JPH01201401A - Hydrogen storage alloy powder - Google Patents

Hydrogen storage alloy powder

Info

Publication number
JPH01201401A
JPH01201401A JP63026366A JP2636688A JPH01201401A JP H01201401 A JPH01201401 A JP H01201401A JP 63026366 A JP63026366 A JP 63026366A JP 2636688 A JP2636688 A JP 2636688A JP H01201401 A JPH01201401 A JP H01201401A
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
alloy powder
hydrogen
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63026366A
Other languages
Japanese (ja)
Inventor
Kazuo Fujiwara
藤原 和雄
Takenori Nakayama
武典 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP63026366A priority Critical patent/JPH01201401A/en
Publication of JPH01201401A publication Critical patent/JPH01201401A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To manufacture hydrogen storage alloy powder without needing activating treatment at low cost by coating rare earth metal group hydrogen storage alloy on the outer surface of Ti base hydrogen storage alloy powder. CONSTITUTION:On the outer surface of the Ti base hydrogen storage alloy powder, such as typically TiFe, TiMn, the rare earth metal group hydrogen storage alloy, such as typically LaNi5, MmNi5 is coated by using spattering, etc. Then, the coating of the rare earth metal group hydrogen storage alloy may be not always perfectly coated, but the higher the coating ratio is, the more favorable the hydrogen storage alloy is. By this method, the hydrogen storage alloy powder, which can very quickly absorb a large quantity of hydrogen and easily and quickly discharges hydrogen with only a little heating, is obtd.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は水素貯蔵合金粉末に関し、さらに詳しくは、金
属水素化物の形態で多量の水素を極めて速やかに吸蔵で
き、そして、僅かの加熱で容易に、かつ、速やかに水素
を放出することができる水素貯蔵合金粉末に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a hydrogen storage alloy powder, and more specifically, it is capable of absorbing a large amount of hydrogen in the form of a metal hydride very quickly and can be easily absorbed by a small amount of heating. The present invention relates to a hydrogen storage alloy powder that can quickly release hydrogen.

[従来の技術] 従来において、TiFe、TiMn等に代表されるTi
系の水素貯蔵合金は、水素吸蔵、放出特性に優れ、かつ
、安価であることから、実用化に近い水素貯蔵合金とし
て注目されてきているが、活性化処理、即ち、合金の表
面にある酸化物、吸着ガス、吸着水分等の抑制する物質
を除去するために、高温・高圧処理を行う必要があるこ
と、および、水素純度の影響を受は易いという問題があ
る。
[Prior art] In the past, Ti, represented by TiFe, TiMn, etc.
This type of hydrogen storage alloy has excellent hydrogen storage and release characteristics and is inexpensive, so it has been attracting attention as a hydrogen storage alloy that is close to being put into practical use. There are problems in that it is necessary to perform high temperature and high pressure treatment to remove suppressing substances such as gases, adsorbed gases, and adsorbed moisture, and that it is easily affected by hydrogen purity.

また、1aNis、MmNi5等に代表される希土類系
の水素貯蔵合金は、水素吸蔵、放出特性が優れ、かつ、
活性化処理を必要とせず、また、水素純度の影響ら受け
にくく、極めて取り扱いの容易な水素貯蔵合金であるが
、非常に高価であるという欠点がある。
In addition, rare earth hydrogen storage alloys such as 1aNis and MmNi5 have excellent hydrogen storage and release characteristics, and
It is a hydrogen storage alloy that does not require activation treatment, is not easily affected by hydrogen purity, and is extremely easy to handle, but it has the drawback of being extremely expensive.

[発明が解決しようとする課題] 本発明は上記の従来の水素貯蔵合金、Ti系水素貯蔵合
金や希土類系水素貯蔵合金の個々の問題点に鑑み、本発
明者が鋭意研究を行った結果、活性化処理を必要とせず
、さらに、安価である水素貯蔵合金粉末を開発したので
ある。
[Problems to be Solved by the Invention] The present invention has been made as a result of intensive research conducted by the present inventors in view of the individual problems of the conventional hydrogen storage alloys, Ti-based hydrogen storage alloys, and rare earth-based hydrogen storage alloys. They have developed a hydrogen storage alloy powder that does not require activation treatment and is also inexpensive.

[課題を解決するための手段] 本発明に係る水素貯蔵合金粉末の特徴とするところは、
1゛i系水素貯蔵合金粉末の外表面上に、希土類系水素
貯蔵合金を被覆を設けたことにある。
[Means for Solving the Problems] The hydrogen storage alloy powder according to the present invention is characterized by:
1. The outer surface of the 1.i-based hydrogen storage alloy powder is coated with a rare earth hydrogen storage alloy.

本発明に係る水素貯蔵合金粉末について、以下詳細に説
明する。
The hydrogen storage alloy powder according to the present invention will be explained in detail below.

本発明に係る水素貯蔵合金粉末において使用するTi系
水素貯蔵合金粉末として、TideおよびTiMn等に
代表されるTi系の水素貯蔵合金は、水素吸蔵、水素放
出特性に優れている材料であり、この材料は水素貯蔵合
金として使用する場合、活性化処理を必要とする表面特
性に難点があるので、基本的には外部雰囲気に接するこ
とのないように、水素貯蔵合金の内部の構成材料とした
As the Ti-based hydrogen storage alloy powder used in the hydrogen storage alloy powder according to the present invention, Ti-based hydrogen storage alloys such as Tide and TiMn are materials with excellent hydrogen storage and hydrogen release characteristics. When the material is used as a hydrogen storage alloy, it has a drawback in its surface properties that require activation treatment, so it is basically used as an internal constituent material of the hydrogen storage alloy so that it does not come into contact with the external atmosphere.

また、本発明の係る水素貯蔵合金粉末において使用する
被覆材料の希土類系水素貯蔵合金として、L aN i
s、MmNi5等に代表される希土類系の水素貯蔵合金
は、水素吸蔵、放出特性が優れ、かつ、活性化処理を必
要とせず、また、水素純度の影響も受けにくく、極めて
取り扱いの容易な水素貯蔵合金であることから被覆の構
成材料とし、さらに、Ti系水素貯蔵合金と同じ温度範
囲でその機能を発揮すること、および、Ti系水素貯蔵
合金と比べて表面特性に優れていることから、このTi
系水素貯蔵合金の外表面に存在させるのである。
In addition, as a rare earth hydrogen storage alloy for the coating material used in the hydrogen storage alloy powder according to the present invention, L aN i
Rare earth hydrogen storage alloys, such as MmNi5 and MmNi5, have excellent hydrogen storage and release characteristics, do not require activation treatment, are not easily affected by hydrogen purity, and are extremely easy to handle hydrogen storage alloys. Since it is a storage alloy, it is used as a constituent material of the coating, and furthermore, it performs its function in the same temperature range as Ti-based hydrogen storage alloys, and has superior surface properties compared to Ti-based hydrogen storage alloys. This Ti
The hydrogen storage alloy is made to exist on the outer surface of the hydrogen storage alloy.

そして、希土類系水素貯蔵合金はTi系水素貯蔵合金に
対して、必ずしも完全に被覆されている必要はないが、
その被覆率が高いほど水素貯蔵合金としては有利である
Although the rare earth hydrogen storage alloy does not necessarily have to be completely coated with the Ti hydrogen storage alloy,
The higher the coverage, the more advantageous it is as a hydrogen storage alloy.

さらに、Ti系水素貯蔵合金の外表面に希土類系水素貯
蔵合金を被覆しても、水素の吸収能はTi系水素貯蔵合
金が希土類系水素貯蔵合金より大きいから、Ti系水素
貯蔵合金の外表面に希土類系水素貯蔵合金か被覆されて
いてし、水素はTi系水素貯蔵合金に吸蔵される。即ち
、1回当たりの水素の吸収能自体は各単独粉の混合した
粉末と変わりがない(劣らない。)。
Furthermore, even if the outer surface of the Ti-based hydrogen storage alloy is coated with a rare earth-based hydrogen storage alloy, the hydrogen absorption capacity of the Ti-based hydrogen storage alloy is greater than that of the rare-earth hydrogen storage alloy. The hydrogen storage alloy is coated with a rare earth hydrogen storage alloy, and hydrogen is stored in the Ti hydrogen storage alloy. That is, the hydrogen absorption capacity per one time itself is the same (not inferior) to that of a mixed powder of each individual powder.

また、吸蔵水素の放出は、水素分圧を変える(真空)、
または、加熱による方法が採用できるが、何れの場合で
も希土類系水素貯蔵合金の被覆による悪影響はない。
In addition, the release of stored hydrogen changes the hydrogen partial pressure (vacuum),
Alternatively, a heating method can be employed, but in either case, coating with a rare earth hydrogen storage alloy does not have any adverse effects.

さらに、希土類系水素貯蔵合金をTi系水素貯蔵合金の
外表面に被覆する方法として、スパッタリングを使用で
きるが、他の被覆方法でもよい。
Furthermore, although sputtering can be used as a method for coating the outer surface of the Ti-based hydrogen storage alloy with the rare earth hydrogen storage alloy, other coating methods may also be used.

そして、スパッタリングでは完全にTi系水素貯蔵合金
の外表面に希土類系水素貯蔵合金を完全に被覆できない
が、100%完全に被覆しなくてもよく、単に、被覆さ
れない部分があるというだけである。
Although it is not possible to completely coat the outer surface of the Ti-based hydrogen storage alloy with the rare earth-based hydrogen storage alloy by sputtering, it is not necessary to completely cover the outer surface of the Ti-based hydrogen storage alloy, but there is simply a portion that is not covered.

このようにして製造された水素貯蔵合金粉末は、吸着用
タンクに充填して使用される。
The hydrogen storage alloy powder produced in this manner is used by filling an adsorption tank.

[実 施 例] 本発明に係る水素貯蔵合金粉末の実施例を比較例ととも
に説明する。
[Example] Examples of the hydrogen storage alloy powder according to the present invention will be described together with comparative examples.

実施例 比較合金の実施例。Example Examples of comparative alloys.

市販のTiとFeを原子数比Ti:Fe=l:1となる
ように分取し、各々高真空アーク溶解炉に挿入し、炉内
を高純度アルゴン雰囲気とした後、加熱溶解して、Tt
Feの組成の合金を製造した。
Commercially available Ti and Fe were separated so that the atomic ratio Ti:Fe=1:1, each was inserted into a high vacuum arc melting furnace, the inside of the furnace was made into a high purity argon atmosphere, and then heated and melted. Tt
An alloy with a composition of Fe was produced.

製造されたTide合金を100〜200メツシユに粉
砕して、その5gを5US316鋼製反応容器に採取し
、この容器を排気装置に接続して減圧し、また、100
℃に加熱保持して脱ガスを行った。次いで、器内に5ナ
インの水素ガスを導入し水素圧を50 kgr/crn
”に保持して、水素の吸蔵させた。その後、再び排気し
て水素を放出して、所謂、活性化処理を完了した。
The produced Tide alloy was crushed into 100-200 meshes, 5 g of which was collected in a 5US316 steel reaction vessel, and this vessel was connected to an exhaust system to reduce the pressure.
Degassing was performed by heating and maintaining the temperature at °C. Next, 5 nines of hydrogen gas was introduced into the vessel and the hydrogen pressure was increased to 50 kgr/crn.
'' to absorb hydrogen. Thereafter, it was evacuated again to release hydrogen, completing the so-called activation process.

その後、この粉末合金を取り出して、常温、大気中に2
週間放置し、以下説明する測定試験に供した。
After that, this powder alloy was taken out and placed in the atmosphere at room temperature for 2 hours.
The sample was left for a week and then subjected to the measurement test described below.

本発明に係る水素貯蔵合金粉末の実施例。Examples of hydrogen storage alloy powder according to the present invention.

市販のLaとNiを原子数比La:N1=1:5となる
ように分取し、高真空アーク溶解炉に挿入し、炉内を高
純度アルゴン雰囲気とした後、加熱溶解して、LaNi
5の組成の合金を製造した。
Commercially available La and Ni are separated so that the atomic ratio La:N1=1:5, inserted into a high-vacuum arc melting furnace, and after creating a high-purity argon atmosphere inside the furnace, they are heated and melted to form LaNi.
An alloy of composition No. 5 was produced.

このLaNi5をスパッタリングターゲット材料として
、マグネトロン型スパッタリング装置に装着した。
This LaNi5 was used as a sputtering target material and was installed in a magnetron type sputtering device.

また、上記比較合金として製作したTiFe合金粉末(
上記の活性化処理を行なっていない物)を、このスパッ
タリング装置に挿入し、装置内で上記と全(同様の活性
化処理(脱ガス−水素吸蔵−水素放出)を行なった後、
直ちに、L aN is金合金スパッタし、TiFe合
金粉末上にLaNi5合金の皮膜を約0.5μm平均厚
さで被覆した。
In addition, TiFe alloy powder (
After inserting the above-mentioned material (which has not been subjected to the activation treatment) into this sputtering apparatus and performing the same activation treatment (degassing - hydrogen absorption - hydrogen release) as above in the apparatus,
Immediately, LaNi5 alloy was sputtered to coat the TiFe alloy powder with an average thickness of about 0.5 μm.

その後、このようにして製作された粉末合金を取り出し
て、常温、大気中に2週間放置し、以下説明する測定試
験に供した。
Thereafter, the powder alloy produced in this manner was taken out, left in the atmosphere at room temperature for two weeks, and subjected to the measurement test described below.

本発明に係る水素貯蔵合金粉末と比較合金の水素化反応
速度の測定。
Measurement of hydrogenation reaction rate of hydrogen storage alloy powder according to the present invention and comparative alloy.

本発明に係る水素貯蔵合金粉末および比較合金について
、各々別個に25℃の温度に保持されている反応容器に
入れ、5 X 10−’Torrまで減圧してから、6
0 kgf/cm”の水素を挿入し、水素の吸収量を系
内の圧力変化から測定して、各々の水素化反応速度を求
めた。
The hydrogen storage alloy powder according to the present invention and the comparative alloy were separately placed in a reaction vessel maintained at a temperature of 25°C, and the pressure was reduced to 5 x 10-' Torr, and then the mixture was heated to 6.
0 kgf/cm'' of hydrogen was inserted, and the amount of hydrogen absorbed was measured from the pressure change in the system to determine each hydrogenation reaction rate.

水素化反応速度の測定結果を第1図に示す。The measurement results of the hydrogenation reaction rate are shown in FIG.

この第1図から、比較合金のTiFe合金は大さ・)暴
露によって活性化が失われているが、本発明に係る水素
貯蔵合金粉末で活性化状態にあることがわかる。即ち、
比較合金では一度大気に暴露される場合には、その度に
活性化処理を必要とするが、本発明に係る水素貯蔵合金
粉末ではその必要がなく、容易に何時でも使用できるの
である。
From FIG. 1, it can be seen that the comparative TiFe alloy loses its activation due to exposure, but the hydrogen storage alloy powder according to the present invention is in an activated state. That is,
Comparative alloys require activation treatment each time they are exposed to the atmosphere, but the hydrogen storage alloy powder according to the present invention does not require such activation and can be used easily at any time.

また、水素貯蔵合金では、水素吸蔵・放出の繰り返しに
伴う微粉化ら使用する上で問題となっているが、本発明
に係る水素貯蔵合金粉末は比較合金に比べて、この耐微
粉化性にも優れていることも確認している。これは希土
類系水素貯蔵合金の被覆効果によるものであると考えら
れる。
In addition, hydrogen storage alloys have problems in use due to pulverization due to repeated hydrogen absorption and release, but the hydrogen storage alloy powder according to the present invention has better resistance to pulverization than comparative alloys. It has also been confirmed that it is also excellent. This is thought to be due to the coating effect of the rare earth hydrogen storage alloy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る水素貯蔵合金粉末と比較合金を2
5℃の温度で測定した水素化反応曲線である。
Figure 1 shows two hydrogen storage alloy powders according to the present invention and a comparative alloy.
It is a hydrogenation reaction curve measured at a temperature of 5°C.

Claims (1)

【特許請求の範囲】[Claims] Ti系水素貯蔵合金粉末の外表面上に、希土類系水素貯
蔵合金の被覆を設けたことを特徴とする水素貯蔵合金粉
末。
A hydrogen storage alloy powder characterized in that a coating of a rare earth hydrogen storage alloy is provided on the outer surface of the Ti-based hydrogen storage alloy powder.
JP63026366A 1988-02-06 1988-02-06 Hydrogen storage alloy powder Pending JPH01201401A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63026366A JPH01201401A (en) 1988-02-06 1988-02-06 Hydrogen storage alloy powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63026366A JPH01201401A (en) 1988-02-06 1988-02-06 Hydrogen storage alloy powder

Publications (1)

Publication Number Publication Date
JPH01201401A true JPH01201401A (en) 1989-08-14

Family

ID=12191501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63026366A Pending JPH01201401A (en) 1988-02-06 1988-02-06 Hydrogen storage alloy powder

Country Status (1)

Country Link
JP (1) JPH01201401A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04246138A (en) * 1991-01-29 1992-09-02 Sharp Corp Hydrogen storage alloy material and its production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04246138A (en) * 1991-01-29 1992-09-02 Sharp Corp Hydrogen storage alloy material and its production

Similar Documents

Publication Publication Date Title
RU2388839C2 (en) Non evaporating gas absorbing alloys for hydrogen trapping
US4312669A (en) Non-evaporable ternary gettering alloy and method of use for the sorption of water, water vapor and other gases
JP2893528B2 (en) Non-evaporable getter alloy
EP1160820A1 (en) Combination of materials for the low temperature triggering of the activation of getter materials and getter devices containing the same
US5830026A (en) Mercury dispensing device
US20040101686A1 (en) Composite materials capable of hydrogen sorption and methods for the production thereof
KR20090023424A (en) Non-evaporable getter alloys based on yttrium for hydrogen sorption
CA1202200A (en) Oxygen stabilized zirconium-vanadium-iron alloy
JPH0382734A (en) Rare earth metal-series hydrogen storage alloy
WO2007099575A2 (en) Use of non-evaporable getter alloys for the sorption of hydrogen in vacuum and in inert gases
JPH01201401A (en) Hydrogen storage alloy powder
Meli et al. XPS analysis of the getter mechanism and getter activation process
US5851690A (en) Hydrogen absorbing alloys
CN1143686A (en) Multielement non-evapotranspiation type low-temp activation Zr base gas-absorber alloy and producing method thereof
JPS62284033A (en) Reversible hydrogen occluding and releasing material
JPH0542489B2 (en)
JP4033587B2 (en) Molded product for getter and method for producing the same
Polak et al. The reaction of sputtered FeTi with uhv residual gas studied by XPS
JP2003073765A (en) Hydrogen storage material
JPH0410175B2 (en)
JPS6017011B2 (en) Hydrogen storage metal material
JP2004068049A (en) Bcc solid solution type hydrogen storage alloy with excellent hydrogen migration capacity, and method for manufacturing the hydrogen storage alloy
JPS5950744B2 (en) Alloy for hydrogen storage
JPH089748B2 (en) Gas absorption alloy with excellent activation characteristics
JPH0557345B2 (en)