JP4251015B2 - Lithium manganese nickel composite oxide and method for producing the same, positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery - Google Patents

Lithium manganese nickel composite oxide and method for producing the same, positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP4251015B2
JP4251015B2 JP2003144752A JP2003144752A JP4251015B2 JP 4251015 B2 JP4251015 B2 JP 4251015B2 JP 2003144752 A JP2003144752 A JP 2003144752A JP 2003144752 A JP2003144752 A JP 2003144752A JP 4251015 B2 JP4251015 B2 JP 4251015B2
Authority
JP
Japan
Prior art keywords
manganese
composite oxide
lithium
nickel composite
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003144752A
Other languages
Japanese (ja)
Other versions
JP2004349109A (en
Inventor
篤 福井
竜一 葛尾
英雄 笹岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2003144752A priority Critical patent/JP4251015B2/en
Publication of JP2004349109A publication Critical patent/JP2004349109A/en
Application granted granted Critical
Publication of JP4251015B2 publication Critical patent/JP4251015B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、リチウムイオン二次電池用正極活物質として有用で、タップ密度(粉体充填密度)が高く、かつ実質的に異相のないスピネル型結晶構造を持つリチウムマンガンニッケル複合酸化物とその製造方法、およびそれを用いた非水系電解質二次電池用正極活物質および非水系電解質二次電池に関する。
【0002】
【従来の技術】
近年、携帯電話やノート型パソコンなどの携帯機器の普及にともない、高いエネルギー密度を有する小型で軽量な二次電池の要求が高まっている。このようなものとして非水電解液タイプのリチウムイオン二次電池があり、研究開発が盛んに行われ、実用化されてきている。このリチウムイオン二次電池は、リチウム含有複合酸化物を活物質とする正極と、リチウム、リチウム合金、金属酸化物あるいはカーボンのように、リチウムを吸蔵および放出することが可能な材料を活物質とする負極と、非水電解液を含むセパレータまたは固体電解質を主要構成要素とする。
【0003】
これらの構成要素のうち、正極活物質として検討されているものには、リチウムコバルト複合酸化物(LiCoO2 )、リチウムニッケル複合酸化物(LiNiO2 )、リチウムマンガン複合酸化物(LiMn2 4 )等がある。特に、リチウムコバルト複合酸化物を正極に用いた電池では、優れた初期容量特性やサイクル特性を得るための開発が、これまで数多く行われてきており、すでにさまざまな成果が得られ、実用化に至っている。
【0004】
しかし、二次電池に対する高エネルギー密度化の要求は、年々高まる一方であり、現在実用化されているリチウムコバルト複合酸化物を正極に用いたリチウムイオン二次電池では、コバルトは資源が少なく高価であることから、より安価で高エネルギー密度を実現できる代替材料が求められている。
【0005】
そのため、非水系電解質二次電池用の正極活物質として、LiCoO2 に代えて、スピネル型結晶構造を有するリチウムマンガン酸化物系材料が安価かつ毒性も低いため注目されている。このスピネル型構造のリチウムマンガン酸化物には、Li2 Mn4 9 、Li4 Mn5 12 、LiMn2 4 などがある。
【0006】
ところで、電池の高エネルギー密度化を図るためには高電位の正極活物質を用いることが1つの方法であり、また、電気自動車用電源としては300V以上の高電圧が必要とされるが、LiCoO2を正極活物質とする場合は、平均作動電圧が3.8V程度であるため、接続する電池数が多くなるという課題がある。そのため、LiCoO2 より高電圧の正極活物質を用いることが必要になってくるが、前記のようなスピネル型リチウムマンガン酸化物は作動電圧が4V程度であるため、300Vの高電圧を得るために接続する電池数は、LiCoO2 を用いる場合と変わらない上に、LiCoO2 を用いる場合よりも容量が小さくなるという問題を有している。
【0007】
そのため、スピネル型リチウムマンガン複合酸化物においても高電圧化が検討されており、特に、最近、マンガンと他金属の原子比が実質的に3:1であり、Li[Mn3/2 1/2 ]O4 (ここでMは、Cr、Fe、Co、Ni、Cu等)で表される複合酸化物が、5V付近の電位を有することが知られ(特開平9−147867号公報)、5V級リチウムイオン二次電池用正極活物質として期待されている。
【0008】
しかしながら、前記材料は比較的合成が難しく、これまでの合成法では、スピネル構造単相の実現と、高いタップ密度との両立は困難であった。たとえば、マンガンとニッケルの固溶が十分進むような微粉砕混合などの方法を用いると、スピネル構造単相を実現することができるが、粒径が細かくなって取り扱いが困難となり、合成後の複合酸化物で高いタップ密度を達成することができなかった。一方、単純な固相法を用いて、電池として適した、すなわちタップ密度が高く、取り扱いの容易な適度な大きさの粒径を持った複合酸化物を合成すると、マンガンとニッケルの固溶が不充分となり、ニッケル酸化物などの異相が生成し、スピネル構造単相が実現できなかった。その結果、4.8Vの高電位領域での容量が減少し、電位の平坦性が失われ、4V付近の低電位領域に棚が出現してエネルギー密度の高い正極材料とならず、また、高温でのガスの発生が著しいという問題点があった。
【0009】
そこで、特開2001−185148号公報に開示のような錯体重合法等を代表とする液体−液体混合系での均一混合に着目したが、液相での均一混合を特徴としているため、得られた正極活物質粒子は粒径が非常に微細で、タップ密度の低いものしか得られないという問題点を有していた。また、特開2001−146426号公報には、リチウム、マンガン、ニッケルの化合物を湿式で粉砕混合し、得られたスラリーを噴霧乾燥する方法を開示しているが、この方法では焼成時にリチウムの融解がマンガンとニッケルの分散を阻害するため均一固溶が進まず、その結果、充電曲線において4V付近の低電位領域に棚が出現してしまうという問題が残されていた。ここで、棚とは、充放電曲線の下降部に現れる4V付近の電位の段差をいう。
【0010】
このリチウムマンガンニッケル複合酸化物の原料として、マンガン塩とニッケル塩の混合水溶液をアルカリ溶液と反応、共沈殿させるマンガンニッケル複合水酸化物または複合酸化物を得る方法がある(特開2002−158007号公報)。この方法では球状粒子を得るために、水溶液中でマンガンイオンおよびニッケルイオンと錯体を形成可能な、たとえば、アンモニウムイオン供給体(塩化アンモニウム、炭酸アンモニウム、弗化アンモニウム等)、ヒドラジン、エチレンジアミン四酢酸、ニトリト三酢酸、ウラシル二酢酸、グリシン等の錯化剤を必要とし、錯化剤を除去するために高温で乾燥する工程が必要である。また、錯化剤を添加しない場合、pH=11〜13の範囲では球状粒子を得るのは困難で、微細な粒子が多く、ろ過性が悪い上、付着したろ液の洗浄が困難で不純物が増加する等の課題を有していた。また、リチウムマンガンニッケル複合酸化物を焼成する時にペレット状に成型、粉砕することは球状粒子を崩壊させ、微粉の発生により比表面積が増加してしまうという問題があるため、高温焼成による再結晶化が必要であった。
【0011】
【特許文献1】
特開平9−147867号公報
【0012】
【特許文献2】
特開2001−185148号公報
【0013】
【特許文献3】
特開2001−146426号公報
【0014】
【特許文献4】
特開2002−158007号公報
【0015】
【発明が解決しようとする課題】
本発明では、リチウムイオン二次電池用正極活物質として有用で、タップ密度(粉体充填密度)が高く、かつ、マンガンとニッケルの固溶が均一であり実質的に異相のないリチウムマンガンニッケル複合酸化物およびその製造方法、それを用いた非水系電解質二次電池用正極活物質を提供し、充放電電位の平坦性に優れ、放電容量が大きなリチウムイオン二次電池を提供することにある。
【0016】
【課題を解決するための手段】
本発明のリチウムマンガンニッケル複合酸化物の製造方法は、一般式:Li1+X Mn2-Y-X NiY 4 (ただし、−0.05≦X≦0.10、0.45≦Y≦0.55)で表され、スピネル構造を有するリチウムマンガンニッケル複合酸化物の製造方法に係り、(1)マンガンとニッケルの原子比が実質的に前記一般式のマンガンとニッケルの原子比となるようにマンガン塩とニッケル塩の混合水溶液を作製し、錯化剤を用いずに、該混合水溶液とアルカリ水溶液を同時に、かつ、連続的に反応槽に投入し、反応槽内の混合液の温度を60〜80℃の範囲に保持し、pH=10〜11の範囲となるようにしつつ、共沈殿させて、撹拌して、反応槽内のスラリー濃度が一定となった後に、反応槽からのオーバーフローとして排出される沈殿物を採取し、ろ過、水洗して、マンガンニッケル複合水酸化物粒子を得る第1の工程と、(2)得られたマンガンニッケル複合水酸化物粒子を空気雰囲気中で焙焼し、マンガンニッケル複合酸化物を得る第2の工程と、(3)マンガンとニッケルの合計の原子比とリチウムの原子比が実質的に2:0.95〜1.10となるように前記マンガンニッケル複合酸化物とリチウム化合物とを混合し焼成する第3の工程と、からなることを特徴とする。
【0017】
上記製造方法によって得られるリチウムマンガンニッケル複合酸化物は、一般式:Li1+X Mn2-Y-X NiY4(ただし、−0.05≦X≦0.10、0.45≦Y≦0.55)で表され、スピネル構造を有し、球状ないしはほぼ球状で、タップ密度が1.50g/cm3以上で、比表面積が0.2〜1.0m2/gであることを特徴とする。
【0018】
当該リチウムマンガンニッケル複合酸化物を使用して、非水系電解質二次電池用正極活物質、さらには非水系電解質二次電池が作製される。当該非水系二次電池では、充放電曲線において、3.5〜4.5V領域の電位の棚が排除されている。
【0019】
【発明の実施の形態】
前記のように、LiMn2 4 のマンガンサイトの一部をニッケルなどの遷移金属で置換することにより4.5V以上の作動電圧が得られることが知られており、このような高電圧のスピネル型リチウムマンガン酸化物を正極活物質として用いることにより、高エネルギー密度化を図ることができるが、比較的合成が難しく、これまでの合成法ではスピネル構造単相の実現と高いタップ密度の両立は困難であった。
【0020】
本発明者等は、リチウムイオン二次電池用正極活物質として有用で、タップ密度(粉体充填密度)が高く、かつ、マンガンとニッケルの固溶が均一であり実質的に異相のない、一般式:Li1+X Mn2-Y-X NiY 4 (ただし、−0.05≦X≦0.10、0.45≦Y≦0.55)で表されるスピネル構造を有するリチウムマンガンニッケル複合酸化物の製造方法として、水溶液中でマンガンとニッケルの原子比が実質的に前記一般式のマンガンとニッケルの原子比となるようにマンガン塩とニッケル塩の混合水溶液を作製し、錯化剤を用いないで、該混合水溶液とアルカリ水溶液を同時に、かつ、連続的に反応槽に投入し、反応槽内の混合液の温度を60〜80℃の範囲に保持し、pH=10〜11の範囲となるようにしつつ、共沈殿させ、沈殿物が槽底に溜まらないように、かつ、沈殿物の粒子が安定して成長するように、一定速度にて撹拌機で撹拌し、反応槽内のスラリー濃度が一定となり定常状態になった後に、反応槽からのオーバーフローとして排出される沈殿物を採取し、ろ過、水洗した球状か、ほぼ球状のマンガンニッケル複合水酸化物粒子を原料として用いることで、タップ密度が高く、かつ、マンガンとニッケルの固溶が均一であり実質的に異相のないリチウムマンガンニッケル複合酸化物およびそれを用いた非水系電解質二次電池用正極活物質を提供でき、当該非水系電解質二次電池用正極活物質を使用することで、充放電電位の平坦性に優れ、放電容量が大きなリチウムイオン二次電池を提供できることを見出し、本発明に至った。以下、本発明を、発明の実施の形態に即して詳細に説明する。
【0021】
1.マンガンニッケル複合水酸化物粒子の製造
本発明では、一般式:Li1+X Mn2-Y-X NiY 4 (ただし、−0.05≦X≦0.10、0.45≦Y≦0.55)で表されるスピネル構造を有するリチウムマンガンニッケル複合酸化物の製造方法において、水溶液中でマンガンとニッケルの原子比が実質的に前記一般式のマンガンとニッケルの原子比となるようにマンガン塩とニッケル塩の混合水溶液を作製し、錯化剤を用いずに、該混合水溶液とアルカリ水溶液を同時に、かつ、連続的に反応槽に投入し、反応槽内の混合液の温度を60〜80℃の範囲に保持し、pH=10〜11の範囲となるようにしつつ、共沈殿させ、沈殿物が槽底に溜まらないように、かつ、沈殿物の粒子が安定して成長するように、撹拌機の撹拌羽根の回転数を一定にして撹拌し、反応槽内に投入される混合液量と沈殿物の生成量と一定となり、反応槽からのオーバーフローとして排出される沈殿物の採取量が一定となり、結果として、反応槽内のスラリー濃度が一定となる定常状態となり、採取された沈殿物を、ろ過、水洗し球状か、ほぼ球状のマンガンニッケル複合水酸化物粒子を得ることを特徴としている。
【0022】
本方法により、マンガンとニッケルの原子比が実質的に3:1で均一に混合された粒子を得ることができる。さらには、得られる粒子は球状に近く、ろ過性も良好で、ハンドリング性の良好な粒子が得られる。
【0023】
従来法と異なり、錯化剤の添加を必要としないのは、混合水溶液のpHを従来法の中でも低めのpH=10〜11を選択し、かつ、混合水溶液の温度を60〜80℃の範囲としていることによる。錯化剤を添加しない場合において、pH=11〜13で晶析すると細かい粒子となり、ろ過性も悪くなり、球状粒子が得られない。一方、pHが10よりも小さいと、水酸化物の生成速度が著しく遅くなり、ろ液中にMnが残留し、MnとNiの沈殿量が目的組成からずれて、実質的に原子比が3:1のマンガンニッケル混合水酸化物が得られなくなってしまう。
【0024】
本発明では、pH=10〜11とし、かつ、混合水溶液の温度を60℃以上保つことによって、反応温度を上げて、MnとNiの溶解度を上げることで、通常、pHを下げ過ぎて、MnとNiの沈殿量が目的組成からずれ、共沈とならない現象を回避している。一方、混合水溶液の温度が80℃を超えると、水の蒸発量が多くなるためにスラリー濃度が高くなり、MnとNiの溶解度が下がり、さらに、ろ液中に硫酸ナトリウム等の結晶が発生し、不純物濃度が上昇する等の問題が出てきて好ましくない。
【0025】
ここで、使用可能なマンガン塩は、正極活物質として使用する際に混入が問題となる不純物を含まなければ、特に制限はなく、具体的には硫酸マンガン、炭酸マンガン等が挙げられる。同様に、使用可能なニッケル塩も、具体的には硫酸ニッケル、炭酸ニッケル等が挙げられる。
【0026】
水溶液のpH値は、アルカリ金属水酸化物(たとえば、水酸化ナトリウム)を添加することにより、pH=10〜11の範囲に維持する。
【0027】
本発明の製造方法で得られるマンガンニッケル複合水酸化物粒子は、球状あるいは球状に近い楕円体となっており、1次粒子が均一に集まった2次粒子として比較的緻密な粒子が得られる。なお、2次粒子の凝集はない。
【0028】
水酸化物粒子の平均粒径としては、10〜20μmが好ましい。この範囲を外れ、粒子径が小さいと、ろ過性が悪化し、水酸化物の洗浄も困難となり、生産性の低下、不純物濃度上昇の問題が生じる。また、粒子径が大きいと、タップ密度の高い粉体特性が得られない上、正極材ペーストとして塗布する場合、均一に塗布できなくなる。
【0029】
2.マンガンニッケル複合酸化物粒子の製造
次に、前記工程で得られたマンガンニッケル複合水酸化物粒子を、空気雰囲気中で焙焼し、マンガンニッケル複合酸化物を得る。この場合、酸素気流中でも何ら問題はない。
【0030】
焙焼条件として、800〜1000℃の範囲で、2〜20時間程度、焼成して、マンガンとニッケルの複合酸化物を得る。焼成温度は、800〜900℃の範囲であることがより好ましい。マンガンとニッケルの均一分散および固溶は、焼成温度が800℃以上で促進される。ただし、工業的には、エネルギーコストを考慮すべきであり、900℃以下と焼成温度が低い方が好ましい。800〜900℃の温度範囲でも、マンガンとニッケルの均一固溶に問題はないことが確認されている。
【0031】
焼成温度が800℃より低いと、マンガンとニッケルが完全に酸化せず、固溶も進まない。また、1000℃を超えても、結晶成長に影響が見られないため、コスト上好ましくない。
【0032】
3.リチウムマンガンニッケル複合酸化物の製造
次に、前記工程で得られたマンガンとニッケルの複合酸化物と、リチウム化合物を、マンガンとニッケルの合計のモル数とリチウムのモル数の比が実質的に2:0.95〜1.10となるように調整し、シェーカーミキサー、撹拌混合機、ロッキングミキサー等を用いて、球状の二次粒子の形骸が維持される程度の比較的弱い条件で混合し、混合粉体を酸素雰囲気、あるいは大気雰囲気中で、600〜750℃として10〜20時間、焼成し、リチウムニッケルマンガン複合化合物を得る。得られるリチウムニッケルマンガン複合酸化物の結晶構造は、立方晶スピネルであることが必要である。使用可能なリチウム化合物としては、水酸化リチウム、水酸化リチウム一水和物、炭酸リチウム、硝酸リチウム、酸化リチウム等が挙げられる。
【0033】
マンガンとニッケルの固溶が不充分であったり、組成が目標組成からずれていたりすると、ニッケル酸化物などの異相が生成し、スピネル構造単相が実現できない。スピネル構造単相でないと、4.8Vの高電位領域での容量が減少し、電位の平坦性が失われ、4V付近の低電位領域に棚が出現して、エネルギー密度の高い正極材料とならず、また、高温でのガスの発生が著しいという問題点が現れてしまう。
【0034】
マンガンとニッケルの合計のモル数とリチウムのモル数の比が、実質的に2:0.95〜1.10から外れ、リチウム元素が少ないと、スピネル型リチウムニッケルマンガン複合酸化物以外に、NiO、NiMnO3 などが発生しやすくなり、リチウム元素が多いと、固溶しきれないリチウムがリチウムニッケルマンガン複合酸化物表面に残留し、電池性能の低下や、電解液との反応からゲルが発生するなどの電池特性を悪化させる原因となり好ましくない。
【0035】
また、焼成温度が600℃より低いと、リチウムの固溶が不充分となり好ましくなく、750℃を超えると、酸素欠損が起こり、スピネル構造でなくなり問題である。
【0036】
前記製法で得られるスピネル型リチウムニッケルマンガン複合酸化物は、立方晶単位格子の格子定数が8.17Å以上8.18Å未満であることが望ましい。また、該複合酸化物の比表面積は0.2m2 /g以上1.0m2 /g以下であることが望ましい。さらには、タップ密度(粉体充填密度)が1.4g/cm3 以上、特に1.50g/cm3 以上であることが好ましい。
【0037】
これらの諸特性を満たすことによって、実質的に異相のないスピネル構造単相を有し、かつ、タップ密度の高いリチウムニッケルマンガン複合酸化物が得られ、該複合酸化物を非水系電解質二次電池用正極活物質として用いた非水系電解質二次電池においては、充放電曲線において3.5〜4.5Vに電位の棚が排除されている非水系電解質二次電池が得られる。ここで、棚とは、充放電曲線の下降部に現れる4V付近の電位の段差をいう。
【0038】
前記一般式:Li1+X Mn2-Y-X NiY 4 (ただし、−0.05≦X≦0.10、0.45≦Y≦0.55)で表されるスピネル型リチウムニッケルマンガン複合酸化物を正極活物質として用いた正極は、たとえば、前記正極活物質に、必要に応じて導電助剤、バインダーなどを適宜添加して混合し、溶剤でペースト状にし(バインダーはあらかじめ溶剤に溶解させておいてから正極活物質などと混合してもよい)、得られた正極合剤含有ペーストをアルミニウム箔などからなる正極集電体に塗布し、乾燥して正極合剤層を形成し、必要に応じて加圧成形する工程を経ることによって作製される。ただし、正極の作製方法は、前記例示のものに限られることなく、任意の方法を採用できる。
【0039】
前記正極の作製にあたって、導電助剤としては、たとえば、黒鉛(天然黒鉛、人造黒鉛、膨張黒鉛など)やアセチレンブラック、ケッチェンブラックなどのカーボンブラック系材料などを用いることができる。また、バインダーとしては、たとえば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、エチレンプロピレンジエンゴム、フッ素ゴム、スチレンブタジエン、セルロース系樹脂、ポリアクリル酸などを用いることができる。
【0040】
前記正極活物質を含有する正極に対して、対極となる負極の活物質としては、たとえば、リチウム、リチウム−アルミニウムで代表されるリチウム合金、黒鉛、熱分解炭素類、コークス類、ガラス状炭素類、有機高分子化合物の焼成体、メソカーボンマイクロビーズ、炭素繊維、活性炭など、リチウムイオンを可逆的に吸蔵および放出できる炭素系材料、Si、Sn、Inなどの合金またはLiに近い低電位で充放電できる酸化物や窒化物などの化合物も、負極活物質として用いることができる。
【0041】
負極は、負極活物質がリチウムやリチウム合金の場合は、そのまま用いるか、あるいは集電体に圧着することによって作製され、負極活物質が炭素系材料の場合は、それに、必要に応じて正極の場合と同様のバインダーを添加して混合し、溶剤を用いてペースト状にし(バインダーはあらかじめ溶剤に溶解させておいてから負極活物質と混合してもよい)、得られた負極合剤含有ペーストを銅箔などからなる負極集電体に塗布し、乾燥して負極合剤層を形成し、必要に応じて加圧成形する工程を経ることによって作製される。ただし、負極の作製方法は、前記例示のものに限られることなく、他の方法によってもよい。
【0042】
電解質としては、非水系の液状電解質、ゲル状ポリマー電解質のいずれも用いることができるが、本発明においては、通常、電解液と呼ばれる液状電解質が多用される。この液状電解質(電解液)は、たとえば、有機溶媒を主材とする非水溶媒に、リチウム塩などの電解質塩を溶解させることによって調製されるが、その溶媒としては、たとえば、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、プロピオン酸メチルなどの鎖状エステル、リン酸トリメチルなどの鎖状リン酸トリエステル、1,2−ジメトキシエタン、1,3−ジオキソラン、テトラヒドロフラン、2−メチル−テトラヒドロフラン、ジエチルエーテルなどを用いることができる。そのほか、アミンイミド系有機溶媒やスルホランなどのイオウ系有機溶媒なども、用いることができる。
【0043】
さらに、その他の溶媒成分として、誘電率の高いエステル(導電率30以上)を用いることが、電池特性、特に負荷特性を向上させることから好ましく、その誘電率の高いエステルの具体例としては、たとえば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、γ−ブチロラクトンなどが挙げられ、また、エチレングリコールサルファイトなどのイオウ系エステルも用いることができるが、環状構造のエステルが好ましく、特にエチレンカーボネートのような環状カーボネートが好ましい。そして、これらの溶媒はそれぞれ単独で、または2種以上混合して、用いることができる。
【0044】
リチウム塩などの電解質塩としては、たとえば、LiClO4 、LiPF6 、LiBF4 、LiAsF6 、LiSbF6 、LiCF3 SO3 、LiC4 9 SO3 、LiCF3 CO2 、Li2 2 4 (SO3 2 、LiN(Rf1 SO2 )(Rf2 SO2 )〔ここで、Rf1 、Rf2 はフルオロアルキル基を含む置換基である〕、LiN(Rf3 OSO2 )(Rf4 OSO2 )〔ここで、Rf3 、Rf4 はフルオロアルキル基である〕、LiCn 2n+1 SO3 (n≧2)、LiC(Rf5 SO2 2 、LiN(Rf6 OSO2 2 〔ここでRf5 、Rf6 はフルオロアルキル基である〕、ポリマータイプイミドリチウム塩などが単独または2種以上混合して用いられる。電解液中における電解質塩の濃度は、特に限定されるものではないが、濃度を0.1〜2.0mol/L(リットル)とするのが好ましい。
【0045】
ゲル状ポリマー電解質は、前記電解液をゲル化剤によってゲル化したものに相当するが、そのゲル化にあたっては、たとえば、ポリフッ化ビニリデン、ポリエチレンオキサイド、ポリアクリルニトリルなどの直鎖状ポリマーまたはそれらのコポリマー、紫外線や電子線などの活性光線の照射によりポリマー化する多官能モノマー(たとえば、ペンタエリスリトールテトラアクリレート、ジトリメチロールプロパンテトラアクリレート、エトキシ化ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールヘキサアクリレートなどの四官能以上のアクリレートおよび前記アクリレートと同様の四官能以上のメタクリレートなど)などが用いられる。ただし、モノマーの場合、モノマーそのものが電解液をゲル化させるのではなく、前記モノマーをポリマー化したポリマーが、ゲル化剤として作用する。
【0046】
前記のように、多官能モノマーを用いて、電解液をゲル化させる場合、必要であれば、重合開始剤として、たとえば、ベンゾイル類、ベンゾインアルキルエーテル類、ベンゾフェノン類、ベンゾイルフェニルフォスフィンオキサイド類、アセトフェノン類、チオキサントン類、アントラキノン類、アミノエステルなども、使用することもできる。
【0047】
本発明によって得られる正極活物質を用いた非水系電解質二次電池においては、放電容量が大きく、かつ、高電位での平坦性に優れ、しかもタップ密度が高いことから、高エネルギー密度を有する非水系電解質二次電池が実現可能となる。
【0048】
【実施例】
(実施例1)
撹拌機とオーバーフローパイプを備えた500mlの円筒形反応槽を使用し、Mn:Niの原子比が3:1となるように、2mol/L硫酸マンガン水溶液と、2mol/L硫酸ニッケル水溶液の混合水溶液とし、pHが10〜11の範囲になるよう、25%水酸化ナトリウム水溶液を反応槽に同時に添加し、温度を70℃に保持して、一定速度、すなわち、撹拌機の撹拌羽根の回転数を一定にして撹拌し、反応槽内に投入される混合液量と沈殿物の生成量とが一定となり、反応槽内のスラリー濃度が一定となる定常状態にして、マンガンニッケル複合水酸化物粒子を形成させた。
【0049】
反応槽内に投入されるマンガン、ニッケル混合水溶液とアルカリ水溶液により混合液量が増加するのに伴い、反応槽側壁に設けた排出口から、オーバーフローとして排出される沈殿物を取り出し、反応槽内が定常状態、すなわち、反応槽内のスラリー濃度が一定となった後に、オーバーフロー排出口より排出されたマンガンニッケル複合水酸化物粒子を、1バッチ分採取し、ろ過、水洗後、70℃にて15時間乾燥後、マンガンニッケル複合水酸化物の乾燥粉末を得た。ここで、1バッチ分とは、原液およびアルカリ溶液を添加して排出されたスラリ−が、反応容器容量(500ml)と同じ容量となった時点を指す。
【0050】
得られたマンガンニッケル複合水酸化物の乾燥粉末を、未粉砕のまま、篩目45μmの篩にかけ、得られた篩下粉末20gを電気炉にて900℃で10時間、空気気流中で焙焼し、マンガンニッケル複合酸化物を得た。
【0051】
得られたマンガンニッケル複合酸化物15.00gと、水酸化リチウム4.12gとを混合し、雰囲気焼成電気炉にて700℃で20時間、酸素気流中で焙焼して、リチウムマンガンニッケル複合酸化物を得た。
【0052】
得られたマンガンニッケル複合水酸化物粒子の元素分析値および平均粒子径を、表1に示し、得られたリチウムマンガンニッケル複合酸化物の元素分析値および物性値を、表2に示す。また、マンガンニッケル水酸化物のろ過性を比較するため、ろ過装置としてヌッチェ(90φ)、エアポンプ吸引、濾紙5C、90mmを使用し、ろ過原液スラリー100mlのろ過時間およびろ過速度を比較した結果を、表3に示す。
【0053】
さらに、マンガンニッケル複合水酸化物の走査式電子顕微鏡(以下、「SEM」という。)写真を、図1に示す。マンガンニッケル水酸化物を酸化焙焼して得られたマンガンニッケル複合酸化物のSEM写真を、図2に示す。リチウムと混合、焼成して得られたリチウムマンガンニッケル複合酸化物のSEM写真を、図3に示す。
【0054】
(実施例2、3)
反応温度を63℃、80℃とした以外は、実施例1と同様の操作で、マンガンニッケル複合水酸化物粒子を形成させ、ろ過、水洗、乾燥後焙焼し、マンガンニッケル複合酸化物を得た。
【0055】
得られたマンガンニッケル複合水酸化物の元素分析値および平均粒子径を表1に示し、ろ過時間およびろ過速度を表3に示す。また、得られたリチウムマンガンニッケル複合酸化物の元素分析値および物性値を、表2に示す。
【0056】
(比較例1)
2mol/L硫酸マンガン水溶液と2mol/L硫酸ニッケル水溶液の混合水溶液と、pHが11〜12の範囲になるように、25%水酸化ナトリウム水溶液を反応槽に同時に添加した以外は、実施例1と同様の条件で、マンガンニッケル複合水酸化物粒子を形成させ、乾燥、焙焼、リチウムと混合焼成してリチウムマンガンニッケル複合酸化物を得た。
【0057】
得られたマンガンニッケル複合水酸化物の元素分析値および平均粒子径を表1に示し、リチウムマンガンニッケル複合酸化物の元素分析値および物性値を表2に示し、マンガンニッケル複合水酸化物のろ過時間およびろ過速度を表3に示す。さらに、マンガンニッケル複合水酸化物のSEM写真を、図4に示す。マンガンニッケル水酸化物を酸化焙焼して得られたマンガンニッケル複合酸化物のSEM写真を、図5に示す。リチウムと混合、焼成して得られたリチウムマンガンニッケル複合酸化物のSEM写真を、図6に示す。
【0058】
(比較例2)
2mol/L硫酸マンガン水溶液と2mol/L硫酸ニッケル水溶液の混合水溶液と25%水酸化ナトリウム水溶液を反応槽に同時に添加する際の反応温度を50℃とした以外は、実施例1と同様の条件でマンガンニッケル複合水酸化物粒子を形成させた。得られたマンガンニッケル複合水酸化物の元素分析値および平均粒子径を表1に示し、ろ過時間およびろ過速度を表3に示す。
【0059】
(比較例3)
2mol/L硫酸マンガン水溶液と2mol/L硫酸ニッケル水溶液の混合水溶液と25%水酸化ナトリウム水溶液を反応槽に同時に添加する際のpHを9〜10の範囲とした以外は、実施例1と同様の条件でマンガンニッケル複合水酸化物粒子を形成させた。得られたマンガンニッケル複合水酸化物の元素分析値および平均粒子径を表1に示し、ろ過時間およびろ過速度を表3に示す。
【0060】
(比較例4)
2mol/L硫酸マンガン水溶液と2mol/L硫酸ニッケル水溶液の混合水溶液と25%水酸化ナトリウム水溶液を反応槽に同時に添加する際のpHを12〜13の範囲とした以外は、実施例1と同様の条件でマンガンニッケル複合水酸化物粒子を形成させた。得られたマンガンニッケル複合水酸化物の元素分析値および平均粒子径を表1に示し、ろ過時間およびろ過速度を表3に示す。
【0061】
【表1】

Figure 0004251015
【0062】
【表2】
Figure 0004251015
【0063】
【表3】
Figure 0004251015
【0064】
(評価)
表1に示すように、反応温度が70℃より低い場合(実施例2)、反応温度が70℃より高い場合(実施例3)にも、粒子径が若干小さくなる傾向にあることがわかる。
【0065】
また、反応pHが11〜12の範囲(比較例1)で得られたマンガンニッケル複合水酸化物は生成速度が速くなりすぎ粒子径が小さくなってしまい、反応pHが9〜10の範囲(比較例3)では生成速度が著しく遅くなり粒子径が大きくなるが、Mnの沈殿が不十分となり、Mn:Ni比(3:1)を維持できなくなることがわかる。
【0066】
表2に示すように、実施例1の反応pHが10〜11の範囲で得られたマンガンニッケル複合水酸化物を用いたリチウムマンガンニッケル複合酸化物はタップ密度が高く、比表面積の小さい優れた粉体特性であることがわかる。一方、比較例1の反応pHが11〜12の範囲で得られたマンガンニッケル複合水酸化物を用いた場合はタップ密度が低く、比表面積の大きい粉体特性となることがわかる。
【0067】
また、実施例2の反応温度を60℃に保持して得られたマンガンニッケル複合水酸化物を用いたリチウムマンガンニッケル複合酸化物は、タップ密度が高く、比表面積が小さい粉体であり、実施例3の反応温度を80℃に保持して得られたマンガンニッケル複合水酸化物を用いたリチウムマンガンニッケル複合酸化物も、タップ密度が高く、比表面積の小さい粉体であった。
【0068】
表3に示すように、平均粒子径の小さいマンガンニッケル複合水酸化物は、ろ過時間が長く、ろ過性が悪くなり、平均粒子径が大きくなるに従ってろ過性が向上することがわかる。
【0069】
実施例1で得られたマンガンニッケル複合水酸化物粒子は、図1のSEM写真に示すようにほぼ球状であり、一次粒子(サイズ:1〜5μm)が結合して比較的密な二次粒子(前記平均粒子径)を形成していることがわかる。
【0070】
また、酸化焙焼によって得られたマンガンニッケル複合酸化物の形状は図2のSEM写真に示すように、水酸化物の形状を受け継ぎ、一次粒子同士の結合性が良く、かつ多孔質な構造を併せ持つ形状であることがわかる。
【0071】
図2のマンガンニッケル複合酸化物を、リチウムと混合、焼成したリチウムマンガンニッケル複合酸化物は、図3のSEM写真に示すようにほぼ球状の比較的密な二次粒子体であることがわかる。
【0072】
比較例1の反応pHが11〜12の範囲で得られたマンガンニッケル複合水酸化物の形状は、図4のSEM写真に示すように、微細な粒子が一部凝集して二次粒子を形成していることがわかる。また、酸化焙焼によって得られたマンガンニッケル複合酸化物の形状は、図5のSEM写真に示すように、微粉が凝集し、空隙の多い形状であることがわかる。その結果、図5のマンガンニッケル複合酸化物をリチウムと混合、焼成したリチウムマンガンニッケル複合酸化物は、図6のSEM写真に示すように、リチウム混合前の形状を受け継ぎ、空隙の多い形状であることがわかる。
【0073】
図7、図8のリチウムマンガンニッケル複合酸化物のXRD定性分析結果に示すように、実施例1、2で得られたリチウムマンガンニッケル複合酸化物は、マンガンとニッケルの固溶が均一であり、実質的に異相のないスピネル構造を有するリチウムマンガンニッケル複合酸化物であることがわかる。一方、図9に、比較例1で得られたリチウムマンガンニッケル複合酸化物のXRD定性分析結果を示すが、スピネル構造を有するリチウムマンガンニッケル複合酸化物のピーク以外にNiMnO3、NiO等のピークがあることがわかる。これは原料水酸化物生成時マンガンとニッケルの析出速度の差が大きくなり、マンガンとニッケルの固溶が不均一となったことに起因していると考えられる。
【0074】
実施例1で得られたリチウムマンガンニッケル複合酸化物をリチウムイオン二次電池用正極活物質として、電池を作製し、電池評価をした結果、図12に示すように充放電電位の平坦性に優れ、充放電曲線において3.5〜4.5V領域の電位の棚が排除された、放電容量が大きなリチウムイオン二次電池であることがわかる。
【0075】
一方、比較例1で得られたリチウムマンガンニッケル複合酸化物を実施例1と同様に電池を作製し評価をした結果、図11に示すように充放電電位に棚があり、放電容量が小さくなった。
【0076】
実施例2、3においては、実施例1の粉体特性よりも若干落ちるが、マンガンとニッケルの固溶は均一であり、実施例1と同様に電池を作製し評価をした結果、図10に示すように充放電電位は平坦であり、充放電曲線において3.5〜4.5V領域の電位の棚が排除され、十分良好な放電要領が得られた。
【0077】
比較例2〜4については、比較例2は表1に示すようにろ過性が悪いこと、比較例3、4については不純物濃度が高いことから、電池評価をしなくても正極活物質として使用困難なものであった。
【0078】
【発明の効果】
本発明では、リチウムイオン二次電池用正極活物質として有用で、タップ密度が高く、かつ、マンガンとニッケルの固溶が均一であり、実質的に異相のない一般式:Li1+X Mn2-Y-X NiY 4 (ただし、−0.05≦X≦0.10、0.45≦Y≦0.55)で表されるスピネル構造を有するリチウムマンガンニッケル複合酸化物の製造方法として、マンガン塩とニッケル塩を、マンガンとニッケルの原子比が実質的に前記一般式のマンガンとニッケルの原子比となるように混合水溶液を作製し、錯化剤を用いずに、該混合水溶液とアルカリ水溶液を同時に、かつ、連続的に反応槽に投入し、反応槽内の混合液の温度を60〜80℃の範囲に保持し、pH=10〜11の範囲となるようにしつつ、共沈殿させて、撹拌機を使用して一定速度にて撹拌して、反応槽内のスラリー濃度が一定となった後に、反応槽からのオーバーフローとして排出される沈殿物を採取し、ろ過、水洗して得られた球状かほぼ球状のマンガンニッケル複合水酸化物粒子を原料として用いることで、タップ密度が高く、かつ、マンガンとニッケルの固溶が均一であり、実質的に異相のないリチウムマンガンニッケル複合酸化物およびそれを用いた非水系電解質二次電池用正極活物質を提供でき、かつ、充放電電位の平坦性に優れ、放電容量が大きなリチウムイオン二次電池を提供できる。
【図面の簡単な説明】
【図1】 実施例1で、反応時のpH=10〜11によって得られたマンガンニッケル複合水酸化物のSEM写真を示す。ここで(a)、(b)、(c)はそれぞれ600倍、2000倍、6000倍の倍率での写真を示す。
【図2】 実施例1で、図1のマンガンニッケル複合水酸化物を900℃で焙焼して得られたマンガンニッケル複合酸化物のSEM写真を示す。
【図3】 実施例1で、図2のマンガンニッケル複合酸化物をリチウムと混合焼成して得られたリチウムマンガンニッケル複合酸化物のSEM写真を示す。
【図4】 比較例1で、反応時のpH=11〜12によって得られるマンガンニッケル複合水酸化物のSEM写真を示す。
【図5】 比較例1で、図4のマンガンニッケル複合水酸化物を900℃で焙焼して得られたマンガンニッケル複合酸化物のSEM写真を示す。
【図6】 比較例1で、図5のマンガンニッケル複合酸化物をリチウムと混合焼成して得られたリチウムマンガンニッケル複合酸化物のSEM写真を示す。
【図7】 実施例1で得られたリチウムマンガンニッケル複合酸化物のXRD定性分析結果を示す。
【図8】 実施例2で得られたリチウムマンガンニッケル複合酸化物のXRD定性分析結果を示す。
【図9】 比較例1で得られたリチウムマンガンニッケル複合酸化物のXRD定性分析結果を示す。
【図10】 実施例1で得られたリチウムマンガンニッケル複合酸化物を正極活物質として電池にした時の電池評価結果を示す。
【図11】 実施例2、3で得られたリチウムマンガンニッケル複合酸化物を正極活物質として電池にした時の電池評価結果を示す。
【図12】 比較例1で得られたリチウムマンガンニッケル複合酸化物を正極活物質として電池にした時の電池評価結果を示す。[0001]
BACKGROUND OF THE INVENTION
INDUSTRIAL APPLICABILITY The present invention is useful as a positive electrode active material for a lithium ion secondary battery, has a high tap density (powder packing density), and has a spinel crystal structure having substantially no heterogeneous phase and a lithium manganese nickel composite oxide and its production The present invention relates to a method, a positive electrode active material for a non-aqueous electrolyte secondary battery, and a non-aqueous electrolyte secondary battery using the method.
[0002]
[Prior art]
In recent years, with the widespread use of portable devices such as mobile phones and laptop computers, there is an increasing demand for small and lightweight secondary batteries having high energy density. There is a non-aqueous electrolyte type lithium ion secondary battery as such, and research and development have been actively conducted and put into practical use. The lithium ion secondary battery includes a positive electrode using a lithium-containing composite oxide as an active material, and a material capable of inserting and extracting lithium, such as lithium, a lithium alloy, a metal oxide, or carbon, as an active material. The main component is a negative electrode to be processed and a separator or solid electrolyte containing a non-aqueous electrolyte.
[0003]
Among these components, lithium cobalt composite oxide (LiCoO) is considered as a positive electrode active material.2), Lithium nickel composite oxide (LiNiO)2), Lithium manganese composite oxide (LiMn)2OFour) Etc. In particular, batteries that use lithium cobalt composite oxide for the positive electrode have been developed to obtain excellent initial capacity characteristics and cycle characteristics, and various results have already been obtained and put into practical use. Has reached.
[0004]
However, the demand for higher energy density for secondary batteries is increasing year by year, and in lithium ion secondary batteries using a lithium cobalt composite oxide that is currently in practical use as a positive electrode, cobalt is scarce and expensive. For this reason, there is a need for alternative materials that can be realized at a lower cost and higher energy density.
[0005]
Therefore, as a positive electrode active material for a non-aqueous electrolyte secondary battery, LiCoO2Instead, lithium manganese oxide materials having a spinel crystal structure are attracting attention because of their low cost and low toxicity. This spinel-type lithium manganese oxide includes Li2MnFourO9, LiFourMnFiveO12, LiMn2OFourand so on.
[0006]
By the way, in order to increase the energy density of the battery, one method is to use a positive electrode active material having a high potential, and a high voltage of 300 V or more is required as a power source for an electric vehicle.2Is used as the positive electrode active material, the average operating voltage is about 3.8 V, which increases the number of connected batteries. Therefore, LiCoO2Although it is necessary to use a higher voltage positive electrode active material, since the operating voltage of the spinel type lithium manganese oxide is about 4V, the number of batteries to be connected to obtain a high voltage of 300V LiCoO2In addition to using LiCoO, LiCoO2There is a problem that the capacity is smaller than that when using.
[0007]
Therefore, higher voltage is also being studied for spinel type lithium manganese composite oxides, and in particular, the atomic ratio of manganese to other metal is substantially 3: 1 recently, and Li [Mn3/2M1/2] OFourIt is known that a composite oxide represented by (where M is Cr, Fe, Co, Ni, Cu, etc.) has a potential around 5 V (Japanese Patent Laid-Open No. 9-147867). It is expected as a positive electrode active material for secondary batteries.
[0008]
However, the material is relatively difficult to synthesize, and it has been difficult to achieve both a single phase of the spinel structure and a high tap density by conventional synthesis methods. For example, if a method such as fine pulverization and mixing that sufficiently promotes solid solution of manganese and nickel can be used, a spinel structure single phase can be realized, but the particle size becomes fine and handling becomes difficult, and the composite after synthesis A high tap density could not be achieved with the oxide. On the other hand, using a simple solid-phase method to synthesize a complex oxide with a moderately sized particle size that is suitable as a battery, that is, has a high tap density and is easy to handle, the solid solution of manganese and nickel is reduced. It became insufficient, and a different phase such as nickel oxide was generated, and a spinel structure single phase could not be realized. As a result, the capacity in the high potential region of 4.8 V is reduced, the flatness of the potential is lost, a shelf appears in the low potential region near 4 V, and the positive electrode material with high energy density is not obtained. There was a problem that the generation of gas was remarkable.
[0009]
Therefore, attention has been paid to uniform mixing in a liquid-liquid mixed system typified by a complex polymerization method as disclosed in JP-A-2001-185148, but it is obtained because it is characterized by uniform mixing in a liquid phase. In addition, the positive electrode active material particles have a problem that the particle diameter is very fine and only those having a low tap density can be obtained. Japanese Patent Laid-Open No. 2001-146426 discloses a method in which lithium, manganese and nickel compounds are pulverized and mixed in a wet manner, and the resulting slurry is spray-dried. However, since the solution of manganese and nickel is inhibited, uniform solid solution does not progress, and as a result, there remains a problem that a shelf appears in a low potential region near 4 V in the charging curve. Here, the shelf refers to a step of potential near 4 V that appears in the descending portion of the charge / discharge curve.
[0010]
As a raw material for the lithium manganese nickel composite oxide, there is a method of obtaining a manganese nickel composite hydroxide or composite oxide by reacting and co-precipitating a mixed aqueous solution of a manganese salt and a nickel salt with an alkaline solution (Japanese Patent Laid-Open No. 2002-158007). Publication). In this method, in order to obtain spherical particles, complexes with manganese ions and nickel ions can be formed in an aqueous solution, such as ammonium ion donors (ammonium chloride, ammonium carbonate, ammonium fluoride, etc.), hydrazine, ethylenediaminetetraacetic acid, A complexing agent such as nitritotriacetic acid, uracil diacetic acid and glycine is required, and a step of drying at a high temperature is required to remove the complexing agent. In addition, when no complexing agent is added, it is difficult to obtain spherical particles in the range of pH = 11 to 13, many fine particles are inferior in filterability, and it is difficult to wash the attached filtrate and impurities. It had problems such as an increase. In addition, molding and pulverizing the lithium manganese nickel composite oxide into pellets causes the spherical particles to collapse and the specific surface area to increase due to the generation of fine powder. Was necessary.
[0011]
[Patent Document 1]
JP-A-9-147867
[0012]
[Patent Document 2]
JP 2001-185148 A
[0013]
[Patent Document 3]
JP 2001-146426 A
[0014]
[Patent Document 4]
JP 2002-158007 A
[0015]
[Problems to be solved by the invention]
In the present invention, a lithium manganese nickel composite that is useful as a positive electrode active material for a lithium ion secondary battery, has a high tap density (powder filling density), and has a uniform solid solution of manganese and nickel and substantially no different phases. An object of the present invention is to provide an oxide, a method for producing the same, and a positive electrode active material for a non-aqueous electrolyte secondary battery using the oxide, and to provide a lithium ion secondary battery having excellent charge / discharge potential flatness and a large discharge capacity.
[0016]
[Means for Solving the Problems]
The method for producing the lithium manganese nickel composite oxide of the present invention has the general formula: Li1 + XMn2-YXNiYOFour(However, -0.05 ≦ X ≦ 0.10, 0.45 ≦ Y ≦ 0.55), and relates to a method for producing a lithium manganese nickel composite oxide having a spinel structure. (1) Manganese and nickel A mixed aqueous solution of a manganese salt and a nickel salt is prepared so that the atomic ratio is substantially the atomic ratio of manganese and nickel of the above general formula, and without using a complexing agent, the mixed aqueous solution and the alkaline aqueous solution are simultaneously used. In addition, the mixture is continuously charged into the reaction vessel, and the temperature of the mixed solution in the reaction vessel is maintained in the range of 60 to 80 ° C., and is co-precipitated and stirred while the pH is in the range of 10 to 11. And collecting the precipitate discharged as overflow from the reaction tank after the slurry concentration in the reaction tank becomes constant, filtering, washing with water to obtain manganese nickel composite hydroxide particles; (2) The obtained ma A second step of roasting gannickel composite hydroxide particles in an air atmosphere to obtain a manganese nickel composite oxide; (3) a total atomic ratio of manganese and nickel and an atomic ratio of lithium of substantially 2; And a third step of mixing and firing the manganese-nickel composite oxide and the lithium compound so as to be 0.95 to 1.10.
[0017]
The lithium manganese nickel composite oxide obtained by the above production method has the general formula: Li1 + X Mn2-YX NiY OFour(However, -0.05 ≦ X ≦ 0.10, 0.45 ≦ Y ≦ 0.55), and has a spinel structure,Spherical or almost spherical,Tap density is 1.50 g / cmThreeThe specific surface area is 0.2 to 1.0 m2/ G.
[0018]
Using the lithium manganese nickel composite oxide, a positive electrode active material for a non-aqueous electrolyte secondary battery, and further a non-aqueous electrolyte secondary battery are produced. In the non-aqueous secondary battery, a shelf having a potential in the 3.5 to 4.5 V region is excluded from the charge / discharge curve.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
As mentioned above, LiMn2OFourIt is known that an operating voltage of 4.5 V or more can be obtained by substituting a part of the manganese site with a transition metal such as nickel. Such a high voltage spinel type lithium manganese oxide is used as a positive electrode active material. As a result, it is possible to increase the energy density, but it is relatively difficult to synthesize, and it has been difficult to achieve both a single phase of the spinel structure and a high tap density by conventional synthesis methods.
[0020]
The present inventors are useful as a positive electrode active material for a lithium ion secondary battery, have a high tap density (powder packing density), a uniform solid solution of manganese and nickel, and substantially no different phase. Formula: Li1 + XMn2-YXNiYOFour(However, as a method for producing a lithium manganese nickel composite oxide having a spinel structure represented by -0.05 ≦ X ≦ 0.10, 0.45 ≦ Y ≦ 0.55) A mixed aqueous solution of a manganese salt and a nickel salt is prepared so that the atomic ratio is substantially the atomic ratio of manganese and nickel of the above general formula, and without using a complexing agent, the mixed aqueous solution and the alkaline aqueous solution are simultaneously and The mixture is continuously charged into the reaction vessel, the temperature of the mixed solution in the reaction vessel is kept in the range of 60 to 80 ° C., and the pH is in the range of 10 to 11, while coprecipitation is performed, The reactor is stirred with a stirrer at a constant speed so that it does not collect at the bottom and the precipitate particles grow stably, and after the slurry concentration in the reaction vessel becomes constant and becomes a steady state, the reaction vessel As an overflow from By collecting the discharged sediment, filtering, washing and using spherical or nearly spherical manganese nickel composite hydroxide particles as raw materials, the tap density is high and the solid solution of manganese and nickel is uniform. It is possible to provide a lithium manganese nickel composite oxide having substantially no different phase and a positive electrode active material for a non-aqueous electrolyte secondary battery using the same, and by using the positive electrode active material for the non-aqueous electrolyte secondary battery, charging / discharging The present inventors have found that a lithium ion secondary battery having excellent potential flatness and a large discharge capacity can be provided, and the present invention has been achieved. Hereinafter, the present invention will be described in detail according to the embodiments of the invention.
[0021]
1. Manufacture of manganese nickel composite hydroxide particles
In the present invention, the general formula: Li1 + XMn2-YXNiYOFour(However, in the method for producing a lithium manganese nickel composite oxide having a spinel structure represented by -0.05 ≦ X ≦ 0.10, 0.45 ≦ Y ≦ 0.55) A mixed aqueous solution of a manganese salt and a nickel salt is prepared so that the atomic ratio is substantially the atomic ratio of manganese and nickel of the above general formula, and without using a complexing agent, the mixed aqueous solution and the alkaline aqueous solution are simultaneously and The mixture is continuously charged into the reaction vessel, the temperature of the mixed solution in the reaction vessel is kept in the range of 60 to 80 ° C., and the pH is in the range of 10 to 11, while coprecipitation is performed, The amount of liquid mixture and the precipitate to be added to the reaction vessel are stirred so that the number of rotation of the stirring blade of the stirrer is constant so that the precipitate particles do not accumulate at the bottom and the particles of the precipitate grow stably. The amount of generated As a result, the collected amount of sediment discharged as a bar flow becomes constant, and as a result, the slurry concentration in the reaction tank becomes constant, and the collected sediment is filtered, washed with water, or spherical or almost spherical manganese nickel. It is characterized by obtaining composite hydroxide particles.
[0022]
By this method, particles in which the atomic ratio of manganese and nickel is substantially uniformly mixed at 3: 1 can be obtained. Furthermore, the obtained particles are nearly spherical, have good filterability, and have good handling properties.
[0023]
Unlike the conventional method, the addition of a complexing agent is not required because the pH of the mixed aqueous solution is selected to be a lower pH = 10 to 11 in the conventional method, and the temperature of the mixed aqueous solution is in the range of 60 to 80 ° C. It depends on. In the case where the complexing agent is not added, when crystallization is performed at pH = 11 to 13, fine particles are obtained, filterability is deteriorated, and spherical particles cannot be obtained. On the other hand, when the pH is less than 10, the hydroxide generation rate is remarkably slow, Mn remains in the filtrate, the precipitation amount of Mn and Ni deviates from the target composition, and the atomic ratio is substantially 3 : 1 manganese nickel mixed hydroxide cannot be obtained.
[0024]
In the present invention, the pH is set to 10 to 11 and the temperature of the mixed aqueous solution is kept at 60 ° C. or higher, thereby increasing the reaction temperature and increasing the solubility of Mn and Ni. The amount of precipitation of Ni and Ni deviates from the target composition, avoiding the phenomenon that coprecipitation does not occur. On the other hand, when the temperature of the mixed aqueous solution exceeds 80 ° C., the amount of water evaporation increases, the slurry concentration increases, the solubility of Mn and Ni decreases, and crystals such as sodium sulfate are generated in the filtrate. Such a problem that the impurity concentration increases is not preferable.
[0025]
Here, the usable manganese salt is not particularly limited as long as it does not contain impurities that may be mixed when used as the positive electrode active material, and specific examples thereof include manganese sulfate and manganese carbonate. Similarly, usable nickel salts include nickel sulfate, nickel carbonate and the like.
[0026]
The pH value of the aqueous solution is maintained in the range of pH = 10 to 11 by adding an alkali metal hydroxide (for example, sodium hydroxide).
[0027]
Manganese nickel composite hydroxide particles obtained by the production method of the present invention are spherical or nearly spherical, and relatively dense particles can be obtained as secondary particles in which primary particles are uniformly gathered. There is no aggregation of secondary particles.
[0028]
The average particle size of the hydroxide particles is preferably 10 to 20 μm. If the particle diameter is out of this range and the particle size is small, the filterability is deteriorated, and it becomes difficult to wash the hydroxide, resulting in a problem of a decrease in productivity and an increase in impurity concentration. If the particle size is large, powder characteristics with high tap density cannot be obtained, and when applied as a positive electrode material paste, it cannot be uniformly applied.
[0029]
2. Manufacture of manganese nickel composite oxide particles
Next, the manganese nickel composite hydroxide particles obtained in the above step are roasted in an air atmosphere to obtain a manganese nickel composite oxide. In this case, there is no problem even in an oxygen stream.
[0030]
As the roasting condition, firing is performed in the range of 800 to 1000 ° C. for about 2 to 20 hours to obtain a complex oxide of manganese and nickel. The firing temperature is more preferably in the range of 800 to 900 ° C. Uniform dispersion and solid solution of manganese and nickel are promoted at a firing temperature of 800 ° C. or higher. However, industrially, energy cost should be considered, and it is preferable that the firing temperature is as low as 900 ° C. or lower. Even in the temperature range of 800 to 900 ° C., it has been confirmed that there is no problem in the uniform solid solution of manganese and nickel.
[0031]
When the firing temperature is lower than 800 ° C., manganese and nickel are not completely oxidized and solid solution does not progress. Moreover, even if it exceeds 1000 degreeC, since an influence is not seen in crystal growth, it is unpreferable on a cost.
[0032]
3. Production of lithium manganese nickel composite oxide
Next, the ratio of the total number of moles of manganese and nickel to the number of moles of lithium is substantially from 2: 0.95 to 1.10. Using a shaker mixer, stirring mixer, rocking mixer, etc., the mixture is mixed under relatively weak conditions such that the shape of spherical secondary particles is maintained, and the mixed powder is in an oxygen atmosphere, or Firing is performed at 600 to 750 ° C. for 10 to 20 hours in an air atmosphere to obtain a lithium nickel manganese composite compound. The crystal structure of the obtained lithium nickel manganese composite oxide needs to be cubic spinel. Usable lithium compounds include lithium hydroxide, lithium hydroxide monohydrate, lithium carbonate, lithium nitrate, lithium oxide and the like.
[0033]
If the solid solution of manganese and nickel is insufficient or the composition deviates from the target composition, a different phase such as nickel oxide is generated, and a spinel structure single phase cannot be realized. If it is not a single phase of the spinel structure, the capacity in the high potential region of 4.8V is reduced, the flatness of the potential is lost, and a shelf appears in the low potential region near 4V. In addition, there is a problem that gas is generated at a high temperature.
[0034]
When the ratio of the total number of moles of manganese and nickel to the number of moles of lithium deviates substantially from 2: 0.95 to 1.10 and the amount of lithium element is small, in addition to the spinel type lithium nickel manganese composite oxide, NiO NiMnOThreeIf the amount of lithium element is large, lithium that cannot be completely dissolved remains on the surface of the lithium-nickel-manganese composite oxide, resulting in battery performance degradation or gel formation from reaction with the electrolyte. This is not preferable because it deteriorates the characteristics.
[0035]
On the other hand, if the firing temperature is lower than 600 ° C., the solid solution of lithium is insufficient, which is not preferable. If it exceeds 750 ° C., oxygen deficiency occurs and the spinel structure is lost.
[0036]
The spinel type lithium nickel manganese composite oxide obtained by the above production method preferably has a cubic unit cell lattice constant of 8.17 to less than 8.18. The specific surface area of the composite oxide is 0.2 m.2/ G or more 1.0m2/ G or less is desirable. Furthermore, the tap density (powder filling density) is 1.4 g / cm.ThreeAbove, especially 1.50 g / cmThreeThe above is preferable.
[0037]
By satisfying these various characteristics, a lithium nickel manganese composite oxide having a spinel structure single phase substantially free of different phases and having a high tap density can be obtained, and the composite oxide can be used as a non-aqueous electrolyte secondary battery. In the non-aqueous electrolyte secondary battery used as the positive electrode active material for a battery, a non-aqueous electrolyte secondary battery having a potential shelf of 3.5 to 4.5 V in the charge / discharge curve is obtained. Here, the shelf refers to a step of potential near 4 V that appears in the descending portion of the charge / discharge curve.
[0038]
General formula: Li1 + XMn2-YXNiYOFourA positive electrode using a spinel-type lithium nickel manganese composite oxide represented by (0.05 −X ≦ 0.10, 0.45 ≦ Y ≦ 0.55) as a positive electrode active material is, for example, the positive electrode If necessary, a conductive additive, a binder, etc. are added to the active material and mixed as needed, and the mixture is made into a paste with a solvent (the binder may be dissolved in the solvent in advance and then mixed with the positive electrode active material). The obtained positive electrode mixture-containing paste is applied to a positive electrode current collector made of an aluminum foil or the like, dried to form a positive electrode mixture layer, and is subjected to a pressure molding step as necessary. . However, the method for producing the positive electrode is not limited to the above-described examples, and any method can be adopted.
[0039]
In producing the positive electrode, as the conductive auxiliary agent, for example, graphite (natural graphite, artificial graphite, expanded graphite, etc.), carbon black-based material such as acetylene black, ketjen black, or the like can be used. As the binder, for example, polyvinylidene fluoride, polytetrafluoroethylene, ethylene propylene diene rubber, fluorine rubber, styrene butadiene, cellulose resin, polyacrylic acid, or the like can be used.
[0040]
Examples of the negative electrode active material as a counter electrode with respect to the positive electrode containing the positive electrode active material include lithium, lithium alloys represented by lithium-aluminum, graphite, pyrolytic carbons, cokes, and glassy carbons. , Sintered materials of organic polymer compounds, mesocarbon microbeads, carbon fibers, activated carbon, etc., carbon-based materials capable of reversibly occluding and releasing lithium ions, alloys such as Si, Sn, In, etc. Compounds such as oxides and nitrides that can be discharged can also be used as the negative electrode active material.
[0041]
When the negative electrode active material is lithium or a lithium alloy, the negative electrode is used as it is or by pressure bonding to a current collector. When the negative electrode active material is a carbon-based material, the negative electrode Add and mix the same binder as in the case, paste it into a paste using a solvent (the binder may be dissolved in the solvent in advance and then mixed with the negative electrode active material), and the obtained negative electrode mixture-containing paste Is applied to a negative electrode current collector made of copper foil or the like, dried to form a negative electrode mixture layer, and subjected to pressure molding as necessary. However, the method for manufacturing the negative electrode is not limited to the above-described examples, and other methods may be used.
[0042]
As the electrolyte, any of a non-aqueous liquid electrolyte and a gel polymer electrolyte can be used. However, in the present invention, a liquid electrolyte called an electrolytic solution is usually used frequently. This liquid electrolyte (electrolytic solution) is prepared by, for example, dissolving an electrolyte salt such as a lithium salt in a non-aqueous solvent mainly composed of an organic solvent. Examples of the solvent include dimethyl carbonate and diethyl. Carbonate, methyl ethyl carbonate, chain ester such as methyl propionate, chain phosphate triester such as trimethyl phosphate, 1,2-dimethoxyethane, 1,3-dioxolane, tetrahydrofuran, 2-methyl-tetrahydrofuran, diethyl ether Etc. can be used. In addition, amine organic solvents, sulfur organic solvents such as sulfolane, and the like can also be used.
[0043]
Furthermore, it is preferable to use an ester having a high dielectric constant (conductivity of 30 or more) as the other solvent component from the viewpoint of improving battery characteristics, particularly load characteristics. Specific examples of the ester having a high dielectric constant include , Ethylene carbonate, propylene carbonate, butylene carbonate, γ-butyrolactone and the like, and sulfur-based esters such as ethylene glycol sulfite can also be used, but cyclic esters are preferred, and cyclic esters such as ethylene carbonate are particularly preferred. Carbonate is preferred. These solvents can be used alone or in admixture of two or more.
[0044]
Examples of electrolyte salts such as lithium salts include LiClO.Four, LiPF6, LiBFFour, LiAsF6, LiSbF6, LiCFThreeSOThree, LiCFourF9SOThree, LiCFThreeCO2, Li2C2FFour(SOThree)2, LiN (Rf1SO2) (Rf2SO2[Where Rf1, Rf2Is a substituent containing a fluoroalkyl group], LiN (RfThreeOSO2) (RfFourOSO2[Where RfThree, RfFourIs a fluoroalkyl group], LiCnF2n + 1SOThree(N ≧ 2), LiC (RfFiveSO2)2, LiN (Rf6OSO2)2[Where RfFive, Rf6Are fluoroalkyl groups], polymer type imidolithium salts and the like are used alone or in combination of two or more. The concentration of the electrolyte salt in the electrolytic solution is not particularly limited, but the concentration is preferably 0.1 to 2.0 mol / L (liter).
[0045]
The gel polymer electrolyte corresponds to the electrolyte solution gelled with a gelling agent. For the gelation, for example, a linear polymer such as polyvinylidene fluoride, polyethylene oxide, polyacrylonitrile or the like or a polymer thereof. Copolymers, polyfunctional monomers that polymerize by irradiation with actinic rays such as ultraviolet rays and electron beams (for example, tetrafunctional or higher functional groups such as pentaerythritol tetraacrylate, ditrimethylolpropane tetraacrylate, ethoxylated pentaerythritol tetraacrylate, dipentaerythritol hexaacrylate, etc. Acrylates and tetrafunctional or higher methacrylates similar to the above acrylates). However, in the case of a monomer, the monomer itself does not gel the electrolyte solution, but a polymer obtained by polymerizing the monomer acts as a gelling agent.
[0046]
As described above, when the electrolyte solution is gelled using a polyfunctional monomer, if necessary, as a polymerization initiator, for example, benzoyls, benzoin alkyl ethers, benzophenones, benzoylphenylphosphine oxides, Acetophenones, thioxanthones, anthraquinones, aminoesters and the like can also be used.
[0047]
The non-aqueous electrolyte secondary battery using the positive electrode active material obtained by the present invention has a large discharge capacity, excellent flatness at a high potential, and high tap density. A water-based electrolyte secondary battery can be realized.
[0048]
【Example】
Example 1
Using a 500 ml cylindrical reactor equipped with a stirrer and an overflow pipe, a 2 mol / L manganese sulfate aqueous solution and a 2 mol / L nickel sulfate aqueous solution are mixed so that the Mn: Ni atomic ratio is 3: 1. 25% aqueous sodium hydroxide solution is added to the reaction vessel at the same time so that the pH is in the range of 10 to 11, the temperature is maintained at 70 ° C., and the rotation speed of the stirring blade of the stirrer is set to a constant speed. The mixture is stirred at a constant level, the amount of the mixed solution charged into the reaction tank and the amount of precipitate generated are constant, and the slurry concentration in the reaction tank is constant. Formed.
[0049]
As the amount of the mixed liquid increased by the manganese / nickel mixed aqueous solution and the alkaline aqueous solution charged into the reaction tank, the precipitate discharged as overflow is taken out from the discharge port provided on the reaction tank side wall, One batch of the manganese nickel composite hydroxide particles discharged from the overflow outlet after the slurry concentration in the reaction tank becomes constant in a steady state, collected, filtered, washed with water, and 15 After time drying, a dry powder of manganese nickel composite hydroxide was obtained. Here, one batch refers to a point in time when the slurry discharged by adding the stock solution and the alkaline solution becomes the same volume as the reaction vessel volume (500 ml).
[0050]
The obtained dried powder of manganese nickel composite hydroxide is passed through a sieve having a mesh size of 45 μm without being crushed, and 20 g of the obtained under-sieving powder is roasted in an air stream at 900 ° C. for 10 hours in an air stream. As a result, a manganese nickel composite oxide was obtained.
[0051]
15.00 g of the obtained manganese nickel composite oxide and 4.12 g of lithium hydroxide were mixed and roasted in an atmosphere-fired electric furnace at 700 ° C. for 20 hours in an oxygen stream to obtain lithium manganese nickel composite oxide. I got a thing.
[0052]
The elemental analysis values and average particle diameter of the obtained manganese nickel composite hydroxide particles are shown in Table 1, and the elemental analysis values and physical property values of the obtained lithium manganese nickel composite oxide are shown in Table 2. Moreover, in order to compare the filterability of manganese nickel hydroxide, using Nutsche (90φ), air pump suction, filter paper 5C, 90 mm as a filtration device, the results of comparing the filtration time and filtration speed of 100 ml of the filtrate stock solution, Table 3 shows.
[0053]
Further, a scanning electron microscope (hereinafter referred to as “SEM”) photograph of the manganese nickel composite hydroxide is shown in FIG. An SEM photograph of the manganese nickel composite oxide obtained by oxidation roasting of manganese nickel hydroxide is shown in FIG. An SEM photograph of the lithium manganese nickel composite oxide obtained by mixing and baking with lithium is shown in FIG.
[0054]
(Examples 2 and 3)
Manganese nickel composite hydroxide particles are formed in the same manner as in Example 1 except that the reaction temperature is 63 ° C. and 80 ° C., filtered, washed with water, dried and then roasted to obtain a manganese nickel composite oxide. It was.
[0055]
The elemental analysis values and average particle diameter of the obtained manganese nickel composite hydroxide are shown in Table 1, and the filtration time and filtration rate are shown in Table 3. In addition, Table 2 shows elemental analysis values and physical property values of the obtained lithium manganese nickel composite oxide.
[0056]
(Comparative Example 1)
Example 1 except that a mixed aqueous solution of 2 mol / L manganese sulfate aqueous solution and 2 mol / L nickel sulfate aqueous solution and a 25% aqueous sodium hydroxide solution were simultaneously added to the reaction vessel so that the pH was in the range of 11-12. Under the same conditions, manganese nickel composite hydroxide particles were formed, dried, roasted, mixed and fired with lithium to obtain a lithium manganese nickel composite oxide.
[0057]
Elemental analysis values and average particle diameters of the obtained manganese nickel composite hydroxide are shown in Table 1, elemental analysis values and physical properties of the lithium manganese nickel composite oxide are shown in Table 2, and filtration of the manganese nickel composite hydroxide is performed. Time and filtration rate are shown in Table 3. Furthermore, the SEM photograph of manganese nickel composite hydroxide is shown in FIG. FIG. 5 shows an SEM photograph of the manganese nickel composite oxide obtained by oxidizing and roasting manganese nickel hydroxide. An SEM photograph of the lithium manganese nickel composite oxide obtained by mixing and baking with lithium is shown in FIG.
[0058]
(Comparative Example 2)
Under the same conditions as in Example 1 except that the reaction temperature when a mixed aqueous solution of a 2 mol / L manganese sulfate aqueous solution and a 2 mol / L nickel sulfate aqueous solution and a 25% aqueous sodium hydroxide solution were simultaneously added to the reaction vessel was 50 ° C. Manganese nickel composite hydroxide particles were formed. The elemental analysis values and average particle diameter of the obtained manganese nickel composite hydroxide are shown in Table 1, and the filtration time and filtration rate are shown in Table 3.
[0059]
(Comparative Example 3)
The same as in Example 1 except that the mixed aqueous solution of 2 mol / L manganese sulfate aqueous solution and 2 mol / L nickel sulfate aqueous solution and 25% aqueous sodium hydroxide solution were simultaneously added to the reaction vessel at a pH of 9-10. Manganese nickel composite hydroxide particles were formed under the conditions. The elemental analysis values and average particle diameter of the obtained manganese nickel composite hydroxide are shown in Table 1, and the filtration time and filtration rate are shown in Table 3.
[0060]
(Comparative Example 4)
The same as in Example 1 except that the mixed aqueous solution of 2 mol / L manganese sulfate aqueous solution and 2 mol / L nickel sulfate aqueous solution and 25% aqueous sodium hydroxide solution were simultaneously added to the reaction vessel at a pH of 12-13. Manganese nickel composite hydroxide particles were formed under the conditions. The elemental analysis values and average particle diameter of the obtained manganese nickel composite hydroxide are shown in Table 1, and the filtration time and filtration rate are shown in Table 3.
[0061]
[Table 1]
Figure 0004251015
[0062]
[Table 2]
Figure 0004251015
[0063]
[Table 3]
Figure 0004251015
[0064]
(Evaluation)
As shown in Table 1, when the reaction temperature is lower than 70 ° C. (Example 2) and when the reaction temperature is higher than 70 ° C. (Example 3), it can be seen that the particle diameter tends to be slightly smaller.
[0065]
In addition, the manganese nickel composite hydroxide obtained in the reaction pH range of 11 to 12 (Comparative Example 1) has an excessively high production rate and a small particle size, and the reaction pH is in the range of 9 to 10 (Comparison). In Example 3), the production rate is remarkably slow and the particle size is increased, but it is found that the precipitation of Mn is insufficient and the Mn: Ni ratio (3: 1) cannot be maintained.
[0066]
As shown in Table 2, the lithium manganese nickel composite oxide using the manganese nickel composite hydroxide obtained in the reaction pH range of 10 to 11 in Example 1 has a high tap density and an excellent small specific surface area. It turns out that it is a powder characteristic. On the other hand, when the manganese nickel composite hydroxide obtained in the reaction pH range of 11 to 12 in Comparative Example 1 is used, it can be seen that the tap density is low and the powder characteristics are large in specific surface area.
[0067]
Moreover, the lithium manganese nickel composite oxide using the manganese nickel composite hydroxide obtained by maintaining the reaction temperature of Example 2 at 60 ° C. is a powder having a high tap density and a small specific surface area. The lithium manganese nickel composite oxide using the manganese nickel composite hydroxide obtained by maintaining the reaction temperature of Example 3 at 80 ° C. was also a powder having a high tap density and a small specific surface area.
[0068]
As shown in Table 3, it can be seen that the manganese nickel composite hydroxide having a small average particle diameter has a long filtration time, the filterability is deteriorated, and the filterability is improved as the average particle diameter is increased.
[0069]
The manganese nickel composite hydroxide particles obtained in Example 1 are substantially spherical as shown in the SEM photograph of FIG. 1, and the primary particles (size: 1 to 5 μm) are bonded to each other to form relatively dense secondary particles. It can be seen that (the average particle diameter) is formed.
[0070]
In addition, the shape of the manganese nickel composite oxide obtained by oxidation roasting inherits the shape of the hydroxide, as shown in the SEM photograph of FIG. 2, and has a good primary particle-to-particle bonding property and a porous structure. It turns out that it is a shape to have together.
[0071]
It can be seen that the lithium manganese nickel composite oxide obtained by mixing and firing the manganese nickel composite oxide of FIG. 2 with lithium is a substantially spherical, relatively dense secondary particle body as shown in the SEM photograph of FIG.
[0072]
The shape of the manganese nickel composite hydroxide obtained when the reaction pH of Comparative Example 1 was in the range of 11 to 12 was such that fine particles partially aggregated to form secondary particles as shown in the SEM photograph of FIG. You can see that Further, it can be seen that the manganese nickel composite oxide obtained by oxidative roasting has a shape in which fine powders aggregate and there are many voids as shown in the SEM photograph of FIG. As a result, the lithium manganese nickel composite oxide obtained by mixing and firing the manganese nickel composite oxide of FIG. 5 with lithium inherits the shape before mixing lithium and has many voids as shown in the SEM photograph of FIG. I understand that.
[0073]
As shown in the XRD qualitative analysis results of the lithium manganese nickel composite oxide in FIGS. 7 and 8, the lithium manganese nickel composite oxide obtained in Examples 1 and 2 has a solid solution of manganese and nickel, It can be seen that this is a lithium manganese nickel composite oxide having a spinel structure substantially free of different phases. On the other hand, FIG. 9 shows the XRD qualitative analysis results of the lithium manganese nickel composite oxide obtained in Comparative Example 1. In addition to the peak of the lithium manganese nickel composite oxide having a spinel structure, NiMnOThreeIt can be seen that there are peaks such as NiO. This is considered to be due to the fact that the difference in the precipitation rate of manganese and nickel during raw material hydroxide formation became large, and the solid solution of manganese and nickel became non-uniform.
[0074]
The lithium manganese nickel composite oxide obtained in Example 1 was used as a positive electrode active material for a lithium ion secondary battery, and a battery was evaluated. As a result of the battery evaluation, the charge / discharge potential was excellent in flatness as shown in FIG. It can be seen that this is a lithium ion secondary battery having a large discharge capacity in which a shelf having a potential in the region of 3.5 to 4.5 V is eliminated in the charge / discharge curve.
[0075]
On the other hand, the lithium manganese nickel composite oxide obtained in Comparative Example 1 was fabricated and evaluated in the same manner as in Example 1. As a result, as shown in FIG. 11, there was a shelf at the charge / discharge potential, and the discharge capacity was reduced. It was.
[0076]
In Examples 2 and 3, although slightly lower than the powder characteristics of Example 1, the solid solution of manganese and nickel is uniform. As a result of producing and evaluating a battery in the same manner as in Example 1, FIG. As shown, the charge / discharge potential was flat, and the potential shelf in the 3.5 to 4.5 V region was eliminated in the charge / discharge curve, and a sufficiently good discharge procedure was obtained.
[0077]
About Comparative Examples 2-4, since Comparative Example 2 has poor filterability as shown in Table 1, and Comparative Examples 3 and 4 have high impurity concentrations, they can be used as positive electrode active materials without battery evaluation. It was difficult.
[0078]
【The invention's effect】
In the present invention, it is useful as a positive electrode active material for a lithium ion secondary battery, has a high tap density, has a uniform solid solution of manganese and nickel, and has substantially no heterogeneous formula: Li1 + XMn2-YXNiYOFour(However, as a method for producing a lithium manganese nickel composite oxide having a spinel structure represented by (−0.05 ≦ X ≦ 0.10, 0.45 ≦ Y ≦ 0.55), a manganese salt and a nickel salt are used. A mixed aqueous solution is prepared so that the atomic ratio of manganese and nickel is substantially the atomic ratio of manganese and nickel of the above general formula, and the mixed aqueous solution and the alkaline aqueous solution are simultaneously and continuously used without using a complexing agent. The mixture is put into the reaction vessel and the temperature of the mixed solution in the reaction vessel is kept in the range of 60 to 80 ° C. and co-precipitated while the pH is in the range of 10 to 11, and a stirrer is used. After the slurry concentration in the reaction tank becomes constant, the precipitate discharged as overflow from the reaction tank is collected, filtered and washed with water. Manganese nickel composite water Lithium manganese nickel composite oxide having high tap density, uniform solid solution of manganese and nickel, and substantially no heterogeneous phase, and non-aqueous electrolyte secondary battery using the same A positive electrode active material can be provided, and a lithium ion secondary battery having excellent charge / discharge potential flatness and a large discharge capacity can be provided.
[Brief description of the drawings]
1 shows an SEM photograph of manganese nickel composite hydroxide obtained in Example 1 at a pH of reaction of 10 to 11. FIG. Here, (a), (b), and (c) show photographs at magnifications of 600 times, 2000 times, and 6000 times, respectively.
2 shows an SEM photograph of the manganese nickel composite oxide obtained by roasting the manganese nickel composite hydroxide of FIG. 1 at 900 ° C. in Example 1. FIG.
3 shows an SEM photograph of the lithium manganese nickel composite oxide obtained in Example 1 by mixing and firing the manganese nickel composite oxide of FIG. 2 with lithium. FIG.
4 shows an SEM photograph of manganese nickel composite hydroxide obtained in Comparative Example 1 with a pH of 11 to 12 at the time of reaction. FIG.
5 shows an SEM photograph of the manganese nickel composite oxide obtained by roasting the manganese nickel composite hydroxide of FIG. 4 at 900 ° C. in Comparative Example 1. FIG.
6 shows an SEM photograph of the lithium manganese nickel composite oxide obtained by mixing and firing the manganese nickel composite oxide of FIG. 5 with lithium in Comparative Example 1. FIG.
7 shows the XRD qualitative analysis results of the lithium manganese nickel composite oxide obtained in Example 1. FIG.
8 shows the XRD qualitative analysis results of the lithium manganese nickel composite oxide obtained in Example 2. FIG.
9 shows the result of XRD qualitative analysis of the lithium manganese nickel composite oxide obtained in Comparative Example 1. FIG.
10 shows the battery evaluation results when the lithium manganese nickel composite oxide obtained in Example 1 is used as a positive electrode active battery.
FIG. 11 shows battery evaluation results when the lithium manganese nickel composite oxide obtained in Examples 2 and 3 was used as a positive electrode active material.
12 shows the battery evaluation results when the lithium manganese nickel composite oxide obtained in Comparative Example 1 is used as a positive electrode active battery. FIG.

Claims (5)

一般式:Li1+X Mn2-Y-X NiY4(ただし、−0.05≦X≦0.10、0.45≦Y≦0.55)で表され、スピネル構造を有するリチウムマンガンニッケル複合酸化物の製造方法において、
マンガンとニッケルの原子比が実質的に前記一般式のマンガンとニッケルの原子比となるようにマンガン塩とニッケル塩の混合水溶液を作製し、錯化剤を用いずに、該混合水溶液とアルカリ水溶液を同時に、かつ、連続的に反応槽に投入し、反応槽内の混合液の温度を60〜80℃の範囲に保持し、pH=10〜11の範囲となるようにしつつ、共沈殿させて、撹拌して、反応槽内のスラリー濃度が一定となった後に、反応槽からのオーバーフローとして排出される沈殿物を採取し、ろ過、水洗して、マンガンニッケル複合水酸化物粒子を得る第1の工程と、
得られたマンガンニッケル複合水酸化物粒子を空気雰囲気中で焙焼し、マンガンニッケル複合酸化物を得る第2の工程と、
マンガンとニッケルの合計の原子比とリチウムの原子比が実質的に2:0.95〜1.10となるように前記マンガンニッケル複合酸化物とリチウム化合物とを混合し焼成する第3の工程と、
からなることを特徴とするリチウムマンガンニッケル複合酸化物の製造方法。
Lithium manganese nickel represented by the general formula: Li 1 + X Mn 2 -YX Ni Y O 4 (where −0.05 ≦ X ≦ 0.10, 0.45 ≦ Y ≦ 0.55) and having a spinel structure In the method for producing a composite oxide,
A mixed aqueous solution of a manganese salt and a nickel salt is prepared so that the atomic ratio of manganese and nickel is substantially the atomic ratio of manganese and nickel of the above general formula, and the mixed aqueous solution and the alkaline aqueous solution are used without using a complexing agent. At the same time and continuously into the reaction vessel, the temperature of the mixed solution in the reaction vessel is kept in the range of 60 to 80 ° C., and is co-precipitated while being in the range of pH = 10 to 11. After stirring, the slurry concentration in the reaction tank becomes constant, the precipitate discharged as an overflow from the reaction tank is collected, filtered, washed with water to obtain manganese nickel composite hydroxide particles. And the process of
A second step of roasting the obtained manganese nickel composite hydroxide particles in an air atmosphere to obtain a manganese nickel composite oxide;
A third step of mixing and firing the manganese-nickel composite oxide and the lithium compound so that the atomic ratio of the total of manganese and nickel and the atomic ratio of lithium are substantially from 2: 0.95 to 1.10; ,
A process for producing a lithium manganese nickel composite oxide, comprising:
請求項1に記載のリチウムマンガン複合酸化物の製造方法によって得られ、かつ、一般式:Li1+X Mn2-Y-X NiY4(ただし、−0.05≦X≦0.10、0.45≦Y≦0.55)で表され、スピネル構造を有し、球状ないしはほぼ球状で、タップ密度が1.50g/cm3以上で、比表面積が0.2〜1.0m2/gであることを特徴とするリチウムマンガンニッケル複合酸化物。It is obtained by the method for producing a lithium manganese composite oxide according to claim 1 and has a general formula: Li 1 + X Mn 2 -YX Ni Y O 4 (where -0.05 ≦ X ≦ 0.10, 0 .45 ≦ Y ≦ 0.55), has a spinel structure, is spherical or nearly spherical, has a tap density of 1.50 g / cm 3 or more, and a specific surface area of 0.2 to 1.0 m 2 / g. Lithium manganese nickel composite oxide, 請求項2に記載のリチウムマンガンニッケル複合酸化物を使用したことを特徴とする非水系電解質二次電池用正極活物質。  A positive electrode active material for a non-aqueous electrolyte secondary battery, wherein the lithium manganese nickel composite oxide according to claim 2 is used. 請求項3に記載の非水系電解質二次電池用正極活物質を使用したことを特徴とする非水系電解質二次電池。  A non-aqueous electrolyte secondary battery using the positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 3. 充放電曲線において、3.5〜4.5V領域の電位の棚が排除されたことを特徴とする請求項4記載の非水系電解質二次電池。  The nonaqueous electrolyte secondary battery according to claim 4, wherein a shelf having a potential in a region of 3.5 to 4.5 V is excluded from the charge / discharge curve.
JP2003144752A 2003-05-22 2003-05-22 Lithium manganese nickel composite oxide and method for producing the same, positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery Expired - Lifetime JP4251015B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003144752A JP4251015B2 (en) 2003-05-22 2003-05-22 Lithium manganese nickel composite oxide and method for producing the same, positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003144752A JP4251015B2 (en) 2003-05-22 2003-05-22 Lithium manganese nickel composite oxide and method for producing the same, positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2004349109A JP2004349109A (en) 2004-12-09
JP4251015B2 true JP4251015B2 (en) 2009-04-08

Family

ID=33532126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003144752A Expired - Lifetime JP4251015B2 (en) 2003-05-22 2003-05-22 Lithium manganese nickel composite oxide and method for producing the same, positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4251015B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100639526B1 (en) * 2005-02-02 2006-10-30 한양대학교 산학협력단 3V spinel complex-oxide as cathode material of lithium secondary batteries, the carbonate precipitation method thereof, and the lithium secondary batteries using the same
FR2890241B1 (en) * 2005-08-25 2009-05-22 Commissariat Energie Atomique HIGH SPEED SPINELLE STRUCTURE POSITIVE ELECTRODE MATERIAL BASED ON NICKEL AND MANGANESE FOR LITHIUM ACCUMULATORS
JP5068459B2 (en) * 2006-01-25 2012-11-07 Necエナジーデバイス株式会社 Lithium secondary battery
JP5114998B2 (en) * 2007-03-29 2013-01-09 住友金属鉱山株式会社 Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP5392036B2 (en) * 2009-12-02 2014-01-22 住友金属鉱山株式会社 Manganese composite hydroxide particles for non-aqueous electrolyte secondary battery positive electrode active material and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery and production method thereof, and non-aqueous electrolyte secondary battery
JP5682151B2 (en) * 2010-06-17 2015-03-11 住友化学株式会社 Transition metal composite hydroxide and lithium composite metal oxide
EP2693534B1 (en) 2011-03-31 2022-06-22 Toda Kogyo Corp. Manganese-nickel composite oxide particle powder, production method therefor, positive-electrode active material particle powder for nonaqueous electrolyte secondary batteries, production method therefor, and nonaqueous electrolyte secondary battery
JP4894969B1 (en) 2011-06-07 2012-03-14 住友金属鉱山株式会社 Nickel-manganese composite hydroxide particles and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery and production method thereof, and non-aqueous electrolyte secondary battery
CN104137303B (en) 2012-04-16 2017-08-08 株式会社Lg 化学 Include positive pole and the electrode assemblie of negative pole and the secondary cell for including the electrode assemblie with different weld part shapes
KR101470334B1 (en) * 2012-04-18 2014-12-09 주식회사 엘지화학 Method for Preparing Non-woven Fabric Separator Having Improved Mechanical Property and Separator Prepared Using the Same
CN103066271B (en) * 2013-01-14 2015-05-06 思伊纳化学科技(北京)有限公司 High voltage lithium ion battery anode material and preparation method thereof
WO2015064478A1 (en) * 2013-10-28 2015-05-07 旭硝子株式会社 Lithium-containing composite oxide production method, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6200079B2 (en) * 2014-05-12 2017-09-20 旭化成株式会社 Lithium manganese nickel composite oxide, method for producing the same, and active material, positive electrode and nonaqueous electrolyte secondary battery for nonaqueous electrolyte secondary battery including the same
JP6614202B2 (en) * 2017-06-01 2019-12-04 日亜化学工業株式会社 Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
EP3672913A1 (en) * 2017-08-23 2020-07-01 Haldor Topsøe A/S Introduction of titanium homogeneously into a solid material

Also Published As

Publication number Publication date
JP2004349109A (en) 2004-12-09

Similar Documents

Publication Publication Date Title
JP7001081B2 (en) A method for manufacturing a positive electrode active material for a non-aqueous electrolyte secondary battery, and a method for manufacturing a non-aqueous electrolyte secondary battery.
JP5614513B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the same
JP6578635B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the same
JP4070585B2 (en) Lithium-containing composite oxide and non-aqueous secondary battery using the same
JP6340791B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP6201277B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP5076448B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP2022510983A (en) Positive electrode additive for lithium secondary battery, its manufacturing method, positive electrode for lithium secondary battery including it and lithium secondary battery containing it
JP4251015B2 (en) Lithium manganese nickel composite oxide and method for producing the same, positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2008013405A (en) Lithium-nickel-manganese-cobalt multiple oxide, method for producing the same, and application of the multiple oxide
JP2010067614A (en) Manufacturing method of lithium-containing complex oxide for lithium secondary battery cathode
JP2012190580A (en) Positive electrode active material for lithium ion secondary battery
JP2007039266A (en) Manufacturing method of lithium-manganese-nickel complex oxide and positive electrode active material for non-aqueous electrolyte secondary cell
WO2015076323A1 (en) Positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing same, and nonaqueous electrolyte secondary battery
JPWO2012176471A1 (en) Lithium-containing composite oxide powder and method for producing the same
JP4655599B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP4581333B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP6201146B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP6511965B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP5145994B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP2006228604A (en) Anode active substance for lithium ion secondary batterry, and its manufacturing method
JP3257350B2 (en) Non-aqueous electrolyte secondary battery and method for producing its positive electrode active material
JP2006147500A (en) Positive electrode active material for non-aqueous electrolyte secondary battery, its manufacturing method, and non-aqueous electrolyte secondary battery using this
JP5176317B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP2018067549A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090106

R150 Certificate of patent or registration of utility model

Ref document number: 4251015

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140130

Year of fee payment: 5

EXPY Cancellation because of completion of term