JP4252617B1 - Composite floor slab bridge - Google Patents

Composite floor slab bridge Download PDF

Info

Publication number
JP4252617B1
JP4252617B1 JP2008125775A JP2008125775A JP4252617B1 JP 4252617 B1 JP4252617 B1 JP 4252617B1 JP 2008125775 A JP2008125775 A JP 2008125775A JP 2008125775 A JP2008125775 A JP 2008125775A JP 4252617 B1 JP4252617 B1 JP 4252617B1
Authority
JP
Japan
Prior art keywords
composite
girder
floor slab
bridge
concrete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008125775A
Other languages
Japanese (ja)
Other versions
JP2009275375A (en
Inventor
龍一 皆田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui E&S Holdings Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui E&S Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd, Mitsui E&S Holdings Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2008125775A priority Critical patent/JP4252617B1/en
Application granted granted Critical
Publication of JP4252617B1 publication Critical patent/JP4252617B1/en
Publication of JP2009275375A publication Critical patent/JP2009275375A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】桁高を小さくするとともに桁幅を大きくすることができ、さらには、幅員方向に並設したときに緊張材で横締めする箇所を少なくすることができる複合桁を用いた複合床版橋を提供することを課題とする。
【解決手段】複合床版橋であって、床版21の幅員方向の両端部を支持している一対の支持部22,22が形成され、橋軸方向の断面形状が門形のコンクリート部材20と、各支持部22,22の下面に取り付けられた鋼板30(鋼材)と、から構成された複合構造の複合桁10を用いていることを特徴としている。
【選択図】図1
A composite floor slab using a composite girder that can reduce the height of the girder and increase the width of the girder, and further reduce the number of places to be laterally tightened with a tension material when juxtaposed in the width direction. The issue is to provide a bridge.
A composite floor slab bridge is formed with a pair of support portions 22 and 22 that support both ends in the width direction of a floor slab 21, and a cross-sectional shape in a bridge axis direction is a concrete member 20 having a portal shape. And the composite girder 10 of the composite structure comprised from the steel plate 30 (steel material) attached to the lower surface of each support part 22 and 22 is used, It is characterized by the above-mentioned.
[Selection] Figure 1

Description

本発明は、コンクリート部材と鋼材とを組み合わせた複合構造の複合桁を用いた複合床版橋に関する。
The present invention relates to a composite floor slab bridge using a composite girder having a composite structure in which a concrete member and a steel material are combined.

コンクリート製の主桁を用いた橋梁としては、図8(a)に示すように、中空断面のプレキャスト部材によってコンクリート製の主桁210を形成し、複数の主桁210・・・を幅員方向に並設した橋梁200がある(例えば、特許文献1参照)。
このようなコンクリート製の主桁210を用いた橋梁200では、並設した各主桁210・・・をPC鋼線によって横締めしている。図8(a)に示すような中空断面の主桁210では、幅員方向の断面力(曲げモーメントなど)に対する有効断面(床版厚)を、一般的なプレストレスコンクリート製の桁橋の床版と比較して大きくすることができるため、各主桁210・・・を横締めする箇所を少なくすることができ、橋梁200を架設するときの施工コストを低減することができる。
As a bridge using a main girder made of concrete, as shown in FIG. 8 (a), a main girder 210 made of concrete is formed by a precast member having a hollow section, and a plurality of main girder 210. There is a bridge 200 arranged in parallel (see, for example, Patent Document 1).
In the bridge 200 using such a concrete main girder 210, the side-by-side main girders 210... Are laterally tightened with PC steel wires. In the main girder 210 having a hollow cross section as shown in FIG. 8 (a), the effective cross section (floor slab thickness) with respect to the cross sectional force (bending moment etc.) in the width direction is set to the floor slab of a general prestress concrete girder bridge. Therefore, it is possible to reduce the number of places where the main girders 210... Are laterally tightened and to reduce the construction cost when the bridge 200 is installed.

なお、交通路や河川など支間長が小さい施工現場では、桁下空間に制約があるため、主桁210の桁高を小さくすることが望まれている。
また、幅員方向に並設する主桁210の個数が少ない方が、橋梁200の製作コストを低減することができるとともに、橋梁200を架設するときの作業工数を少なくすることができる。そのため、一体の主桁210の桁幅を大きくして、少ない個数の主桁210によって、設定された幅員を確保することが望ましい。
In construction sites where the span length is small, such as a traffic route or a river, it is desired to reduce the girder height of the main girder 210 because the space under the girder is limited.
Further, when the number of main girders 210 arranged side by side in the width direction is small, the manufacturing cost of the bridge 200 can be reduced, and the man-hours for installing the bridge 200 can be reduced. Therefore, it is desirable to increase the width of the integral main beam 210 and to secure the set width with a small number of main beams 210.

前記したコンクリート製の主桁210を支間に架設した場合は、主桁210の上部には橋軸方向の圧縮力が作用し、主桁210の下部には橋軸方向の引張力が作用する。コンクリートは引張力に対する耐力が小さいため、従来のコンクリート製の主桁210では、主桁210の下部に対して多数のPC鋼線を橋軸方向に貫通させてプレストレスを付与することで、主桁210の下部の引張強度を高めている。したがって、従来のコンクリート製の主桁210では、下部に多数のPC鋼線を設けるために、主桁210の下部にコンクリート断面を設ける必要があり、主桁210の桁高を小さくすることができない。
なお、主桁210の桁高を小さくする場合には、圧縮力が作用する主桁210の上部に鋼材を設けるなどの対応が必要となり、橋梁200の製作コストが高くなってしまう(例えば、特許文献2参照)。
また、従来のコンクリート製の主桁210では重量が大きく、主桁210をトラッククレーンなどの揚重機械で吊り上げ可能な重量にするためには、主桁210の桁幅を大きくすることができない。
When the concrete main girder 210 is installed between the supports, a compressive force in the bridge axis direction acts on the upper part of the main girder 210, and a tensile force in the bridge axis direction acts on the lower part of the main girder 210. Since concrete has a low yield strength against tensile force, in the conventional concrete main girder 210, a large number of PC steel wires are passed through the lower part of the main girder 210 in the direction of the bridge axis to apply prestress. The tensile strength of the lower part of the girder 210 is increased. Therefore, in the conventional concrete main girder 210, in order to provide many PC steel wires in the lower part, it is necessary to provide a concrete cross section in the lower part of the main girder 210, and the height of the main girder 210 cannot be reduced. .
In addition, when reducing the girder height of the main girder 210, it is necessary to take measures such as providing a steel material on the upper part of the main girder 210 to which the compressive force acts, and the manufacturing cost of the bridge 200 is increased (for example, patents). Reference 2).
Further, the conventional concrete main girder 210 has a large weight, and in order to make the main girder 210 heavy enough to be lifted by a lifting machine such as a truck crane, the girder width of the main girder 210 cannot be increased.

したがって、従来のコンクリート製の主桁210では、桁高が大きく、桁下空間に制約がある施工現場に適用するためには製作コストが高くなるとともに、主桁210の桁幅を大きくすることができないため、設定された幅員を確保するために必要な主桁210の個数が多くなってしまうという問題がある。   Therefore, in the conventional concrete main girder 210, the girder height is large, and the manufacturing cost is high and the girder width of the main girder 210 can be increased to be applied to a construction site where the space under the girder is limited. Since this is not possible, there is a problem that the number of main girders 210 necessary for securing the set width increases.

そこで、図8(b)に示すように、床版121の幅方向の中央部を支持している支持部122が形成されたコンクリート部材120と、支持部122の下面に取り付けられた鋼材130とによって複合構造の複合桁110を構成し、複数の複合桁110・・・を幅員方向に並設した複合床版橋100がある(例えば、特許文献3参照)。   Therefore, as shown in FIG. 8B, the concrete member 120 formed with the support portion 122 that supports the center portion in the width direction of the floor slab 121, and the steel material 130 attached to the lower surface of the support portion 122, There is a composite floor slab bridge 100 in which a composite girder 110 having a composite structure is formed and a plurality of composite girders 110... Are arranged in the width direction (see, for example, Patent Document 3).

この複合床版橋100では、支持部122の下面に取り付けられた鋼材130によって、複合桁110の下部の引張強度を確保しているため、複合桁110の軸断面の高さを小さくすることができる。また、従来のコンクリート製の主桁210(図8(a)参照)と比較して、複合桁110の重量が小さくなるため、従来のコンクリート製の主桁210よりも桁幅を大きくすることができる。これにより、設定された幅員を確保するために必要な複合桁110の個数を少なくすることができる。   In this composite floor slab bridge 100, since the tensile strength of the lower part of the composite girder 110 is ensured by the steel material 130 attached to the lower surface of the support part 122, the height of the axial cross section of the composite girder 110 can be reduced. it can. Further, since the weight of the composite girder 110 is smaller than that of the conventional concrete main girder 210 (see FIG. 8A), the girder width can be made larger than that of the conventional concrete main girder 210. it can. As a result, the number of composite girders 110 necessary to secure the set width can be reduced.

特開2006−169731号公報JP 2006-169731 A 特開平5−340031号公報Japanese Patent Laid-Open No. 5-340031 特開2007−254974号公報JP 2007-254974 A

しかしながら、前記した従来の複合床版橋100では、各複合桁110・・・の床版121の側端部が支持されていないため、各複合桁110・・・を横締めするPC鋼線127を橋軸方向に狭い間隔で多数設けることで、幅員方向の曲げモーメントに抵抗する必要があり、複合床版橋100の施工コストが高くなってしまうという問題がある。   However, in the conventional composite floor slab bridge 100 described above, the side ends of the floor slab 121 of each composite girder 110... Are not supported. It is necessary to resist the bending moment in the width direction by providing a large number of bridges at narrow intervals in the bridge axis direction, and there is a problem that the construction cost of the composite floor slab bridge 100 increases.

本発明では、前記した問題を解決し、桁高を小さくするとともに桁幅を大きくすることができ、さらには、幅員方向に並設したときに緊張材で横締めする箇所を少なくすることができる複合床版橋を提供することを課題とする。
In the present invention, the above-mentioned problems can be solved, the girder height can be reduced and the girder width can be increased, and further, the number of places to be laterally tightened with a tension material when arranged in the width direction can be reduced. it is an object of the present invention to provide a multi-Goyuka version of Bridge that.

前記課題を解決するため、本発明の複合床版橋では、床版の幅方向の両端部を支持している一対の支持部が形成され、橋軸方向の断面形状が門形で上面全体が平坦な複合部を形成するコンクリート部材と、前記各支持部の下面に取り付けられた平板状の鋼材と、から構成された複合構造の複合桁が幅員方向に複数並設され、前記鋼材の上面には複数の定着部材が突設され、前記各定着部材が前記支持部の下端部に埋め込まれ、前記支持部のコンクリートと前記各定着部材との定着力によって、前記鋼材の上面が前記支持部の下面に取り付けられ、前記コンクリート部材には、橋軸方向の断面形状が矩形に形成された横締め部が形成され、幅員方向に並設された前記各複合桁の前記各横締め部に貫通させた緊張材によって、前記各複合桁が横締めされており、前記コンクリート部材の橋軸方向の両端部に形成された前記各横締め部の間に前記鋼材が取り付けられ、前記コンクリート部材の橋軸方向の両端部の下面には、前記各横締め部の下面が露出していることを特徴としている。
In order to solve the above-mentioned problem, in the composite floor slab bridge of the present invention, a pair of support portions that support both ends of the width direction of the floor slab are formed, the cross-sectional shape in the bridge axis direction is a gate shape , and the entire upper surface is A plurality of composite girders of a composite structure composed of a concrete member forming a flat composite part and a flat steel material attached to the lower surface of each support part are arranged side by side in the width direction, on the upper surface of the steel material A plurality of fixing members project, each fixing member is embedded in a lower end portion of the support portion, and due to the fixing force between the concrete of the support portion and each fixing member, the upper surface of the steel material is The concrete member is formed with a lateral fastening portion having a rectangular cross-sectional shape in the direction of the bridge axis, and is penetrated through the lateral fastening portions of the composite girders arranged side by side in the width direction. Each composite girder is laterally tightened The steel material is attached between the lateral fastening portions formed at both ends in the bridge axis direction of the concrete member, and the lower surfaces of the both ends in the bridge axis direction of the concrete member It is characterized in that the lower surface of the fastening portion is exposed .

本発明では、支持部の下面に取り付けられた鋼材によって、複合桁の下部の引張強度を確保しており、複合桁の下部の断面を大きくする必要がなくなるため、複合桁の軸断面の高さを小さくすることができる。
また、本発明では、複合桁の重量が小さくなるため、従来のコンクリート製の主桁と同等の重量で、従来のコンクリート製の主桁よりも桁幅を大きくすることができる。これにより、設定された幅員を確保するために必要な複合桁の個数を少なくすることができるため、複合床版橋の製作コストを低減するとともに、複合床版橋を架設するときの作業工数を少なくすることができる。
また、複合桁の橋軸方向の断面形状が門形であり、床版の幅方向の両端部が支持されているとともに、複数の複合桁を幅員方向に並設するときには、各複合桁を接合した状態における接合位置での幅員方向の有効断面を、従来の複合桁の有効断面と比べて大きく採ることができるため、各複合桁を緊張材によって横締めする箇所を少なくすることができ、複合床版橋の施工コストを低減することができる。
また、本発明では、複合桁を搬送車両の荷台に積載したときに、幅方向に配置された一対の支持部によって床版が支持されるため、複合桁を搬送するときの安定性を高めることができる。
また、平板状の部材を用いることで、鋼材の製造コストを低減することができるとともに、鋼材同士を溶接などで接合する必要がないため、鋼材の疲労耐久性を高めることができる。
また、定着部材とコンクリートとの定着力によって、鋼材を支持部の下面に取り付けている。そのため、鋼材をコンクリート部材に対して簡単に取り付けることができるとともに、コンクリート部材と鋼材とを強固に接合することができる。
In the present invention, the tensile strength of the lower part of the composite girder is secured by the steel material attached to the lower surface of the support part, and it is not necessary to increase the cross section of the lower part of the composite girder. Can be reduced.
In the present invention, since the weight of the composite girder is reduced, the girder width can be made larger than that of the conventional concrete main girder with the same weight as that of the conventional concrete main girder. As a result, the number of composite girders required to secure the set width can be reduced, thus reducing the production cost of the composite floor slab bridge and reducing the work man-hours when constructing the composite floor slab bridge. Can be reduced.
In addition, the cross-sectional shape of the composite girder in the bridge axis direction is a gate shape, both ends of the floor slab are supported in the width direction, and when multiple composite girders are arranged side by side in the width direction, each composite girder is joined The effective cross-section in the width direction at the joining position in the bonded state can be made larger than the effective cross-section of the conventional composite girder, so the number of places where each composite girder is laterally tightened with a tension material can be reduced, and the composite The construction cost of the floor slab bridge can be reduced.
Further, in the present invention, when the composite girder is loaded on the loading platform of the transport vehicle, the floor slab is supported by the pair of support portions arranged in the width direction, so that stability when transporting the composite girder is improved. Can do.
Moreover, since the manufacturing cost of steel materials can be reduced by using a flat member, it is not necessary to join steel materials by welding etc., Therefore The fatigue durability of steel materials can be improved.
Further, the steel material is attached to the lower surface of the support portion by the fixing force between the fixing member and the concrete. Therefore, the steel material can be easily attached to the concrete member, and the concrete member and the steel material can be firmly joined.

また、複合桁の橋軸方向の断面形状が門形であり、床版の幅方向の両端部が支持されているとともに、各複合桁を接合した状態における接合位置での幅員方向の有効断面を、従来の複合桁の有効断面と比べて大きく採ることができるため、各複合桁を緊張材によって横締めする箇所を少なくすることができ、複合床版橋の施工コストを低減することができる。
In addition, the cross-sectional shape of the composite girder in the bridge axis direction is a gate shape, both ends of the floor slab in the width direction are supported, and the effective cross-section in the width direction at the joining position in the state where each composite girder is joined Since it can be taken larger than the effective cross section of the conventional composite girder, the number of places where each composite girder is laterally fastened with a tension material can be reduced, and the construction cost of the composite floor slab bridge can be reduced.

前記した複合床版橋において、前記複合桁はプレキャスト部材によって構成することができる。
この構成では、複合桁が工場などで予め製造されるため、施工現場における施工期間を短くすることができる。また、工場などで型枠内にコンクリートを打設してコンクリート部材を形成するため、複合桁の寸法精度を高めることができる。
In the composite floor slab bridge described above, the composite girder can be constituted by a precast member.
In this configuration, since the composite girder is manufactured in advance at a factory or the like, the construction period at the construction site can be shortened. In addition, since concrete is formed by placing concrete in a formwork at a factory or the like, the dimensional accuracy of the composite girder can be increased.

本発明によれば、複合桁の下部の断面を大きくする必要がなくなるため、複合桁の軸断面の高さを小さくすることができる。
また、従来のコンクリート製の主桁と同等の重量で、従来のコンクリート製の主桁よりも桁幅を大きくすることができ、設定された幅員を確保するために必要な複合桁の個数を少なくすることができるため、複合床版橋の製作コストを低減するとともに、複合床版橋を架設するときの作業工数を少なくすることができる。
また、複数の複合桁を幅員方向に並設するときには、各複合桁を接合した状態における接合位置での幅員方向の有効断面を、従来の複合桁の有効断面と比べて大きく採ることができるため、各複合桁を緊張材によって横締めする箇所を少なくすることができ、複合床版橋の施工コストを低減することができる。
また、幅方向に配置された一対の支持部によって床版が支持されるため、複合桁を搬送するときの安定性を高めることができる。
According to the present invention, since it is not necessary to increase the lower cross section of the composite girder, the height of the axial cross section of the composite girder can be reduced.
Also, with the same weight as a conventional concrete main girder, the girder width can be made larger than that of a conventional concrete main girder, and the number of composite girder required to secure the set width is reduced. Therefore, the manufacturing cost of the composite floor slab bridge can be reduced, and the number of work steps when constructing the composite floor slab bridge can be reduced.
Also, when multiple composite girders are juxtaposed in the width direction, the effective cross-section in the width direction at the joining position when each composite girder is joined can be made larger than the effective cross-section of the conventional composite girder. In addition, it is possible to reduce the number of places where each composite girder is laterally tightened with a tension material, and to reduce the construction cost of the composite floor slab bridge.
Moreover, since a floor slab is supported by a pair of support part arrange | positioned in the width direction, stability at the time of conveying a composite girder can be improved.

次に、本発明の実施形態について、適宜図面を参照しながら詳細に説明する。
本実施形態では、図7に示すように、河川の両岸に形成された支承部2,2の間に架設される複合床版橋1であって、支間長が16m以下の小支間で、幅員が約10mの複合床版橋1を例として説明する。
Next, embodiments of the present invention will be described in detail with reference to the drawings as appropriate.
In the present embodiment, as shown in FIG. 7, the composite floor slab bridge 1 is constructed between the support portions 2 and 2 formed on both banks of the river, and the span length is 16 m or less, The composite floor slab bridge 1 having a width of about 10 m will be described as an example.

複合桁10は、工場などで製造されるプレキャスト部材であり、図2(a)に示すように、鉄筋コンクリート構造のコンクリート部材20と、平板状の鋼板30とを組み合わせた複合構造となっている。本実施形態では、図5に示すように、十一体の複合桁10・・・を幅員方向に並設することで、設定された幅員を確保している。   The composite girder 10 is a precast member manufactured in a factory or the like, and has a composite structure in which a concrete member 20 having a reinforced concrete structure and a flat steel plate 30 are combined as shown in FIG. In this embodiment, as shown in FIG. 5, the set width is secured by juxtaposing the composite girder 10... In the width direction.

コンクリート部材20は、図2(a)及び(b)に示すように、橋軸方向に所定間隔を離した複数の位置には、橋軸方向の断面形状が矩形に形成された横締め部20a・・・が形成され(図3(b)参照)、各横締め部20a,20aの間には、橋軸方向の断面形状が門形に形成された複合部20bが形成されている(図3(a)参照)。なお、横締め部20aを設ける位置や間隔は限定されるものではないが、本実施形態のように支間長が16m程度であれば、橋軸方向の両端部と、橋軸方向の両端部から4m程度の間隔の位置との四箇所に形成されていればよい。   As shown in FIGS. 2 (a) and 2 (b), the concrete member 20 has a lateral fastening portion 20a having a rectangular cross-sectional shape in the bridge axis direction at a plurality of positions spaced apart in the bridge axis direction. Are formed (see FIG. 3 (b)), and a composite portion 20b is formed between the lateral fastening portions 20a, 20a. 3 (a)). In addition, although the position and space | interval which provide the horizontal fastening part 20a are not limited, if the span length is about 16m like this embodiment, from both ends of a bridge axis direction and both ends of a bridge axis direction What is necessary is just to form in four places with the position of a space | interval of about 4 m.

コンクリート部材20の複合部20bには、図1(a)及び(b)に示すように、水平な板状の床版21と、この床版21の幅方向の両端部をそれぞれ支持している垂直な板状の支持部22,22とが形成されており、橋軸方向の断面形状が門形となっている。複合部20bは、各支持部22,22の下面にそれぞれ鋼板30,30が取り付けられることで複合構造を構成している。   As shown in FIGS. 1A and 1B, the composite portion 20b of the concrete member 20 supports a horizontal plate-like floor slab 21 and both ends of the floor slab 21 in the width direction. Vertical plate-like support portions 22 and 22 are formed, and the cross-sectional shape in the bridge axis direction is a gate shape. The composite part 20b comprises the composite structure by attaching the steel plates 30 and 30 to the lower surface of each support part 22 and 22, respectively.

コンクリート部材20の横締め部20aには、図2(a)及び(b)に示すように、一方の側面から他方の側面に亘って幅員方向に貫通した貫通孔23が四箇所に形成されている。各貫通孔23・・・は、横締め部20aの略中央を幅方向に貫通しており、側面視で上下左右の四箇所に配置されている。   As shown in FIGS. 2 (a) and 2 (b), through holes 23 penetrating in the width direction from one side surface to the other side surface are formed in the lateral fastening portion 20a of the concrete member 20 at four locations. Yes. Each through-hole 23 ... penetrates substantially the center of the lateral fastening portion 20a in the width direction, and is arranged at four locations on the top, bottom, left, and right in a side view.

また、コンクリート部材20の幅方向の両側面には、図3(a)及び(b)に示すように、幅方向の内側に向けてオフセットされた側面溝部24,24が形成されている。この側面溝部24は、コンクリート部材20の上面から下面の近傍まで高さ方向に形成されており、図2(b)に示すように、コンクリート部材20の橋軸方向の一端部から他端部に亘って形成されている。   Further, as shown in FIGS. 3A and 3B, side surface grooves 24 and 24 that are offset toward the inner side in the width direction are formed on both side surfaces of the concrete member 20 in the width direction. The side surface groove portion 24 is formed in the height direction from the upper surface of the concrete member 20 to the vicinity of the lower surface, and as shown in FIG. 2 (b), from one end portion to the other end portion of the concrete member 20 in the bridge axis direction. It is formed over.

鋼板30は、図1(b)に示すように、平板状の鋼材であり、二枚の鋼板30,30の上面がコンクリート部材20の各支持部22,22の下面にそれぞれ取り付けられている。この鋼板30は、図2(a)に示すように、コンクリート部材20の橋軸方向の両端部に形成された各横締め部20a,20aの間に取り付けられており、支持部22の幅と略同じ幅の一枚の板部材によって構成されている。そして、鋼板30を支持部22の下面に取り付けた状態では、鋼板30の下面と橋軸方向の両端部の各横締め部20a,20aの下面とが面一になっている。   As shown in FIG. 1B, the steel plate 30 is a flat steel material, and the upper surfaces of the two steel plates 30 and 30 are respectively attached to the lower surfaces of the support portions 22 and 22 of the concrete member 20. As shown in FIG. 2A, the steel plate 30 is attached between the lateral fastening portions 20a, 20a formed at both ends of the concrete member 20 in the bridge axis direction, and the width of the support portion 22 is It is composed of a single plate member having substantially the same width. And in the state which attached the steel plate 30 to the lower surface of the support part 22, the lower surface of the steel plate 30 and the lower surface of each horizontal fastening part 20a of the both ends of a bridge axis direction are the same.

鋼板30の上面には、図2(a)に示すように、複数のスタッドジベル31・・・が突設されている。スタッドジベル31は、図3(a)に示すように、上端部が拡径された棒状部材であり、コンクリート部材20の支持部22の下端部に埋め込まれたときに、支持部22のコンクリートに定着する定着部材である。したがって、鋼板30は、複数のスタッドジベル31・・・と支持部22のコンクリートとの定着力によって、支持部22の下面に取り付けられており、支持部22の下面に鋼板30が貼り付けられた状態となっている。   On the upper surface of the steel plate 30, as shown in FIG. As shown in FIG. 3A, the stud gibber 31 is a rod-like member having an enlarged upper end portion, and is embedded in the lower end portion of the support portion 22 of the concrete member 20, so A fixing member for fixing. Therefore, the steel plate 30 is attached to the lower surface of the support portion 22 by the fixing force between the plurality of stud gibbles 31... And the concrete of the support portion 22, and the steel plate 30 is attached to the lower surface of the support portion 22. It is in a state.

なお、鋼板30は外部に露出しているため、耐候性鋼材を用いたり、鋼板30の表面に防錆処理を施したりして、鋼板30に錆が発生するのを防ぐことで、鋼板30のメンテナンスを簡単にしている。鋼板30の防錆処理としては、防錆塗料を表面に塗布する方法や、コーティング材を表面に溶射する方法、又は表面をめっき処理する方法がある。   In addition, since the steel plate 30 is exposed to the outside, by using a weather-resistant steel material or applying a rust prevention treatment to the surface of the steel plate 30 to prevent the steel plate 30 from generating rust, Easy maintenance. As the rust prevention treatment of the steel sheet 30, there are a method of applying a rust prevention paint to the surface, a method of spraying a coating material on the surface, or a method of plating the surface.

次に、前記した複合桁10を用いた複合床版橋1を、図7に示す河川の両岸に形成された支承部2,2の間に架設するときの手順について説明する。
まず、図2(a)及び(b)に示す複合桁10を工場で製造し、トラックなどの搬送車両の荷台に積載して施工現場まで搬送する。
複合桁10を工場で製造するときには、鉄筋が配筋された型枠内に鋼板30を配置し、鋼板30の上面に突設された各スタッドジベル31・・・が、支持部22の下端部に埋め込まれるように、型枠内にコンクリートを打設してコンクリート部材20を形成することで、支持部22の下面に鋼板30が取り付けられる。このように、複合桁10を工場などで予め製造することで、施工現場における施工期間を短くすることができる。また、工場などで型枠内にコンクリートを打設してコンクリート部材20を形成するため、複合桁10の寸法精度を高めることができる。
Next, a procedure when the composite floor slab bridge 1 using the composite girder 10 described above is installed between the support portions 2 and 2 formed on both banks of the river shown in FIG. 7 will be described.
First, the composite girder 10 shown in FIGS. 2 (a) and 2 (b) is manufactured in a factory, loaded on a loading platform of a transport vehicle such as a truck, and transported to a construction site.
When the composite girder 10 is manufactured at the factory, the steel plate 30 is placed in a formwork in which reinforcing bars are arranged, and the stud gibbles 31... The steel plate 30 is attached to the lower surface of the support portion 22 by forming concrete member 20 by placing concrete in the mold so as to be embedded in the frame. Thus, the construction period in a construction site can be shortened by manufacturing composite girder 10 beforehand at a factory etc. Moreover, since the concrete member 20 is formed by placing concrete in a mold at a factory or the like, the dimensional accuracy of the composite girder 10 can be increased.

施工現場に搬入された複合桁10をトラッククレーンなどの揚重機械によって吊り上げ、複合桁10の橋軸方向の両端部を図7に示す各支承部2,2に取り付けることで、各支承部2,2の間に複合桁10を架設する。
続いて、他の複合桁10を揚重機械によって吊り上げ、図4(a)及び(b)に示すように、二体の複合桁10,10を幅員方向に並設する。隣り合う各複合桁10,10の側面に形成された側面溝部24,24が連結されることで、各複合桁10,10の間には凹状の充填用溝部25が形成される。また、充填用溝部25には、連通管23aを配置することで、隣り合う各複合桁10,10の各貫通孔23,23を連通させている。
なお、本実施形態では、隣り合う各複合桁10,10の下端部の間に隙間が形成されている。この隙間は複合桁10の製作誤差や設置誤差を考慮して形成されたものであり、隣り合う各複合桁10,10の間に隙間を形成しなくてもよい。
The composite girder 10 carried into the construction site is lifted by a lifting machine such as a truck crane, and both ends in the bridge axis direction of the composite girder 10 are attached to the support parts 2 and 2 shown in FIG. , 2, the composite girder 10 is installed.
Subsequently, the other composite girder 10 is lifted by a lifting machine, and the two composite girders 10 and 10 are juxtaposed in the width direction as shown in FIGS. By connecting the side groove portions 24, 24 formed on the side surfaces of the adjacent composite girders 10, 10, a concave filling groove 25 is formed between the composite girders 10, 10. Further, the through holes 23 and 23 of the adjacent composite girders 10 and 10 are communicated with the filling groove 25 by arranging the communication pipe 23a.
In the present embodiment, a gap is formed between the lower ends of the adjacent composite girders 10 and 10. This gap is formed in consideration of manufacturing errors and installation errors of the composite girder 10, and it is not necessary to form a gap between the adjacent composite girders 10 and 10.

前記した二体の複合桁10,10の架設手順と同様にして、順次に複合桁10を幅員方向に並設することで、図6(a)に示すように、幅員方向に十一体の複合桁10・・・を並設する。
また、隣り合う各複合桁10,10の間に形成された充填用溝部25には、コンクリート26を充填材として充填する。
In the same manner as in the construction procedure of the two composite girders 10 and 10, the composite girders 10 are sequentially arranged in the width direction, so that as shown in FIG. The composite girder 10.
Further, the filling groove 25 formed between the adjacent composite beams 10 and 10 is filled with concrete 26 as a filler.

続いて、図5及び図6(b)に示すように、並設された各複合桁10・・・の横締め部20aに形成された各貫通孔23・・・にそれぞれPC鋼線27・・・を貫通させ、幅員方向の両端に配置された各複合桁10,10の側面にPC鋼線27の両端部を定着させる。これにより、各複合桁10・・・の各横締め部20a・・・がPC鋼線27によって横締めされる。   Subsequently, as shown in FIG. 5 and FIG. 6 (b), the PC steel wires 27... Are respectively inserted into the through holes 23... Formed in the lateral fastening portions 20 a of the composite girders 10. .. is penetrated and both ends of the PC steel wire 27 are fixed to the side surfaces of the composite girders 10 and 10 arranged at both ends in the width direction. Thereby, each horizontal fastening part 20a ... of each composite girder 10 ... is laterally fastened by the PC steel wire 27.

さらに、図6(a)及び(b)に示すように、各複合桁10・・・の上面にアスファルト舗装40を施工するとともに、幅員方向の両端に配置された各複合桁10,10に地覆51,51及び高欄50,50を設けることで、図7に示すように、河川の両岸に設けられた支承部2,2の間に架設された複合床版橋1を完成させる。   Further, as shown in FIGS. 6 (a) and 6 (b), asphalt pavement 40 is constructed on the upper surface of each composite girder 10... And the ground is placed on each composite girder 10 and 10 disposed at both ends in the width direction. By providing the coverings 51 and 51 and the railings 50 and 50, as shown in FIG. 7, the composite floor slab bridge 1 constructed between the support parts 2 and 2 provided on both banks of the river is completed.

以上のような構成の複合床版橋1及び複合桁10では、以下のような作用効果を奏する。
複合桁10では、図3(a)に示すように、各支持部22,22の下面にそれぞれ取り付けられた鋼板30,30によって、複合桁10の下部の引張強度を確保しており、複合桁10の下部の断面を大きくする必要がないため、複合桁10の軸断面の高さを小さくすることができる。
The composite floor slab bridge 1 and the composite girder 10 configured as described above have the following effects.
In the composite girder 10, as shown in FIG. 3A, the tensile strength of the lower part of the composite girder 10 is secured by the steel plates 30 and 30 attached to the lower surfaces of the support portions 22 and 22, respectively. Since there is no need to increase the cross section of the lower portion of the ten, the height of the axial cross section of the composite beam 10 can be reduced.

また、複合桁10の重量が小さくなるため、従来のコンクリート製の主桁210(図8(a)参照)と同等の重量で、従来のコンクリート製の主桁よりも桁幅を大きくすることができる。これにより、設定された幅員を確保するために必要な複合桁10の個数を少なくすることができるため、複合床版橋1の製作コストを低減するとともに、複合床版橋1を架設するときの作業工数を少なくすることができる。   Further, since the weight of the composite girder 10 is reduced, the girder width can be made larger than that of the conventional concrete main girder with the same weight as that of the conventional concrete main girder 210 (see FIG. 8A). it can. As a result, the number of composite girders 10 necessary to secure the set width can be reduced, so that the production cost of the composite floor slab bridge 1 is reduced and the composite floor slab bridge 1 is installed. Work man-hours can be reduced.

また、図6(a)に示すように、複合桁10の橋軸方向の断面形状が門形であり、床版21の幅方向の両端部が支持されているとともに、複数の複合桁10・・・を幅員方向に並設したときに、各複合桁10・・・を接合した状態における接合位置での幅員方向の有効断面を、従来の複合桁110(図8(b)参照)の有効断面と比べて大きく採ることができるため、各複合桁10・・・を横締めする箇所を少なくすることができ、複合床版橋1の施工コストを低減することができる。   Further, as shown in FIG. 6A, the cross-sectional shape of the composite girder 10 in the bridge axis direction is a gate shape, and both end portions in the width direction of the floor slab 21 are supported, and a plurality of composite girder 10. .. When the parallel girder 10 is arranged in the width direction, the effective cross section in the width direction at the joining position in a state where each composite girder 10... Is joined is effective for the conventional composite girder 110 (see FIG. 8B). Since it can take large compared with a cross section, the place which carries out the horizontal fastening of each composite girder 10 ... can be decreased, and the construction cost of the composite floor slab bridge 1 can be reduced.

また、複合桁10を搬送車両の荷台に積載したときには、図3(a)に示すように、幅員方向に配置された一対の支持部22,22によって床版21が支持されるため、複合桁10を搬送するときの安定性を高めることができる。   Further, when the composite girder 10 is loaded on the loading platform of the transport vehicle, the floor slab 21 is supported by the pair of support portions 22 and 22 arranged in the width direction as shown in FIG. The stability when conveying 10 can be improved.

また、コンクリート部材20に取り付ける鋼材として平板状の鋼板30を用いることで、鋼材の製造コストを低減することができるとともに、鋼材同士を溶接などで接合する必要がないため、鋼材の疲労耐久性を高めることができる。   Further, by using the flat steel plate 30 as the steel material to be attached to the concrete member 20, it is possible to reduce the manufacturing cost of the steel material, and it is not necessary to join the steel materials by welding or the like. Can be increased.

また、鋼板30の上面に突設された複数のスタッドジベル31・・・と、コンクリート部材20の支持部22のコンクリートとの定着力によって、鋼板30を支持部22の下面に取り付けている。そのため、鋼板30をコンクリート部材20に対して簡単に取り付けることができるとともに、コンクリート部材20と鋼板30とを強固に接合することができる。   Further, the steel plate 30 is attached to the lower surface of the support portion 22 by the fixing force between the plurality of stud gibbles 31... Projecting from the upper surface of the steel plate 30 and the concrete of the support portion 22 of the concrete member 20. Therefore, the steel plate 30 can be easily attached to the concrete member 20, and the concrete member 20 and the steel plate 30 can be firmly joined.

以上、本発明の実施形態について説明したが、本発明は前記実施形態に限定されることなく、その趣旨を逸脱しない範囲で適宜に設計変更が可能である。   The embodiments of the present invention have been described above. However, the present invention is not limited to the above-described embodiments, and various design changes can be made without departing from the spirit of the present invention.

例えば、本実施形態では、鋼板30の上面に突設されたスタッドジベル31と、コンクリート部材20の支持部22のコンクリートとの定着力によって、鋼板30を支持部22の下面に取り付けているが、鋼板30の上面に突設される定着部材の形状や個数は限定されるものではなく、ボルトや鉄筋などの棒状部材や、垂直な板状部材を定着部材として鋼板30の上面に突設してもよい。 For example , in the present embodiment, the steel plate 30 is attached to the lower surface of the support portion 22 by the fixing force between the stud gibber 31 protruding from the upper surface of the steel plate 30 and the concrete of the support portion 22 of the concrete member 20. The shape and the number of fixing members protruding from the upper surface of the steel plate 30 are not limited. The fixing member protrudes from the upper surface of the steel plate 30 using a rod-shaped member such as a bolt or a reinforcing bar or a vertical plate-shaped member as a fixing member. Also good.

また、本実施形態では、図6(b)に示すように、各複合桁10・・・をPC鋼線27によって横締めしているが、各複合桁10・・・を横締めするための緊張材の構成は限定されるものではない。   Moreover, in this embodiment, as shown in FIG.6 (b), although each composite girder 10 ... is laterally clamped by the PC steel wire 27, for compounding each composite girder 10 ... laterally, The configuration of the tendon is not limited.

また、本実施形態では、図7に示すように、複合床版橋1に複数の横締め部20a・・・を設けているが、横締め部20aを設ける位置や個数は限定されるものではなく、複合床版橋1の橋軸方向の長さや幅員などの設計条件に基づいて設定することができる   Moreover, in this embodiment, as shown in FIG. 7, although the some horizontal fastening part 20a ... is provided in the composite floor slab bridge 1, the position and number which provide the horizontal fastening part 20a are not limited. And can be set based on design conditions such as the length and width of the composite floor slab bridge 1 in the bridge axis direction.

また、本実施形態では、図4(a)に示すように、隣り合う各複合桁10,10の間に充填用溝部25を設け、この充填用溝部25にコンクリート26を充填しているが、隣り合う各複合桁10,10の間に充填される充填材は限定されるものではなく、モルタルや樹脂材などの各種充填材を用いることができる。
さらに、本実施形態では、隣り合う各複合桁10,10の間に隙間が形成されているが、隣り合う各複合桁10,10の側面を密着させてもよい。この場合には、一方の複合桁10の側面を型枠として利用するマッチキャスト方法によって他方の複合桁10の側面を形成することで、各複合桁10,10の密着性を高めることが望ましい。
In the present embodiment, as shown in FIG. 4A, a filling groove 25 is provided between adjacent composite girders 10 and 10, and the filling groove 25 is filled with concrete 26. The filler filled between the adjacent composite girders 10 and 10 is not limited, and various fillers such as mortar and resin material can be used.
Further, in the present embodiment, a gap is formed between the adjacent composite girders 10 and 10, but the side surfaces of the adjacent composite girders 10 and 10 may be brought into close contact with each other. In this case, it is desirable to improve the adhesion of each composite girder 10 and 10 by forming the side surface of the other composite girder 10 by the match casting method using the side surface of one composite girder 10 as a formwork.

本実施形態の複合桁を示した図で、(a)は上方から見た斜視図、(b)は下方から見た斜視図である。It is the figure which showed the composite girder of this embodiment, (a) is the perspective view seen from upper direction, (b) is the perspective view seen from the downward direction. 本実施形態の複合桁を示した図で、(a)は側面図、(b)は平面図である。It is the figure which showed the composite girder of this embodiment, (a) is a side view, (b) is a top view. 本実施形態の複合桁を示した図で、(a)は図2(b)のA−A断面図、(b)は図2(b)のB−B矢視図である。It is the figure which showed the composite girder of this embodiment, (a) is AA sectional drawing of FIG.2 (b), (b) is a BB arrow line view of FIG.2 (b). 本実施形態の複合桁を幅員方向に並設した状態を示した図で、(a)は二体の複合桁を接合した状態の断面図、(b)は二体の複合桁を接合した状態の平面図である。It is the figure which showed the state which arranged the composite girder of this embodiment side by side in the width direction, (a) is sectional drawing of the state which joined two composite girders, (b) is the state which joined two composite girders FIG. 本実施形態の複合床版橋の橋軸方向の端部を示した平面図である。It is the top view which showed the edge part of the bridge axis direction of the composite floor slab bridge of this embodiment. 本実施形態の複合床版橋を示した図で、(a)は図5のC−C断面図、(b)は図5のD−D矢視図である。It is the figure which showed the composite floor slab bridge of this embodiment, (a) is CC sectional drawing of FIG. 5, (b) is a DD arrow line view of FIG. 本実施形態の複合床版橋を示した側面図である。It is the side view which showed the composite floor slab bridge of this embodiment. 従来の橋梁及び複合床版橋を示した図で、(a)はコンクリート製の主桁を用いた構成の断面図、(b)は複合構造の複合桁を用いた構成の断面図である。It is the figure which showed the conventional bridge and the composite floor slab bridge, (a) is sectional drawing of the structure using the main girder made from concrete, (b) is sectional drawing of the structure using the composite girder of a composite structure.

符号の説明Explanation of symbols

1 複合床版橋
2 支承部
10 複合桁
20 コンクリート部材
20a 横締め部
20b 複合部
21 床版
22 支持部
25 充填用溝部
26 コンクリート
27 PC鋼線
30 鋼板(鋼材)
31 スタッドジベル(定着部材)
DESCRIPTION OF SYMBOLS 1 Composite floor slab bridge 2 Bearing part 10 Composite girder 20 Concrete member 20a Lateral fastening part 20b Composite part 21 Floor slab 22 Support part 25 Filling groove part 26 Concrete 27 PC steel wire 30 Steel plate (steel material)
31 Stud gibber (fixing member)

Claims (2)

床版の幅方向の両端部を支持している一対の支持部が形成され、橋軸方向の断面形状が門形で上面全体が平坦な複合部を形成するコンクリート部材と、
前記各支持部の下面に取り付けられた平板状の鋼材と、から構成された複合構造の複合桁が幅員方向に複数並設され、
前記鋼材の上面には複数の定着部材が突設され、前記各定着部材が前記支持部の下端部に埋め込まれ、前記支持部のコンクリートと前記各定着部材との定着力によって、前記鋼材の上面が前記支持部の下面に取り付けられ
前記コンクリート部材には、橋軸方向の断面形状が矩形に形成された横締め部が形成され、
幅員方向に並設された前記各複合桁の前記各横締め部に貫通させた緊張材によって、前記各複合桁が横締めされており、
前記コンクリート部材の橋軸方向の両端部に形成された前記各横締め部の間に前記鋼材が取り付けられ、前記コンクリート部材の橋軸方向の両端部の下面には、前記各横締め部の下面が露出していることを特徴とする複合床版橋。
A pair of support portions that support both ends of the width direction of the floor slab, a concrete member that forms a composite portion in which the cross-sectional shape in the bridge axis direction is a gate shape and the entire upper surface is flat ;
A plurality of composite girders of a composite structure composed of a plate-shaped steel material attached to the lower surface of each support portion are arranged in the width direction,
A plurality of fixing members project from the upper surface of the steel material, and each fixing member is embedded in a lower end portion of the support portion. By the fixing force between the concrete of the support portion and each fixing member, the upper surface of the steel material Is attached to the lower surface of the support ,
The concrete member is formed with a lateral fastening portion in which a cross-sectional shape in the bridge axis direction is formed in a rectangular shape,
Each composite girder is laterally tightened by a tension material that penetrates each lateral tightening portion of each composite girder arranged side by side in the width direction,
The steel material is attached between the lateral fastening portions formed at both ends of the concrete member in the bridge axis direction, and the lower surfaces of the both ends of the concrete member in the bridge axis direction are below the bottom surfaces of the lateral fastening portions. A composite floor slab bridge characterized by the fact that it is exposed .
前記複合桁は、プレキャスト部材であることを特徴とする請求項1に記載の複合床版橋。
The composite floor slab bridge according to claim 1, wherein the composite girder is a precast member.
JP2008125775A 2008-05-13 2008-05-13 Composite floor slab bridge Expired - Fee Related JP4252617B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008125775A JP4252617B1 (en) 2008-05-13 2008-05-13 Composite floor slab bridge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008125775A JP4252617B1 (en) 2008-05-13 2008-05-13 Composite floor slab bridge

Publications (2)

Publication Number Publication Date
JP4252617B1 true JP4252617B1 (en) 2009-04-08
JP2009275375A JP2009275375A (en) 2009-11-26

Family

ID=40612128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008125775A Expired - Fee Related JP4252617B1 (en) 2008-05-13 2008-05-13 Composite floor slab bridge

Country Status (1)

Country Link
JP (1) JP4252617B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5291843B1 (en) * 2013-02-26 2013-09-18 朝日エンヂニヤリング株式会社 Girder bridge reinforcement structure

Also Published As

Publication number Publication date
JP2009275375A (en) 2009-11-26

Similar Documents

Publication Publication Date Title
KR100888941B1 (en) Concrete-composite crossbeam and construction methods using the same
KR20020071612A (en) Pssc complex girder
JP4844918B2 (en) Construction method of steel / concrete composite deck using precast concrete board
KR101112195B1 (en) Steel-concrete composite crossbeam having wire mesh and construction method using the same
JP5937898B2 (en) Construction method of box girder bridge
JP2006316580A (en) Corrugated steel plate web pc composite beam and construction method of bridge using corrugated steel plate web pc composite beam
KR101270733B1 (en) Prestressed Concrete Box Girder Integrated with Steel Deck and Constructing Method of Bridge using Such Girder
KR101107826B1 (en) Slab-type box girder made by precast concrete and method constructing the bridge therewith
KR101703798B1 (en) Prestressed Concrete Beam with curve implementation possible connection structure and Constructing Method thereof
KR20160012672A (en) Precast modular bridge and its construction method
KR101705002B1 (en) Prefabricated double composite plate girder bridge and its construction method
KR101129502B1 (en) Synthetic girder of i type
JP4392379B2 (en) Manufacturing method of floor slab bridge and floor slab unit using square steel pipe
KR101580973B1 (en) Manufacturing method of temporary bridge using girder applied composite beam prestres
JP4252617B1 (en) Composite floor slab bridge
KR100593664B1 (en) Construction Method for prestressed composite slab
KR20090075484A (en) Preflex composite girder bridge coupled width composite girder and method thereof
KR101426155B1 (en) The hybrid rahmen structure which can add prestress on steel girder of horizontal member by gap difference of connection face between vertical member and steel girder of horizontal member
KR101752285B1 (en) Hybrid beam with wide PSC lower flange and enlarged section upper flange and structure frame using the same
JP5439016B2 (en) Buried formwork
JP2007046277A (en) Bridge girder installing method
JP2006169730A (en) Concrete bridge girder and method of forming the same
KR101786781B1 (en) Steel arch bridges connecting concrete beams with reinforcement steel and its construction method
JP2006283317A (en) Prestressed concrete floor slab formed of precast concrete plates, and method of constructing the same
KR102598284B1 (en) Tendon buried concrete structure for external pre-tensioning reinforcement, and construction method for the same

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090121

R150 Certificate of patent or registration of utility model

Ref document number: 4252617

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140130

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150130

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees