JP2003279177A - Water heater, ejector for vapor compression type refrigerating cycle, and vapor compression type refrigerating cycle - Google Patents

Water heater, ejector for vapor compression type refrigerating cycle, and vapor compression type refrigerating cycle

Info

Publication number
JP2003279177A
JP2003279177A JP2002124319A JP2002124319A JP2003279177A JP 2003279177 A JP2003279177 A JP 2003279177A JP 2002124319 A JP2002124319 A JP 2002124319A JP 2002124319 A JP2002124319 A JP 2002124319A JP 2003279177 A JP2003279177 A JP 2003279177A
Authority
JP
Japan
Prior art keywords
refrigerant
pressure
ejector
compressor
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002124319A
Other languages
Japanese (ja)
Other versions
JP4254126B2 (en
Inventor
Takeshi Sakai
猛 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2002124319A priority Critical patent/JP4254126B2/en
Publication of JP2003279177A publication Critical patent/JP2003279177A/en
Application granted granted Critical
Publication of JP4254126B2 publication Critical patent/JP4254126B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0012Ejectors with the cooled primary flow at high pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0013Ejector control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0407Refrigeration circuit bypassing means for the ejector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/17Control issues by controlling the pressure of the condenser

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hot water supply machine using a heat pump unit suitable for continuous operation throughout a year. <P>SOLUTION: A needle valve 46 is displaced with using pressure balance between an operation chamber 47b which inert gas is filled in and a drive chamber 47a which high pressure side coolant flows into to control high pressure side coolant pressure roughly constant. Although temperature of supplied water during winter of low air temperature drops as compared with that during summer of high air temperature, it is not a problem in a practical use. Since it is not necessary to increase pressure tightness of high pressure side equipment such as a water coolant heat exchanger and compressor more than necessary level to meet requirement for summer of high air temperature, pressure tightness reliability of the hot water supply machine can be increased while reducing manufacturing cost of the hot water supply machine. Since restriction opening of a nozzle 41 is controlled by an actuator of a simple structure having inert gas filled in the operation chamber 47b, high pressure side coolant pressure can be control at low cost. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、給湯器、蒸気圧縮
式冷凍サイクル用のエジェクタ及び蒸気圧縮式冷凍サイ
クルに関するものである。
TECHNICAL FIELD The present invention relates to a water heater, an ejector for a vapor compression refrigeration cycle, and a vapor compression refrigeration cycle.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】蒸気圧
縮式のヒートポンプユニットにて給湯水を加熱する給湯
器の場合の給湯負荷を考えたとき、気温の高い夏場と気
温の低い冬場とで必要とする給湯温度が相違するので、
年間を通して常に気温の低い冬場に合わせた温度で給湯
を行うと、以下のような問題が発生する。
2. Description of the Related Art Considering the hot water supply load in the case of a water heater that heats hot water by a vapor compression heat pump unit, it is necessary in summer with high temperature and in winter with low temperature. Since the hot water temperature to be different is
The following problems occur when hot water is supplied at a temperature suitable for winter when the temperature is always low throughout the year.

【0003】すなわち、気温の高い夏場には、圧縮機に
流入する冷媒の温度が上昇して圧縮機に吸入される冷媒
のエントロピが小さくなり、気温の低い冬場と同等の給
湯温度を得るためには、高圧側冷媒圧力、すなわち、圧
縮機の吐出圧を冬場より高くする必要がある。このた
め、水冷媒熱交換器や圧縮機等の高圧側機器の耐圧性を
高める必要がある。
That is, in the summer when the temperature is high, the temperature of the refrigerant flowing into the compressor rises and the entropy of the refrigerant drawn into the compressor becomes small, so that the hot water supply temperature equivalent to that in winter when the temperature is low is obtained. Requires the pressure of the high-pressure side refrigerant, that is, the discharge pressure of the compressor to be higher than in winter. Therefore, it is necessary to increase the pressure resistance of the high-pressure side device such as the water-refrigerant heat exchanger and the compressor.

【0004】本発明は、上記点に鑑み、年間を通して連
続運転するに適したヒートポンプユニットを用いた給湯
器を提供することを目的とする。
In view of the above points, an object of the present invention is to provide a water heater using a heat pump unit suitable for continuous operation throughout the year.

【0005】[0005]

【課題を解決するための手段】本発明は、上記目的を達
成するために、請求項1に記載の発明では、圧縮機(1
0)にて圧縮された高温高圧の冷媒を放冷する高圧側熱
交換器(20)、及び減圧された低温低圧の冷媒を蒸発
させる蒸発器(30)を有し、低温側の熱を高温側に移
動させる蒸気圧縮式のヒートポンプユニット(1)にて
給湯水を加熱する給湯器であって、ヒートポンプユニッ
ト(1)の高圧側冷媒圧力を略一定となるように制御す
ることを特徴とする。
In order to achieve the above object, the present invention provides a compressor (1
0) has a high-pressure side heat exchanger (20) for cooling the high-temperature and high-pressure refrigerant, and an evaporator (30) for evaporating the low-temperature and low-pressure refrigerant that has been decompressed, so that the heat on the low-temperature side is high. It is a water heater which heats hot water with a vapor compression type heat pump unit (1) that is moved to the side, characterized in that the high pressure side refrigerant pressure of the heat pump unit (1) is controlled to be substantially constant. .

【0006】「発明が解決しようとする課題」の欄で述
べたように、気温の高い夏場には、圧縮機(10)に流
入する冷媒の温度が上昇して圧縮機(10)に吸入され
る冷媒のエントロピが小さくなるので、後述する図2に
示すp−h線図から明らかなように、気温の低い冬場と
同等の給湯温度を得るためには、高圧側冷媒圧力、すな
わち、圧縮機(10)の吐出圧を冬場より高くする必要
がある。
As described in the section "Problems to be solved by the invention", in summer when the temperature is high, the temperature of the refrigerant flowing into the compressor (10) rises and is sucked into the compressor (10). Since the entropy of the refrigerant becomes small, as is clear from the ph diagram shown in FIG. 2 to be described later, in order to obtain the hot water supply temperature equivalent to that in winter when the temperature is low, the refrigerant pressure on the high pressure side, that is, the compressor. The discharge pressure of (10) needs to be higher than in winter.

【0007】一方、給湯器に求められる給湯要求、すな
わち給湯温度及び給湯水量は、年間を通して一定ではな
く、気温の高い夏場における給湯要求は、気温の低い冬
場における給湯要求に比べて小さい。
On the other hand, the hot water supply demand for the water heater, that is, the hot water supply temperature and the amount of hot water supply are not constant throughout the year, and the hot water supply demand in the summer when the temperature is high is smaller than that in the winter when the temperature is low.

【0008】したがって、本発明のごとく、年間を通し
て高圧側冷媒圧力が略一定となるようにヒートポンプユ
ニット(1)を制御すれば、気温の高い夏場には給湯温
度が気温の低い冬場に比べて低下するものの、実用上問
題はなく、むしろ、気温の高い夏場に合わせて高圧側熱
交換器(20)や圧縮機(10)等の高圧側機器の耐圧
性を必要以上に高める必要がないので、給湯器の製造原
価低減を図りつつ、給湯器の耐圧信頼性を高めることが
できる。
Therefore, if the heat pump unit (1) is controlled so that the high-pressure side refrigerant pressure is substantially constant throughout the year as in the present invention, the hot water supply temperature is lower in the summer when the temperature is higher than in the winter when the temperature is low. However, there is no problem in practical use, and rather, it is not necessary to increase the pressure resistance of the high-pressure side heat exchanger (20), the compressor (10), and other high-pressure side equipment more than necessary according to the high summer temperature. It is possible to improve the pressure resistance reliability of the water heater while reducing the manufacturing cost of the water heater.

【0009】なお、請求項2に記載の発明のごとく、ヒ
ートポンプユニット(1)をエジェクタサイクルとすれ
ば、膨張弁等の等エンタルピ的に冷媒を減圧させる膨張
弁サイクルに比べて、圧縮機(10)の消費動力を低減
することができる。
When the heat pump unit (1) is an ejector cycle as in the second aspect of the invention, the compressor (10) is compared with an expansion valve cycle such as an expansion valve that depressurizes the refrigerant in an isenthalpic manner. ) Power consumption can be reduced.

【0010】また、請求項3に記載の発明のごとく、圧
縮機(10)は冷媒を冷媒の臨界圧力以上まで圧縮して
もよい。
Further, as in the invention described in claim 3, the compressor (10) may compress the refrigerant to a pressure equal to or higher than the critical pressure of the refrigerant.

【0011】また、請求項4に記載の発明のごとく、冷
媒として二酸化炭素を用いてもよい。
Further, as in the invention described in claim 4, carbon dioxide may be used as the refrigerant.

【0012】請求項5に記載の発明では、高圧側熱交換
器(20)から流出した冷媒の圧力エネルギーを速度エ
ネルギーに変換して冷媒を減圧膨張させるノズル(4
1)と、ノズル(41)から噴射する冷媒と蒸発器(3
0)から吸引した冷媒とを混合させながら速度エネルギ
ーを圧力エネルギーに変換して冷媒の圧力を昇圧させる
昇圧部(42、43)と、ノズル(41)の軸線方向に
変位し、ノズル(41)の絞り開度を調節するニードル
弁(46)と、ノズル(41)に流入する冷媒が充満す
る駆動室(47a)と不活性ガスが封入された作動室
(47b)とを仕切るとともに、駆動室(47a)内の
圧力と作動室(47b)内の圧力との圧力差に応じて変
位してニードル弁(46)を変位させる仕切部材(47
c、47f、47g)とを備えることを特徴とする。
According to the fifth aspect of the present invention, the nozzle (4) for converting the pressure energy of the refrigerant flowing out of the high pressure side heat exchanger (20) into velocity energy to decompress and expand the refrigerant.
1), the refrigerant injected from the nozzle (41) and the evaporator (3)
0), the velocity energy is converted into pressure energy while being mixed with the refrigerant sucked from the pressure increasing portion (42, 43), and the nozzle (41) is displaced in the axial direction to move the nozzle (41). Of the needle valve (46) for adjusting the throttle opening of the drive chamber, the drive chamber (47a) filled with the refrigerant flowing into the nozzle (41) and the working chamber (47b) filled with the inert gas, and the drive chamber. A partition member (47) for displacing the needle valve (46) by displacing in accordance with the pressure difference between the pressure inside the (47a) and the pressure inside the working chamber (47b).
c, 47f, 47g).

【0013】これにより、電気式のアクチュエータを用
いた場合に比べて、安価に高圧側冷媒圧力を略一定とな
るように制御することができる。
As a result, it is possible to control the high-pressure side refrigerant pressure to be substantially constant at a low cost as compared with the case where an electric actuator is used.

【0014】なお、請求項6に記載の発明のごとく、薄
膜状のダイヤフラム(47c)にて仕切部材を構成して
もよい。
The partition member may be composed of a thin film diaphragm (47c) as in the sixth aspect of the invention.

【0015】また、請求項7に記載の発明のごとく、蛇
腹状のベローズ(47f)にて仕切部材を構成してもよ
い。
Further, as in the seventh aspect of the invention, the partition member may be constituted by a bellows-like bellows (47f).

【0016】また、請求項8に記載の発明のごとく、シ
ール手段(47h)を介して摺動可能に配置されたピス
トン(47g)仕切部材を構成してもよい。
Further, as in the eighth aspect of the present invention, a partitioning member for the piston (47g) which is slidably disposed via the sealing means (47h) may be constructed.

【0017】また、請求項9に記載の発明のごとく、仕
切部材(47c)を駆動室(47a)側に変位させる弾
性力を仕切部材(47c)に作用させる弾性手段(47
j)を備えてもよい。
According to the ninth aspect of the invention, the elastic means (47) for exerting an elastic force for displacing the partition member (47c) toward the drive chamber (47a) acts on the partition member (47c).
j) may be provided.

【0018】請求項10に記載の発明では、冷媒を吸入
圧縮する圧縮機(10)と、圧縮機(10)から吐出し
た冷媒を冷却する高圧側熱交換器(20)と、冷媒を蒸
発させて吸熱する蒸発器(30)と、請求項5ないし9
のいずれか1つに記載のエジェクタ(40)と、冷媒を
気相冷媒と液相冷媒とに分離するとともに、液相冷媒を
蒸発器(30)に供給し、気相冷媒を圧縮機(10)に
供給する気液分離器(50)と、エジェクタ(40)に
て減圧される前の冷媒を蒸発器(30)に導く除霜回路
(60)を開閉する開閉弁(61)とを備えることを特
徴とする。
According to the tenth aspect of the present invention, the compressor (10) for sucking and compressing the refrigerant, the high-pressure side heat exchanger (20) for cooling the refrigerant discharged from the compressor (10), and the refrigerant are evaporated. An evaporator (30) that absorbs heat by heat, and
And the ejector (40) according to any one of (1) to (4), the refrigerant is separated into a gas-phase refrigerant and a liquid-phase refrigerant, and the liquid-phase refrigerant is supplied to the evaporator (30). ), And an opening / closing valve (61) for opening / closing a defrosting circuit (60) that guides the refrigerant before being decompressed by the ejector (40) to the evaporator (30). It is characterized by

【0019】これにより、除霜回路(60)及び開閉弁
(61)を追加するといった簡単な手段にて除霜運転を
行うことができる。
As a result, the defrosting operation can be performed by a simple means such as adding the defrosting circuit (60) and the opening / closing valve (61).

【0020】因みに、上記各手段の括弧内の符号は、後
述する実施形態に記載の具体的手段との対応関係を示す
一例である。
Incidentally, the reference numerals in the parentheses of the above-mentioned means are examples showing the correspondence with the concrete means described in the embodiments described later.

【0021】[0021]

【発明の実施の形態】(第1実施形態)本実施形態は、
ヒートポンプユニット1として、エジェクタ方式の減圧
装置を有する蒸気圧縮式冷凍サイクルを用いたもので、
図1は本実施形態に係る給湯器の模式図である。
BEST MODE FOR CARRYING OUT THE INVENTION (First Embodiment)
As the heat pump unit 1, one using a vapor compression refrigeration cycle having an ejector type pressure reducing device,
FIG. 1 is a schematic view of a water heater according to this embodiment.

【0022】圧縮機10は冷媒を吸入圧縮するものであ
り、水冷媒熱交換器20は圧縮機10から吐出した冷媒
と給湯水とを対向流れ状態で熱交換して給湯水を加熱す
ることにより冷媒を冷却する高圧側熱交換器である。
The compressor 10 suctions and compresses the refrigerant, and the water-refrigerant heat exchanger 20 heats the hot water by exchanging heat between the refrigerant discharged from the compressor 10 and the hot water. It is a high-pressure side heat exchanger that cools the refrigerant.

【0023】なお、圧縮機10は電動モータ(図示せ
ず。)により駆動されており、水冷媒熱交換器20の加
熱能力を大きくするときには、圧縮機10の回転数を増
大させて圧縮機10から吐出する冷媒の流量を増大さ
せ、一方、加熱能力を小さくするときには、圧縮機10
の回転数を低下させて圧縮機10から吐出する冷媒の流
量を減少させる。
The compressor 10 is driven by an electric motor (not shown), and when the heating capacity of the water-refrigerant heat exchanger 20 is increased, the rotation speed of the compressor 10 is increased to increase the compressor 10. In order to increase the flow rate of the refrigerant discharged from the compressor while reducing the heating capacity, the compressor 10
To reduce the flow rate of the refrigerant discharged from the compressor 10.

【0024】因みに、本実施形態では、冷媒として二酸
化炭素を用いているので、水冷媒熱交換器20内の冷媒
圧力は冷媒の臨界圧力以上となり、かつ、水冷媒熱交換
器20内で冷媒が凝縮することなく、冷媒入口側から冷
媒出口側に向かうほど冷媒温度が低下するような温度分
布を有する。
By the way, in this embodiment, since carbon dioxide is used as the refrigerant, the refrigerant pressure in the water-refrigerant heat exchanger 20 becomes equal to or higher than the critical pressure of the refrigerant, and the refrigerant in the water-refrigerant heat exchanger 20 changes. The temperature distribution is such that the refrigerant temperature decreases from the refrigerant inlet side toward the refrigerant outlet side without condensing.

【0025】蒸発器30は室外空気と液相冷媒とを熱交
換させて液相冷媒を蒸発させることにより冷媒を蒸発さ
せて室外空気から吸熱する低圧側熱交換器であり、エジ
ェクタ40は冷媒を減圧膨張させて蒸発器30にて蒸発
した気相冷媒を吸引するとともに、膨張エネルギーを圧
力エネルギーに変換して圧縮機10の吸入圧を上昇させ
るものである。なお、エジェクタ40の詳細は、後述す
る。
The evaporator 30 is a low-pressure heat exchanger that heats the outdoor air and the liquid-phase refrigerant to evaporate the liquid-phase refrigerant to evaporate the refrigerant and absorb heat from the outdoor air. The gas-phase refrigerant that has been expanded under reduced pressure and evaporated in the evaporator 30 is sucked, and the expansion energy is converted into pressure energy to raise the suction pressure of the compressor 10. The details of the ejector 40 will be described later.

【0026】また、気液分離器50はエジェクタ40か
ら流出した冷媒が流入するとともに、その流入した冷媒
を気相冷媒と液相冷媒とに分離して冷媒を蓄える気液分
離手段であり、気液分離器50の気相冷媒流出口は圧縮
機10の吸引側に接続され、液相冷媒流出口は蒸発器3
0側の流入側に接続される。
Further, the gas-liquid separator 50 is a gas-liquid separating means for storing the refrigerant by separating the inflowing refrigerant into the gas-phase refrigerant and the liquid-phase refrigerant while the refrigerant flowing out from the ejector 40 flows in. The gas-phase refrigerant outlet of the liquid separator 50 is connected to the suction side of the compressor 10, and the liquid-phase refrigerant outlet is the evaporator 3
It is connected to the inflow side on the 0 side.

【0027】なお、図2はエジェクタサイクルの全体の
マクロ的作動を示すp−h線図であり、そのマクロ的作
動は周知のエジェクタサイクルと同じであるので、本実
施形態では、エジェクタサイクル全体のマクロ的作動の
説明は省略する。因みに、図2の●で示される符号は、
図1に示す●で示される符号位置における冷媒の状態を
示すものである。
FIG. 2 is a ph diagram showing the macro operation of the ejector cycle as a whole. Since the macro operation is the same as that of a known ejector cycle, in this embodiment, the ejector cycle as a whole is operated. The description of the macro operation is omitted. By the way, the symbol shown by ● in FIG.
It shows the state of the refrigerant at the symbol position shown by ● shown in FIG.

【0028】次に、図3に基づいてエジェクタ40の構
造について述べる。
Next, the structure of the ejector 40 will be described with reference to FIG.

【0029】エジェクタ40は、流入する高圧冷媒の圧
力エネルギーを速度エネルギーに変換して冷媒を減圧膨
張させるノズル41、ノズル41から噴射する高い速度
の冷媒流により蒸発器30にて蒸発した気相冷媒を吸引
しながら、ノズル41から噴射する冷媒流とを混合する
混合部42、及びノズル41から噴射する冷媒と蒸発器
30から吸引した冷媒とを混合させながら速度エネルギ
ーを圧力エネルギーに変換して冷媒の圧力を昇圧させる
ディフューザ43等からなるものである。
The ejector 40 converts the pressure energy of the inflowing high pressure refrigerant into velocity energy to expand the refrigerant under reduced pressure, and the vapor phase refrigerant evaporated in the evaporator 30 by the high velocity refrigerant flow injected from the nozzle 41. While mixing the refrigerant injected from the nozzle 41 and the refrigerant sucked from the evaporator 30, while mixing the refrigerant flowing from the nozzle 41 with the refrigerant flow injected from the nozzle 41, the velocity energy is converted into the pressure energy. It comprises a diffuser 43 and the like for increasing the pressure.

【0030】なお、混合部42においては、ノズル41
から噴射する冷媒流の運動量と、蒸発器30からエジェ
クタ40に吸引される冷媒流の運動量との和が保存され
るように混合するので、混合部42においても冷媒の静
圧が上昇する。一方、ディフューザ43においては、通
路断面積を徐々に拡大することにより、冷媒の動圧を静
圧に変換するので、エジェクタ40においては、混合部
42及びディフューザ43の両者にて冷媒圧力を昇圧す
る。そこで、混合部42とディフューザ43とを総称し
て昇圧部と呼ぶ。
In the mixing section 42, the nozzle 41
Since the sum of the momentum of the refrigerant flow injected from the and the momentum of the refrigerant flow sucked from the evaporator 30 to the ejector 40 is stored, the static pressure of the refrigerant also rises in the mixing section 42. On the other hand, in the diffuser 43, the dynamic pressure of the refrigerant is converted into the static pressure by gradually increasing the passage cross-sectional area, so in the ejector 40, the refrigerant pressure is increased by both the mixing section 42 and the diffuser 43. . Therefore, the mixing section 42 and the diffuser 43 are generically called a boosting section.

【0031】つまり、理想的なエジェクタ40において
は、混合部42で2種類の冷媒流の運動量の和が保存さ
れるように冷媒圧力が増大し、ディフューザ43でエネ
ルギーが保存されるように冷媒圧力が増大することがの
ぞましい。
That is, in the ideal ejector 40, the refrigerant pressure increases so that the sum of momentums of two kinds of refrigerant flows is stored in the mixing section 42, and the refrigerant pressure is stored so that energy is stored in the diffuser 43. Is expected to increase.

【0032】因みに、ノズル41の周りには、ボディ4
4により形成された吸引室45が形成されており、蒸発
器30から吸引された気相冷媒は、吸引室45を経由し
て混合部42に流れる。
By the way, around the nozzle 41, the body 4
4 is formed, and the vapor-phase refrigerant sucked from the evaporator 30 flows into the mixing section 42 via the suction chamber 45.

【0033】また、ノズル41は、通路途中に通路面積
が最も縮小した喉部を有する末広型のノズルであり、ノ
ズル41の絞り開度、すなわち喉部の開度は、高圧側の
冷媒圧力が略一定となるように、ニードル弁46にて制
御される。なお、ニードル弁46は先端側が尖った円錐
テーパ状のもので、ノズル41内において機械式のアク
チュエータ47により軸線方向に変位させる。
Further, the nozzle 41 is a divergent nozzle having a throat portion having the smallest passage area in the middle of the passage, and the throttle opening of the nozzle 41, that is, the throat opening, is the refrigerant pressure on the high pressure side. It is controlled by the needle valve 46 so as to be substantially constant. The needle valve 46 has a conical taper shape with a sharp tip, and is displaced in the axial direction by a mechanical actuator 47 in the nozzle 41.

【0034】ここで、機械式のアクチュエータ47は、
ノズル41に流入する高圧冷媒が充満する駆動室47a
と不活性ガスが封入された作動室47bとを仕切るとと
もに、駆動室47a内の圧力と作動室47b内の圧力と
の圧力差に応じて変位してニードル弁46を変位させる
仕切部材としてのダイヤフラム47c、ダイヤフラム4
7cの駆動室47a側に配置されてダイヤフラム47c
の最大変位を規制するストッパ47d等、並びに駆動室
47a及び作動室47bを外殻を形成するステンレス製
のハウジング47e等からなるものである。
Here, the mechanical actuator 47 is
Drive chamber 47a filled with high-pressure refrigerant flowing into the nozzle 41
And a working chamber 47b in which an inert gas is sealed, and a diaphragm as a partitioning member that displaces the needle valve 46 by displacing in accordance with the pressure difference between the pressure in the drive chamber 47a and the pressure in the working chamber 47b. 47c, diaphragm 4
7c, the diaphragm 47c is disposed on the drive chamber 47a side.
47d for restricting the maximum displacement of the drive chamber 47a, the drive chamber 47a and the working chamber 47b, and a stainless steel housing 47e forming an outer shell.

【0035】因みに、本実施形態では、不活性ガスとし
て窒素ガスを用いているが、ヘリウムガスやアルゴンガ
ス等の不活性ガスを用いてもよい。また、本実施形態で
は、ダイヤフラム47c及びニードル弁46をステンレ
ス製として両者をろう付け接合しているが、本実施形態
はこれに限定されるものでない。
Incidentally, although nitrogen gas is used as the inert gas in this embodiment, an inert gas such as helium gas or argon gas may be used. Further, in the present embodiment, the diaphragm 47c and the needle valve 46 are made of stainless steel and are brazed together, but the present embodiment is not limited to this.

【0036】次に、ニードル弁46の作動を中心に本実
施形態に係るエジェクタ40の作動を説明する。
Next, the operation of the ejector 40 according to the present embodiment will be described focusing on the operation of the needle valve 46.

【0037】駆動室47aと作動室47bとはダイヤフ
ラム47cを挟んで仕切られ、かつ、ニードル弁46は
ダイヤフラム47cと一体的に変位するように構成され
ている。このとき、駆動室47a内の圧力は、ノズル4
1の絞り開度が大きくなる向きにニードル弁46が変位
するような力をダイヤフラム47cに対して作用させ、
一方、作動室47b内の圧力は、ノズル41の絞り開度
が小さくなる向きにニードル弁46が変位するような力
をダイヤフラム47cに対して作用させる。
The drive chamber 47a and the working chamber 47b are partitioned with the diaphragm 47c interposed therebetween, and the needle valve 46 is constructed so as to be displaced integrally with the diaphragm 47c. At this time, the pressure in the drive chamber 47a is
A force such that the needle valve 46 is displaced in the direction in which the throttle opening of No. 1 is increased acts on the diaphragm 47c,
On the other hand, the pressure in the working chamber 47b causes the diaphragm 47c to exert a force such that the needle valve 46 is displaced in the direction in which the throttle opening of the nozzle 41 is reduced.

【0038】そして、駆動室47a内の圧力が上昇して
作動室47b内の圧力より大きくなると、図3に示すよ
うに、ノズル41の絞り開度が大きくなるようにダイヤ
フラム47c及びニードル弁46が変位するため、駆動
室47a内の圧力、すなわち高圧側の冷媒圧力上昇が抑
制され、その圧力は、作動室47b内の圧力と同等とな
る。
When the pressure in the driving chamber 47a rises and becomes larger than the pressure in the working chamber 47b, the diaphragm 47c and the needle valve 46 are moved so that the throttle opening of the nozzle 41 becomes large, as shown in FIG. Due to the displacement, the pressure in the drive chamber 47a, that is, the increase in the refrigerant pressure on the high-pressure side is suppressed, and the pressure becomes equal to the pressure in the working chamber 47b.

【0039】逆に、駆動室47a内の圧力が低下して作
動室47b内の圧力より小さくなると、図4に示すよう
に、ノズル41の絞り開度が小さくなるようにダイヤフ
ラム47c及びニードル弁46が変位するため、駆動室
47a内の圧力、すなわち高圧側の冷媒圧力低下が抑制
され、その圧力は、作動室47b内の圧力と同等とな
る。
On the contrary, when the pressure in the drive chamber 47a decreases and becomes lower than the pressure in the working chamber 47b, the diaphragm 47c and the needle valve 46 are reduced so that the throttle opening of the nozzle 41 is reduced as shown in FIG. Is suppressed, the pressure in the drive chamber 47a, that is, the pressure drop of the refrigerant on the high pressure side is suppressed, and the pressure becomes equal to the pressure in the working chamber 47b.

【0040】したがって、ノズル41の絞り開度は、高
圧側の冷媒圧力と作動室47b内の圧力と略同一となる
ように機械的に制御されることとなる。
Therefore, the throttle opening of the nozzle 41 is mechanically controlled so that the pressure of the refrigerant on the high pressure side and the pressure in the working chamber 47b become substantially the same.

【0041】このとき、作動室47b内には、不活性ガ
スが封入されており、封入されたガスが凝縮しないこと
に加えて、ダイヤフラム47cの変位量、及び駆動室4
7aに流入する冷媒の温度変化に対する封入ガスの圧力
変化量は微少であるため、作動室47b内の圧力は、実
用範囲内においては、略一定となる。したがって、機械
式のアクチュエータ47は、高圧側の冷媒圧力が、略一
定となるようにノズル41の絞り開度を調節することと
なる。
At this time, the working chamber 47b is filled with an inert gas, and the filled gas does not condense, the displacement amount of the diaphragm 47c, and the drive chamber 4
Since the amount of change in the pressure of the enclosed gas with respect to the change in the temperature of the refrigerant flowing into 7a is very small, the pressure in the working chamber 47b is substantially constant within the practical range. Therefore, the mechanical actuator 47 adjusts the throttle opening of the nozzle 41 so that the refrigerant pressure on the high pressure side becomes substantially constant.

【0042】次に、本実施形態の作用効果を述べる。Next, the function and effect of this embodiment will be described.

【0043】「発明が解決しようとする課題」の欄で述
べたように、気温の高い夏場には、圧縮機10に流入す
る冷媒の温度が上昇して圧縮機10に吸入される冷媒の
エントロピが小さくなるので、図2に示すように、気温
の低い冬場と同等の給湯温度を得るためには、高圧側冷
媒圧力、すなわち、圧縮機10の吐出圧を冬場より高く
する必要がある。
As described in the section "Problems to be solved by the invention", in the summer when the temperature is high, the temperature of the refrigerant flowing into the compressor 10 rises and the entropy of the refrigerant drawn into the compressor 10 is increased. Therefore, as shown in FIG. 2, in order to obtain the hot water supply temperature equivalent to that in winter when the temperature is low, the pressure of the high-pressure side refrigerant, that is, the discharge pressure of the compressor 10 needs to be higher than that in winter.

【0044】一方、給湯器に求められる給湯要求、すな
わち給湯温度及び給湯水量は、年間を通して一定ではな
く、気温の高い夏場における給湯要求は、気温の低い冬
場における給湯要求に比べて小さい。
On the other hand, the hot water supply demand for the water heater, that is, the hot water supply temperature and the amount of hot water supply are not constant throughout the year, and the hot water supply demand in the summer when the temperature is high is smaller than the hot water supply demand in the winter when the temperature is low.

【0045】したがって、本実施形態ごとく、年間を通
して高圧側冷媒圧力が略一定となるようにヒートポンプ
ユニット1を制御すれば、気温の高い夏場には給湯温度
が気温の低い冬場に比べて低下するものの、実用上問題
はなく、むしろ、気温の高い夏場に合わせて水冷媒熱交
換器20や圧縮機10等の高圧側機器の耐圧性を必要以
上に高める必要がないので、給湯器の製造原価低減を図
りつつ、給湯器の耐圧信頼性を高めることができる。
Therefore, if the heat pump unit 1 is controlled so that the high-pressure side refrigerant pressure becomes substantially constant throughout the year as in the present embodiment, the hot water supply temperature in summer with high temperature is lower than that in winter with low temperature. However, there is no problem in practical use, and rather, it is not necessary to increase the pressure resistance of the high-pressure side devices such as the water-refrigerant heat exchanger 20 and the compressor 10 more than necessary according to the high summer temperature, so that the manufacturing cost of the water heater can be reduced. It is possible to improve the pressure resistance reliability of the water heater while achieving the above.

【0046】また、本実施形態では、作動室47b内に
不活性ガスを封入した簡便な構造のアクチュエータ47
によりノズル41の絞り開度を制御するので、電気式の
アクチュエータを用いた場合に比べて、安価に高圧側冷
媒圧力を制御することができる。
Further, in this embodiment, the actuator 47 having a simple structure in which the inert gas is filled in the working chamber 47b.
Since the throttle opening degree of the nozzle 41 is controlled by this, the high pressure side refrigerant pressure can be controlled at a lower cost than in the case where an electric actuator is used.

【0047】(第2実施形態)第1実施形態では、仕切
部材を薄膜状のダイヤフラム47cにて構成したが、本
実施形態は、図5に示すように、仕切部材を蛇腹状のベ
ローズ47fにて構成したものである。なお、本実施形
態では、ベローズ47fの内部が作動室47bとなる。
(Second Embodiment) In the first embodiment, the partition member is composed of the thin film diaphragm 47c, but in this embodiment, as shown in FIG. 5, the partition member is a bellows-shaped bellows 47f. It is configured by. In this embodiment, the inside of the bellows 47f becomes the working chamber 47b.

【0048】これにより、第1実施形態に比べてニード
ル弁46の変位量、すなわちストロークを大きく設定す
ることが可能となる。
As a result, the displacement amount of the needle valve 46, that is, the stroke can be set larger than that in the first embodiment.

【0049】(第3実施形態)本実施形態は、図6に示
すように、仕切部材をOリング等のシール手段47hを
介して摺動可能に配置されたピストン47gにて構成し
たものである。
(Third Embodiment) In this embodiment, as shown in FIG. 6, the partition member is constituted by a piston 47g slidably arranged via a sealing means 47h such as an O-ring. .

【0050】これにより、第1実施形態に比べてニード
ル弁46の変位量、すなわちストロークを大きく設定す
ることが可能となる。
As a result, the displacement amount of the needle valve 46, that is, the stroke can be set larger than in the first embodiment.

【0051】(第4実施形態)本実施形態は、図7に示
すように、不活性ガスに加えて、仕切部材(この例で
は、ピストン47g)を駆動室47a側に押圧する弾性
力を仕切部材に作用させる弾性手段としてのコイルバネ
47jを作動室47b内に設けたものである。
(Fourth Embodiment) In the present embodiment, as shown in FIG. 7, in addition to the inert gas, the partition member (piston 47g in this example) is provided with an elastic force for pressing it toward the drive chamber 47a. A coil spring 47j as an elastic means that acts on the member is provided in the working chamber 47b.

【0052】なお、図7は第3実施形態に本実施形態を
適用したものであるが、本実施形態は、これに限定され
るものではなく、第1又は第2実施形態に対して本実施
形態を適用することができる。
Although FIG. 7 shows the third embodiment to which the present embodiment is applied, the present embodiment is not limited to this, and the present embodiment is applied to the first or second embodiment. Forms can be applied.

【0053】また、弾性手段としてのコイルバネ47j
の配置場所は、作動室47b内に限定されるものではな
く、作動室47b外、例えば第2実施形態では、ベロー
ズ47fの外側や駆動室47a側に配置してもよい。
Further, a coil spring 47j as elastic means
The location of is not limited to the inside of the working chamber 47b, and may be located outside the working chamber 47b, for example, outside the bellows 47f or on the drive chamber 47a side in the second embodiment.

【0054】(第5実施形態)本実施形態は、蒸発器3
0の除霜運転をすることができるようにしたものであ
る。
(Fifth Embodiment) In this embodiment, the evaporator 3 is used.
The defrosting operation of 0 can be performed.

【0055】具体的には、図8に示すように、エジェク
タ40にて減圧される前の高温・高圧冷媒を蒸発器30
の冷媒入口側(気液分離器50側)に導く除霜回路60
を開閉する電磁式の開閉弁61を設けるととともに、除
霜回路60にて導かれた高温・高圧冷媒が気液分離器5
0に流れ込むことを防止する逆止弁62を設けたもので
ある。なお、エジェクタ40は、第1〜4実施形態のい
ずれのものであってもよい。
Specifically, as shown in FIG. 8, the high temperature / high pressure refrigerant before being depressurized by the ejector 40 is transferred to the evaporator 30.
Defrosting circuit 60 that leads to the refrigerant inlet side (gas-liquid separator 50 side) of
An electromagnetic on-off valve 61 for opening and closing is provided, and the high temperature / high pressure refrigerant guided by the defrosting circuit 60 is used for the gas-liquid separator 5
The check valve 62 is provided to prevent the check valve 62 from flowing into zero. The ejector 40 may be any one of the first to fourth embodiments.

【0056】次に、本実施形態の特徴的作動及びその効
果を述べる。
Next, the characteristic operation of this embodiment and its effect will be described.

【0057】1.通常運転(給湯水を加熱する運転) 開閉弁61を閉じて圧縮機10を稼動させる。これによ
り、第1〜4実施形態で述べたように、高圧側の冷媒圧
力が略一定となるように制御された状態でヒートポンプ
ユニット1が運転される。
1. Normal operation (operation of heating hot water) The on-off valve 61 is closed and the compressor 10 is operated. Thereby, as described in the first to fourth embodiments, the heat pump unit 1 is operated in a state where the refrigerant pressure on the high pressure side is controlled to be substantially constant.

【0058】2.除霜運時 開閉弁61を開いた状態で圧縮機10を稼動させる。こ
れにより、高圧側の冷媒圧力が低下するので、駆動室4
7a内の圧力が低下し、図4に示すように、ノズル41
の絞り開度が小さくなり、最終的にはノズル41は全閉
状態となる。
2. The compressor 10 is operated with the open / close valve 61 open during defrosting. As a result, the pressure of the refrigerant on the high pressure side decreases, so that the drive chamber 4
The pressure in 7a decreases, and as shown in FIG.
And the nozzle 41 is finally fully closed.

【0059】このため、圧縮機10から吐出された高温
の冷媒全量が除霜回路60を経由して蒸発器30に流入
し、蒸発器30を加熱して蒸発器30の表面に付着した
霜を融解させる。
Therefore, the entire amount of the high temperature refrigerant discharged from the compressor 10 flows into the evaporator 30 via the defrosting circuit 60 and heats the evaporator 30 to remove the frost attached to the surface of the evaporator 30. Thaw.

【0060】そして、蒸発器30を流出した冷媒は、混
合部42及びディフューザ43を経由して気液分離器5
0に流入し、再び、圧縮機10にて加圧される。
Then, the refrigerant flowing out of the evaporator 30 passes through the mixing section 42 and the diffuser 43, and the gas-liquid separator 5
0, and is compressed again by the compressor 10.

【0061】以上に述べたように、本実施形態では、除
霜回路60及び開閉弁61を追加するといった簡単な手
段にて除霜運転を行うことができ、給湯器の製造原価上
昇を抑制できる。
As described above, in this embodiment, the defrosting operation can be performed by a simple means such as the addition of the defrosting circuit 60 and the opening / closing valve 61, and the increase in the manufacturing cost of the water heater can be suppressed. .

【0062】なお、図8では、水冷媒熱交換器20の出
口側から除霜回路60に高温の冷媒を導入したが、本実
施形態はこれに限定されるものではなく、水冷媒熱交換
器20の入口側又は水冷媒熱交換器20の途中から除霜
回路60に高温の冷媒を導入してもよい。
Although the high-temperature refrigerant is introduced into the defrosting circuit 60 from the outlet side of the water-refrigerant heat exchanger 20 in FIG. 8, the present embodiment is not limited to this, and the water-refrigerant heat exchanger is not limited to this. The high-temperature refrigerant may be introduced into the defrosting circuit 60 from the inlet side of 20 or in the middle of the water-refrigerant heat exchanger 20.

【0063】(その他の実施形態)上述の実施形態で
は、冷媒として二酸化炭素を用いたが本発明はこれに限
定されるものではなく、例えばフロンを用いてもよい。
なお、冷媒をフロンとした場合には、水冷媒熱交換器2
0内の冷媒圧力は冷媒の臨界圧力以下であり、水冷媒熱
交換器20にて冷媒が凝縮する。
(Other Embodiments) In the above embodiment, carbon dioxide was used as the refrigerant, but the present invention is not limited to this, and for example, CFC may be used.
When the refrigerant is CFC, the water-refrigerant heat exchanger 2
The refrigerant pressure in 0 is equal to or lower than the critical pressure of the refrigerant, and the refrigerant is condensed in the water refrigerant heat exchanger 20.

【0064】また、上述の実施形態では、アクチュエー
タ47及びエジェクタ40をステンレスで形成したが、
耐食性及び必要な強度を備える材質であれば、本発明は
これに限定されるものではない。
In the above embodiment, the actuator 47 and the ejector 40 are made of stainless steel.
The present invention is not limited to this as long as the material has corrosion resistance and required strength.

【0065】また、上述の実施形態では、低温側の熱を
高温側に移動させる蒸気圧縮式のヒートポンプユニット
1として、エジェクタサイクルを用いたが、本発明はこ
れに限定されるものではなく、膨張弁サイクルを用いて
もよい。
In the above embodiment, the ejector cycle is used as the vapor compression type heat pump unit 1 for moving the heat on the low temperature side to the high temperature side. However, the present invention is not limited to this, and the expansion A valve cycle may be used.

【0066】また、上述の実施形態では、機械式のアク
チュエータ47を用いてニードル弁46を変位させた
が、圧力センサにて高圧側冷媒圧力を検出して電気式の
アクチュエータにてニードル弁46を変位させてもよ
い。
In the above embodiment, the needle valve 46 is displaced by using the mechanical actuator 47. However, the pressure sensor detects the high pressure side refrigerant pressure, and the electric actuator operates the needle valve 46. It may be displaced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施形態に係る給湯器の模式図で
ある。
FIG. 1 is a schematic diagram of a water heater according to a first embodiment of the present invention.

【図2】エジェクタサイクルのp−h線図である。FIG. 2 is a ph diagram of an ejector cycle.

【図3】本発明の第1実施形態に係るエジェクタの模式
図である。
FIG. 3 is a schematic diagram of an ejector according to the first embodiment of the present invention.

【図4】本発明の第1実施形態に係るエジェクタの模式
図である。
FIG. 4 is a schematic diagram of an ejector according to the first embodiment of the present invention.

【図5】本発明の第2実施形態に係るエジェクタの模式
図である。
FIG. 5 is a schematic diagram of an ejector according to a second embodiment of the present invention.

【図6】本発明の第3実施形態に係るエジェクタの模式
図である。
FIG. 6 is a schematic diagram of an ejector according to a third embodiment of the present invention.

【図7】本発明の第4実施形態に係るエジェクタの模式
図である。
FIG. 7 is a schematic diagram of an ejector according to a fourth embodiment of the present invention.

【図8】本発明の第5実施形態に係る給湯器の模式図で
ある。
FIG. 8 is a schematic diagram of a water heater according to a fifth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

40…エジェクタ、41…ノズル、42…混合部、43
…ディフューザ、44…ボディ、45…吸引室、46…
ニードル弁、47…アクチュエータ、47a…駆動室、
47b…作動室、47c…ダイヤフラム、47d…スト
ッパ。
40 ... Ejector, 41 ... Nozzle, 42 ... Mixing section, 43
… Diffuser, 44… Body, 45… Suction chamber, 46…
Needle valve, 47 ... Actuator, 47a ... Drive chamber,
47b ... working chamber, 47c ... diaphragm, 47d ... stopper.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機(10)にて圧縮された高温高圧
の冷媒を放冷する高圧側熱交換器(20)、及び減圧さ
れた低温低圧の冷媒を蒸発させる蒸発器(30)を有
し、低温側の熱を高温側に移動させる蒸気圧縮式のヒー
トポンプユニット(1)にて給湯水を加熱する給湯器で
あって、 前記ヒートポンプユニット(1)の高圧側冷媒圧力を略
一定となるように制御することを特徴とする給湯器。
1. A high-pressure heat exchanger (20) for cooling a high-temperature and high-pressure refrigerant compressed by a compressor (10), and an evaporator (30) for evaporating a decompressed low-temperature and low-pressure refrigerant. A water heater for heating hot water with a vapor compression type heat pump unit (1) that moves heat on the low temperature side to the high temperature side, and the pressure of the high-pressure side refrigerant of the heat pump unit (1) is substantially constant. Water heater characterized by being controlled as follows.
【請求項2】 前記ヒートポンプユニット(1)は、減
圧手段(40)として、冷媒を減圧膨張させて前記蒸発
器(30)にて蒸発した気相冷媒を吸引するとともに、
膨張エネルギーを圧力エネルギーに変換して前記圧縮機
(10)の吸入圧を上昇させるエジェクタを有する蒸気
圧縮式冷凍サイクルであることを特徴とする請求項1に
記載の給湯器。
2. The heat pump unit (1) as a decompression means (40) decompresses and expands the refrigerant to suck the vapor phase refrigerant evaporated in the evaporator (30),
The water heater according to claim 1, wherein the water heater is a vapor compression refrigeration cycle having an ejector for converting expansion energy into pressure energy and increasing suction pressure of the compressor (10).
【請求項3】 前記圧縮機(10)は冷媒を冷媒の臨界
圧力以上まで圧縮することを特徴とする請求項1又は2
に記載の給湯器。
3. The compressor (10) compresses the refrigerant to a pressure equal to or higher than the critical pressure of the refrigerant.
Water heater described in.
【請求項4】 冷媒として二酸化炭素を用いたことを特
徴とする請求項1又は2に記載の給湯器。
4. The water heater according to claim 1, wherein carbon dioxide is used as the refrigerant.
【請求項5】 圧縮機(10)にて圧縮された高温高圧
の冷媒を放冷する高圧側熱交換器(20)、及び減圧さ
れた低温低圧の冷媒を蒸発させる蒸発器(30)を有し
て低温側の熱を高温側に移動させる蒸気圧縮式冷凍サイ
クルに適用されるエジェクタであって、 前記高圧側熱交換器(20)から流出した冷媒の圧力エ
ネルギーを速度エネルギーに変換して冷媒を減圧膨張さ
せるノズル(41)と、 前記ノズル(41)から噴射する冷媒と前記蒸発器(3
0)から吸引した冷媒とを混合させながら速度エネルギ
ーを圧力エネルギーに変換して冷媒の圧力を昇圧させる
昇圧部(42、43)と、 前記ノズル(41)の軸線方向に変位し、前記ノズル
(41)の絞り開度を調節するニードル弁(46)と、 前記ノズル(41)に流入する冷媒が充満する駆動室
(47a)と不活性ガスが封入された作動室(47b)
とを仕切るとともに、前記駆動室(47a)内の圧力と
前記作動室(47b)内の圧力との圧力差に応じて変位
して前記ニードル弁(46)を変位させる仕切部材(4
7c、47f、47g)とを備えることを特徴とするエ
ジェクタ。
5. A high pressure side heat exchanger (20) for cooling the high temperature and high pressure refrigerant compressed by the compressor (10), and an evaporator (30) for evaporating the decompressed low temperature and low pressure refrigerant. An ejector applied to a vapor compression refrigeration cycle for transferring heat on the low temperature side to the high temperature side, the pressure energy of the refrigerant flowing out from the high pressure side heat exchanger (20) being converted into velocity energy A nozzle (41) for decompressing and expanding the refrigerant, a refrigerant injected from the nozzle (41) and the evaporator (3).
(0) while mixing with the refrigerant sucked from the pressure increasing portion (42, 43) for converting velocity energy into pressure energy to increase the pressure of the refrigerant, the nozzle (41) is displaced in the axial direction, and the nozzle (41) is displaced. 41) a needle valve (46) for adjusting the throttle opening, a drive chamber (47a) filled with the refrigerant flowing into the nozzle (41), and a working chamber (47b) filled with an inert gas.
And a partition member (4) for displacing the needle valve (46) by displacing the needle valve (46) according to the pressure difference between the pressure in the drive chamber (47a) and the pressure in the working chamber (47b).
7c, 47f, 47g).
【請求項6】 前記仕切部材は、薄膜状のダイヤフラム
(47c)であることを特徴とする請求項5に記載のエ
ジェクタ。
6. The ejector according to claim 5, wherein the partition member is a thin film diaphragm (47c).
【請求項7】 前記仕切部材は、蛇腹状のベローズ(4
7f)であることを特徴とする請求項5に記載のエジェ
クタ。
7. The bellows (4) having a bellows shape is used as the partition member.
7f) is the ejector according to claim 5.
【請求項8】 前記仕切部材は、シール手段(47h)
を介して摺動可能に配置されたピストン(47g)であ
ることを特徴とする請求項5に記載のエジェクタ。
8. The partition member is a sealing means (47h).
The ejector according to claim 5, wherein the ejector is a piston (47g) slidably disposed through the ejector.
【請求項9】 前記仕切部材(47c)を前記駆動室
(47a)側に変位させる弾性力を前記仕切部材(47
c)に作用させる弾性手段(47j)を備えることを特
徴とする請求項5ないし8のいずれか1つに記載のエジ
ェクタ。
9. An elastic force for displacing the partition member (47c) toward the drive chamber (47a) is applied to the partition member (47).
Ejector according to any one of claims 5 to 8, characterized in that it comprises elastic means (47j) acting on c).
【請求項10】 冷媒を吸入圧縮する圧縮機(10)
と、 前記圧縮機(10)から吐出した冷媒を冷却する高圧側
熱交換器(20)と、 冷媒を蒸発させて吸熱する蒸発器(30)と、 請求項5ないし9のいずれか1つに記載のエジェクタ
(40)と、 冷媒を気相冷媒と液相冷媒とに分離するとともに、液相
冷媒を前記蒸発器(30)に供給し、気相冷媒を前記圧
縮機(10)に供給する気液分離器(50)と、 前記エジェクタ(40)にて減圧される前の冷媒を前記
蒸発器(30)に導く除霜回路(60)を開閉する開閉
弁(61)とを備えることを特徴とする蒸気圧縮式冷凍
サイクル。
10. A compressor (10) for sucking and compressing a refrigerant.
A high pressure side heat exchanger (20) for cooling the refrigerant discharged from the compressor (10); an evaporator (30) for evaporating the refrigerant to absorb heat; The ejector (40) described, and the refrigerant is separated into a gas-phase refrigerant and a liquid-phase refrigerant, the liquid-phase refrigerant is supplied to the evaporator (30), and the gas-phase refrigerant is supplied to the compressor (10). A gas-liquid separator (50); and an on-off valve (61) for opening and closing a defrost circuit (60) that guides the refrigerant before being decompressed by the ejector (40) to the evaporator (30). Characteristic vapor compression refrigeration cycle.
JP2002124319A 2002-01-15 2002-04-25 Ejector for vapor compression refrigeration cycle Expired - Fee Related JP4254126B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002124319A JP4254126B2 (en) 2002-01-15 2002-04-25 Ejector for vapor compression refrigeration cycle

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002005842 2002-01-15
JP2002-5842 2002-01-15
JP2002124319A JP4254126B2 (en) 2002-01-15 2002-04-25 Ejector for vapor compression refrigeration cycle

Publications (2)

Publication Number Publication Date
JP2003279177A true JP2003279177A (en) 2003-10-02
JP4254126B2 JP4254126B2 (en) 2009-04-15

Family

ID=29252870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002124319A Expired - Fee Related JP4254126B2 (en) 2002-01-15 2002-04-25 Ejector for vapor compression refrigeration cycle

Country Status (1)

Country Link
JP (1) JP4254126B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005180869A (en) * 2003-12-22 2005-07-07 Denso Corp Heat pump cycle for hot water supply
JP2006071177A (en) * 2004-09-01 2006-03-16 Denso Corp Ejector type heat pump cycle
JP2007003166A (en) * 2005-05-24 2007-01-11 Denso Corp Vapor compression type refrigerating cycle using ejector
JP2008170148A (en) * 2008-02-11 2008-07-24 Denso Corp Heat pump type heating device
US7607315B2 (en) 2004-06-09 2009-10-27 Denso Corporation Pressure control valve and vapor-compression refrigerant cycle system using the same
US7779647B2 (en) 2005-05-24 2010-08-24 Denso Corporation Ejector and ejector cycle device
CN102086941A (en) * 2010-08-27 2011-06-08 北京清华阳光能源开发有限责任公司 Water mixing valve
WO2011122085A1 (en) * 2010-03-31 2011-10-06 三菱電機株式会社 Refrigeration cycle system and method for circulating refrigerant
WO2011135876A1 (en) * 2010-04-27 2011-11-03 三菱電機株式会社 Refrigeration cycle device and refrigerant circulation method
WO2012053229A1 (en) * 2010-10-18 2012-04-26 三菱電機株式会社 Refrigeration cycle system and refrigerant circulation method
EP3708851A1 (en) * 2019-03-15 2020-09-16 Carrier Corporation Ejector and refrigerating system

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102226542B (en) * 2011-06-03 2014-04-23 北京建筑工程学院 Ejector type heat pump heat transfer set
CN103775681B (en) * 2013-04-27 2015-05-20 广州海鸥卫浴用品股份有限公司 Jet shower device
CN103775668B (en) * 2013-04-27 2014-12-24 广州海鸥卫浴用品股份有限公司 Jet flow valve element
CN103775678B (en) * 2013-04-27 2014-12-10 广州海鸥卫浴用品股份有限公司 Adjustable jet flow valve
CN105423399A (en) * 2014-11-01 2016-03-23 熵零股份有限公司 Heat supply method and device

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005180869A (en) * 2003-12-22 2005-07-07 Denso Corp Heat pump cycle for hot water supply
JP4561093B2 (en) * 2003-12-22 2010-10-13 株式会社デンソー Heat pump cycle for hot water supply
US7607315B2 (en) 2004-06-09 2009-10-27 Denso Corporation Pressure control valve and vapor-compression refrigerant cycle system using the same
JP2006071177A (en) * 2004-09-01 2006-03-16 Denso Corp Ejector type heat pump cycle
JP4595717B2 (en) * 2005-05-24 2010-12-08 株式会社デンソー Vapor compression refrigeration cycle using ejector
JP2007003166A (en) * 2005-05-24 2007-01-11 Denso Corp Vapor compression type refrigerating cycle using ejector
US7779647B2 (en) 2005-05-24 2010-08-24 Denso Corporation Ejector and ejector cycle device
JP2008170148A (en) * 2008-02-11 2008-07-24 Denso Corp Heat pump type heating device
JP4715852B2 (en) * 2008-02-11 2011-07-06 株式会社デンソー Heat pump water heater
US9612047B2 (en) 2010-03-31 2017-04-04 Mitsubishi Electric Corporation Refrigeration cycle apparatus and refrigerant circulation method
WO2011122085A1 (en) * 2010-03-31 2011-10-06 三菱電機株式会社 Refrigeration cycle system and method for circulating refrigerant
JP2011214741A (en) * 2010-03-31 2011-10-27 Mitsubishi Electric Corp Refrigeration cycle device
CN102844632A (en) * 2010-03-31 2012-12-26 三菱电机株式会社 Refrigeration cycle system and method for circulating refrigerant
CN102844632B (en) * 2010-03-31 2015-02-11 三菱电机株式会社 Refrigeration cycle system and method for circulating refrigerant
WO2011135876A1 (en) * 2010-04-27 2011-11-03 三菱電機株式会社 Refrigeration cycle device and refrigerant circulation method
CN102869930A (en) * 2010-04-27 2013-01-09 三菱电机株式会社 Refrigeration cycle device and refrigerant circulation method
JP2011231966A (en) * 2010-04-27 2011-11-17 Mitsubishi Electric Corp Refrigeration cycle device
CN102869930B (en) * 2010-04-27 2015-08-05 三菱电机株式会社 Refrigerating circulatory device and refrigerant circulating method
US9207004B2 (en) 2010-04-27 2015-12-08 Mitsubishi Electric Corporation Refrigeration cycle apparatus
CN102086941A (en) * 2010-08-27 2011-06-08 北京清华阳光能源开发有限责任公司 Water mixing valve
WO2012053229A1 (en) * 2010-10-18 2012-04-26 三菱電機株式会社 Refrigeration cycle system and refrigerant circulation method
US9453668B2 (en) 2010-10-18 2016-09-27 Mitsubishi Electric Corporation Refrigeration cycle apparatus and refrigerant circulating method
EP3708851A1 (en) * 2019-03-15 2020-09-16 Carrier Corporation Ejector and refrigerating system
US11460124B2 (en) 2019-03-15 2022-10-04 Carrier Corporation Ejector and refrigerating system

Also Published As

Publication number Publication date
JP4254126B2 (en) 2009-04-15

Similar Documents

Publication Publication Date Title
JP4120296B2 (en) Ejector and ejector cycle
EP0786632B1 (en) Refrigerating system with pressure control valve
JP2003279177A (en) Water heater, ejector for vapor compression type refrigerating cycle, and vapor compression type refrigerating cycle
US6729158B2 (en) Ejector decompression device with throttle controllable nozzle
JP4522641B2 (en) Vapor compression refrigerator
KR100360006B1 (en) Transcritical vapor compression cycle
KR100620465B1 (en) Ejector cycle having multiple evaporators
JP3951840B2 (en) Refrigeration cycle equipment
KR100964779B1 (en) Freezing device
JP4285060B2 (en) Vapor compression refrigerator
JPH10115470A (en) Steam compression type regrigeration cycle
JP4207235B2 (en) Vapor compression refrigeration cycle
US6931887B2 (en) Ejector decompression device
JPH062968A (en) Refrigerant-flow changeover device and refrigerator
JP4622193B2 (en) Refrigeration equipment
JP2002349977A (en) Heat pump cycle
JP2003097868A (en) Ejector cycle
JP3345450B2 (en) Refrigerant flow switching device and refrigerator
JP2008096072A (en) Refrigerating cycle device
JP2008051499A (en) Refrigerating cycle device, and refrigerating cycle
JP2005265223A (en) Refrigerating cycle device and refrigerating cycle
JP2001324246A (en) Expansion valve and freezing cycle using it
JP2004340475A (en) Stream compression type refrigerating machine
KR100591310B1 (en) Drive method of capacity control type cooling System having multiple compressor
JP3826503B2 (en) Pressure control valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees