル装置の模式図であり、室内熱交換器4での暖房運転状態を表す。It is a schematic diagram of the refrigerating cycle device in 2nd Embodiment of this invention, and represents the heating operation state in the indoor heat exchanger 4. FIG. 本発明の一実施形態における高圧側差圧切換弁10の構造を説明する断面模式図である。It is a cross-sectional schematic diagram explaining the structure of the high pressure side differential pressure switching valve 10 in one Embodiment of this invention. 図5の冷凍サイクル装置における室内熱交換器4での冷房運転状態を表す。The cooling operation state in the indoor heat exchanger 4 in the refrigeration cycle apparatus of FIG. 5 is represented. 本発明の第3実施形態における冷凍サイクル装置の模式図であり、室内熱交換器4での暖房運転状態を表す。It is a schematic diagram of the refrigerating cycle device in 3rd Embodiment of this invention, and the heating operation state in the indoor heat exchanger 4 is represented. 図8の冷凍サイクル装置における室内熱交換器4での冷房運転状態を表す。The cooling operation state in the indoor heat exchanger 4 in the refrigeration cycle apparatus of FIG. 8 is represented. 本発明の第4実施形態における冷凍サイクル装置の模式図であり、室内熱交換器4での暖房運転状態を表す。It is a schematic diagram of the refrigeration cycle apparatus in 4th Embodiment of this invention, and the heating operation state in the indoor heat exchanger 4 is represented. 図10の冷凍サイクル装置における室内熱交換器4での冷房運転状態を表す。The cooling operation state in the indoor heat exchanger 4 in the refrigeration cycle apparatus of FIG. 10 is represented. 本発明の第5実施形態における切換弁一体エジェクタ50の構造を説明する断面模式図である。It is a cross-sectional schematic diagram explaining the structure of the switching valve integrated ejector 50 in 5th Embodiment of this invention. 図12の切換弁一体エジェクタ50を用いた冷凍サイクル装置の模式図であり、室内熱交換器4での冷房運転状態を表す。FIG. 13 is a schematic diagram of a refrigeration cycle apparatus using the switching valve integrated ejector 50 of FIG. 12, and represents a cooling operation state in the indoor heat exchanger 4.

符号の説明Explanation of symbols

1…圧縮機
2…四方弁
3…室外熱交換器(第1熱交換器)
4…室内熱交換器(第2熱交換器)
5…エジェクタ
5a…高圧流入部
5b…低圧流入部
5f…吐出部
6…気液分離器
8a…第1逆止弁(高圧流入切換手段)
8b…第2逆止弁(高圧流入切換手段)
9…低圧側差圧切換弁(低圧流入切換手段、低圧流出切換手段)
10…高圧側差圧切換弁(高圧流入切換手段)
92…弁体
102…弁体
DESCRIPTION OF SYMBOLS 1 ... Compressor 2 ... Four-way valve 3 ... Outdoor heat exchanger (1st heat exchanger)
4 ... Indoor heat exchanger (second heat exchanger)
DESCRIPTION OF SYMBOLS 5 ... Ejector 5a ... High pressure inflow part 5b ... Low pressure inflow part 5f ... Discharge part 6 ... Gas-liquid separator 8a ... 1st check valve (high pressure inflow switching means)
8b ... Second check valve (high pressure inflow switching means)
9 ... Low pressure side differential pressure switching valve (low pressure inflow switching means, low pressure outflow switching means)
10 ... High pressure side differential pressure switching valve (High pressure inflow switching means)
92 ... Valve 102 ... Valve

Claims (8)

冷凍サイクル内の気相冷媒を吸入し高圧に加圧して吐出する圧縮機(1)と、
前記圧縮機(1)から吐出される冷媒の流路を切り換える四方弁(2)と、
前記四方弁(2)からの冷媒と外気との熱交換を行う第1熱交換器(3)と、
前記四方弁(2)からの冷媒と被冷熱流体との熱交換を行う第2熱交換器(4)と、
前記圧縮機(1)で加圧された高圧冷媒を減圧して前記第1熱交換器(3)もしくは前記第2熱交換器(4)からの冷媒を吸引し混合し昇圧して吐出するエジェクタ(5)と、
前記エジェクタ(5)が吐出する気液二相冷媒を気液分離して気相冷媒は前記圧縮機(1)に供給し液相冷媒は前記第1熱交換器(3)もしくは前記第2熱交換器(4)に供給する気液分離器(6)とを備えて成る冷凍サイクル装置において、
前記エジェクタ(5)の高圧流入部(5a)と低圧流入部(5b)とのそれぞれ上流に、冷媒の圧力差を利用して前記エジェクタ(5)へ流入する冷媒流路を切り換える高圧流入切換手段(8a、8b、10)と低圧流入切換手段(9)とを設け、前記四方弁(2)を切り換えても高圧冷媒は常に前記高圧流入部(5a)へ流入し、低圧冷媒は常に前記低圧流入部(5b)へ流入するようにしたことを特徴とする冷凍サイクル装置。
A compressor (1) for sucking in a gas-phase refrigerant in the refrigeration cycle, pressurizing it to a high pressure and discharging it;
A four-way valve (2) for switching the flow path of the refrigerant discharged from the compressor (1);
A first heat exchanger (3) for exchanging heat between the refrigerant from the four-way valve (2) and the outside air;
A second heat exchanger (4) for exchanging heat between the refrigerant from the four-way valve (2) and the cooled heat fluid;
An ejector that depressurizes the high-pressure refrigerant pressurized by the compressor (1), sucks and mixes the refrigerant from the first heat exchanger (3) or the second heat exchanger (4), and pressurizes and discharges the refrigerant. (5) and
The gas-liquid two-phase refrigerant discharged from the ejector (5) is gas-liquid separated, the gas-phase refrigerant is supplied to the compressor (1), and the liquid-phase refrigerant is the first heat exchanger (3) or the second heat. A refrigeration cycle apparatus comprising a gas-liquid separator (6) to be supplied to the exchanger (4),
High pressure inflow switching means for switching the refrigerant flow path flowing into the ejector (5) using the pressure difference of the refrigerant upstream of the high pressure inflow portion (5a) and the low pressure inflow portion (5b) of the ejector (5). (8a, 8b, 10) and low-pressure inflow switching means (9) are provided, and even when the four-way valve (2) is switched, the high-pressure refrigerant always flows into the high-pressure inflow portion (5a), and the low-pressure refrigerant is always in the low pressure A refrigeration cycle apparatus characterized by flowing into the inflow portion (5b).
冷凍サイクル内の気相冷媒を吸入し高圧に加圧して吐出する圧縮機(1)と、
前記圧縮機(1)から吐出される冷媒の流路を切り換える四方弁(2)と、
前記四方弁(2)からの冷媒と外気との熱交換を行う第1熱交換器(3)と、
前記四方弁(2)からの冷媒と被冷熱流体との熱交換を行う第2熱交換器(4)と、
前記圧縮機(1)で加圧された高圧冷媒を減圧して気液分離器(6)からの液相冷媒を吸引し混合し昇圧して前記第1熱交換器(3)もしくは前記第2熱交換器(4)へ吐出するエジェクタ(5)と、
前記第1熱交換器(3)もしくは前記第2熱交換器(4)から流出する冷媒を気液分離して気相冷媒は前記圧縮機(1)に供給し液相冷媒は前記エジェクタ(5)に供給する前記気液分離器(6)とを備えて成る冷凍サイクル装置において、
前記エジェクタ(5)の高圧流入部(5a)の上流に冷媒の圧力差を利用して前記エジェクタ(5)へ流入する冷媒流路を切り換える高圧流入切換手段(10)と、前記エジェクタ(5)の吐出部(5f)の下流に冷媒の圧力差を利用して前記エジェクタ(5)から流出した冷媒の流路を切り換える低圧流出切換手段(9)とを設け、前記四方弁(2)を切り換えた場合、高圧冷媒は常に前記高圧流入部(5a)へ流入し、前記エジェクタ(5)が吐出する気液二相冷媒は低圧側となる前記第1熱交換器(3)もしくは前記第2熱交換器(4)に流入するようにしたことを特徴とする冷凍サイクル装置。
A compressor (1) for sucking in a gas-phase refrigerant in the refrigeration cycle, pressurizing it to a high pressure and discharging it;
A four-way valve (2) for switching the flow path of the refrigerant discharged from the compressor (1);
A first heat exchanger (3) for exchanging heat between the refrigerant from the four-way valve (2) and the outside air;
A second heat exchanger (4) for exchanging heat between the refrigerant from the four-way valve (2) and the cooled heat fluid;
The high-pressure refrigerant pressurized by the compressor (1) is depressurized, the liquid-phase refrigerant from the gas-liquid separator (6) is sucked and mixed, and the pressure is increased to increase the first heat exchanger (3) or the second An ejector (5) for discharging to the heat exchanger (4);
The refrigerant flowing out of the first heat exchanger (3) or the second heat exchanger (4) is gas-liquid separated, the gas-phase refrigerant is supplied to the compressor (1), and the liquid-phase refrigerant is the ejector (5). In the refrigeration cycle apparatus comprising the gas-liquid separator (6) supplied to
High pressure inflow switching means (10) for switching the refrigerant flow path flowing into the ejector (5) using the pressure difference of the refrigerant upstream of the high pressure inflow portion (5a) of the ejector (5), and the ejector (5) And a low-pressure outflow switching means (9) for switching the flow path of the refrigerant that has flowed out of the ejector (5) using the refrigerant pressure difference downstream of the discharge section (5f), and switching the four-way valve (2) In this case, the high-pressure refrigerant always flows into the high-pressure inflow portion (5a), and the gas-liquid two-phase refrigerant discharged from the ejector (5) is the first heat exchanger (3) or the second heat that is on the low-pressure side. A refrigeration cycle apparatus characterized by flowing into the exchanger (4).
冷凍サイクル内の気相冷媒を吸入し高圧に加圧して吐出する圧縮機(1)と、
前記圧縮機(1)から吐出される冷媒の流路を切り換える四方弁(2)と、
前記四方弁(2)からの冷媒と外気との熱交換を行う第1熱交換器(3)と、
前記四方弁(2)からの冷媒と被冷熱流体との熱交換を行う第2熱交換器(4)と、
前記圧縮機(1)で加圧された高圧冷媒を減圧して低圧側となる前記第1熱交換器(3)もしくは前記第2熱交換器(4)から流出した冷媒の一部を吸引し混合し昇圧して再度前記第1熱交換器(3)もしくは前記第2熱交換器(4)へ吐出するエジェクタ(5)とを備えて成る冷凍サイクル装置において、
前記エジェクタ(5)の高圧流入部(5a)の上流に冷媒の圧力差を利用して前記エジェクタ(5)へ流入する冷媒流路を切り換える高圧流入切換手段(10)と、前記エジェクタ(5)の吐出部(5f)の下流に冷媒の圧力差を利用して前記エジェクタ(5)から流出した冷媒の流路を切り換える低圧流出切換手段(9)とを設け、前記四方弁(2)を切り換えても高圧冷媒は常に前記高圧流入部(5a)へ流入し、前記エジェクタ(5)が吐出する気液二相冷媒は低圧側となる前記第1熱交換器(3)もしくは前記第2熱交換器(4)に流入するようにしたことを特徴とする冷凍サイクル装置。
A compressor (1) for sucking in a gas-phase refrigerant in the refrigeration cycle, pressurizing it to a high pressure and discharging it;
A four-way valve (2) for switching the flow path of the refrigerant discharged from the compressor (1);
A first heat exchanger (3) for exchanging heat between the refrigerant from the four-way valve (2) and the outside air;
A second heat exchanger (4) for exchanging heat between the refrigerant from the four-way valve (2) and the cooled heat fluid;
The high-pressure refrigerant pressurized by the compressor (1) is depressurized and a part of the refrigerant flowing out from the first heat exchanger (3) or the second heat exchanger (4) on the low pressure side is sucked. In a refrigeration cycle apparatus comprising an ejector (5) that is mixed, boosted and discharged again to the first heat exchanger (3) or the second heat exchanger (4),
High pressure inflow switching means (10) for switching the refrigerant flow path flowing into the ejector (5) using the pressure difference of the refrigerant upstream of the high pressure inflow portion (5a) of the ejector (5), and the ejector (5) And a low-pressure outflow switching means (9) for switching the flow path of the refrigerant that has flowed out of the ejector (5) using the refrigerant pressure difference downstream of the discharge section (5f), and switching the four-way valve (2) Even in this case, the high-pressure refrigerant always flows into the high-pressure inflow portion (5a), and the gas-liquid two-phase refrigerant discharged from the ejector (5) is the first heat exchanger (3) or the second heat exchange on the low-pressure side. A refrigeration cycle apparatus characterized in that it flows into the vessel (4).
前記高圧流入切換手段(8a、8b)として、前記第1熱交換器(3)側の冷媒圧力と前記第2熱交換器(4)側の冷媒圧力とを受け、前記第1熱交換器(3)側の冷媒圧力が高い場合に開弁する第1逆止弁(8a)と、前記第2熱交換器(4)側の冷媒圧力が高い場合に開弁する第2逆止弁(8b)とを組み合わせて用い、前記四方弁(2)を切り換えても高圧冷媒は常に前記高圧流入部(5a)へ流入するようにしたことを特徴とする請求項1に記載の冷凍サイクル装置。   The high-pressure inflow switching means (8a, 8b) receives the refrigerant pressure on the first heat exchanger (3) side and the refrigerant pressure on the second heat exchanger (4) side, and receives the first heat exchanger ( 3) a first check valve (8a) that opens when the refrigerant pressure on the side is high, and a second check valve (8b) that opens when the refrigerant pressure on the second heat exchanger (4) side is high. 2), the high-pressure refrigerant always flows into the high-pressure inflow portion (5a) even when the four-way valve (2) is switched. 前記低圧流入切換手段(9)として、前記第1熱交換器(3)側の冷媒圧力と前記第2熱交換器(4)側の冷媒圧力とを受けて可動する弁体(92)を備えていずれかの高い冷媒圧力によって冷媒圧力の高い側の流路を閉弁して冷媒圧力の低い側の流路を開弁する低圧側差圧切換弁(9)を用い、前記四方弁(2)を切り換えても低圧冷媒は常に前記低圧流入部(5b)へ流入するようにしたことを特徴とする請求項1に記載の冷凍サイクル装置。   The low-pressure inflow switching means (9) includes a valve body (92) that is movable in response to the refrigerant pressure on the first heat exchanger (3) side and the refrigerant pressure on the second heat exchanger (4) side. The low pressure side differential pressure switching valve (9) is used to close the flow path on the higher refrigerant pressure side and open the flow path on the lower refrigerant pressure side by any high refrigerant pressure, and the four-way valve (2 2), the low-pressure refrigerant always flows into the low-pressure inflow portion (5b). 前記低圧流出切換手段(9)として、前記第1熱交換器(3)側の冷媒圧力と前記第2熱交換器(4)側の冷媒圧力とを受けて可動する弁体(92)を備えていずれかの高い冷媒圧力によって冷媒圧力の高い側の流路を閉弁して冷媒圧力の低い側の流路を開弁する低圧側差圧切換弁(9)を用い、前記四方弁(2)を切り換えた場合、前記エジェクタ(5)が吐出する気液二相冷媒は低圧側となる前記第1熱交換器(3)もしくは前記第2熱交換器(4)に流入するようにしたことを特徴とする請求項2または請求項3に記載の冷凍サイクル装置。   The low-pressure outflow switching means (9) includes a valve body (92) that is movable in response to the refrigerant pressure on the first heat exchanger (3) side and the refrigerant pressure on the second heat exchanger (4) side. The low pressure side differential pressure switching valve (9) is used to close the flow path on the higher refrigerant pressure side and open the flow path on the lower refrigerant pressure side by any high refrigerant pressure, and the four-way valve (2 ), The gas-liquid two-phase refrigerant discharged from the ejector (5) flows into the first heat exchanger (3) or the second heat exchanger (4) on the low pressure side. The refrigeration cycle apparatus according to claim 2 or claim 3, wherein 前記高圧流入切換手段(10)として、前記第1熱交換器(3)側の冷媒圧力と前記第2熱交換器(4)側の冷媒圧力とを受けて可動する弁体(102)を備えていずれかの高い冷媒圧力によって冷媒圧力の高い側の流路を開弁して冷媒圧力の低い側の流路を閉弁する高圧側差圧切換弁(10)を用い、前記四方弁(2)を切り換えても高圧冷媒は常に前記高圧流入部(5a)へ流入するようにしたことを特徴とする請求項1〜3のいずれかに記載の冷凍サイクル装置。   The high pressure inflow switching means (10) includes a valve body (102) that is movable in response to the refrigerant pressure on the first heat exchanger (3) side and the refrigerant pressure on the second heat exchanger (4) side. The high-pressure side differential pressure switching valve (10) that opens the flow path on the higher refrigerant pressure side and closes the flow path on the lower refrigerant pressure side by any high refrigerant pressure is used, and the four-way valve (2 4) The refrigeration cycle apparatus according to any one of claims 1 to 3, wherein the high-pressure refrigerant always flows into the high-pressure inflow portion (5a) even when switching is performed. 前記エジェクタ(5)に、前記低圧側差圧切換弁(9)または前記高圧側差圧切換弁(10)もしくはその両方の差圧切換弁(9、10)を一体にして構成したことを特徴とする請求項1〜3、5〜7のいずれかに記載の冷凍サイクル装置。   The ejector (5) is constructed by integrating the low pressure side differential pressure switching valve (9) and / or the high pressure side differential pressure switching valve (10) or both differential pressure switching valves (9, 10). The refrigeration cycle apparatus according to any one of claims 1 to 3 and 5 to 7.
JP2004081383A 2003-06-23 2004-03-19 Refrigerating cycle device Withdrawn JP2005037114A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004081383A JP2005037114A (en) 2003-06-23 2004-03-19 Refrigerating cycle device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003178600 2003-06-23
JP2004081383A JP2005037114A (en) 2003-06-23 2004-03-19 Refrigerating cycle device

Publications (1)

Publication Number Publication Date
JP2005037114A true JP2005037114A (en) 2005-02-10

Family

ID=34220157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004081383A Withdrawn JP2005037114A (en) 2003-06-23 2004-03-19 Refrigerating cycle device

Country Status (1)

Country Link
JP (1) JP2005037114A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009222359A (en) * 2008-03-18 2009-10-01 Daikin Ind Ltd Refrigerating device
JP2010085033A (en) * 2008-09-30 2010-04-15 Daikin Ind Ltd Ejector mechanism
US8104308B2 (en) 2007-10-03 2012-01-31 Denso Corporation Refrigerant cycle device with ejector
WO2013005270A1 (en) 2011-07-01 2013-01-10 三菱電機株式会社 Refrigeration cycle device and air conditioner
WO2013051235A1 (en) * 2011-10-05 2013-04-11 株式会社デンソー Integration valve, and heat pump cycle
CN104048448A (en) * 2014-07-07 2014-09-17 珠海格力电器股份有限公司 Injection refrigerating device, circulating system, air conditioning equipment and control method
US10823463B2 (en) 2015-07-03 2020-11-03 Carrier Corporation Ejector heat pump
US11365915B2 (en) * 2019-03-15 2022-06-21 Carrier Corporation Ejector and refrigeration system
US12018876B2 (en) 2021-12-22 2024-06-25 Hyundai Motor Company Thermal management system for vehicle including ejector

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8104308B2 (en) 2007-10-03 2012-01-31 Denso Corporation Refrigerant cycle device with ejector
JP2009222359A (en) * 2008-03-18 2009-10-01 Daikin Ind Ltd Refrigerating device
JP2010085033A (en) * 2008-09-30 2010-04-15 Daikin Ind Ltd Ejector mechanism
US9447993B2 (en) 2011-07-01 2016-09-20 Mitsubishi Electric Corporation Refrigeration cycle device and air-conditioning apparatus
WO2013005270A1 (en) 2011-07-01 2013-01-10 三菱電機株式会社 Refrigeration cycle device and air conditioner
WO2013051235A1 (en) * 2011-10-05 2013-04-11 株式会社デンソー Integration valve, and heat pump cycle
JP2013092355A (en) * 2011-10-05 2013-05-16 Denso Corp Integration valve and heat pump cycle
CN103874895A (en) * 2011-10-05 2014-06-18 株式会社电装 Integration valve, and heat pump cycle
CN103874895B (en) * 2011-10-05 2016-04-20 株式会社电装 Pile-up valve and heat pump cycle
US9683761B2 (en) 2011-10-05 2017-06-20 Denso Corporation Integration valve and heat pump cycle
CN104048448A (en) * 2014-07-07 2014-09-17 珠海格力电器股份有限公司 Injection refrigerating device, circulating system, air conditioning equipment and control method
US10823463B2 (en) 2015-07-03 2020-11-03 Carrier Corporation Ejector heat pump
US10914496B2 (en) 2015-07-03 2021-02-09 Carrier Corporation Ejector heat pump
US11365915B2 (en) * 2019-03-15 2022-06-21 Carrier Corporation Ejector and refrigeration system
US12018876B2 (en) 2021-12-22 2024-06-25 Hyundai Motor Company Thermal management system for vehicle including ejector

Similar Documents

Publication Publication Date Title
JP4254217B2 (en) Ejector cycle
KR100884804B1 (en) Refrigerant cycle device
US10914496B2 (en) Ejector heat pump
JP4639541B2 (en) Cycle using ejector
US7299645B2 (en) Ejector cycle and ejector device
US6834514B2 (en) Ejector cycle
US7779647B2 (en) Ejector and ejector cycle device
JP4752765B2 (en) Air conditioner
JP4096824B2 (en) Vapor compression refrigerator
CN102869930A (en) Refrigeration cycle device and refrigerant circulation method
JP4849133B2 (en) Ejector refrigeration cycle
JPWO2009087733A1 (en) Refrigeration cycle equipment and four-way valve
JP2005308380A (en) Ejector cycle
JP5419901B2 (en) Refrigeration cycle apparatus, flow path switching apparatus, and flow path switching method
JP5359231B2 (en) Ejector refrigeration cycle
CN109269136A (en) air conditioning system
JP4078901B2 (en) Ejector cycle
JP5293054B2 (en) Refrigeration equipment
JP2005037114A (en) Refrigerating cycle device
JP4725223B2 (en) Ejector type cycle
JP2007003166A (en) Vapor compression type refrigerating cycle using ejector
JP2003294328A (en) Steam compression refrigerator
JP4048853B2 (en) Ejector cycle
JP2004340418A (en) Water-heating air conditioner
JP4468887B2 (en) Supercooling device and air conditioner equipped with supercooling device

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070605