JP4250793B2 - Piezoelectric actuator - Google Patents

Piezoelectric actuator Download PDF

Info

Publication number
JP4250793B2
JP4250793B2 JP02296699A JP2296699A JP4250793B2 JP 4250793 B2 JP4250793 B2 JP 4250793B2 JP 02296699 A JP02296699 A JP 02296699A JP 2296699 A JP2296699 A JP 2296699A JP 4250793 B2 JP4250793 B2 JP 4250793B2
Authority
JP
Japan
Prior art keywords
layer
contact member
driven body
base material
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02296699A
Other languages
Japanese (ja)
Other versions
JP2000224872A (en
Inventor
一弘 柴谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP02296699A priority Critical patent/JP4250793B2/en
Publication of JP2000224872A publication Critical patent/JP2000224872A/en
Application granted granted Critical
Publication of JP4250793B2 publication Critical patent/JP4250793B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は圧電アクチュエータの改良に関し、詳細には、圧電素子に励起される振動を接触部材を介して被駆動体に伝達することにより、前記接触部材と被駆動体を相対的に移動させる構造の圧電アクチュエータにおいて、駆動力伝達部となる接触部の摩擦力を高めて駆動力伝達効率の向上を図り、更には該接触部の耐摩耗性を高めると共にマイクロクラックや剥離の発生を抑え、耐久性と信頼性の高められた圧電アクチュエータに関するもので、この発明は特にトラス型圧電アクチュエータに有効に適用される。
【0002】
【従来の技術】
代表的な圧電アクチュエータとして、例えば図1に示す様な構造のトラス型圧電アクチュエータが知られている。即ち図1において、1a,1bは圧電素子、Va,Vbは交流電源、2は接触部材(チップ)、3はベース部材、4は付勢部材、5は固定部、6は被駆動体を夫々示している。トラス状に配置された2本の圧電素子1a,1bの先端には接触部材(チップ)2が固定されており、その他端はベース部材3に固定され、該ベース部材3はスプリング等の付勢部材4を介して固定部5に固設されている。
【0003】
そして、図示する如く2本の圧電素子1a,1bを例えば角度90°で配設し、交流電源Va,Vbから各圧電素子1a,1bに位相差90°の交流電圧を印加すると、各圧電素子1a,1bの位相差を有する振動によって接触部材(チップ)2の先端は円運動(真円もしくは楕円運動)を起こす。従って、図示する如くベース部材3を付勢部材4を介して固定部5に固定し、接触部材2を被駆動体6に摩擦接触させた状態で圧電素子1a,1bに位相差を有する交流電圧を印加すると、被駆動体6は、上記接触部材2先端の円運動に伴って両者の接触摩擦力により図面の矢印方向への駆動力が生じる。
【0004】
なお図示例では、被駆動体6が円盤状であるものを示したが、該被駆動体6の形状・構造は勿論これに限定されるわけではなく、円盤状以外にも、円弧状、平板状等があるが、作動機構は本質的に変わらない。
【0005】
このとき被駆動体6を安定して駆動させるには、接触部材2と被駆動体6の間の摩擦力を高めると共に安定した摩擦力を持続させることが必要であり、安定した摩擦力を確保するには、接触部材2および被駆動体6の表面が優れた耐摩耗性を備えていなければならない。
【0006】
該接触部の耐摩耗性を高めることによる他の利点は、摩耗粉の発生が抑えられることで、摩耗粉の発生量低減により誤動作の恐れがなくなる他、摩耗粉が研磨剤として作用し摩耗が更に加速されるといった問題も回避できる。
【0007】
一方、接触部材2先端部で生じる前記円運動の回転数は高周波数(100〜200kHz程度)であり、接触部材2と被駆動体6は非常に短い周期で接触・非接触を繰り返すが、このとき接触部材2と被駆動体6間には繰返し衝撃力が加わる。
【0008】
従って、圧電アクチュエータの駆動力を継続的に安定して発揮させるには、接触部を構成する接触部材2と被駆動体6の摩擦力と耐摩耗性を高めることが極めて重要となる。
【0009】
またこうした接触部に求められる耐摩耗性は、図示した様なトラス型圧電アクチュエータに限らず、要は圧電素子の伸縮振動を駆動源としてこれを被駆動体に伝達する全てのタイプの圧電アクチュエータに共通する重要な要求特性となる。
【0010】
そして上記接触部の耐摩耗性を高める方法としては、接触部材および被駆動体の表面硬度を高める方法が有効であり、表面硬度を高める具体的手段としては表面硬化処理法が挙げられる。そして、接触部材や被駆動体として比較的硬度の低い鉄基金属母材を使用する場合は、母材表面に高硬度セラミック質よりなる数〜十数μmの薄膜を形成する方法が例示される。
【0011】
ところが、硬度の低い鉄基金属母材等の表面に高硬度の耐摩耗性薄膜を形成したものでは、母材と表面硬化層が言わば最中状(内部が軟質で、その周りを薄肉の硬質皮膜で被包した状態)の構造となっている。そして本発明者らが種々研究を行なったところでは、この様な構造の部材表面に前述の如き繰返し衝撃力が加わると、表面硬化層がマイクロクラックや剥離を起こし易く、一旦マイクロクラックや剥離が起こると接触部の摩耗が急速に進行し、安定した駆動伝達力が得られなくなる。
【0012】
【発明が解決しようとする課題】
本発明は上記の様な従来技術の問題点に着目してなされたものであって、その目的は、圧電素子に励起される振動を接触部材を介して被駆動体に伝達することにより、接触部材と被駆動体を相対的に移動させるタイプの圧電アクチュエータを対象とし、駆動力伝達部となる前記接触部の摩擦力を高めて駆動力伝達効率の一層の向上を図ると共に、接触部の耐摩耗性を高めてマイクロクラックや剥離の発生を抑制し、圧電アクチュエータの耐久性と信頼性を一段と高めることのできる技術を確立することにある。
【0013】
【課題を解決するための手段】
上記課題を解決することのできた本発明の圧電アクチュエータとは、圧電素子の先端に設けられた接触部材を被駆動体に接触させ、前記圧電素子に励起される振動もしくは回転力を接触部材を介して被駆動体に伝達することにより、前記接触部材と被駆動体を相対的に移動させる圧電アクチュエータにおいて、前記接触部材及び/又は被駆動体の接触面(表面)が、クッション性を有する複合層によって構成され、前記接触部材および被駆動体は、鉄基金属母材で構成され、前記複合層は、該鉄基金属に炭素、酸素、硫黄、窒素、硼素、タングステン、バナジウム、チタン、ニオブおよびクロムよりなる群から選択される少なくとも1種の元素を含む多層構造または硬度傾斜構造の硬質層によって構成したところに要旨がある。
【0014】
上記課題を解決することのできた本発明の圧電アクチュエータとは、圧電素子の先端に設けられた接触部材を被駆動体に接触させ、前記圧電素子に励起される振動もしくは回転力を接触部材を介して被駆動体に伝達することにより、前記接触部材と被駆動体を相対的に移動させる圧電アクチュエータにおいて、前記接触部材及び/又は被駆動体の接触面が、クッション性を有する複合層によって構成され、前記複合層は、鉄基金属母材の表面に形成されたクロム炭化物含有層と、その上に形成されたバナジウム炭化物含有層によって構成されていることに要旨がある。そして、推奨される、より具体的な例としては、前記クロム炭化物含有層は、鉄基金属母材表面をクロマイジング処理または塩浴処理することによって容易に形成でき、また前記バナジウム炭化物含有層は、上記クロム炭化物含有層の表面を塩浴処理することによって容易に形成できる
【0015】
上記課題を解決することのできた本発明の圧電アクチュエータとは、圧電素子の先端に設けられた接触部材を被駆動体に接触させ、前記圧電素子に励起される振動もしくは回転力を接触部材を介して被駆動体に伝達することにより、前記接触部材と被駆動体を相対的に移動させる圧電アクチュエータにおいて、前記接触部材及び/又は被駆動体の接触面が、クッション性を有する複合層によって構成され、前記複合層は、鉄基金属母材の表面に形成されたTiCN含有層からなり、該TiCN含有層は、母材側からTiCリッチ層,TiCNリッチ層,TiNリッチ層によって構成されていることに要旨がある。そして、推奨される、より具体的な例としては、前記TiCN含有層は、母材側からTiCリッチ層、TiCNリッチ層、TiNリッチ層によって構成したもの等があり、このタイプの複合層は、各層構成素材をCVD法などによって順次形成することによって容易に形成できる
【0016】
【発明の実施の形態および実施例】
上記の様に本発明では、圧電アクチュエータにおける駆動力伝達部を構成する接触部材と被駆動体の接触部、言換えると接触部材と被駆動体が接触する表層部の構造を工夫し、少なくとも一方の表層部を多層構造とすると共にクッション性を与えたところに特徴を有しており、こうした工夫によって、アクチュエータ稼動時に最表層部にかかる衝撃力を吸収緩和し、最表層部の衝撃破壊(マイクロクラックや剥離など)を大幅に抑制することに成功したものである。
【0017】
従って本発明に係る圧電アクチュエータの全体構造は、従来技術として示した図1等と本質的に異なるものではなく、また図1に示した様なトラス型以外の公知の圧電アクチュエータについても本発明の上記技術思想は有効に活かされる。
【0018】
ところで、従来の圧電アクチュエータにおける接触部材と被駆動体の表面は、前述した如く耐摩耗性向上の目的の下で、図2の概念図に示す如く母材Bの表面にセラミックス等からなる厚さ数〜数十μm程度の表面硬化層Hを形成して最中状構造としたものであり、こうした構造のものでは、母材Bが表面硬化層Hに比べて硬度不足であるため、稼動時にうける繰返し衝撃力によって表面硬化層Hが短期間の使用でマイクロクラックや剥離を起こし、また該剥離などによって生成する摩耗紛が研磨粉として作用し摩耗が更に加速されることもあって、高レベルの摩擦力(延いては駆動伝達力)が長期的に維持できなくなる。
【0019】
これに対し本発明では、例えば図3に示す如く、接触面を構成する表面硬化層Hと母材Bとの間に中間層Mを設けた複合層とし、該中間層Mのクッション作用によって表面硬化層Hの衝撃力を吸収し、表面硬化層Hへのマイクロクラックや剥離の発生を抑制する。
【0020】
こうした中間層のクッション作用を有効に発揮させるには、中間層Mの構成素材として、母材Bと表面硬化層Hと間の硬度を有し、衝撃力を最表層側から順次吸収緩和できる素材を選択すべきであり、またより好ましくは、母材Bと表面硬化層Hの双方に対して優れた密着性を有し、且つ母材Bよりも高靭性の素材を選択することが望ましい。この様な構成の複合層としては、鉄基金属母材B表面に中間層Mとしてクロム炭化物含有層を形成し、その表面に表面硬化層Hとしてバナジウム炭化物含有層を形成した複合相が例示される。
【0021】
次に図4は、中間層MをM1,M2の2層構造とし、これらを全体として複合構造のクッション層とすることにより衝撃力を吸収緩和する例を示している。この様に中間層Mを2層(或いは3層以上)形成して衝撃吸収効果を一層高めることは、より好ましい実施形態として推奨される。
【0022】
更に図4では、中間層Mを多層構造とし段階的に硬度差を設けた例を示したが、該中間層Mを単層構造とし、該中間層M内で表層側へいくにつれて順次硬質となる様な硬度傾斜を設けることによっても、衝撃吸収緩和効果は有効に発揮される。
【0023】
この様な中間層Mの好適素材は、母材Bや表面硬化層Hの素材によって変わってくるので一律に決めることができないが、接触部材や被駆動体として最も一般的な鉄基金属母材を使用する場合は、鉄基金属母材の表面に、炭素、酸素、硫黄、窒素、硼素、タングステン、バナジウム、チタン、ニオブ、クロム等の硬化性元素をイオン注入法等によって拡散侵入させ、また、侵入させる元素の種類や侵入量を変え、最表層側の硬さが最大となる様な硬度勾配を与える方法が好ましく採用されるが、それ以外にも、鉄基母材表面にCVD法やPVD法、スパッタリング法等を採用して順次硬質素材を付着させ、表面方向に硬度勾配を形成することも勿論可能である。
【0024】
鉄基金属母材からなる接触部材または被駆動体を改質する際の好ましい衝撃吸収緩和構造とその形成法を更に具体的に説明すると、次の通りである。
【0025】
その一つは、炭素鋼からなる母材Bの表面に中間層MとしてCrC(クロム炭化物)含有層を形成し、その上に表面硬化層HとしてVC(バナジウム炭化物)含有層を形成したもの(図3の具体例)である。Cr−C含有層は炭素鋼よりも硬度が高いがVC含有層よりも硬度が低いので、CrC含有層は最表層の表面硬化層Hを構成するVC含有層に対しクッションク材として作用し、高硬度のVC含有層にマイクロクラックや剥離が発生するのを抑える。即ちVC含有層は元々硬度が高くて耐摩耗性に優れているので、中間層Mとして存在するCrC含有層のクッション作用による衝撃吸収作用と相俟って、全体としての耐摩耗性が著しく高められるのである。
【0026】
しかもCrは、VよりもFe内へ拡散侵入し易くて鉄基金属母材内への拡散度合いが大きく、そのためCrC含有層の母材に対する密着性も良好であるので、該CrC含有層を中間層Mとして形成することによって、VC含有層よりなる表面硬化層Hの剥離強度も高められ、これらが相俟って、表面硬化層H形成材(接触部材及び/ 又は被駆動体)の耐摩耗性は飛躍的に高められることになる。更に接触摩擦面を構成する最表面部の硬質VC含有層は、それよりもやや高度の低いCrC含有層(中間層M)で支持されることによって摩擦係数もむしろ高められる傾向があり、摩擦による駆動伝達効率も高められる。
【0027】
上記CrC含有層とVC含有層よりなる複合層形成法は特に制限されないが、好ましい方法を例示すると次の通りである。
【0028】
母材としては、炭素含有量が0.8重量%以上の鉄基金属(通常はSKD11等に代表される炭素鋼)を用い、その表面に、まずクロマイジング処理もしくは塩溶処理(TD処理)を施して母材表面にCrC含有層を形成した後、更に塩浴処理(TD処理)を施してCrC含有層上にVC含有層を形成する。この時の処理条件は、一般的なクロマイジング処理および塩裕処理条件をそのまま若しくは適当に変更を加えて適用すれば良い。複合層の総厚は、適度の摩擦係数を維持しつつ十分な耐摩耗性を確保する意味から約5μm〜十数μmの範囲が適当であり、過度に厚くすることは経済的に無駄であるばかりでなく、却って摩擦係数を下げて動力伝達効率を低下する恐れも生じてくる。
【0029】
他の好ましい複合層は、前記図4として示した様な3層積層構造に属するもので、炭素鋼等からなる鉄基合金母材の表面に、該母材に対して比較的密着性の良好なTiC含有層を中間層M1として形成し、その表面にTiCN含有層、更にその上に最表面の硬化層を構成する硬質のTiN含有層を形成した3層構造の複合層としている。
【0030】
この複合層中に含まれるにおけるTiCとTiNを比較すると、硬度はTiCの方が大きく靭性はTiNの方が優れている。またTiNは母材(炭素鋼)よりもかなり硬度が高く、優れた耐摩耗性を有しているが、母材の炭素鋼(SKDllなど)との密着性はTiCよりも劣っている。従って、母材との密着性が良好で且つ高硬度のTiC含有層を母材表面に形成し、該TiC含有層の上に、TiC含有層とTiN含有層の双方に優れた密着性を示すTiCN含有層を形成してから、最表層部に高硬度で且つ高靭性のTiN含有層を形成している。この様な積層構造の複合層は、全体としての厚さで通常5〜15μm程度、より一般的には10μm程度が適当であり、この様な厚さの複合層は、全体としての硬度はTiC単独含有層に匹敵しTiN単独含有層よりも高硬度を示す。つまり、全体として非常に高い硬度を維持しながら高靭性を示す複合層となり、高レベルの摩擦係数と耐摩耗性を維持しつつ、圧電アクチュエータを駆動する際に繰返し受ける衝撃によるマイクロクラックや剥離の発生も可及的に抑え、ひいては高レベルの駆動伝達力を安定的に維持し得るものとなる。
【0031】
この様な3層構造の複合層は、例えば炭素鋼表面にCVD法等によりTiC含有層、TiCN含有層およびTiN含有層を順次形成する方法によって容易に得ることができるが、形成法自体は他の方法を採用しても構わない。またCVD法を採用すれば、上記3層構造の表面硬化皮膜を形成し得る他、必要によりC,N濃度を連続的に変化させた硬度傾斜構造のTiCN含有層よりなる複合層を形成することも容易である。
【0032】
なお本明細書では、鉄基金属母材の表面に耐摩耗性の改善された複合層を形成する場合を主体にして説明したが、接触部材や被駆動体の構成素材は勿論鉄基金属母材に特定されるわけではなく、用途により鉄基金属以外にもアルミニウム系合金の如き非鉄金属等を母材として選択することも可能であり、それに伴って複合膜を構成する中間層や表面硬化層の好適構成素材は変わってくるが、要は母材表面に硬質の耐摩耗性皮膜を形成する際に、該全体として母材との密着性に優れたクッション作用を示す複合構造の耐摩耗性皮膜を形成したものであれば、全て本発明の技術的範囲に包含される。
【0033】
【発明の効果】
本発明は以上の様に構成されており、次の様な効果を得ることができる。
【0034】
▲1▼表面硬化層のクッション性を高めることで安定した摩擦力を得ることができ、アクチュエータの制御性が高まると共に寿命も延長される。
【0035】
▲2▼クッション性を有する複合膜とすることで衝撃力を吸収緩和することができ、表面硬化層のマイクロクラックや剥離が抑えられて摩耗粉の発生が減少し、誤動作の恐れがなくなり、耐久性と信頼性の高い圧電アクチュエータを提供できる。
【0036】
▲3▼表層は優れた耐摩耗性を有しているので潤滑油を用いる必要がなく、大きな摩擦力を得ることができる。よって、大きなアクチュエータ駆動力を得ることができる。
【0037】
▲4▼複合膜は、塩浴処理(クロム炭化物、バナジウム炭化物)、VC(バナジウム炭化物)、クロマイジング処理(クロム炭化物)、CVD処理(TiCNなど)等の安価な処理で形成できるため、コスト面の負担も少ない。
【図面の簡単な説明】
【図1】トラス型圧電アクチュエータの構造を例示する説明図である。
【図2】接触部材や被駆動体に適用される従来の表面構造を例示する断面概念図である。
【図3】本発明に係る圧電アクチュエータに適用される接触部材または被駆動体の表面構造を例示する断面概念図である。
【図4】本発明に係る他の圧電アクチュエータに適用される接触部材または被駆動体の表面構造を例示する断面概念図である。
【符号の説明】
1a,1b 圧電素子
2 接触部材(チップ)
3 ベース部材
4 付勢部材(ばね)
5 固定部
6 被駆動体
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an improvement of a piezoelectric actuator, and more specifically, has a structure in which the contact member and the driven body are relatively moved by transmitting vibration excited by the piezoelectric element to the driven body through the contact member. In the piezoelectric actuator, the frictional force of the contact part that becomes the driving force transmission part is increased to improve the driving force transmission efficiency, and further the wear resistance of the contact part is enhanced and the occurrence of microcracks and peeling is suppressed, resulting in durability. In particular, the present invention is effectively applied to a truss-type piezoelectric actuator.
[0002]
[Prior art]
As a typical piezoelectric actuator, for example, a truss-type piezoelectric actuator having a structure as shown in FIG. 1 is known. That is, in FIG. 1, 1a and 1b are piezoelectric elements, Va and Vb are AC power sources, 2 is a contact member (chip), 3 is a base member, 4 is a biasing member, 5 is a fixed portion, and 6 is a driven body. Show. A contact member (chip) 2 is fixed to the ends of the two piezoelectric elements 1a and 1b arranged in a truss shape, and the other end is fixed to the base member 3. The base member 3 is biased by a spring or the like. It is fixed to the fixing part 5 via the member 4.
[0003]
When two piezoelectric elements 1a and 1b are arranged at an angle of 90 °, for example, and an AC voltage having a phase difference of 90 ° is applied from the AC power supply Va and Vb to the piezoelectric elements 1a and 1b as shown in the drawing, The tip of the contact member (chip) 2 causes a circular motion (perfect circle or elliptical motion) due to vibration having a phase difference of 1a and 1b. Accordingly, the AC voltage having a phase difference between the piezoelectric elements 1a and 1b in a state where the base member 3 is fixed to the fixing portion 5 via the biasing member 4 and the contact member 2 is brought into frictional contact with the driven body 6 as shown in the drawing. Is applied, the driven body 6 generates a driving force in the direction of the arrow in the drawing due to the contact frictional force of the contact member 2 along with the circular movement of the contact member 2.
[0004]
In the illustrated example, the driven body 6 has a disc shape. However, the shape and structure of the driven body 6 are not limited to this, and other than the disc shape, an arc shape, a flat plate However, the operating mechanism is essentially unchanged.
[0005]
At this time, in order to drive the driven body 6 stably, it is necessary to increase the frictional force between the contact member 2 and the driven body 6 and to maintain a stable frictional force. In order to achieve this, the surfaces of the contact member 2 and the driven body 6 must have excellent wear resistance.
[0006]
Another advantage of increasing the wear resistance of the contact portion is that the generation of wear powder is suppressed, so there is no risk of malfunction by reducing the generation amount of wear powder, and the wear powder acts as an abrasive and wear. Furthermore, the problem of acceleration can be avoided.
[0007]
On the other hand, the rotational speed of the circular motion generated at the tip of the contact member 2 is a high frequency (about 100 to 200 kHz), and the contact member 2 and the driven body 6 repeat contact / non-contact in a very short cycle. Sometimes an impact force is repeatedly applied between the contact member 2 and the driven body 6.
[0008]
Accordingly, in order to continuously and stably exert the driving force of the piezoelectric actuator, it is extremely important to improve the frictional force and wear resistance of the contact member 2 and the driven body 6 constituting the contact portion.
[0009]
In addition, the wear resistance required for such a contact portion is not limited to the truss type piezoelectric actuator as shown in the figure. In short, all types of piezoelectric actuators that transmit the expansion / contraction vibration of the piezoelectric element to the driven body are used. It becomes an important requirement characteristic in common.
[0010]
As a method for increasing the wear resistance of the contact portion, a method for increasing the surface hardness of the contact member and the driven body is effective, and a specific method for increasing the surface hardness is a surface hardening treatment method. And when using the iron base metal base material with comparatively low hardness as a contact member or a to-be-driven body, the method of forming the thin film of several to dozens of micrometers which consists of a high hardness ceramic material on the base material surface is illustrated. .
[0011]
However, when a high-hardness wear-resistant thin film is formed on the surface of a low-hardness iron-based metal base material, etc., the base material and the hardened surface layer are said to be in the middle state (the interior is soft and the surroundings are thin and hard The structure is a state of being encapsulated with a film. And, as a result of various studies conducted by the present inventors, when a repeated impact force as described above is applied to the surface of a member having such a structure, the surface hardened layer easily causes microcracks and peeling. When this occurs, the wear of the contact portion proceeds rapidly, and a stable drive transmission force cannot be obtained.
[0012]
[Problems to be solved by the invention]
The present invention has been made paying attention to the problems of the prior art as described above, and its purpose is to transmit vibration excited by the piezoelectric element to the driven body via the contact member. Targeting piezoelectric actuators of the type that move the member and the driven body relative to each other, the frictional force of the contact portion serving as the drive force transmission portion is increased to further improve the drive force transmission efficiency and The purpose is to establish a technology capable of further improving the durability and reliability of the piezoelectric actuator by increasing the wearability and suppressing the occurrence of microcracks and peeling.
[0013]
[Means for Solving the Problems]
The piezoelectric actuator of the present invention that has solved the above-mentioned problem is that a contact member provided at the tip of a piezoelectric element is brought into contact with a driven body, and vibration or rotational force excited by the piezoelectric element is passed through the contact member. In the piezoelectric actuator that relatively moves the contact member and the driven body by transmitting to the driven body, the contact surface of the contact member and / or the driven body (surface) has a cushioning property. The contact member and the driven body are made of an iron-based metal base material, and the composite layer includes carbon, oxygen, sulfur, nitrogen, boron, tungsten, vanadium, titanium, niobium and the iron-based metal. The gist is that the hard layer has a multilayer structure or a hardness gradient structure including at least one element selected from the group consisting of chromium .
[0014]
The piezoelectric actuator of the present invention that has solved the above-mentioned problem is that a contact member provided at the tip of a piezoelectric element is brought into contact with a driven body, and vibration or rotational force excited by the piezoelectric element is passed through the contact member. In the piezoelectric actuator that relatively moves the contact member and the driven body by transmitting to the driven body, the contact surface of the contact member and / or the driven body is configured by a composite layer having a cushioning property. The composite layer is composed of a chromium carbide-containing layer formed on the surface of the iron-based metal base material and a vanadium carbide-containing layer formed thereon. As a more specific example recommended, the chromium carbide-containing layer can be easily formed by subjecting the surface of the iron-based metal base material to chromizing treatment or salt bath treatment, and the vanadium carbide-containing layer is It can be easily formed by subjecting the surface of the chromium carbide-containing layer to a salt bath treatment .
[0015]
The piezoelectric actuator of the present invention that has solved the above-mentioned problem is that a contact member provided at the tip of a piezoelectric element is brought into contact with a driven body, and vibration or rotational force excited by the piezoelectric element is passed through the contact member. In the piezoelectric actuator that relatively moves the contact member and the driven body by transmitting to the driven body, the contact surface of the contact member and / or the driven body is configured by a composite layer having a cushioning property. The composite layer is composed of a TiCN-containing layer formed on the surface of the iron-based metal base material, and the TiCN-containing layer is composed of a TiC rich layer, a TiCN rich layer, and a TiN rich layer from the base material side. Summary there Ru to. The recommended, a more specific example, the TiCN-containing layer, TiC-rich layer from the base material side, TiCN rich layer, there are such as those constituted by TiN rich layer, the composite layer of this type, Each layer constituent material can be easily formed by sequentially forming by a CVD method or the like .
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
As described above, in the present invention, the contact member between the contact member and the driven body constituting the driving force transmission unit in the piezoelectric actuator, in other words, the structure of the surface layer part where the contact member and the driven body contact, The surface layer has a multi-layer structure and cushioning characteristics. With these devices, the impact force applied to the outermost layer when the actuator is operating is absorbed and relaxed. Such as cracks and delamination).
[0017]
Therefore, the overall structure of the piezoelectric actuator according to the present invention is not essentially different from that shown in FIG. 1 or the like shown as the prior art, and a known piezoelectric actuator other than the truss type as shown in FIG. The above technical idea is effectively utilized.
[0018]
By the way, the surface of the contact member and the driven body in the conventional piezoelectric actuator has a thickness made of ceramics or the like on the surface of the base material B as shown in the conceptual diagram of FIG. 2 for the purpose of improving the wear resistance as described above. A surface hardened layer H of about several to several tens of μm is formed to have an intermediate structure. In such a structure, the base material B is insufficient in hardness as compared with the surface hardened layer H, so that it can be used during operation. The surface hardened layer H undergoes micro-cracks or delamination due to repeated impact force, and wear dust generated by the delamination acts as abrasive powder, which further accelerates wear. The frictional force (and hence drive transmission force) cannot be maintained for a long time.
[0019]
On the other hand, in the present invention, for example, as shown in FIG. 3, a composite layer in which an intermediate layer M is provided between a hardened surface layer H and a base material B constituting a contact surface is formed. The impact force of the hardened layer H is absorbed, and the occurrence of microcracks and delamination on the surface hardened layer H is suppressed.
[0020]
In order to effectively exhibit the cushioning action of such an intermediate layer, as a constituent material of the intermediate layer M, a material having hardness between the base material B and the surface hardened layer H and capable of absorbing and relaxing the impact force sequentially from the outermost layer side. More preferably, it is desirable to select a material having excellent adhesion to both the base material B and the surface hardened layer H and having a higher toughness than the base material B. Examples of the composite layer having such a structure include a composite phase in which a chromium carbide-containing layer is formed as an intermediate layer M on the surface of the iron-based metal base material B, and a vanadium carbide-containing layer is formed as a surface hardened layer H on the surface. The
[0021]
Next, FIG. 4 shows an example in which the impact force is absorbed and relaxed by forming the intermediate layer M as a two-layer structure of M1 and M2 and using them as a cushion layer having a composite structure as a whole. In this way, it is recommended as a more preferable embodiment that the intermediate layer M is formed in two layers (or three or more layers) to further enhance the impact absorbing effect.
[0022]
Further, FIG. 4 shows an example in which the intermediate layer M has a multi-layer structure and the hardness difference is provided in stages. However, the intermediate layer M has a single-layer structure, and gradually increases in hardness toward the surface layer side in the intermediate layer M. Also by providing such a hardness gradient, the impact absorption relaxation effect is effectively exhibited.
[0023]
A suitable material for such an intermediate layer M varies depending on the material of the base material B and the surface hardened layer H, and thus cannot be determined uniformly. However, the most common iron-based metal base material as a contact member or driven body , A curable element such as carbon, oxygen, sulfur, nitrogen, boron, tungsten, vanadium, titanium, niobium, or chromium is diffused and infiltrated into the surface of the iron-based metal base material by an ion implantation method or the like. The method of changing the type and amount of intruding elements and giving a hardness gradient that maximizes the hardness of the outermost layer side is preferably adopted. Of course, it is also possible to form a hardness gradient in the surface direction by sequentially applying a hard material by adopting a PVD method, a sputtering method or the like.
[0024]
The preferred shock absorption mitigation structure and its formation method when modifying a contact member or driven body made of an iron-based metal base material will be described in more detail as follows.
[0025]
One of them is a structure in which a CrC (chromium carbide) -containing layer is formed as an intermediate layer M on the surface of a base material B made of carbon steel, and a VC (vanadium carbide) -containing layer is formed thereon as a surface hardened layer H ( This is a specific example of FIG. Since the Cr-C-containing layer has higher hardness than carbon steel but lower hardness than the VC-containing layer, the CrC-containing layer acts as a cushioning material for the VC-containing layer constituting the outermost surface hardened layer H, Suppresses generation of microcracks and peeling in the high hardness VC-containing layer. In other words, since the VC-containing layer originally has high hardness and excellent wear resistance, the overall wear resistance is remarkably improved in combination with the impact absorbing action by the cushioning action of the CrC-containing layer existing as the intermediate layer M. It is done.
[0026]
Moreover, Cr is more easily diffused and penetrated into Fe than V, and the degree of diffusion into the iron-based metal base material is large. Therefore, the adhesion of the CrC-containing layer to the base material is also good. By forming the layer M as a layer, the peel strength of the surface hardened layer H made of the VC-containing layer is also increased, and in combination, the wear resistance of the surface hardened layer H forming material (contact member and / or driven body). Sex will be dramatically improved. Furthermore, the hard VC-containing layer at the outermost surface constituting the contact friction surface tends to have a rather high friction coefficient by being supported by a slightly lower CrC-containing layer (intermediate layer M). Drive transmission efficiency is also increased.
[0027]
A method for forming a composite layer composed of the CrC-containing layer and the VC-containing layer is not particularly limited, but a preferred method is as follows.
[0028]
As a base material, an iron-based metal (usually carbon steel represented by SKD11) having a carbon content of 0.8% by weight or more is used, and the chromizing treatment or salt solution treatment (TD treatment) is first performed on the surface. After forming a CrC-containing layer on the surface of the base material, a salt bath treatment (TD treatment) is further performed to form a VC-containing layer on the CrC-containing layer. As processing conditions at this time, general chromizing processing and salty processing conditions may be applied as they are or after being appropriately changed. The total thickness of the composite layer is suitably in the range of about 5 μm to several tens of μm from the viewpoint of ensuring sufficient wear resistance while maintaining an appropriate friction coefficient, and it is economically wasteful to make it excessively thick. In addition to this, there is a risk of lowering the coefficient of friction and lowering the power transmission efficiency.
[0029]
Another preferred composite layer belongs to the three-layer laminated structure as shown in FIG. 4, and has relatively good adhesion to the base material on the surface of the iron base alloy base material made of carbon steel or the like. A TiC-containing layer is formed as the intermediate layer M1, and a composite layer having a three-layer structure in which a TiCN-containing layer is formed on the surface of the TiC-containing layer and a hard TiN-containing layer constituting the outermost hardened layer is formed thereon.
[0030]
When TiC and TiN contained in this composite layer are compared, the hardness of TiC is greater and the toughness of TiN is better. TiN is considerably harder than the base material (carbon steel) and has excellent wear resistance, but the adhesion of the base material to the carbon steel (SKDll etc.) is inferior to TiC. Accordingly, a TiC-containing layer having good adhesion to the base material and having a high hardness is formed on the surface of the base material, and excellent adhesion to both the TiC-containing layer and the TiN-containing layer is exhibited on the TiC-containing layer. After the TiCN-containing layer is formed, a highly hard and tough TiN-containing layer is formed in the outermost layer. The composite layer having such a laminated structure is generally about 5 to 15 μm, more generally about 10 μm in total thickness, and the composite layer having such a thickness has an overall hardness of TiC. It is comparable to the single-containing layer and exhibits higher hardness than the single TiN-containing layer. In other words, the composite layer exhibits high toughness while maintaining extremely high hardness as a whole, and maintains micro-cracks and delamination due to repeated impacts when driving a piezoelectric actuator while maintaining a high level of friction coefficient and wear resistance. Occurrence is suppressed as much as possible, and as a result, a high level drive transmission force can be stably maintained.
[0031]
Such a composite layer having a three-layer structure can be easily obtained by, for example, a method of sequentially forming a TiC-containing layer, a TiCN-containing layer, and a TiN-containing layer on a carbon steel surface by a CVD method or the like. This method may be adopted. If the CVD method is adopted, a surface hardened film having the above three-layer structure can be formed, and a composite layer composed of a TiCN-containing layer having a hardness gradient structure in which the C and N concentrations are continuously changed as necessary. Is also easy.
[0032]
In this specification, the case where a composite layer with improved wear resistance is formed on the surface of the iron-based metal base material has been mainly described, but the constituent materials of the contact member and the driven body are of course the iron-based metal base material. Depending on the application, it is possible to select non-ferrous metals such as aluminum-based alloys as the base material, depending on the application, and the intermediate layer and surface hardening constituting the composite film can be selected accordingly. Although the preferred material of the layer varies, the main point is that when a hard wear-resistant film is formed on the surface of the base material, the overall wear resistance of the composite structure shows a cushioning action with excellent adhesion to the base material. Any film having a conductive film is included in the technical scope of the present invention.
[0033]
【The invention's effect】
The present invention is configured as described above, and the following effects can be obtained.
[0034]
(1) By increasing the cushioning property of the hardened surface layer, a stable frictional force can be obtained, and the controllability of the actuator is enhanced and the life is extended.
[0035]
(2) The impact strength can be absorbed and reduced by using a composite film with cushioning properties, microcracks and peeling of the hardened surface layer can be suppressed, the generation of wear powder can be reduced, and there is no risk of malfunction and durability. A highly reliable and reliable piezoelectric actuator can be provided.
[0036]
(3) Since the surface layer has excellent wear resistance, it is not necessary to use a lubricating oil, and a large frictional force can be obtained. Therefore, a large actuator driving force can be obtained.
[0037]
(4) The composite film can be formed by an inexpensive process such as salt bath treatment (chromium carbide, vanadium carbide), VC (vanadium carbide), chromizing treatment (chromium carbide), CVD treatment (TiCN, etc.). There is little burden.
[Brief description of the drawings]
FIG. 1 is an explanatory view illustrating the structure of a truss-type piezoelectric actuator.
FIG. 2 is a conceptual cross-sectional view illustrating a conventional surface structure applied to a contact member and a driven body.
FIG. 3 is a conceptual cross-sectional view illustrating the surface structure of a contact member or a driven body applied to a piezoelectric actuator according to the present invention.
FIG. 4 is a conceptual cross-sectional view illustrating the surface structure of a contact member or a driven body applied to another piezoelectric actuator according to the present invention.
[Explanation of symbols]
1a, 1b Piezoelectric element 2 Contact member (chip)
3 Base member 4 Biasing member (spring)
5 fixed part 6 driven body

Claims (5)

圧電素子の先端に設けられた接触部材を被駆動体に接触させ、前記圧電素子に励起される振動もしくは回転力を接触部材を介して被駆動体に伝達することにより、前記接触部材と被駆動体を相対的に移動させる圧電アクチュエータにおいて、前記接触部材及び/又は被駆動体の接触面が、クッション性を有する複合層によって構成され、前記接触部材および被駆動体は、鉄基金属母材で構成され、前記複合層は、該鉄基金属に炭素、酸素、硫黄、窒素、硼素、タングステン、バナジウム、チタン、ニオブおよびクロムよりなる群から選択される少なくとも1種の元素を含む多層構造または硬度傾斜構造の硬質層によって構成されていることを特徴とする圧電アクチュエータ。A contact member provided at the tip of the piezoelectric element is brought into contact with the driven body, and vibration or rotational force excited by the piezoelectric element is transmitted to the driven body through the contact member, whereby the contact member and the driven body are driven. In the piezoelectric actuator for relatively moving the body, the contact surface of the contact member and / or the driven body is constituted by a composite layer having a cushioning property, and the contact member and the driven body are made of an iron-based metal base material. And the composite layer has a multilayer structure or hardness containing at least one element selected from the group consisting of carbon, oxygen, sulfur, nitrogen, boron, tungsten, vanadium, titanium, niobium, and chromium in the iron-based metal. A piezoelectric actuator comprising a hard layer having an inclined structure . 圧電素子の先端に設けられた接触部材を被駆動体に接触させ、前記圧電素子に励起される振動もしくは回転力を接触部材を介して被駆動体に伝達することにより、前記接触部材と被駆動体を相対的に移動させる圧電アクチュエータにおいて、前記接触部材及び/又は被駆動体の接触面が、クッション性を有する複合層によって構成され、前記複合層は、鉄基金属母材の表面に形成されたクロム炭化物含有層と、その上に形成されたバナジウム炭化物含有層によって構成されていることを特徴とする圧電アクチュエータ。 A contact member provided at the tip of the piezoelectric element is brought into contact with the driven body, and vibration or rotational force excited by the piezoelectric element is transmitted to the driven body through the contact member, whereby the contact member and the driven body are driven. In the piezoelectric actuator for relatively moving the body, the contact surface of the contact member and / or the driven body is constituted by a composite layer having a cushioning property, and the composite layer is formed on the surface of the iron-based metal base material. And a vanadium carbide-containing layer formed on the chromium-carbide-containing layer . 前記クロム炭化物含有層は、鉄基金属母材表面をクロマイジング処理または塩浴処理することによって形成され、前記バナジウム炭化物含有層は、上記クロム炭化物含有層の表面を塩浴処理することによって形成されたものである請求項に記載の圧電アクチュエータ。The chromium carbide-containing layer is formed by chromizing or salt bathing the surface of the iron-based metal base material, and the vanadium carbide-containing layer is formed by salt bathing the surface of the chromium carbide-containing layer. The piezoelectric actuator according to claim 2 , wherein 圧電素子の先端に設けられた接触部材を被駆動体に接触させ、前記圧電素子に励起される振動もしくは回転力を接触部材を介して被駆動体に伝達することにより、前記接触部材と被駆動体を相対的に移動させる圧電アクチュエータにおいて、前記接触部材及び/又は被駆動体の接触面が、クッション性を有する複合層によって構成され、前記複合層は、鉄基金属母材の表面に形成されたTiCN含有層からなり、該TiCN含有層は、母材側からTiCリッチ層,TiCNリッチ層,TiNリッチ層によって構成されていることを特徴とする圧電アクチュエータ。 A contact member provided at the tip of the piezoelectric element is brought into contact with the driven body, and vibration or rotational force excited by the piezoelectric element is transmitted to the driven body through the contact member, whereby the contact member and the driven body are driven. In the piezoelectric actuator for relatively moving the body, the contact surface of the contact member and / or the driven body is constituted by a composite layer having a cushioning property, and the composite layer is formed on the surface of the iron-based metal base material. A piezoelectric actuator comprising: a TiCN-containing layer, wherein the TiCN-containing layer is constituted by a TiC rich layer, a TiCN rich layer, and a TiN rich layer from the base material side . 前記TiCN含有層は、鉄基金属母材表面にCVD法によってTiCリッチ層,TiCNリッチ層,TiNリッチ層を順次形成したものである請求項に記載の圧電アクチュエータ。5. The piezoelectric actuator according to claim 4 , wherein the TiCN-containing layer is formed by sequentially forming a TiC rich layer, a TiCN rich layer, and a TiN rich layer on a surface of an iron-based metal base material by a CVD method.
JP02296699A 1999-01-29 1999-01-29 Piezoelectric actuator Expired - Fee Related JP4250793B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02296699A JP4250793B2 (en) 1999-01-29 1999-01-29 Piezoelectric actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02296699A JP4250793B2 (en) 1999-01-29 1999-01-29 Piezoelectric actuator

Publications (2)

Publication Number Publication Date
JP2000224872A JP2000224872A (en) 2000-08-11
JP4250793B2 true JP4250793B2 (en) 2009-04-08

Family

ID=12097334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02296699A Expired - Fee Related JP4250793B2 (en) 1999-01-29 1999-01-29 Piezoelectric actuator

Country Status (1)

Country Link
JP (1) JP4250793B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100382350B1 (en) * 2001-04-04 2003-05-09 주식회사 한신 Manufacturing process of piezo-electric transducer for part feeder
JP6922691B2 (en) * 2017-11-23 2021-08-18 浜名湖電装株式会社 Vehicle alarm

Also Published As

Publication number Publication date
JP2000224872A (en) 2000-08-11

Similar Documents

Publication Publication Date Title
JP5669390B2 (en) Abrasion resistant coating and manufacturing method therefor
Matthews et al. Design aspects for advanced tribological surface coatings
CN1103878C (en) Coated rolling element bearing
JP3859970B2 (en) Method for forming a wear-resistant surface on a steel member and apparatus comprising at least one such member
CN102428206B (en) Gliding element
US20110162751A1 (en) Protective Coatings for Petrochemical and Chemical Industry Equipment and Devices
EP1905863A2 (en) Slide member
EP1980642B1 (en) Sliding part
CN102528761B (en) Beater mechanism body, beater mechanism and the Hand-held machine tool with beater mechanism
JP2008510863A (en) Abrasion resistant coating and process for producing the same
JPH10195630A (en) Method for improving fatigue resistance of component by preparing compressive residual stress profile and product thereof
JP4250793B2 (en) Piezoelectric actuator
Mohan et al. Wear, friction and prevention of tribo-surfaces by coatings/nanocoatings
US7300379B2 (en) Differential with thin film coating at cross shaft and processes for manufacturing the same
Wang et al. Low-velocity impact wear behavior of ball-to-flat contact under constant kinetic energy
CN112534084A (en) Component, in particular for a valve train system, and method for producing such a component
JP3848200B2 (en) Sliding member with excellent sliding characteristics under high surface pressure
JP2007291466A (en) Surface-treating method of metal, rolling-sliding member and rolling device
Holmberg et al. Tribology of engineered surfaces
JP2000175466A (en) Oscillatory actuator and apparatus
RU2435091C1 (en) Procedure for wear resistant strengthening and sliding structure
Boulos et al. Industrial applications of thermal spray technology
JP2007327631A (en) Rolling sliding member and rolling device
WO2016184926A1 (en) Method for the construction of bearings
CN1218079C (en) Sewing machine parts

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050613

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080501

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090106

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees