JP5669390B2 - Abrasion resistant coating and manufacturing method therefor - Google Patents
Abrasion resistant coating and manufacturing method therefor Download PDFInfo
- Publication number
- JP5669390B2 JP5669390B2 JP2009517069A JP2009517069A JP5669390B2 JP 5669390 B2 JP5669390 B2 JP 5669390B2 JP 2009517069 A JP2009517069 A JP 2009517069A JP 2009517069 A JP2009517069 A JP 2009517069A JP 5669390 B2 JP5669390 B2 JP 5669390B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- coating according
- coating
- metal
- hydrogenated amorphous
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000576 coating method Methods 0.000 title claims description 51
- 239000011248 coating agent Substances 0.000 title claims description 46
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 238000005299 abrasion Methods 0.000 title claims description 6
- 239000010410 layer Substances 0.000 claims description 113
- 239000000463 material Substances 0.000 claims description 31
- 239000002346 layers by function Substances 0.000 claims description 29
- 229910052739 hydrogen Inorganic materials 0.000 claims description 26
- 239000001257 hydrogen Substances 0.000 claims description 26
- 238000000034 method Methods 0.000 claims description 24
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 23
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 22
- 229910052799 carbon Inorganic materials 0.000 claims description 18
- 229910052751 metal Inorganic materials 0.000 claims description 16
- 239000002184 metal Substances 0.000 claims description 16
- 239000002105 nanoparticle Substances 0.000 claims description 16
- 229910003481 amorphous carbon Inorganic materials 0.000 claims description 12
- 150000004767 nitrides Chemical class 0.000 claims description 12
- 239000000203 mixture Substances 0.000 claims description 10
- 229910052804 chromium Inorganic materials 0.000 claims description 9
- 239000011651 chromium Substances 0.000 claims description 9
- 230000008569 process Effects 0.000 claims description 9
- 238000012545 processing Methods 0.000 claims description 9
- 230000001737 promoting effect Effects 0.000 claims description 9
- 238000002485 combustion reaction Methods 0.000 claims description 8
- 239000013078 crystal Substances 0.000 claims description 8
- 229910052755 nonmetal Inorganic materials 0.000 claims description 8
- 239000010936 titanium Substances 0.000 claims description 8
- 229910052719 titanium Inorganic materials 0.000 claims description 8
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 7
- 239000000126 substance Substances 0.000 claims description 6
- 229910052721 tungsten Inorganic materials 0.000 claims description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 5
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 5
- -1 borides Chemical class 0.000 claims description 5
- 229910052731 fluorine Inorganic materials 0.000 claims description 5
- 150000001247 metal acetylides Chemical class 0.000 claims description 5
- 229910052760 oxygen Inorganic materials 0.000 claims description 5
- 229910052710 silicon Inorganic materials 0.000 claims description 5
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 5
- 239000010937 tungsten Substances 0.000 claims description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 4
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 claims description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 4
- 125000004432 carbon atom Chemical group C* 0.000 claims description 4
- 239000011737 fluorine Substances 0.000 claims description 4
- 239000001301 oxygen Substances 0.000 claims description 4
- 229910021332 silicide Inorganic materials 0.000 claims description 4
- 239000010703 silicon Substances 0.000 claims description 4
- 229910052723 transition metal Inorganic materials 0.000 claims description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 3
- 229910052735 hafnium Inorganic materials 0.000 claims description 3
- 238000010348 incorporation Methods 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 229910052757 nitrogen Inorganic materials 0.000 claims description 3
- 229910052715 tantalum Inorganic materials 0.000 claims description 3
- 150000003624 transition metals Chemical class 0.000 claims description 3
- 229910052720 vanadium Inorganic materials 0.000 claims description 3
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 claims description 2
- 150000002843 nonmetals Chemical class 0.000 claims description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 2
- 150000002739 metals Chemical class 0.000 claims 1
- 239000002707 nanocrystalline material Substances 0.000 claims 1
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 claims 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims 1
- 239000002245 particle Substances 0.000 description 15
- 230000009467 reduction Effects 0.000 description 10
- 238000005096 rolling process Methods 0.000 description 9
- 238000005240 physical vapour deposition Methods 0.000 description 8
- 238000000151 deposition Methods 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 239000000314 lubricant Substances 0.000 description 6
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 6
- 230000008021 deposition Effects 0.000 description 5
- 230000009466 transformation Effects 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 230000013011 mating Effects 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 238000005121 nitriding Methods 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- 238000000844 transformation Methods 0.000 description 4
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 238000005137 deposition process Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 229930195733 hydrocarbon Natural products 0.000 description 3
- 150000002430 hydrocarbons Chemical class 0.000 description 3
- 150000002431 hydrogen Chemical class 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 239000002159 nanocrystal Substances 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- 229910001339 C alloy Inorganic materials 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- CXOWYMLTGOFURZ-UHFFFAOYSA-N azanylidynechromium Chemical compound [Cr]#N CXOWYMLTGOFURZ-UHFFFAOYSA-N 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 238000005256 carbonitriding Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000003610 charcoal Substances 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 229910001234 light alloy Inorganic materials 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 239000002086 nanomaterial Substances 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 238000012805 post-processing Methods 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 2
- PXFBZOLANLWPMH-UHFFFAOYSA-N 16-Epiaffinine Natural products C1C(C2=CC=CC=C2N2)=C2C(=O)CC2C(=CC)CN(C)C1C2CO PXFBZOLANLWPMH-UHFFFAOYSA-N 0.000 description 1
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- 229910000997 High-speed steel Inorganic materials 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000002318 adhesion promoter Substances 0.000 description 1
- SJKRCWUQJZIWQB-UHFFFAOYSA-N azane;chromium Chemical compound N.[Cr] SJKRCWUQJZIWQB-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004299 exfoliation Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- CPSYWNLKRDURMG-UHFFFAOYSA-L hydron;manganese(2+);phosphate Chemical compound [Mn+2].OP([O-])([O-])=O CPSYWNLKRDURMG-UHFFFAOYSA-L 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- QMQXDJATSGGYDR-UHFFFAOYSA-N methylidyneiron Chemical compound [C].[Fe] QMQXDJATSGGYDR-UHFFFAOYSA-N 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000002052 molecular layer Substances 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 238000007517 polishing process Methods 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000013517 stratification Methods 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- 239000002347 wear-protection layer Substances 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/26—Deposition of carbon only
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/04—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
- C23C28/044—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/04—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
- C23C28/046—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material with at least one amorphous inorganic material layer, e.g. DLC, a-C:H, a-C:Me, the layer being doped or not
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/04—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
- C23C28/048—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material with layers graded in composition or physical properties
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L1/00—Valve-gear or valve arrangements, e.g. lift-valve gear
- F01L1/02—Valve drive
- F01L1/04—Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
- F01L1/047—Camshafts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L1/00—Valve-gear or valve arrangements, e.g. lift-valve gear
- F01L1/12—Transmitting gear between valve drive and valve
- F01L1/14—Tappets; Push rods
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L1/00—Valve-gear or valve arrangements, e.g. lift-valve gear
- F01L1/12—Transmitting gear between valve drive and valve
- F01L1/14—Tappets; Push rods
- F01L1/143—Tappets; Push rods for use with overhead camshafts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L1/00—Valve-gear or valve arrangements, e.g. lift-valve gear
- F01L1/12—Transmitting gear between valve drive and valve
- F01L1/14—Tappets; Push rods
- F01L1/16—Silencing impact; Reducing wear
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L1/00—Valve-gear or valve arrangements, e.g. lift-valve gear
- F01L1/12—Transmitting gear between valve drive and valve
- F01L1/18—Rocking arms or levers
- F01L1/185—Overhead end-pivot rocking arms
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L1/00—Valve-gear or valve arrangements, e.g. lift-valve gear
- F01L1/20—Adjusting or compensating clearance
- F01L1/22—Adjusting or compensating clearance automatically, e.g. mechanically
- F01L1/24—Adjusting or compensating clearance automatically, e.g. mechanically by fluid means, e.g. hydraulically
- F01L1/2405—Adjusting or compensating clearance automatically, e.g. mechanically by fluid means, e.g. hydraulically by means of a hydraulic adjusting device located between the cylinder head and rocker arm
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L2301/00—Using particular materials
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L2303/00—Manufacturing of components used in valve arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L2305/00—Valve arrangements comprising rollers
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Inorganic Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Valve-Gear Or Valve Arrangements (AREA)
- Lubricants (AREA)
- Chemical Vapour Deposition (AREA)
- Laminated Bodies (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
Description
本発明はトライボロジーの分野にあり、かつ摩擦損失および摩耗を低減させるための機械部材のコーティングを扱う。基本的に本発明は、摩擦による摩耗にさらされている非常に様々の機械部材に適用可能である。しかしながら、とりわけ有利な例として内燃機関の部材における使用、殊にバルブ装置部品、例えばバケットタペットにおける使用が引き合いに出される。しかしながら、工業的な使用における適用、例えば転がり軸受およびリニア軸受(Linearfuehrungen)における適用も同様に考えられうる。 The present invention is in the field of tribology and deals with coatings on machine parts to reduce friction loss and wear. Basically, the present invention is applicable to a wide variety of machine parts that are subject to frictional wear. However, as a particularly advantageous example, it is cited for use in components of internal combustion engines, in particular in valve device parts such as bucket tappets. However, applications in industrial use are also conceivable, for example in rolling bearings and linear bearings.
基本的にこのような部品への要求は、機械的負荷、運動速度および可使時間が増すことによって一段と高まる。その際、より一層少ない保全管理が前提とされる。相応する潤滑剤は、環境に負担をかけない要求が増していることから、使用される添加剤は一段と少なくなっており、かつ部分的には低粘性の潤滑剤でかまたはそれどころか潤滑剤なしに運転される傾向にある。 Basically, the requirements for such parts are further increased by increasing the mechanical load, the speed of movement and the pot life. At that time, even less maintenance management is assumed. Corresponding lubricants are increasingly demanding not to burden the environment, so that less additive is used and partly with low viscosity lubricants or even without lubricants. There is a tendency to drive.
液体潤滑の接触領域のみならず、乾燥した接触領域および接触領域における低い摩擦力および付着性への相応する要求、低い付着力、高い耐摩耗性および同時に衝突荷重に対する強靱性および分裂に対する耐性への相応する要求は、慣例のコーティングによってはもはや満たされない。 Not only liquid lubricated contact areas, but also dry contact areas and corresponding requirements for low friction and adhesion in contact areas, low adhesion, high wear resistance and at the same time toughness against impact loads and resistance to fracture The corresponding requirements are no longer met by conventional coatings.
部分的に、要求の一つ一つは、例えば硬度または僅かな摩擦抵抗といった、特定の方法で性質を持たされたコーティングによって満たされうるが、しかしながらトライボロジー系のその他の特性が決まって害を被る。 In part, each of the requirements can be met by a coating that is characterized in a particular way, for example hardness or slight frictional resistance, but other properties of the tribological system are detrimentally affected. .
これが内燃機関におけるバルブ装置を例にとっているのはとりわけ明らかであり、その際、殊にカムタペット装置に着目される。 This is particularly evident in the example of a valve device in an internal combustion engine, with particular attention being paid to cam tappet devices.
例えばこのようなカムタペット装置は、クランク軸の回転をともなう段階においてかまたはこれに同期して開閉する吸気バルブおよび排気バルブを有する往復ピストンを備えた自動車エンジン中に装着されている。バルブ駆動機構は、カム軸がエンジンのクランク軸と一緒に回転する時に、カム軸に取り付けられたカムの動きをバルブに伝達するために使用される。その際、カム軸のカムは、組み込まれたバケットタペットの摺動面と摩擦接触する。 For example, such a cam tappet device is mounted in an automobile engine having a reciprocating piston having an intake valve and an exhaust valve that opens and closes at the stage of rotation of the crankshaft or in synchronization therewith. The valve drive mechanism is used to transmit the movement of a cam attached to the camshaft to the valve when the camshaft rotates together with the engine crankshaft. At that time, the cam of the cam shaft is brought into frictional contact with the sliding surface of the incorporated bucket tappet.
一般的にこのようなバルブ装置部品、例えばバケットタペットおよびポンプタペットに課される要求は増している。高められた耐摩耗性が必要とされる原因は、制御カムおよび制御タペットから成るトライボロジー系の一層高まりつつある負荷および応力にある。この原因は、新しいエンジン仕様、例えばガソリンシステムおよび直接噴射式ディーゼルエンジンシステムにあり、増え続ける噴射圧力、潤滑剤中での研磨粒子の割合の増大、摩擦相手の不十分なオイル供給(この結果、混合摩擦の割合が高まる)、およびコスト削減および軽量化のためのトライボロジー的に不利なスチールカムの使用の増大をともなう。資源保全に重要に寄与するのは、バルブ装置中での摩擦損失の減少であり、その結果、燃料が節約され、同時にバルブ装置全体の寿命が高まる。摩擦損失を効果的に減少させるために、摩擦トルクを広範囲の回転数にわたって下げる必要がある。 In general, the demands placed on such valve device components such as bucket tappets and pump tappets are increasing. The reason why increased wear resistance is required is due to the increasing loads and stresses of the tribological system consisting of control cams and control tappets. This is due to new engine specifications, such as gasoline systems and direct injection diesel engine systems, with increasing injection pressures, an increased proportion of abrasive particles in the lubricant, insufficient oil supply to the friction partner (as a result With increased proportion of mixed friction), and increased use of tribologically disadvantageous steel cams for cost reduction and weight reduction. A significant contribution to resource conservation is a reduction in friction loss in the valve device, resulting in fuel savings and at the same time increasing the overall life of the valve device. In order to effectively reduce the friction loss, it is necessary to reduce the friction torque over a wide range of rotation speeds.
内燃機関のバルブ制御用のこのようなバケットタペットを軽合金タペットとして形成することは公知であり、該タペットは、タペットボディーおよびバルブ制御装置の制御カムのための接触面に挿入された、硬化表面を有するスチールプレートを有する。 It is known to form such bucket tappets for valve control of internal combustion engines as light alloy tappets, which are hardened surfaces inserted into the contact surfaces for the tappet body and the control cam of the valve control device With a steel plate.
しかしながら、この試みの欠点として、このようなバケットタペットは、運転事例においてコールドスタート時の−30℃から燃焼機関の運転中の約130℃までの比較的大きい温度変動にさらされるという事実が明らかになった。その際に問題なのは、使用される材料の種々の熱膨張である。たしかに、挿入物として軽合金タペットに挿入されたスチールプレートは良好な摩耗特性を有するが、しかしながら、それは相応する熱負荷に際して剥離する傾向にある。従って熱負荷容量は制限されている。応用技術的な他の一欠点は、バルブ制御装置の制御カムが接触する機能面としての、もしくはカム接触面としての比較的幅広いエッジの形をした構造スペースが失われることである。 However, as a disadvantage of this attempt, it is clear that such bucket tappets are exposed to relatively large temperature fluctuations from −30 ° C. during cold start to about 130 ° C. during combustion engine operation in operating cases. became. The problem here is the various thermal expansions of the materials used. Indeed, steel plates inserted into light alloy tappets as inserts have good wear properties, however, they tend to delaminate under corresponding heat loads. Therefore, the heat load capacity is limited. Another disadvantage of the applied technology is the loss of structural space in the form of a relatively wide edge as a functional surface with which the control cam of the valve control device contacts or as a cam contact surface.
従来技術によれば、摩擦による摩耗にさらされる機械部材の摺動面に、適用事例に応じて、有利には電気めっきされた金属から成る、または溶射法において施与された、場合によっては硬質組成物を有する金属および/または金属合金から成る摩耗保護層を設けることが同様に公知である。 According to the prior art, the sliding surfaces of machine parts that are subject to frictional wear, depending on the application, are preferably made of electroplated metal or applied in a spraying process, possibly hard It is likewise known to provide a wear protection layer consisting of a metal and / or metal alloy with the composition.
しかしながら、この場合、溶射された金属層は比較的弱い強度を有するという事実が欠点として明らかとなり、それゆえ該強度の改善のために、金属層を、例えばプラズマ光線、レーザー光線、電子線によるまたはアークによる施与後に、該噴射材料がその際に同時に表面領域中で溶融されたベース材料と溶融して混ざり合いかつ合金が形成されるように溶融することが公知である。それに加えて良好なトライボロジー特性を持たせるために、溶射された、ひいてはきめの粗いコーティングが機械的に後加工されなければならない。しかしながら、溶融合金の場合、ベース材料と同様に層材料も多数を占めうる種々の組成の不均一な帯域が生じる。ベース材料の割合が高すぎると、その時、層の摩耗は高くなりすぎ、かつベース材料の割合が低いと、種々の層の組み合わせに際して、マクロの亀裂が形成されるおそれがあり、その結果、そのような層は使用可能ではなくなる。このような場合、摩擦負荷により不所望の粘着摩耗が層で引き起こされうる。 However, in this case, the fact that the sprayed metal layer has a relatively weak intensity is manifested as a drawback, and therefore, for the improvement of the intensity, the metal layer can be treated with, for example, a plasma beam, a laser beam, an electron beam or an arc. It is known that after the application by, the spray material is melted so as to melt and mix with the base material melted in the surface region at the same time and form an alloy. In addition, in order to have good tribological properties, the sprayed and thus coarse coating must be mechanically post-processed. However, in the case of a molten alloy, non-uniform zones of various compositions that can occupy a large number of layer materials as well as the base material occur. If the proportion of the base material is too high, then the wear of the layer will be too high, and if the proportion of the base material is low, macro cracks may form during the combination of the various layers, so that Such a layer is not usable. In such cases, undesired adhesive wear can be caused in the layer by friction loading.
そのうえ、バケットタペットの摺動面を熱プロセスによって浸炭窒化および/または軟窒化することが公知である。しかしながら、その際、満足のいく摩擦係数は達成されず、かつ低すぎる耐摩耗性が生じることが欠点として明らかとなった。 Moreover, it is known to carbonitrid and / or soft-nitride the sliding surfaces of bucket tappets by a thermal process. However, in that case, a satisfactory coefficient of friction was not achieved, and it was revealed as a drawback that wear resistance that was too low occurred.
それ以外に、タペットの摺動面をリン酸マンガン層またはスライドコート(Gleitklack)によりコーティングすることが公知である。この場合も満足のいく摩擦係数と耐摩耗性は達成されない。加えて、このような材料によって環境に余計な負荷がかけられる。同じことは、同様に摺動面に施与されうる電気めっき層にも当てはまる。 In addition, it is known to coat the sliding surface of the tappet with a manganese phosphate layer or a slide coat (Gleitklack). Again, satisfactory coefficient of friction and wear resistance are not achieved. In addition, such a material places an extra burden on the environment. The same applies to electroplating layers that can be applied to the sliding surface as well.
従来技術から、コーティング材料として硬質合金および高速度鋼(ASP 23)も公知であるが、しかしながら、それらは満足のいかない摩擦係数と満足のいかない耐摩耗性以外に、付加的に欠点として高い質量を有する。 From the prior art, hard alloys and high-speed steel (ASP 23) are also known as coating materials, however, they are additionally high as disadvantages, besides an unsatisfactory coefficient of friction and unsatisfactory wear resistance. Have mass.
それ以外に、硬質の、例えばPVD法または(PA)CVD法によって製造された層、例えばTiN、CrN、(Ti、Al)Nが公知である。しかしながら、この試みの欠点として、これらの層はそれらが後加工されない場合、結果的に相手ボディーの摩耗を高くする。後加工される場合、反応性の表面に基づき、不確定の表面状態がもたらされる。 In addition, hard, for example, PVD or (PA) CVD layers, such as TiN, CrN, (Ti, Al) N, are known. However, as a disadvantage of this attempt, these layers result in increased wear of the mating body if they are not post-processed. When post-processed, an indeterminate surface condition results based on the reactive surface.
US特許5,237,967から、被覆層内で水素20〜60原子%を有する炭素ベースのPVD層および(PA)CVD層、いわゆる金属含有炭化水素層(a−C:H:Me)および非晶質炭化水素層(a−C:H)が公知である。しかしながら、これらの層は比較的小さい耐摩耗性および耐疲労性を有するゆえ、新世代のエンジンにおける高負荷の構造部材には適しておらず、運転中に提供する摩擦減少は比較的小さい。 From US Pat. No. 5,237,967, carbon-based PVD and (PA) CVD layers with 20-60 atomic% hydrogen in the coating layer, so-called metal-containing hydrocarbon layers (aC: H: Me) and non- A crystalline hydrocarbon layer (aC: H) is known. However, because these layers have relatively low wear and fatigue resistance, they are not suitable for high load structural members in new generation engines and the friction reduction provided during operation is relatively small.
上ですでに説明したように、バルブ装置における摩擦の減少は、燃料節約および資源保全に必然的に寄与する。この目標は、固体摩擦および混合摩擦の領域を減少させ、ひいては完全に材料が分離された状態で液体摩擦の領域を高めることによって達成されうる。これはバケットタペットおよびカム軸から成るトライボロジー系の可能な限り最適化された全体粗さによって達成される。 As already explained above, the reduction of friction in the valve device necessarily contributes to fuel savings and resource conservation. This goal can be achieved by reducing the area of solid friction and mixed friction and thus increasing the area of liquid friction with complete material separation. This is achieved by the overall roughness optimized as much as possible of the tribological system consisting of bucket tappet and camshaft.
このために必要とされるバケットタペットの最適な表面構造を寿命全体にわたって得るため、該表面が高い耐摩耗性、相手ボディーへの僅かな付着傾向を有し、かつ周囲に対する反応性が低くなるようにそれを形作る必要がある。そのうえ表面は、好ましくは液体粒子(Droplet)のような研磨粒子を含有してはならない。 In order to obtain the optimum surface structure of the bucket tappet required for this purpose over the entire life, the surface has a high wear resistance, a slight tendency to adhere to the mating body and a low reactivity to the surroundings. You need to form it. In addition, the surface should preferably not contain abrasive particles such as liquid particles.
鉄炭素合金からのバケットタペットは、浸炭窒化、軟窒化または窒化といった熱処理された状態においても、このために必要とされる耐摩耗性およびトライボロジー的に有利な表面状態に達しない。例えば窒化物層が、殊に(微細)研削、ラッピング、研磨、光線等によって機械的に後処理される場合、表面構造以外に化学的な組成と該表面の反応性も変化させられる。これらの変化は一方では大きく分散されており、そのことによって一様な品質は実現されえない。他方で局在アフィン表面は、より不都合なトライボロジー特性を有し、かつ相手ボディーと付着する傾向にある。そのうえ研削プロセスおよび研磨プロセスによって内部圧縮応力が表面付近の領域中で引き起こされ、該応力は、すでに存在する硬質組成物層の高い内部圧縮応力に加わる。 Bucket tappets from iron-carbon alloys do not reach the wear and tribologically advantageous surface conditions required for this even in heat treated states such as carbonitriding, soft nitriding or nitriding. For example, when the nitride layer is mechanically post-treated, in particular by (fine) grinding, lapping, polishing, light rays, etc., the chemical composition and the reactivity of the surface can be changed in addition to the surface structure. These changes are largely distributed on the one hand, so that uniform quality cannot be achieved. On the other hand, localized affine surfaces have more inconvenient tribological properties and tend to adhere to the mating body. Moreover, internal and compressive stresses are induced in the region near the surface by the grinding and polishing processes, which stresses are added to the high internal compressive stress of the hard composition layer already present.
付加的に、引き起こされた位置のずれと引き裂かれた液体粒子が浮きとマクロの亀裂を生じさせ、その結果、バケットタペットにおける層の局所的な耐疲労性は減少し、かつ接着強度は、層の後加工に際して分裂しばらばらになりうるまで下がる。 Additionally, the induced misalignment and torn liquid particles cause floatation and macrocracking, resulting in reduced local fatigue resistance of the layer in the bucket tappet and adhesive strength It goes down until it can break apart during post-processing.
しかしながら、例えばアーク法により堆積された層において、あとから研磨されることが省かれる場合、硬質の液体粒子は相手ボディーの研磨摩耗または少なくとも相手ボディーの研磨をランダムに起こし、そのことによって予測されない不利な結果がもたらされる。それに加えて、液体粒子は砕けて作動中に層から出ていき、このことから層の損傷が生じ、かつ研磨作用のある遊離粒子が生じる。 However, if, for example, in a layer deposited by the arc method, the subsequent polishing is omitted, the hard liquid particles randomly cause the abrasive wear of the counterpart body or at least the polish of the counterpart body, which is an unexpected disadvantage. Results. In addition, the liquid particles break up and exit the layer during operation, which results in damage to the layer and free particles that are abrasive.
加えて、DE102004043550A1から、摩擦減少のためにおよび前もって定められた機械部材の面の耐摩耗性の上昇のために、耐摩耗性コーティングが少なくとも2つのCrNx相からの少なくとも1つのナノ結晶の機能層から成る形態が公知である。しかしながら、このコーティングも、摩擦減少および耐摩耗性に関して、なかでも混合摩擦領域において、全てのトライボロジー的な要求を理想的な形では満たさない。 In addition, from DE 102004043550A1, the wear-resistant coating has the function of at least one nanocrystal from at least two CrN x phases for reducing friction and for increasing the wear resistance of the surface of a predetermined machine part. Forms consisting of layers are known. However, this coating also does not ideally meet all tribological requirements with regard to friction reduction and wear resistance, especially in the mixed friction region.
従って本発明の基礎をなしている課題は、上記の欠点を取り除き、かつ殊に使用領域全体における摩擦トルクを減少させ、かつコーティングされた機械部材ならびに相手ボディーの可使時間を高めるコーティングならびにこのようなコーティングの製造法を供給することである。 The problem underlying the present invention is therefore a coating that eliminates the above-mentioned drawbacks and reduces the friction torque, especially over the entire service area, and increases the working time of the coated machine part and the mating body, and thus Is to provide a manufacturing method for a simple coating.
この課題は本発明により、特許請求項1の特徴を有する耐摩耗性コーティングによって、および特許請求項21の特徴を有する方法によって解決される。 This problem is solved according to the invention by a wear-resistant coating having the features of claim 1 and by a method having the features of claim 21.
機能層が水素含有炭素をベースとし、かつ断面において、その広がりが少なくとも1方向で20nm、それより良くは10nmを下回る種々のコンシステンシー(Konsistenz)の領域を有することによって、ナノ構造化された層が形成され、該層内では種々のコンシステンシーの領域、つまり例えば種々の材料、種々の変態からの領域が、種々の材料割合によるかまたはそれに単に種々の結晶配向により、ただ一つの均質な性質の物質によっては満たすことが非常に難しい様々の課題を満たしうる。しかしながら、ナノ構造によって、機能層においてそのつど同時に、例えばすべり摩擦を低減させかつ必要とされる材料硬度を発生させるための種々の領域が摩擦相手に向かい合っている。 A nanostructured layer by having a functional layer based on hydrogen-containing carbon and in the cross-section having a range of various consistency (Konsistenz) that is less than 20 nm in a direction and less than 10 nm in one direction. Within the layer, regions of different consistency, i.e. regions from different materials, different transformations, for example, may be of a single homogeneous nature, either by different material proportions or simply by different crystal orientations. Depending on the material, it can meet various challenges that are very difficult to meet. However, due to the nanostructure, in the functional layer at the same time, different areas, for example for reducing sliding friction and for generating the required material hardness, are facing the friction partner.
これは機能層が少なくとも部分的に、種々のコンシステンシーの領域を形成する表面に対して本質的に平行な層によって形成されている場合にも言える。この場合、層の僅かな厚さ(<20nmまたはそれどころか<10nm)によって、すでに最初からまたは短時間の運転後および摩耗が始まった後に、異なった箇所で様々の層が現れるハイブリッド表面が生み出される。従って機能層の表面は、異なった硬度、種々の摩擦特性、接着性および種々の強靱性を有する種々の面領域を摩擦相手に提供する。このようなナノ構造によって、付加的に不均質性によって、層の分裂および剥脱に対する高い亀裂抵抗が形成される。層の適した構成および配置によって、高められた耐食性または高められた湿潤性もしくは低められた湿潤性が潤滑剤により達成されうる。測定から、本発明によって30%の摩擦トルクの減少ならびに15〜70GPの硬度の減少が達成されうることが判明した。 This is also true when the functional layer is formed at least partly by a layer essentially parallel to the surface forming the regions of different consistency. In this case, the slight thickness of the layer (<20 nm or even <10 nm) creates a hybrid surface where the various layers appear at different points already from the beginning or after a short run and after wear has begun. The surface of the functional layer thus provides the friction partner with different surface areas having different hardness, different friction properties, adhesion and different toughness. Such nanostructures additionally create high crack resistance to layer splitting and exfoliation due to inhomogeneities. With the appropriate configuration and arrangement of the layers, increased corrosion resistance or increased wettability or reduced wettability can be achieved with the lubricant. Measurements have shown that a 30% reduction in friction torque as well as a 15-70 GP hardness reduction can be achieved with the present invention.
有利には、このような形態の場合、層の1つ以上は10nmより薄い。その際、典型的に層の数は2つより多く、かつ数十まで、殊に50または100を超えてよく、その結果、層の全体厚さは10マイクロメートルにまでになりうる。 Advantageously, in such a form, one or more of the layers are thinner than 10 nm. In so doing, typically the number of layers is more than two and can be up to several tens, in particular more than 50 or 100, so that the total thickness of the layers can be up to 10 micrometers.
その際、隣接した層は、例えば少なくとも2つの隣接した層がそのつど異なった次の3つのコンシステンシーを有するという点で、そのつど異なったコンシステンシーを有する。非晶質の、金属不含の、水素を含有する炭素、非晶質の、金属を含有する、水素を含有する炭素、非晶質の、少なくとも1つの非金属を含有する、水素を含有する炭素。その際、基本的に、1%未満のプロセス処理された不純物が含有されていてよい。 In that case, the adjacent layers have different consistency each time, for example in that at least two adjacent layers have different next three consistency each time. Amorphous, metal-free, hydrogen-containing carbon, amorphous, metal-containing, hydrogen-containing carbon, amorphous, at least one non-metal-containing, hydrogen-containing carbon. In so doing, it may contain essentially less than 1% of processed impurities.
付加的に、それ以外に性質を持たされた層が準備されていてよい。その際、非金属を含有する水素含有炭素は、例えば典型的に摩擦力を低下させる特性を有し、かつ例えばフッ素、ケイ素または酸素が組み込まれる場合、僅かな湿潤性を潤滑剤により助長する特性も有する。それによって、より薄い油膜が助長され、このことは殊に相対運動が速い場合、摩擦相手に、つまり例えばバルブ装置において利点がもたらされる。 In addition, a layer with other properties may be provided. In doing so, hydrogen-containing carbon containing non-metals, for example, typically has the property of reducing frictional forces, and, for example, when fluorine, silicon or oxygen is incorporated, it promotes slight wetting by the lubricant. Also have. Thereby, a thinner oil film is encouraged, which is advantageous for the friction partner, for example in the valve device, especially when the relative movement is fast.
金属含有の非晶質の水素含有炭化水素は、典型的にはむしろ硬度および摩擦強度の特性を有する。 Metal-containing amorphous hydrogen-containing hydrocarbons typically have rather properties of hardness and friction strength.
隣接した層の区別は単に、それらが異なった材料でドープされていることによってか、またはドーピングの量が異なっていることによってもなされうる。 The distinction between adjacent layers can also be made simply by being doped with different materials or by different amounts of doping.
殊にそれが結晶相である場合、ドーピングによって材料特性は明らかに変化させられる。従ってドーピングは、目的に合わせて特定の機械的な特性を発生させるために用いられえ、その際、これによって生み出された特性はドーピング原子の種類と大きさにも依存する。加えて、発生する結晶構造の種類は、ある特定のドーピングレベルから結晶の転移が行われるという点で、もしくは混合相が様々の変態から生じるという点でドーピング原子の量に依存している。従ってドーピングの種類または量によってのみ区別される隣接した層も、完全に異なった機械的特性またはトライボロジー特性を有する。 Especially when it is in the crystalline phase, the material properties are obviously changed by doping. Doping can therefore be used to generate specific mechanical properties for the purpose, the properties produced thereby also depending on the type and size of the doping atoms. In addition, the type of crystal structure that is generated depends on the amount of doping atoms in that the crystal transition takes place from a certain doping level or in that the mixed phase results from various transformations. Thus, adjacent layers that are distinguished only by the type or amount of doping also have completely different mechanical or tribological properties.
加えて、隣接した層は、非晶質炭素中の百分率で表された水素によっても区別されうる。炭素中の水素割合によっても、基本的なトライボロジー特性がはっきりと決定される。水素割合が20%より低く、殊に5%〜20%であると、水素含有非晶質炭素はより硬くなる傾向にあり、この割合は本発明による実施のために有利である。 In addition, adjacent layers can also be distinguished by hydrogen expressed as a percentage in amorphous carbon. The proportion of hydrogen in the carbon also clearly determines basic tribological properties. If the hydrogen proportion is lower than 20%, in particular 5% to 20%, the hydrogen-containing amorphous carbon tends to be harder, which proportion is advantageous for the implementation according to the invention.
sp3−およびsp2−混成軌道炭素のパーセント比も、2つの隣接した層を相互に区別しうる。これは公知のように種々の機械的特性を有するダイヤモンド−およびグラファイト変態の形で存在する炭素に関する。それに応じて、このように種々の隣接した層は様々のトライボロジー特性も有する。その際、sp3−混成軌道C原子の割合がC原子の50%より大きい場合にとりわけ有利である。 The percentage ratio of sp 3 -and sp 2 -hybrid orbital carbons can also distinguish two adjacent layers from each other. This relates to carbon existing in the form of diamond- and graphite transformations with various mechanical properties as is known. Accordingly, such various adjacent layers also have various tribological properties. In this case, it is particularly advantageous when the proportion of sp 3 -hybrid orbital C atoms is greater than 50% of C atoms.
少なくとも1つの層内でパラメータ:水素含量、sp3−混成軌道C原子の割合、ドーピングの少なくとも1つがコーティングの表面に対して垂直に勾配を有することも有利には予定されていてよい。 It may also be advantageously planned that at least one of the parameters: hydrogen content, proportion of sp 3 -hybrid orbital C atoms, doping in at least one layer has a gradient perpendicular to the surface of the coating.
その際、特に重要なのは、実質的な使用において実際の摩擦表面上で種々の機械的な特性を有する様々の領域を提供することである。 In that case, it is particularly important to provide different areas with different mechanical properties on the actual friction surface in substantial use.
層の記載された種類および形態によって、および摩擦表面から見た層の厚さおよびシーケンスによって、非常に様々のトライボロジー的な要求のために、表面の品質は、そのつど表面に現れる、大きい硬度、大きい強靱性または効果的な摩擦減少を有する領域の割合が大部分を占めているかまたはより僅かしか占めていないことで持続的に調整されうる。従って本発明は、種々のコンシステンシーを有する領域の適した層状化によって、顧客の特別な要求に対する個別的な調整が可能となる。 Depending on the described type and form of the layers and on the thickness and sequence of the layers as viewed from the friction surface, the quality of the surface increases with the high hardness, It can be continually adjusted by the fact that the proportion of the area with great toughness or effective friction reduction occupies the majority or less. Thus, the present invention allows for individual tailoring to the customer's special requirements by suitable stratification of regions having different consistency.
本発明により、該領域が少なくとも部分的にナノ粒子によって形成されていることも予定されていてよい。これらは例えば以下の材料:窒化物、ホウ化物、炭化物、ケイ化物の1つ以上から形成されていてよい。その際、例えば窒化クロム、窒化チタン、窒化ケイ素、炭化ケイ素または炭化チタンが考えられうる。 It may also be envisaged according to the invention that the region is at least partly formed by nanoparticles. These may be formed, for example, from one or more of the following materials: nitrides, borides, carbides, silicides. In this case, for example, chromium nitride, titanium nitride, silicon nitride, silicon carbide or titanium carbide can be considered.
このようなナノ粒子は、例えば堆積法の枠内で、相応する水素含有炭素層の堆積と同時にかまたはその堆積前または堆積後に一緒に堆積させてよい。 Such nanoparticles may be deposited together with the corresponding hydrogen-containing carbon layer, or before or after the deposition, for example, within the framework of the deposition process.
このために堆積装置中で時々、相応して必要とされる物質がガス相中に連行され、スパッタリングまたはその他の公知の方法のいずれかによって、かつ処理パラメータによって粒子の晶出が促進される。その際、種々の結晶からかまたはそれに種々の配向を有する同一構造の結晶から、ナノ分散の自己組織化領域が発生する。 For this purpose, sometimes the correspondingly required substances are entrained in the gas phase in the deposition apparatus, promoting the crystallization of the particles by either sputtering or other known methods and by the processing parameters. In this case, nano-dispersed self-assembled regions are generated from various crystals or from crystals of the same structure having various orientations thereto.
例えば、いわゆる窒化物形成体、例えばクロム、チタンその他、不安定な窒化物を形成する元素、例えば銅を一緒に堆積させてよく、その際、例えば、銅と窒化クロムが使用される場合、銅割合はクロム割合に対して2%を下回っていてよい。次いで、窒化クロムが銅マトリックス中でナノ結晶として形成される。同じような結果は、窒化チタンと非常に僅かなホウ素割合により達成されえ、その際、窒化チタンの代わりに炭化チタンも使用されえ、いずれの場合も相応する窒化物もしくは炭化物が準非晶質ホウ素マトリックス中で結晶化する。 For example, so-called nitride formers, such as chromium, titanium, and other elements that form unstable nitrides, such as copper, may be deposited together, for example when copper and chromium nitride are used, copper The proportion may be less than 2% with respect to the chromium proportion. Chromium nitride is then formed as nanocrystals in the copper matrix. Similar results can be achieved with titanium nitride and a very small proportion of boron, in which case titanium carbide can be used instead of titanium nitride, in which case the corresponding nitride or carbide is quasi-amorphous. Crystallize in a boron matrix.
結果的に、相応するナノ粒子は水素含有炭素から成る非晶質層内に埋め込まれえ、または炭素層間でナノ粒子層を形成しうる。 As a result, the corresponding nanoparticles can be embedded in an amorphous layer of hydrogen-containing carbon, or a nanoparticle layer can be formed between the carbon layers.
その際、形成された層が薄いこと、もしくは粒子が微細に分散していることが重要であり、その結果、機能層の表面上でそのつど露出するナノ粒子の領域は表面の一部しか占めず、それにより、その他の部分はその他の機械的特性もしくはトライボロジー特性を有するその他のコンシステンシーの領域によって覆われることになる。 In that case, it is important that the formed layer is thin or that the particles are finely dispersed, and as a result, the area of the exposed nanoparticles on the surface of the functional layer only occupies a part of the surface. Instead, the other parts will be covered by regions of other consistency having other mechanical or tribological properties.
ナノ粒子の導入によっても、これらに固有の機械的特性以外にまた、生じる機能層において全体的に亀裂の伝播が効果的に妨げられる。これは20nm未満の、それより良くは10nmより小さいナノ粒子の大きさに際して、最適な形で保証される。 The introduction of nanoparticles also effectively prevents overall crack propagation in the resulting functional layer, in addition to their inherent mechanical properties. This is ensured in an optimal manner for nanoparticle sizes of less than 20 nm and better than 10 nm.
有利には、コーティングは機能層の下にクロム、タングステンまたはチタンからまたは遷移金属のホウ化物、炭化物または窒化物から成る少なくとも1つの接着促進層を有する。このような接着促進物は、機能層を有するコーティングされた機械部材からの構造全体を安定化させ、かつ殊に機能層の剥離分離を防止する。機械部材のために適した材料として、通常の加工し易くかつ低コストの材料(16Mn Cr5、C45、100 Cr6、31 Cr Mo V9、80 Cr2等)が考慮に入れられる。摩擦相手として、軽量化構造の意味において重量削減のために鉄/炭素合金も考えられうる。 Advantageously, the coating has at least one adhesion promoting layer made of chromium, tungsten or titanium or of a transition metal boride, carbide or nitride under the functional layer. Such an adhesion promoter stabilizes the entire structure from the coated machine part having the functional layer and in particular prevents the separation of the functional layer. As materials suitable for machine parts, the usual easy to process and low cost materials (16MnCr5, C45, 100Cr6, 31CrMoV9, 80Cr2, etc.) are taken into account. As a friction partner, an iron / carbon alloy can also be considered in order to reduce weight in the sense of a lightweight structure.
付加的に、とりわけ有利なのは、金属含有または非金属含有の、水素を含有する炭素層からの機能層の下に支持層を準備することであり、該層は一方で成分のタングステン、タンタル、クロム、バナジウム、ハフニウム、チタンまたはニッケルまたは他方でケイ素、酸素、フッ素、窒素の1つ以上を含有する。 In addition, it is particularly advantageous to provide a support layer underneath a functional layer from a metal-containing or non-metal-containing hydrogen-containing carbon layer, which layer on the one hand contains the components tungsten, tantalum, chromium. , Vanadium, hafnium, titanium or nickel or on the other hand one or more of silicon, oxygen, fluorine, nitrogen.
このような支持層は、機能層に作用する大きい機械的な力の負荷を遮断し、その結果、基層(Untergruende)の剥離分離または亀裂形成および分裂による機能層の破壊につながりうる該機能層の過度の変形が生じないようにする課題を持つ。中間層は著しく固定されており、その際、該中間層は摩擦抵抗も摩耗強さも有する必要がない。それゆえ支持層を、目的に合わせて、それが僅かな可塑性を有するように、もしくは該可塑性に関して、それが機能層と実際の機械部材との間の最適な移行部を作り出すように調整される形で構成してもよい。 Such a support layer interrupts the load of large mechanical forces acting on the functional layer, so that the functional layer can be destroyed by separation or crack formation and splitting of the base layer (Untergruende). Has the problem of preventing excessive deformation. The intermediate layer is remarkably fixed, in which case it does not have to have frictional resistance or wear strength. The support layer is therefore tailored to suit the purpose so that it has a slight plasticity or in terms of the plasticity it creates an optimal transition between the functional layer and the actual mechanical member It may be configured in the form.
さらに本発明は、請求項1以下に記載のコーティングの製造法に関し、その際、堆積法において表面上に領域を施与するために、処理パラメータを、堆積によって形成された領域の大きさがコーティングの断面において20nmを下回るように連続する時点で変えてよい。とりわけ有利なのは、領域の大きさが10nmを下回る場合である。 Furthermore, the present invention relates to a method for producing a coating according to claim 1 and below, in order to apply the region on the surface in the deposition method, the processing parameters are determined by the size of the region formed by the deposition. You may change at the time of continuing so that it may be less than 20 nm in the cross section. Particularly advantageous is when the region size is below 10 nm.
このためにパラメータである圧力、温度、ドーピング物質の混入、水素含有率、回転速度、炭素含量の少なくとも1つを機能層の製造中に不規則的にまたは連続的に変えてよい。 For this purpose, at least one of the parameters pressure, temperature, doping substance incorporation, hydrogen content, rotational speed, carbon content may be varied irregularly or continuously during the production of the functional layer.
堆積プロセスの場合と同様、例えば焼成またはプラズマエッチングのような、状況によってはあり得るその他のコーティングの工程の場合も、250℃の処理温度を有利には超えない。それというのも、それにより機械部材のベース材料の硬度が引き続き保持され、例えば誘導硬化によって後加工される必要がないからである。 As in the case of the deposition process, the processing temperature of 250 ° C. is advantageously not exceeded in the case of other coating steps which may be possible depending on the situation, for example baking or plasma etching. This is because it keeps the hardness of the base material of the machine part, and does not have to be post-processed, for example by induction hardening.
堆積は、公知のPVD(物理蒸着)および(PA)CVD(プラズマアシスト化学蒸着)法の枠内で行われる。 The deposition takes place within the framework of the known PVD (physical vapor deposition) and (PA) CVD (plasma assisted chemical vapor deposition) methods.
PVD法の場合、出発材料、例えばグラファイトは、該グラファイトからの高エネルギー炭素イオンのビームが模倣され、かつコーティングされるべき表面の方向に、あるセクションで加速される形で加熱される。 In the case of PVD methods, the starting material, for example graphite, is heated in a manner that is accelerated in a section in the direction of the surface to be coated, where the beam of high-energy carbon ions from the graphite is imitated.
(PA)CVD法の場合、プラズマの助けを借りて、ガス混合物が、コーティングされるべき材料部材が存在するプロセスチャンバー内に導入される。該(PA)CVD法は、CVD法の発展形態であり、かつCVO法(全方向性処理)およびPVD法(低温)の利点を組み合わせたものである。PACVD法の場合、層の堆積は、目的に合わせてプラズマサポートした200℃未満の温度でのガス相からの化学反応によって行われる。 In the case of (PA) CVD methods, with the aid of plasma, a gas mixture is introduced into the process chamber in which the material parts to be coated are present. The (PA) CVD method is an advanced form of the CVD method, and combines the advantages of the CVO method (omnidirectional processing) and the PVD method (low temperature). In the case of the PACVD method, the layer deposition is performed by a chemical reaction from the gas phase at a temperature below 200 ° C. that is plasma-supported for the purpose.
圧力、温度および水素含量ならびにドーピング物質またはコーティングされるべき物体の回転速度といった処理パラメータの変化によって、生じるコーティングの構造が決定される。その際、特定のパラメータ限界値では、堆積された層のコンシステンシーにおける不規則な変化も生じる。それというのも、特定の、殊に結晶性の配置は、個々の物質の特定の材料割合までしか形成されえないからである。これらの部分が存在しない場合、その他の結晶またはその他の変態もしくは混合相が形成される。 Changes in the processing parameters such as pressure, temperature and hydrogen content and the rotational speed of the doping substance or the object to be coated determine the structure of the resulting coating. In so doing, at certain parameter limits, irregular changes in the consistency of the deposited layer also occur. This is because certain, in particular crystalline arrangements, can only be formed up to a certain material proportion of the individual substances. In the absence of these moieties, other crystals or other transformations or mixed phases are formed.
従って処理パラメータの変化によって、適した時間間隔において、相応して小さい(10nmより小さい)領域が粒子状または層状に堆積されうる。 Thus, by changing the processing parameters, correspondingly small (less than 10 nm) regions can be deposited in particles or layers at suitable time intervals.
最終的に本発明は、本発明によるコーティングが備え付けられている機械部材、とりわけカムによって作動可能な内燃機関のバルブ用のバルブタペットに関する。 The present invention finally relates to a valve tappet for a valve of an internal combustion engine operable by a mechanical member, in particular a cam, provided with a coating according to the invention.
以下で本発明を、上記のバルブタペットを引き合いに出す実施例を手掛かりにして図示し、引き続き説明する。 In the following, the present invention will be illustrated and explained with reference to an embodiment for taking out the valve tappet as a reference.
図面の中では、他に記載されていない限り、同じ参照番号は同じ部品または機能が同じ部品を表す。 In the drawings, the same reference number represents the same part or the same part in function unless otherwise stated.
図1は、カム接触面50およびバケットシャツ(Tassenhemd)51を有するバケットタペット5からならびにカム6から成る摩擦対を図示する。バケットタペット5は、図2の中で透視図の形で詳細に示されている。一般的にバケットタペット5は、燃焼機関における機材部材用にバルブのシャフト7と接続されており、これはバケットタペット5のカム接触面50に向けてカム面がスライドすることによってバルブを開くかまたは閉じる。 FIG. 1 illustrates a friction pair consisting of a bucket tappet 5 having a cam contact surface 50 and a bucket shirt 51 and a cam 6. The bucket tappet 5 is shown in detail in the form of a perspective in FIG. In general, the bucket tappet 5 is connected to a valve shaft 7 for a material part in a combustion engine, which opens the valve by sliding the cam surface towards the cam contact surface 50 of the bucket tappet 5 or close up.
一般的に、例えばバケットタペットおよびポンプタペットといった最新式のバルブ装置部品は、耐摩耗性および資源保全の点で、殊に接触面50に対して高い要求が課される。 In general, state-of-the-art valve device components, for example bucket tappets and pump tappets, impose high demands on the contact surface 50 in particular in terms of wear resistance and resource conservation.
本発明の有利な一実施例に従う、機械部材1のための、例えばバケットタペット5のための耐摩耗性コーティングの概略的な断面図を図示する図4との関連において、本発明の実施例が以下で詳細に説明される。 In connection with FIG. 4 illustrating a schematic cross-sectional view of a wear-resistant coating for a mechanical member 1, for example a bucket tappet 5, according to an advantageous embodiment of the invention, an embodiment of the invention is described. This will be described in detail below.
パケットタペット5は、摩擦係数の減少のためにおよび耐摩耗性の上昇のために、カム接触面50の領域中でかまたは必要に応じてカム接触面50およびバケットシャツ51の領域中で、本発明による耐摩耗性コーティングによりコーティングされる。露出する側の領域中でのバケットタペット50のバケットシャツ51の変形が強い場合、選択的にバケットシャツ51の部分コーティングも行ってよい。 The packet tappet 5 is used in the region of the cam contact surface 50 or in the region of the cam contact surface 50 and the bucket shirt 51 as necessary to reduce the coefficient of friction and increase wear resistance. Coated with an abrasion resistant coating according to the invention. When the deformation of the bucket shirt 51 of the bucket tappet 50 in the exposed region is strong, the bucket shirt 51 may be partially coated selectively.
コーティングされるべき面2、すなわちここではバケットタペット5のカム接触面50は、好ましくはコーティング前に表面硬化または浸炭窒化され、かつ焼き戻しされる。 The surface 2 to be coated, ie here the cam contact surface 50 of the bucket tappet 5, is preferably surface hardened or carbonitrided and tempered before coating.
この場合のボディー、有利には低コストのスチール材料、例えば16MnCr5、C45、100Cr6、31CrMoV9、80Cr2等から成るバケットタペット5のカム接触面50は、本実施例に従ってまず接着促進層3によりコーティングされる。接着促進層3は、例えばそのつど金属含有炭素、例えばタングステンおよび炭素からの化合物から、しかしまた金属物質(例えばCr、Ti)、ならびに遷移金属のホウ化物、炭化物、窒化物およびケイ化物から成っていてよい。接着促進層の上の付加的な支持層は、金属または非金属、例えばW、Ta、Cr、V、Hf、Ti、NiまたはSi、O、F、Nならびに水素を含有する非晶質の炭素から成る。接着促進層および支持層は、熱処理、例えば表面硬化、炭窒化、軟窒化と関連して、熱化学法、例えば窒化、ホウ化によって、ガルバニック法によって、例えばクロム含有層の施与によって、またはPVD法、例えばMe−C、遷移金属の炭化物および窒化物の施与により形成されうる。 The cam contact surface 50 of the body in this case, preferably a bucket tappet 5 made of low-cost steel material, for example 16MnCr5, C45, 100Cr6, 31CrMoV9, 80Cr2, etc., is first coated with the adhesion promoting layer 3 according to this embodiment. . The adhesion-promoting layer 3 consists of a compound from, for example, metal-containing carbon, for example tungsten and carbon, but also from metal materials (for example Cr, Ti), and transition metal borides, carbides, nitrides and silicides. It's okay. Additional support layers above the adhesion promoting layer can be metallic or non-metallic, such as W, Ta, Cr, V, Hf, Ti, Ni or Si, O, F, N and amorphous carbon containing hydrogen. Consists of. The adhesion-promoting layer and the support layer are associated with heat treatments such as surface hardening, carbonitriding, soft nitriding, by thermochemical methods such as nitriding, boriding, by galvanic methods, for example by applying chromium-containing layers, or It can be formed by application of methods such as Me-C, transition metal carbides and nitrides.
支持層によってコーティング全体の疲労強度が高められるべきであり、すなわち塑性変形、亀裂形成、亀裂成長および層系の破断が防止されるべきである。このような疲労プロセスは、カムの負荷およびそこから引き起こされるバケットタペット5の材料応力によって、ならびに個々の層もしくはボディーおよび耐摩耗性コーティングの種々の硬度レベル、弾性率、塑性によって発生しうる。この場合、支持層3としての層3の形成は、それ単独でかまたは適した接着促進層との組み合わせのいずれかが好まれる。 The fatigue strength of the entire coating should be increased by the support layer, i.e. plastic deformation, crack formation, crack growth and rupture of the layer system should be prevented. Such fatigue processes can occur due to cam loading and the material stress of the bucket tappet 5 caused therefrom, as well as various hardness levels, elastic moduli and plasticity of the individual layers or bodies and wear-resistant coatings. In this case, the formation of layer 3 as support layer 3 is preferred either alone or in combination with a suitable adhesion promoting layer.
図4で示されているように、本実施例に従って支持層および/または接着促進層3の上に耐摩耗性コーティング4が形成されている。 As shown in FIG. 4, an abrasion resistant coating 4 is formed on the support layer and / or adhesion promoting layer 3 according to this embodiment.
機能層4はそこで図式的に4つの個々のナノ層から構成されたものとして示されており、その際、大きさの比は図式的にのみかつ縮尺に従わずに再現されている。 The functional layer 4 is then shown schematically as being composed of four individual nanolayers, in which the size ratio is reproduced only graphically and not to scale.
それに対して図5では、機能層は縮尺通りにはっきりと拡大して示されている。その際、該図の左半分では、そのつど異なったコンシステンシーを有する水素を含有する非晶質炭素から成る、いくつかの重ねて配置された10nm未満の厚さの層を有する別形が示されており、一方で該図の右側では、付加的にナノ分散粒子を有する別形が示されている。 On the other hand, in FIG. 5, the functional layer is shown clearly enlarged on a scale. The left half of the figure then shows a variant with several layers of sub-10 nm thick layers of amorphous carbon containing hydrogen, each with a different consistency. On the other hand, on the right side of the figure, an alternative with additional nanodispersed particles is shown.
該縮尺はナノ層の厚さが僅かなものであるがゆえに表面に対して垂直な方向にさらに拡大されている。表面の波形線は実際の表面を表し、該表面は製造に際してまたは使用後に自ずと調整される。この波形は実際には示されているほど大きくはなく、むしろ縮尺の単軸の拡大によって摩擦表面に対して垂直に強調されて現れている。それにも関わらず、この図を手がかりにして本発明により達成される効果が説明されうる。個々の層60、61、62は少なくとも上部領域中で表面に向かって様々に細線が描かれており、かつそれによって区別可能である。いくらか(数nmの)不規則な表面の構造によって、遅くとも最初の運転開始後および損耗後に様々の箇所で下方の層61、62およびまたそれよりさらに下にある個々には印を付けられなかった層が現れることが明らかとなる。これらの層はそのつど種々のトライボロジー特性を有し、その結果、摩擦相手に、硬度、弾性、耐摩耗性および摩擦係数に関して種々の特性を有する非常に様々の領域が混じり合ったものとしての表面全体が現れる。この状態は損耗がさらに進む場合にも引き続き保持されるが、このことは、しかしながら記載された構造および調整される耐摩耗性によって大いに延期される。 The scale is further expanded in a direction perpendicular to the surface because of the small thickness of the nanolayer. The corrugated line on the surface represents the actual surface, which is naturally adjusted during manufacture or after use. This waveform is not as large as actually shown, but rather appears to be emphasized perpendicular to the friction surface by a uniaxial enlargement of scale. Nevertheless, the effect achieved by the present invention can be explained using this figure as a clue. The individual layers 60, 61, 62 are variously thinly drawn toward the surface in at least the upper region and are distinguishable thereby. Due to the structure of some irregular surfaces (several nanometers), the lower layers 61, 62 and also the individual below them were not marked at various points after the first start-up and after wear at the latest. It becomes clear that a layer appears. These layers each have different tribological properties, so that the surface of the friction partner as a mixture of very different areas with different properties in terms of hardness, elasticity, wear resistance and coefficient of friction. The whole appears. This condition will continue to be maintained as wear increases further, but this is greatly postponed by the structure described and the adjusted wear resistance.
個々の層は少なくとも部分的に、コンシステンシー、つまり水素割合、添加された、ドープ導入された物質もしくは結晶変態の種類および量および配向を引き合いに出して区別される。同時に二、三の層または多数の層が表面に露出する。 The individual layers are distinguished at least in part by referring to the consistency, i.e. the hydrogen proportion, the type and amount of doped material or crystal transformation added and the orientation. At the same time, a few layers or multiple layers are exposed on the surface.
図5の右側では、ナノ粒子63、64が炭素マトリックス中に共に導入されている変形が示される。例えばホウ化物、炭化物または窒化物として形成されていてもよい相応するナノ粒子は、それらが表面に現れる場所で、つまり粒子63、64の場合に、硬質かつ耐摩耗性の領域を形成し、ひいては該粒子を取り囲む炭素マトリックスの材料の削磨も防止する。これはまた表面の組成に応じて、例えば摩擦係数の減少にいくらか寄与する。 On the right side of FIG. 5, a deformation is shown in which the nanoparticles 63, 64 are introduced together in the carbon matrix. Corresponding nanoparticles, which may be formed, for example, as borides, carbides or nitrides, form hard and wear-resistant regions where they appear on the surface, ie in the case of particles 63, 64 and thus Abrasion of the carbon matrix material surrounding the particles is also prevented. This also contributes somewhat to the reduction of the coefficient of friction, for example, depending on the surface composition.
材料が摩耗する過程で機能層の表面からいくらか削り取られる場合、新しいナノ粒子が現れ、次いで該粒子は再び、硬度および耐摩耗性を保証するという挙げられた課題を担う。 If some material is scraped off the surface of the functional layer in the process of wear, new nanoparticles will appear, and then the particles will again be responsible for the listed issues of ensuring hardness and wear resistance.
基本的に、ナノ粒子は異なった層内でも濃縮されていてよい。これは例えば、その他の層の堆積物間に、自動的に異なる相を形成する混合比で堆積される一定の金属窒化物、金属ホウ化物または金属炭化物が、PVD法もしくはPACVD法の間中ずっと導入されることによる堆積プロセスの枠内で考えられうる。次いで、これにより該当する層内で硬質のナノ粒子が形成される。 In principle, the nanoparticles may be concentrated in different layers. This is the case, for example, when certain metal nitrides, metal borides or metal carbides that are deposited in a mixture ratio that automatically forms different phases between the deposits of the other layers are used throughout the PVD or PACVD process. It can be considered within the framework of the deposition process by being introduced. This then forms hard nanoparticles in the corresponding layer.
記載された発明は新規のコーティングを作り出し、該コーティングにより粒子および個々のナノ層の選択によってトライボロジー的な本要求への適応が非常に正確な形で可能となり、その際、公知の均質な材料では達成されえない、表面で種々のコンシステンシーを有する領域の混合によってパラメータがマクロ領域において調整されうる。それ以外に本発明は、これまで用いられてきた製造手段と比べてPVD法および(PA)CVD−コーティングに際して構造的な変化を要求しない、このような機能層のための簡単な製造法を提供する。 The described invention creates a new coating that allows the adaptation of the tribological requirements to this very precise form by the choice of particles and individual nanolayers, with known homogeneous materials The parameters can be adjusted in the macro region by mixing regions with different consistency on the surface that cannot be achieved. In addition, the present invention provides a simple manufacturing method for such functional layers that does not require structural changes during PVD and (PA) CVD-coating compared to previously used manufacturing means. To do.
最大コーティング温度は、コーティングプロセスに際してベース材料が焼き戻しされないように、好ましくは250℃である。 The maximum coating temperature is preferably 250 ° C. so that the base material is not tempered during the coating process.
コーティングは約0.5μm〜約10.0μm、好ましくは2.0μmの厚さで形成される。それによって、ボディーの寸法および表面粗さは、後加工が必要とならないほど僅かな程度しか変化しない。 The coating is formed with a thickness of about 0.5 μm to about 10.0 μm, preferably 2.0 μm. Thereby, the dimensions and surface roughness of the body change only so little that no post-processing is required.
以下で、本発明によるコーティングのさらなる有利な使用が詳細に説明される。図3は、ピストン9およびケーシング10を有する油圧支持エレメント8の透視図を示す。油圧支持エレメント8はドラッグレバー11とつなぎ合わされており、その際、ドラッグレバー11は転がり軸受12を介して旋回可能におかれている。そのうえ図3の中で明らかなように、ピストン9は、接触領域90をピストン9とドラッグレバー11との間に有する。そのうえピストン9は、接触領域91をピストン9とケーシング10との間に有する。ピストン9とドラッグレバー11との間の接触領域90における摩耗の減少のために、接触領域90には、同様に本発明によるナノ構造化された機能層4が備え付けられる。 In the following, further advantageous uses of the coating according to the invention will be described in detail. FIG. 3 shows a perspective view of a hydraulic support element 8 having a piston 9 and a casing 10. The hydraulic support element 8 is connected to a drag lever 11, and at this time, the drag lever 11 is pivotable via a rolling bearing 12. Moreover, as can be seen in FIG. 3, the piston 9 has a contact area 90 between the piston 9 and the drag lever 11. In addition, the piston 9 has a contact area 91 between the piston 9 and the casing 10. In order to reduce the wear in the contact area 90 between the piston 9 and the drag lever 11, the contact area 90 is likewise provided with a nanostructured functional layer 4 according to the invention.
そのうえ、同様にピストン9とケーシング10との間の接触領域91は、適用および製造技術に応じて、このようなコーティング3、4によりコーティングされうる。それによって、表されたトライボロジー系の寿命全体が高められ、そのことによって運転中の個々の機械部材の故障が減少され、ひいては全体的に費用が節約されうる。 Moreover, the contact area 91 between the piston 9 and the casing 10 can likewise be coated with such a coating 3, 4 depending on the application and the manufacturing technique. Thereby, the overall lifetime of the represented tribology system is increased, thereby reducing the failure of individual machine parts during operation and thus overall cost savings.
それ以外に、転がり軸受12、例えば転動体の部品、転がり軸受12のインナーレースおよびアウターレース、転がり軸受ケージ、ディスク等を、同時に本発明に従う機能層4による耐摩耗性の上昇のためにおよび摩擦減少のために、例えば支持層および/または接着促進層3の中間接続下でコーティングしてよい。 In addition to this, the rolling bearing 12, such as rolling element parts, inner and outer races of the rolling bearing 12, rolling bearing cages, disks, etc., are simultaneously used for increasing the wear resistance and friction by the functional layer 4 according to the invention. For reduction, for example, it may be coated under the intermediate connection of the support layer and / or the adhesion promoting layer 3.
当然の事ながら、上記の層系は、その他の構造ユニットおよび機能ユニット、例えば弁棒、支持エレメントおよびプラグインユニット、転がり軸受部品、レリーズベアリング、ピストンピン、ベアリングブッシュ、例えばエンジン領域における噴射ノズル用のコントロールピストン、リニア軸受およびその他の機械的およびトライボロジー的に高い負荷を受ける部材にも適している。 Of course, the above-mentioned layer system is used for other structural and functional units, such as valve stems, support elements and plug-in units, rolling bearing parts, release bearings, piston pins, bearing bushes, for example injection nozzles in the engine area. It is also suitable for other control pistons, linear bearings and other parts that are subjected to high mechanical and tribological loads.
この箇所で指摘されるのは、機能層4がまたコーティングされるべき機械部材のボディーに直接、支持層3もしくは接着促進層3をその間に施与せずに堆積されうることである。 It is pointed out at this point that the functional layer 4 can also be deposited directly on the body of the machine part to be coated without applying a support layer 3 or an adhesion promoting layer 3 therebetween.
本発明を、有利な実施例を手掛かりにして上で記載したが、それらに限定されず、むしろ多岐にわたる方法で変更可能である。 Although the invention has been described above with reference to advantageous embodiments, it is not limited thereto but rather can be modified in a wide variety of ways.
1 機械部材、 2 前もって定められた機械部材の面、 3 支持層/接着促進層、 4 ナノ結晶機能層、 5 バケットタペット、 6 カム、 7 弁棒、 8 油圧支持エレメント、 9 ピストン、 10 ケーシング、 11 ドラッグレバー、 12 転がり軸受、 50 カム接触面、 51 バケットシャツ、 60 層、 61 層、 62 層、 63 ナノ粒子、 64 ナノ粒子、 90 ピストンとドラッグレバーの間の接触領域、 91 ピストンとケーシングの間の接触領域 DESCRIPTION OF SYMBOLS 1 Machine member 2 Predetermined machine member surface 3 Support layer / adhesion promotion layer 4 Nanocrystal functional layer 5 Bucket tappet 6 Cam 7 Valve stem 8 Hydraulic support element 9 Piston 10 Casing 11 Drag lever, 12 Rolling bearing, 50 Cam contact surface, 51 Bucket shirt, 60 layers, 61 layers, 62 layers, 63 nanoparticles, 64 nanoparticles, 90 Contact area between piston and drag lever, 91 Piston and casing Contact area between
Claims (19)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102006029415.7A DE102006029415B4 (en) | 2006-06-27 | 2006-06-27 | Wear-resistant coating and manufacturing process therefor |
DE102006029415.7 | 2006-06-27 | ||
PCT/EP2007/055229 WO2008000573A2 (en) | 2006-06-27 | 2007-05-30 | Wear-resistant coating and production method for the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009542902A JP2009542902A (en) | 2009-12-03 |
JP5669390B2 true JP5669390B2 (en) | 2015-02-12 |
Family
ID=38523436
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009517069A Active JP5669390B2 (en) | 2006-06-27 | 2007-05-30 | Abrasion resistant coating and manufacturing method therefor |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP5669390B2 (en) |
CN (1) | CN101479401B (en) |
DE (1) | DE102006029415B4 (en) |
WO (1) | WO2008000573A2 (en) |
Families Citing this family (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102007054181A1 (en) * | 2007-11-14 | 2009-05-20 | Schaeffler Kg | Corrosion-resistant coating and manufacturing method thereof |
DE102007058564A1 (en) * | 2007-11-30 | 2009-06-04 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Smooth wear-protection coating for metal or ceramic components or tools, deposits layers of alternating structure to limit growth of defects and prevent unacceptable surface roughness |
DE102008022039A1 (en) * | 2008-04-30 | 2009-11-05 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Wear-resistant coating of amorphous carbon, is deposited in layers with varying oxygen content to control hardness, friction and wear rate |
US8109247B2 (en) | 2008-05-19 | 2012-02-07 | GM Global Technology Operations LLC | Wear resistant camshaft and follower material |
DE102009025023A1 (en) | 2009-06-10 | 2010-12-16 | Neumayer Tekfor Holding Gmbh | Method for producing a camshaft and corresponding camshaft |
DE102009028504C5 (en) | 2009-08-13 | 2014-10-30 | Federal-Mogul Burscheid Gmbh | Piston ring with a coating |
DE102009046281B3 (en) | 2009-11-02 | 2010-11-25 | Federal-Mogul Burscheid Gmbh | Sliding element, in particular piston ring, and combination of a sliding element with a running partner |
DE102010052971A1 (en) * | 2010-11-30 | 2012-05-31 | Amg Coating Technologies Gmbh | Workpiece with Si-DLC coating and process for the production of coatings |
CN102485939A (en) * | 2010-12-02 | 2012-06-06 | 鸿富锦精密工业(深圳)有限公司 | Plated film member and its preparation method |
JP2012189057A (en) * | 2011-03-14 | 2012-10-04 | Kubota Corp | Valve gear for overhead valve engine |
DE102011006294B4 (en) * | 2011-03-29 | 2018-10-04 | Schaeffler Technologies AG & Co. KG | Process for producing a hardened, coated metal component |
DE102011076410A1 (en) * | 2011-05-24 | 2012-11-29 | Schaeffler Technologies AG & Co. KG | machine element |
DE102012214284B4 (en) * | 2012-08-10 | 2014-03-13 | Federal-Mogul Burscheid Gmbh | Sliding element, in particular piston ring, with a resistant coating |
CN102865220B (en) * | 2012-09-28 | 2014-12-03 | 武汉大学 | Engine fuel pump plunger with carbon nitride-based nano composite coating and manufacturing method thereof |
DE102013209863A1 (en) | 2013-05-28 | 2014-12-04 | Schaeffler Technologies Gmbh & Co. Kg | Coated component |
DE102013216745B4 (en) * | 2013-08-23 | 2015-10-22 | Schaeffler Technologies AG & Co. KG | Rolling bearing cage |
CN104525860B (en) * | 2014-11-18 | 2018-02-27 | 西安理工大学 | Engine prop column and preparation method thereof |
DE102016202149A1 (en) | 2016-02-12 | 2017-08-17 | Schaeffler Technologies AG & Co. KG | Sheave bearing arrangement |
FR3048433B1 (en) * | 2016-03-03 | 2020-03-13 | Total Marketing Services | LUBRICATING COMPOSITION BASED ON NEUTRALIZED AMINES AND MOLYBDENE |
DE102016206838A1 (en) * | 2016-04-22 | 2017-10-26 | Schaeffler Technologies AG & Co. KG | Drag lever for an internal combustion engine |
BR102016015392A2 (en) * | 2016-06-30 | 2018-01-16 | Mahle Metal Leve S.A. | SLIDING ELEMENT FOR INTERNAL COMBUSTION ENGINES |
US10737462B2 (en) * | 2016-08-24 | 2020-08-11 | Hyundai Motor Company | Method for coating surface of moving part of vehicle and moving part of vehicle manufactured by the same |
BR102017007599B1 (en) * | 2017-04-12 | 2022-07-26 | Mahle Metal Leve S.A. | PISTON RING FOR INTERNAL COMBUSTION ENGINES |
DE102017112466A1 (en) * | 2017-06-07 | 2018-12-13 | Schaeffler Technologies AG & Co. KG | Method for producing a sliding surface |
DE102017128727A1 (en) * | 2017-12-04 | 2019-01-17 | Friedrich-Alexander-Universität Erlangen-Nürnberg | Layer system, component and method for coating |
US11157717B2 (en) * | 2018-07-10 | 2021-10-26 | Next Biometrics Group Asa | Thermally conductive and protective coating for electronic device |
DE102019110299A1 (en) * | 2019-04-18 | 2020-10-22 | Schaeffler Technologies AG & Co. KG | Tapered roller bearings |
KR102435592B1 (en) * | 2022-01-21 | 2022-08-24 | 주식회사 에스엘티지 | Pharmaceutical Capsule Appearance Inspection Device |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5237967A (en) | 1993-01-08 | 1993-08-24 | Ford Motor Company | Powertrain component with amorphous hydrogenated carbon film |
DE4434428A1 (en) | 1994-09-27 | 1996-03-28 | Widia Gmbh | Composite body, use of this composite body and method for its production |
US6080470A (en) | 1996-06-17 | 2000-06-27 | Dorfman; Benjamin F. | Hard graphite-like material bonded by diamond-like framework |
US5771873A (en) | 1997-04-21 | 1998-06-30 | Ford Global Technologies, Inc. | Carbonaceous deposit-resistant coating for engine components |
DE19810969A1 (en) | 1998-03-13 | 1999-09-30 | Fraunhofer Ges Forschung | Flowable solids press tooling, especially punches for pressing powder to produce pharmaceutical tablets |
US6261693B1 (en) | 1999-05-03 | 2001-07-17 | Guardian Industries Corporation | Highly tetrahedral amorphous carbon coating on glass |
DE19954164B4 (en) | 1999-11-10 | 2008-08-21 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Sensor for determining the state of characteristics of mechanical components using amorphous carbon layers with piezoresistive properties |
DE10005614A1 (en) | 2000-02-09 | 2001-08-16 | Hauzer Techno Coating Europ B | Process for the production of coatings and object |
US6878404B2 (en) | 2003-02-06 | 2005-04-12 | Guardian Industries Corp. | Method of depositing DLC on substrate |
JP2005090489A (en) | 2003-08-11 | 2005-04-07 | Nissan Motor Co Ltd | Valve lifter for internal combustion engine |
DE102004043550B4 (en) | 2004-09-09 | 2012-02-16 | Schaeffler Technologies Gmbh & Co. Kg | Wear resistant coating, its use and method of making the same |
EP1841896B1 (en) | 2004-11-25 | 2014-11-05 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Amorphous carbon film, process for forming the same, and high wear-resistant sliding member with amorphous carbon film provided |
EP2007922A2 (en) * | 2006-04-07 | 2008-12-31 | Ecole D'Ingenieurs de Geneve (eig) | Wear-resistant layer for parts, method for coating a part with a wear-resistant layer, and device for carrying out said method |
-
2006
- 2006-06-27 DE DE102006029415.7A patent/DE102006029415B4/en active Active
-
2007
- 2007-05-30 CN CN2007800246584A patent/CN101479401B/en active Active
- 2007-05-30 WO PCT/EP2007/055229 patent/WO2008000573A2/en active Application Filing
- 2007-05-30 JP JP2009517069A patent/JP5669390B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
WO2008000573A3 (en) | 2008-04-24 |
CN101479401A (en) | 2009-07-08 |
DE102006029415A1 (en) | 2008-01-03 |
CN101479401B (en) | 2013-05-08 |
DE102006029415B4 (en) | 2023-07-06 |
WO2008000573A2 (en) | 2008-01-03 |
JP2009542902A (en) | 2009-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5669390B2 (en) | Abrasion resistant coating and manufacturing method therefor | |
KR101282483B1 (en) | Wear-resistant coating and method of producing the same | |
KR101201653B1 (en) | Wear-resistant coating and method for producing the same | |
US7824733B2 (en) | Wear-resistant coating and process for producing it | |
US20060046060A1 (en) | Wear-resistant coating and process for producing it | |
Vetter et al. | Surface treatment selections for automotive applications | |
JP3885375B2 (en) | piston ring | |
EP2264217B1 (en) | Corrosion-resistant coating | |
JP2008510863A5 (en) | ||
JP2013528697A (en) | Process for manufacturing slide elements with a coating, in particular piston rings, and slide elements | |
JP4359979B2 (en) | Covered sliding member | |
JP2006214313A (en) | Valve lifter | |
CN105220111A (en) | High temperature low-friction coating and method thereof | |
JP4203971B2 (en) | Low friction carbon thin film | |
JP2013091823A (en) | Sliding component | |
CN104736802A (en) | Valve for internal combustion engines | |
JP5826958B1 (en) | Piston ring for internal combustion engine | |
Pandey et al. | Friction and sliding wear characterization of ion chrome coating | |
WO2021153426A1 (en) | Piston ring and coating film | |
JP2022087131A (en) | Piston ring and method for manufacturing the same | |
JP2004176848A (en) | Combination of amorphous hard carbon coated member and ferrous member | |
JP5640942B2 (en) | Sliding member and manufacturing method thereof | |
VETTER et al. | Low Friction, Hard, and Corrosion Resistant | |
JP2006348363A (en) | Sliding member, its production method, and combination sliding member |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100531 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20101228 Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20101227 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121005 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20121228 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20130110 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130205 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20131011 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131202 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20140228 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20140307 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140317 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20141117 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20141216 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5669390 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |