JP4250218B2 - Hydrogen storage alloy - Google Patents

Hydrogen storage alloy Download PDF

Info

Publication number
JP4250218B2
JP4250218B2 JP02375198A JP2375198A JP4250218B2 JP 4250218 B2 JP4250218 B2 JP 4250218B2 JP 02375198 A JP02375198 A JP 02375198A JP 2375198 A JP2375198 A JP 2375198A JP 4250218 B2 JP4250218 B2 JP 4250218B2
Authority
JP
Japan
Prior art keywords
hydrogen
alloy
hydrogen storage
pressure
storage alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02375198A
Other languages
Japanese (ja)
Other versions
JPH11209842A (en
Inventor
修 井戸原
雅廣 宇田
誠二 横田
一博 川嵜
政道 宇高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Neturen Co Ltd
Original Assignee
Neturen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neturen Co Ltd filed Critical Neturen Co Ltd
Priority to JP02375198A priority Critical patent/JP4250218B2/en
Publication of JPH11209842A publication Critical patent/JPH11209842A/en
Application granted granted Critical
Publication of JP4250218B2 publication Critical patent/JP4250218B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Powder Metallurgy (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、水素貯蔵材料や触媒材料等として用いられる水素吸蔵合金に関する。
【0002】
【従来の技術】
水素吸蔵合金は、1964年、米国ブルックヘブン国立研究所でマグネシウム−ニッケル合金(Mg2Ni)の発見を端緒に、1974年にはTiFe、1968年にはオランダ・フィリップス研究所でLaNi5が発見されており、さらにその後の研究によって、希土類・ニッケル系合金、マグネシウム−ニッケル系合金、ジルコニウム−マンガン系合金などの水素吸蔵合金が開発されるに至っている。
【0003】
一般に水素吸蔵合金に要求される特性としては、初期活性化が容易であること、水素吸放出量が大きいこと、吸放出速度が速いこと、耐久性に優れていること等が挙げられるが、従来の合金ではいずれも一長一短がある。ところが、いずれの合金でも初期活性化が必要であるという点では一致している。
これは、水素吸蔵合金は、その表面に酸化皮膜や水分等の付着があり、そのままでは水素を吸収させることができないため前処理としての活性化処理が必要になるわけである。この活性化処理は、通常、減圧下で水素吸蔵合金を高温に加熱して水素吸蔵合金の脱ガスを行った後、低温で高圧水素ガス雰囲気中に水素吸蔵合金を保持して該合金に水素を吸蔵させるという一連の工程を繰り返すことにより行われる。繰り返し数は水素が吸収される状態になるまで行われることになる。
【0004】
ところで上記活性化の難易は合金の種別によっても異なる。例えば、活性化が困難な合金としてはTiFeが知られており、その活性化ではTiFe合金を予め粉砕して粉状にし、これを400〜450℃で真空脱ガスした後、室温で約65気圧の水素を加圧するという処理を繰り返すことによりはじめて水素が吸収されるようになる。一方、従来の水素吸蔵合金中で活性化が最も容易とされている合金は、希土類−ニッケル系合金(LaNi5、MmNi5)であり、製造直後の希土類−ニッケル系合金塊は室温・1気圧状態では水素を殆ど吸収しないが、TiFeよりは条件が緩和された活性化処理(例えば水素雰囲気中で高温(500℃)・高圧(10気圧)操作の繰り返し(2回)の処理)により水素吸収が可能となる。
【0005】
【発明が解決しようとする課題】
上記のように水素を合金に吸収させるようにするためには初期活性化が必須であり、比較的活性化が容易な合金においても高温、高圧の処理を繰り返し行う必要がある。このため、水素吸蔵合金においては活性化処理の負担が大きいということが大きな問題になっており、最近でも、処理温度や圧力、繰り返し数を一層緩和するための研究が行われているが、十分な成果が得られるには至っておらず、活性化処理が水素吸蔵合金の製造コスト(前処理コスト)を上げる原因になっている。
【0006】
本発明は、上記事情を背景としてなされたものであり、初期活性化を特別に施すことなく、またはごく簡単な活性化処理によって水素の吸蔵が可能であり、しかもその水素の吸放出特性も良好な水素吸蔵合金を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記課題を解決するため本発明の水素吸蔵合金は、Nb、Ti、Feを構成成分として、(Nb重量%、Ti重量%、Fe重量%)からなる三角座標上において、各成分含有量が、点A(96,0,4)、B(30,60,10)、C(20,40,40)、D(60,0,40)を結んだ直線AB、BC、CD、DAで囲まれる領域内にあり、かつTi、Feの質量比(Ti/Fe)が0.3以上、1.2以下で、Feが30%以下であることを特徴とする。
【0008】
本発明は、Nb、FeまたはNb、Ti、Feを構成成分としており、Nb−Ti−Fe系の合金といえる。ただし、Tiを構成成分としないNb−Fe系合金も含まれる。そして、これら成分の含有量が上記A,B,C,D点を頂点とする四角形領域内に含まれるように調整することにより、初期活性化が不要になったり、その条件を大幅に緩和することができる。なお、この領域には、各点および各点を結ぶ直線上にある成分も含まれるものである。また、上記領域内の水素吸蔵合金では、室温、1気圧の状態で高速に水素の吸収を行うことができ、さらに高い温度、低い平衡圧での水素の吸放出が可能で、水素の吸放出特性にも優れている。一方、この範囲を外れると、活性化を緩和できるという効果を十分に得ることができず、所期の目的を達成することができない。
【0009】
なお、上記範囲内おいて、より確実な効果を得るためには、Ti、Feの重量比(Ti/Fe)を1とするのが望ましく、さらにNb濃度を40重量%以上にするのが一層望ましい。
【0010】
【発明の実施の形態】
本発明の水素吸蔵合金は、常法により製造することができ、本発明としては特にその製造方法が限定されることはない。
例えば、所定の成分比で調製した合金塊をアーク溶解等によって溶解して水素吸蔵合金を得る。
【0011】
上記方法等により得られた水素吸蔵合金は、粉末状の状態で使用したり、塊状等の状態で使用されるが、使用形態が特に限定されるものでもない。
また、本発明の水素吸蔵合金は、活性化処理の負担を大幅に軽減するものの、良好な水素吸放出特性を有しており、各種用途に使用することができる。例えば、水素の輸送、貯蔵用の材料として使用でき、またエネルギ変換用の材料や水素反応を伴う触媒材料等として使用することができる。
【0012】
【実施例】
以下、実施例により本発明を具体的に説明する。
実施試料として本発明のNb−Fe二元合金またはNb−Ti−Fe三元合金を下記表1に示す組成比(重量パーセント)に秤量した後、数%の水素を含むアルゴン雰囲気中でアーク溶解法により再溶解した。
このようにして作製した表面清浄合金塊をロータリーポンプで装置内を排気(10Pa程度)した後、100%水素ガスを装置内に導入して1気圧の状態にした。また、標準比較試料(従来材)としてはLaNi5合金を使用し、さらに、Nb,Ti,Fe含有量を本発明の範囲外とした比較材を用意し、これらに対しても上記と同様の処理および水素吸蔵試験を行った。
【0013】
上記水素吸蔵試験の結果、本発明の水素吸蔵合金はいずれも、上記のように水素ガスを装置内に導入した後に水素ガスを急速に吸蔵すると同時に合金塊は粉化し微粉末となり、水素を多く吸蔵した合金微粉末となった。
一方、LaNi5水素吸蔵合金では、上記室温・水素圧力1気圧における水素吸蔵量測定結果は表1に示すごとく0.1重量%以下である。すなわちLaNi5合金は活性化処理をしていないため水素吸蔵が殆ど起こらなかった。また、本発明の範囲外の比較材においても、室温・水素圧力1気圧における水素吸蔵量は表1に示すごとく零である。
上記の点から、Nb、Ti、Feの含有量を適正範囲内に定めた場合にのみ活性化処理を施すことなく、製造のままで水素が急速に吸蔵されることが明らかである。また、これらの材料に大幅に緩和された活性化処理を施すことも可能であり、このような場合でも十分に水素が吸蔵されることが予測される。
【0014】
なお、本発明の水素吸蔵合金では、ジーベルト型ガス吸・放出測定装置により水素吸蔵量を測定した。その結果は表1に示すように、合金組成および雰囲気水素圧力により0.3〜1.6重量%の範囲内で変動するが、Ti/Fe比を1とし、Nb濃度を40重量%以上にすることにより顕著に水素吸蔵量が増加していることも明らかである。また、標準比較試料(従来材)LaNi合金と、上記合金試料No.2(NTF622)、No.(NTF811)の室温(303K)における水素吸放出の合金中水素濃度と平衡水素圧力との関係の測定結果を図2(PCT図)に示した。図から、平衡水素圧力100KPa(約1気圧)における合金中水素濃度は、標準比較試料(従来材)LaNi合金では約0.1重量%以下、合金試料No.2(NTF622)では吸収時に約1重量%、放出時には約1.17重量%、合金試料No.(NTF811)では吸収時に約1重量%、放出時には約1.6重量%となっており、標準比較試料(従来材)LaNi合金よりも本発明合金の方が水素を多量に吸蔵することが明らかである。本発明合金の室温における、水素吸蔵量は合金組成により変動するが、合金試料No.(NTF811)は平衡水素圧力400KPa(約4気圧)で1.6重量%と、極めて大きい値である。そこで、高温(500K−1000K)における合金試料No.(NTF811)の水素吸放出の合金中水素濃度と平衡水素圧力との関係の測定結果を図3(PCT図)に示した。図から、合金試料の水素濃度は水素吸収時と放出時に履歴差があり、同一水素濃度を与える平衡水素圧力は吸収時の方が低くなるが温度上昇と共に、履歴差が小さくなる。また、573Kの高温においても、水素を大量に吸収し、100KPaで0.9重量%となり、高温でも水素を吸蔵し易いことも明らかである。
【0015】
また、本発明の水素吸蔵合金は、常温〜高温、1気圧で水素を確実に多く吸蔵する上に、その吸蔵速度が大きいという利点も有しており、これを確認するため、活性化処理をすることなく得られた上記合金試料No.2(NTF622)と標準比較試料につき、上記とは別に以下の水素吸蔵試験を行った。すなわち、それぞれの合金10.17gをジーベルト型圧力測定装置の反応容器(容積15900ml)に入れ、初期水素圧力92KPaとして、時間経過とともに合金に水素が吸蔵され水素圧力が低下する状況を調査し、その関係を図4に示した。図から明らかなように、水素吸蔵速度は水素導入直後(0〜120秒)までは遅いが、300秒経過頃から急速に水素吸蔵速度が増大して最大約5ml/s・gにまで達しており、大きな吸蔵速度を有していることが示されている。なお、標準比較試料のLaNi5では、長時間経過しても水素圧の変化は見られなかった。
【0016】
【表1】

Figure 0004250218
【0017】
【発明の効果】
以上説明したように本発明の水素吸蔵合金によれば、Nb、Fe、Tiを構成成分として、(Nb重量%、Ti重量%、Fe重量%)からなる三角座標上において、各成分含有量が、点A(96,0,4)、B(30,60,10)、C(20,40,40)、D(60,0,40)を結んだ直線AB、BC、CD、DAで囲まれる領域内にあり、かつTi、Feの質量比(Ti/Fe)が0.3以上、1.2以下で、Feが30%以下であるので、活性化処理を不要またはより緩和した条件での処理を可能にするとともに、室温〜高温・1気圧の状態で水素ガスを吸放出することができ、水素吸放出特性の優れた水素吸蔵合金を低コストで得られるという効果がある。
【0018】
なお、上記合金でFe含有量を3重量%以上で、Ti、Feの重量比(Ti/Fe)が0.3以上、1.2以下とすれば、上記効果は一層確実になる。
また、上記合金において、Ti、Feの重量比(Ti/Fe)を1とし、Nb濃度を40重量%以上にすれば上記効果に加え、水素吸放出量を一層多くできるという効果がある。
【図面の簡単な説明】
【図1】 本発明のA,B,C,D点および実施例におけるNb−Ti−Fe系試験合金をその含有量に基づきプロットした(Nb,Ti,Fe)三角座標を示す図である。
【図2】 試験合金の各種温度での水素吸収・放出時における平衡水素圧力と水素吸蔵量との関係を示すグラフである。
【図3】 試験合金の室温での水素吸収・放出時における平衡水素圧力と水素吸蔵量との関係を示すグラフである。
【図4】 試験合金の水素吸蔵量(水素圧力の変化)と経過時間との関係を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hydrogen storage alloy used as a hydrogen storage material or a catalyst material.
[0002]
[Prior art]
The hydrogen storage alloy was discovered in 1964 by the discovery of magnesium-nickel alloy (Mg 2 Ni) at Brookhaven National Laboratory in 1964, by TiFe in 1974, and by LaNi 5 at the Netherlands Phillips Research Institute in 1968. Further research has led to the development of hydrogen storage alloys such as rare earth / nickel alloys, magnesium-nickel alloys, and zirconium-manganese alloys.
[0003]
In general, the properties required for a hydrogen storage alloy include easy initial activation, a large amount of hydrogen absorption / release, a high rate of absorption / release, and excellent durability. All of these alloys have advantages and disadvantages. However, they are consistent in that any alloy requires initial activation.
This is because the hydrogen storage alloy has an oxide film or moisture adhering to its surface and cannot absorb hydrogen as it is, so an activation treatment as a pretreatment is required. This activation treatment is usually performed by heating the hydrogen storage alloy to a high temperature under reduced pressure to degas the hydrogen storage alloy, and then holding the hydrogen storage alloy in a high-pressure hydrogen gas atmosphere at a low temperature. It is carried out by repeating a series of steps of occlusion. The number of repetitions will be repeated until hydrogen is absorbed.
[0004]
By the way, the difficulty of the activation differs depending on the type of alloy. For example, TiFe is known as an alloy that is difficult to activate. In the activation, the TiFe alloy is pulverized in advance and powdered, vacuum degassed at 400 to 450 ° C., and then about 65 atm at room temperature. Hydrogen is absorbed only by repeating the process of pressurizing the hydrogen. On the other hand, the alloy that is most easily activated among the conventional hydrogen storage alloys is a rare earth-nickel alloy (LaNi 5 , MmNi 5 ), and the rare earth-nickel alloy ingot immediately after production has a room temperature of 1 atm. Almost no hydrogen is absorbed in the state, but it is absorbed by the activation treatment (for example, treatment at high temperature (500 ° C.) and high pressure (10 atm) in a hydrogen atmosphere (twice)) in which the conditions are relaxed. Is possible.
[0005]
[Problems to be solved by the invention]
As described above, initial activation is essential to allow hydrogen to be absorbed into the alloy, and it is necessary to repeatedly perform high-temperature and high-pressure treatment even in an alloy that is relatively easy to activate. For this reason, the burden of activation treatment is a big problem in hydrogen storage alloys, and recently, research to further ease the treatment temperature, pressure, and number of repetitions has been conducted. As a result, the activation treatment increases the manufacturing cost (pretreatment cost) of the hydrogen storage alloy.
[0006]
The present invention has been made against the background of the above circumstances, and can store and absorb hydrogen without any special initial activation or by a very simple activation process, and also has good hydrogen absorption and release characteristics. An object of the present invention is to provide a hydrogen storage alloy.
[0007]
[Means for Solving the Problems]
In order to solve the above problems, the hydrogen storage alloy of the present invention has Nb, Ti, and Fe as constituent components, and the content of each component on a triangular coordinate composed of (Nb wt%, Ti wt%, Fe wt%) Surrounded by straight lines AB, BC, CD, DA connecting points A (96, 0, 4), B (30, 60, 10), C (20, 40, 40), D (60, 0, 40) In the region, the mass ratio of Ti and Fe (Ti / Fe) is 0.3 or more and 1.2 or less , and Fe is 30% or less .
[0008]
The present invention includes Nb, Fe or Nb, Ti, and Fe as constituent components, and can be said to be an Nb—Ti—Fe alloy. However, an Nb—Fe-based alloy not containing Ti as a constituent component is also included. Then, by adjusting the content of these components so as to be included in the rectangular region having the points A, B, C, and D as vertices, initial activation becomes unnecessary or the conditions are greatly relaxed. be able to. This region includes each point and a component on a straight line connecting each point. The hydrogen storage alloy in the above region can absorb hydrogen at high speed at room temperature and 1 atm, and can absorb and release hydrogen at higher temperature and lower equilibrium pressure. Excellent characteristics. On the other hand, if it is out of this range, the effect that the activation can be relaxed cannot be sufficiently obtained, and the intended purpose cannot be achieved.
[0009]
In order to obtain a more reliable effect within the above range, it is desirable to set the weight ratio of Ti and Fe (Ti / Fe) to 1, and to further increase the Nb concentration to 40% by weight or more. desirable.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The hydrogen storage alloy of this invention can be manufactured by a conventional method, and the manufacturing method in particular is not limited as this invention.
For example, an alloy lump prepared at a predetermined component ratio is melted by arc melting or the like to obtain a hydrogen storage alloy.
[0011]
Although the hydrogen storage alloy obtained by the said method etc. is used in a powdery state, or is used in a lump-like state, the usage form is not particularly limited.
In addition, the hydrogen storage alloy of the present invention greatly reduces the burden of activation treatment, but has good hydrogen absorption / release characteristics, and can be used for various applications. For example, it can be used as a material for transporting and storing hydrogen, and can also be used as a material for energy conversion, a catalyst material accompanying a hydrogen reaction, and the like.
[0012]
【Example】
Hereinafter, the present invention will be described specifically by way of examples.
The Nb—Fe binary alloy or Nb—Ti—Fe ternary alloy of the present invention as an implementation sample was weighed to the composition ratio (weight percent) shown in Table 1 below, and then arc-dissolved in an argon atmosphere containing several percent of hydrogen. Redissolved by the method.
The surface clean alloy lump thus produced was evacuated (about 10 Pa) in the apparatus with a rotary pump, and then 100% hydrogen gas was introduced into the apparatus to bring it to 1 atm. In addition, as a standard comparative sample (conventional material), a LaNi 5 alloy is used, and further, comparative materials having Nb, Ti, and Fe contents outside the scope of the present invention are prepared. Treatment and hydrogen storage tests were performed.
[0013]
As a result of the above hydrogen storage test, all of the hydrogen storage alloys of the present invention rapidly store the hydrogen gas after introducing the hydrogen gas into the apparatus as described above, and at the same time, the alloy lump is pulverized into a fine powder and a large amount of hydrogen. The occluded alloy fine powder was obtained.
On the other hand, in the LaNi 5 hydrogen storage alloy, the hydrogen storage amount measurement result at room temperature and hydrogen pressure of 1 atm is 0.1 wt% or less as shown in Table 1. That is, since the LaNi 5 alloy was not activated, almost no hydrogen occlusion occurred. Further, even in a comparative material outside the scope of the present invention, the amount of hydrogen occlusion at room temperature and hydrogen pressure of 1 atm is zero as shown in Table 1.
From the above points, it is clear that hydrogen is rapidly occluded as it is produced without performing an activation treatment only when the contents of Nb, Ti, and Fe are set within an appropriate range. In addition, it is possible to subject these materials to a significantly relaxed activation treatment, and even in such a case, it is predicted that hydrogen is sufficiently occluded.
[0014]
In the hydrogen storage alloy of the present invention, the hydrogen storage amount was measured by a Geebelt type gas absorption / release measurement device. As shown in Table 1, the results vary within the range of 0.3 to 1.6% by weight depending on the alloy composition and atmospheric hydrogen pressure, but the Ti / Fe ratio is 1 and the Nb concentration is 40% by weight or more. It is clear that the hydrogen storage amount is remarkably increased by doing so. In addition, the standard comparison sample (conventional material) LaNi 5 alloy and the above alloy sample No. 2 (NTF622), No. 2 6 (NTF811) The measurement result of the relationship between the hydrogen concentration in the alloy for hydrogen absorption and release at room temperature (303 K) and the equilibrium hydrogen pressure is shown in FIG. 2 (PCT diagram). From the figure, the hydrogen concentration in the alloy at an equilibrium hydrogen pressure of 100 KPa (about 1 atm) is about 0.1 wt% or less for the standard comparative sample (conventional material) LaNi 5 alloy, and the alloy sample No. 2 (NTF622) is about 1% by weight upon absorption and about 1.17% by weight upon release. 6 (NTF811) is about 1% by weight upon absorption and about 1.6% by weight upon release, and the present invention alloy occludes a larger amount of hydrogen than the LaNi 5 alloy of the standard comparison sample (conventional material). Is clear. The hydrogen storage amount of the alloy of the present invention at room temperature varies depending on the alloy composition. 6 (NTF811) is an extremely large value of 1.6 wt% at an equilibrium hydrogen pressure of 400 KPa (about 4 atm). Therefore, alloy sample No. at high temperature (500K-1000K). 6 (NTF811) shows the measurement result of the relationship between the hydrogen concentration in the hydrogen absorption / release alloy and the equilibrium hydrogen pressure in FIG. 3 (PCT diagram). From the figure, the hydrogen concentration of the alloy sample has a history difference at the time of hydrogen absorption and release, and the equilibrium hydrogen pressure that gives the same hydrogen concentration is lower at the time of absorption, but the history difference decreases as the temperature rises. In addition, it absorbs a large amount of hydrogen even at a high temperature of 573 K and becomes 0.9 wt% at 100 KPa, and it is clear that it is easy to occlude hydrogen even at a high temperature.
[0015]
In addition, the hydrogen storage alloy of the present invention has an advantage that it absorbs a large amount of hydrogen at normal temperature to high temperature and 1 atm, and also has a large storage speed. In order to confirm this, activation treatment is performed. The above-mentioned alloy sample No. 2 (NTF622) and the standard comparison sample were subjected to the following hydrogen storage test separately from the above. That is, 10.17 g of each alloy was put into a reaction vessel (volume: 15900 ml) of a Geebelt-type pressure measuring device, and an initial hydrogen pressure of 92 KPa was investigated to investigate the situation in which hydrogen was occluded and the hydrogen pressure decreased over time. The relationship is shown in FIG. As is apparent from the figure, the hydrogen storage rate is slow until immediately after the introduction of hydrogen (0 to 120 seconds), but the hydrogen storage rate rapidly increases from about 300 seconds and reaches a maximum of about 5 ml / s · g. It is shown that it has a large occlusion speed. In the standard comparison sample LaNi 5 , no change in hydrogen pressure was observed even after a long period of time.
[0016]
[Table 1]
Figure 0004250218
[0017]
【The invention's effect】
As described above, according to the hydrogen storage alloy of the present invention, Nb, Fe, and Ti are used as constituent components, and each component content is on a triangular coordinate composed of (Nb wt%, Ti wt%, Fe wt%). , Points A (96, 0, 4), B (30, 60, 10), C (20, 40, 40), surrounded by straight lines AB, BC, CD, DA connecting D (60, 0, 40) And the mass ratio of Ti and Fe (Ti / Fe) is not less than 0.3 and not more than 1.2 , and Fe is not more than 30%. In addition, it is possible to absorb and release hydrogen gas at room temperature to high temperature and 1 atm, and to obtain a hydrogen storage alloy having excellent hydrogen absorption / release characteristics at low cost.
[0018]
In addition, if the Fe content is 3 wt% or more and the weight ratio of Ti and Fe (Ti / Fe) is 0.3 or more and 1.2 or less in the above alloy, the above effect is further ensured.
Further, in the above alloy, if the weight ratio of Ti and Fe (Ti / Fe) is set to 1 and the Nb concentration is 40% by weight or more, in addition to the above effects, there is an effect that the amount of hydrogen absorption / desorption can be further increased.
[Brief description of the drawings]
FIG. 1 is a diagram showing (Nb, Ti, Fe) triangular coordinates plotting Nb—Ti—Fe based test alloys in points A, B, C, and D of the present invention and based on their contents.
FIG. 2 is a graph showing the relationship between the equilibrium hydrogen pressure and the hydrogen storage amount at the time of hydrogen absorption / release at various temperatures of a test alloy.
FIG. 3 is a graph showing the relationship between the equilibrium hydrogen pressure and the hydrogen storage amount when hydrogen is absorbed and released at room temperature in a test alloy.
FIG. 4 is a graph showing the relationship between the hydrogen storage amount (change in hydrogen pressure) of the test alloy and the elapsed time.

Claims (1)

Nb、Ti、Feを構成成分として、(Nb重量%、Ti重量%、Fe重量%)からなる三角座標上において、各成分含有量が、点A(96,0,4)、B(30,60,10)、C(20,40,40)、D(60,0,40)を結んだ直線AB、BC、CD、DAで囲まれる領域内にあり、かつTi、Feの質量比(Ti/Fe)が0.3以上、1.2以下で、Feが30%以下であることを特徴とする水素吸蔵合金。On the triangular coordinate composed of (Nb wt%, Ti wt%, Fe wt%) with Nb, Ti and Fe as constituent components, the content of each component is point A (96, 0, 4), B (30, 60, 10), C (20, 40, 40), D (60, 0, 40) in the region surrounded by straight lines AB, BC, CD, DA, and the mass ratio of Ti and Fe (Ti / Fe) is 0.3 to 1.2 and Fe is 30% or less .
JP02375198A 1998-01-21 1998-01-21 Hydrogen storage alloy Expired - Fee Related JP4250218B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02375198A JP4250218B2 (en) 1998-01-21 1998-01-21 Hydrogen storage alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02375198A JP4250218B2 (en) 1998-01-21 1998-01-21 Hydrogen storage alloy

Publications (2)

Publication Number Publication Date
JPH11209842A JPH11209842A (en) 1999-08-03
JP4250218B2 true JP4250218B2 (en) 2009-04-08

Family

ID=12119030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02375198A Expired - Fee Related JP4250218B2 (en) 1998-01-21 1998-01-21 Hydrogen storage alloy

Country Status (1)

Country Link
JP (1) JP4250218B2 (en)

Also Published As

Publication number Publication date
JPH11209842A (en) 1999-08-03

Similar Documents

Publication Publication Date Title
RU2388839C2 (en) Non evaporating gas absorbing alloys for hydrogen trapping
JPS5839217B2 (en) Mitsushi Metal for hydrogen storage - Nickel alloy
AU2007262337A1 (en) Non-evaporable getter alloys based on yttrium for hydrogen sorption
US4347082A (en) Mischmetal alloy for storage of hydrogen
JP4250218B2 (en) Hydrogen storage alloy
US4400348A (en) Alloy for occlusion of hydrogen
JPS61199045A (en) Hydrogen occluding alloy
JP3322486B2 (en) Hydrogen storage alloy with excellent poisoning resistance and regenerative recovery
JP2859187B2 (en) Hydrogen storage alloy
JPH0784636B2 (en) Hydrogen storage alloy
Hsu et al. Hydrogenation of multicomponent Zr-base C15 type alloys
Saldan et al. Ti–Ni alloys as MH electrodes in Ni–MH accumulators
JPS61250136A (en) Titanium-type hydrogen occluding alloy
JPS619544A (en) Titanium alloy for occluding hydrogen
Jain et al. Hydrogen absorption in Al doped MmNi5
JPS6369701A (en) Metallic material for occluding hydrogen
JP4768111B2 (en) Hydrogen storage alloy
JPS6048580B2 (en) Alloy for hydrogen storage
JPH0693366A (en) Hydrogen storage alloy
KR910010059B1 (en) Zr-ji-cr-fe laves phase alloy for storing the hydrogin
JPH11343524A (en) Production of hydrogen storage alloy and the alloy
JP4766414B2 (en) Hydrogen storage alloy
JPH01201401A (en) Hydrogen storage alloy powder
JPS59208037A (en) Alloy for storing hydrogen
JP2002060883A (en) Hydrogen storage alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080630

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080901

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees