JPH11343524A - Production of hydrogen storage alloy and the alloy - Google Patents

Production of hydrogen storage alloy and the alloy

Info

Publication number
JPH11343524A
JPH11343524A JP10149659A JP14965998A JPH11343524A JP H11343524 A JPH11343524 A JP H11343524A JP 10149659 A JP10149659 A JP 10149659A JP 14965998 A JP14965998 A JP 14965998A JP H11343524 A JPH11343524 A JP H11343524A
Authority
JP
Japan
Prior art keywords
hydrogen
hydrogen storage
alloy
storage alloy
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10149659A
Other languages
Japanese (ja)
Inventor
Yasuhide Kurimoto
泰英 栗本
Hidenori Iba
英紀 射場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP10149659A priority Critical patent/JPH11343524A/en
Publication of JPH11343524A publication Critical patent/JPH11343524A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a hydrogen storage alloy excellent in hysteresis characteristics in which cycle treatment of occluding hydrogen under the pressure higher than that in ordinary activating treatment in particular and reducing the pressure into a vacuum is executed as for the improvement of the hysteresis of a body-centered cubic structure series hydrogen storage alloy and to provide the alloy. SOLUTION: This is a method for producing a hydrogen storage alloy having a body-cented cubic structure, in which cycle treatment in which a stage of occluding hydrogen into a hydrogen storage alloy under the pressure higher than that in the condition of activating treatment and a stage of reducing the pressure into a vacuum are repeated many times is executed. After the cycle treatment, ordinary activating treatment is executed. The cycle treatment is executed after ordinary activating treatment. As for the cycle treatment, at the time of occluding hydrogen, the temp. is less than 20 deg.C, and the presure is 2 to 15 MPa, and at the time of releasing hydrogen, the temp. is >=50 deg.C, and the degree of vacuum is <=5 kPa.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、体心立方構造系水
素吸蔵合金のヒステリシスの改善に関し、特に通常の活
性化処理より高圧の水素で吸蔵・真空に減圧するサイク
ル処理を施し、ヒステリシス特性に優れた水素吸蔵合金
の製造方法およびその合金に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in hysteresis of a body-centered cubic hydrogen storage alloy, and more particularly, to a cycle treatment of storing and depressurizing to a vacuum with a higher pressure of hydrogen than a normal activation treatment to improve the hysteresis characteristics. The present invention relates to a method for producing an excellent hydrogen storage alloy and an alloy thereof.

【0002】[0002]

【従来の技術】水素の貯蔵・輸送手段として、水素吸蔵
合金は、合金自身の体積の約1000倍以上の水素ガスを吸
蔵し貯蔵することが可能であり、その体積密度は、液体
あるいは固体水素とほぼ同等かあるいはそれ以上であ
る。この水素吸蔵材料として、V,Nb,TaやTi−
V合金などの体心立方構造(以下BCC構造と呼称す
る)の金属は、すでに実用化されているLaNi5 など
のAB5 型合金やTiMn2などのAB2 型合金に比
べ、大量の水素を吸蔵することは古くから知られてい
た。このBCC構造では、その結晶格子中の水素吸蔵サ
イトが多く、計算による水素吸蔵量がH/M=2.0
(原子量50程度のTiやVなど合金では約4.0wt
%)と極めて大きいためである。
2. Description of the Related Art As a means for storing and transporting hydrogen, a hydrogen storage alloy can store and store hydrogen gas of about 1000 times or more the volume of the alloy itself, and its volume density is liquid or solid hydrogen. It is almost the same or more. As this hydrogen storage material, V, Nb, Ta, Ti-
Metals having a body-centered cubic structure (hereinafter, referred to as a BCC structure) such as V alloys generate a larger amount of hydrogen than AB 5 type alloys such as LaNi 5 or AB 2 type alloys such as TiMn 2 which are already in practical use. Occlusion has been known for a long time. In this BCC structure, there are many hydrogen storage sites in the crystal lattice, and the calculated hydrogen storage amount is H / M = 2.0.
(For alloys such as Ti and V with an atomic weight of about 50, about 4.0 wt.
%), Which is extremely large.

【0003】一方、水素吸蔵合金を使用する際、特性に
おいてヒステリシスが小さいことが要求される。ヒステ
リシスが大きいと、使用環境下での水素の有効使用量
が、合金自体の特性より大幅に小さくなってしまうから
である。特に、BCC系の水素吸蔵合金はもともとヒス
テリシスが大きいものが多いため、何らかの対策が必要
である。この分野の従来技術として、例えば特開平1−
955467号や特開平57−101632号公報等の
ように、合金成分を工夫するもの、焼鈍等の熱処理を加
えるもの等が知られている。これらの技術は成分が限定
されていたり、加熱が必要であったりするので、実用的
とはいえない。また、純バナジウム合金においては、結
晶構造から計算された値とほぼ同じ約4.0wt%を吸蔵
し、その約半分を常温常圧下で放出する。同じ周期表の
5A族の元素のNbやTaにおいても同様に大きな水素
吸蔵量と良好な水素放出特性を示すことが知られてい
る。
[0003] On the other hand, when a hydrogen storage alloy is used, it is required that hysteresis is small in characteristics. If the hysteresis is large, the effective use amount of hydrogen under the use environment becomes significantly smaller than the characteristics of the alloy itself. In particular, since many BCC-based hydrogen storage alloys originally have a large hysteresis, some countermeasures are required. As a prior art in this field, for example,
As disclosed in, for example, Japanese Patent Application Laid-Open No. 954467 and Japanese Patent Application Laid-Open No. 57-101632, those in which alloy components are devised and those in which heat treatment such as annealing is performed are known. These techniques are not practical because the components are limited or heating is required. Pure vanadium alloy absorbs about 4.0 wt%, which is almost the same as the value calculated from the crystal structure, and releases about half of it at normal temperature and pressure. It is known that Nb and Ta of group 5A elements of the same periodic table also show a large amount of hydrogen storage and good hydrogen release characteristics.

【0004】V,Nb,Taなどの純金属では、非常に
コストが高いため、水素タンクやNi−MH電池などあ
る程度の合金量を必要とする工業的な応用においては現
実的でない。これまで、Ti−VなどのBCC構造を有
する成分範囲の合金において、その特性が改善されてき
た。しかし、使用環境に対する有効使用範囲の評価とし
てのヒステリシス特性が大きいためこれが減少するとい
う特有の問題がある。そこで、上記のBCC構造合金の
ヒステリシス特性を、比較的簡便にしてコスト的に有利
な処理によって改善し、有効使用範囲を拡大可能とする
技術開発が望まれていた。
[0004] Pure metals such as V, Nb, Ta and the like are very costly and are not practical in industrial applications requiring a certain amount of alloy, such as hydrogen tanks and Ni-MH batteries. Heretofore, the characteristics of alloys having a BCC structure such as Ti-V have been improved. However, there is a specific problem that the hysteresis characteristic as the evaluation of the effective use range with respect to the use environment is reduced due to a large hysteresis characteristic. Therefore, there has been a demand for a technique for improving the hysteresis characteristics of the above BCC structural alloy by a relatively simple and cost-effective treatment and expanding the effective use range.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、BC
C系合金におけるヒステリシス低減方法を検討し、水素
の有効使用量を合金自体の固有の特性に近づけ、BCC
系合金の水素吸放出特性の改善を可能とする水素吸蔵合
金の製造方法およびその合金を提供することにある。ま
た、本発明の他の目的は、従来の活性化処理とは異なる
高圧力下での吸放出のサイクル処理を検討し、これによ
り合金原子間に水素が容易に通れるようにしてヒステリ
シスの改善を可能とする水素吸蔵合金の製造方法および
その合金を提供することにある。さらに、本発明の別の
目的は、水素貯蔵容器への充填または電池電極の形成等
に於けるハンドリング時の被毒を防止するために前記処
理タイミングを検討し、水素吸蔵合金の特性の劣化が生
じない状態での水素吸蔵合金の製造方法およびその合金
を提供することにある。
SUMMARY OF THE INVENTION The object of the present invention is to provide a BC
Investigating a method for reducing hysteresis in C-based alloys, bringing the effective amount of hydrogen closer to the inherent properties of the alloy itself,
It is an object of the present invention to provide a method for producing a hydrogen storage alloy which enables improvement in the hydrogen absorption / desorption characteristics of a system alloy, and an alloy thereof. Another object of the present invention is to consider a cycle process of absorption and release under a high pressure different from the conventional activation process, thereby improving the hysteresis by allowing hydrogen to easily pass between alloy atoms. It is an object of the present invention to provide a method of manufacturing a hydrogen storage alloy and an alloy thereof. Further, another object of the present invention is to examine the processing timing in order to prevent poisoning at the time of filling in a hydrogen storage container or forming a battery electrode, etc. It is an object of the present invention to provide a method for producing a hydrogen storage alloy in a state where no hydrogen is generated and an alloy thereof.

【0006】[0006]

【課題を解決するための手段】上記の目的は、体心立方
型の構造を持つ水素吸蔵合金の製造方法であって、水素
吸蔵合金に活性化処理の条件より高圧で水素を吸蔵させ
る工程と、真空に減圧する工程とを複数回繰り返すサイ
クル処理を施すことを特徴とする水素吸蔵合金の製造方
法によって達成される。また、上記の目的は、前記サイ
クル処理の後、通常の活性化処理を行うことを特徴とす
る水素吸蔵合金の製造方法によっても達成される。さら
に、上記の目的は、前記サイクル処理を、通常の活性化
処理の後で行うことを特徴とする水素吸蔵合金の製造方
法によっても達成される。
The object of the present invention is to provide a method for producing a hydrogen storage alloy having a body-centered cubic structure, comprising the steps of: causing the hydrogen storage alloy to store hydrogen at a higher pressure than the activation condition. And a step of repeating the step of reducing the pressure to a vacuum a plurality of times is achieved by a method for producing a hydrogen storage alloy. Further, the above object is also achieved by a method for producing a hydrogen storage alloy, wherein a normal activation treatment is performed after the cycle treatment. Further, the above object is also achieved by a method for producing a hydrogen storage alloy, wherein the cycle treatment is performed after a normal activation treatment.

【0007】また、上記の目的は、前記サイクル処理
が、水素吸蔵時20℃未満、圧力2MPa(20kgf
/cm2 )以上15MPa(150kgf/cm2 )以
下であり、水素放出時50℃以上真空度5kPa(0.
5kgf/cm2 )以下であることを特徴とする水素吸
蔵合金の製造方法によっても達成される。さらに、上記
の目的は、主相として体心立方型の構造を有する水素吸
蔵合金であって、Hf=Pa/Pdで定義されるヒステ
リシスファクターとして、1.0〜5.0を有すること
を特徴とする水素の吸放出特性に優れた水素吸蔵合金に
よっても達成される。ここで、Paは図8に示すよう
に、吸蔵平衡圧平均値、Pdは放出平衡圧平均値であ
り、いずれも圧力−組成等温線のプラトー部より求めら
れる値である。
Another object of the present invention is to provide a fuel cell system in which the above-mentioned cycle processing is performed at a pressure of 2 MPa (20 kgf
/ Cm 2 ) or more and 15 MPa (150 kgf / cm 2 ) or less, and a degree of vacuum of 5 kPa (0.
It is also achieved by a method for producing a hydrogen storage alloy, which is not more than 5 kgf / cm 2 ). Further, the above object is a hydrogen storage alloy having a body-centered cubic structure as a main phase, and has a hysteresis factor defined by Hf = Pa / Pd of 1.0 to 5.0. This is also achieved by a hydrogen storage alloy having excellent hydrogen absorption and desorption characteristics. Here, as shown in FIG. 8, Pa is the storage equilibrium pressure average value, and Pd is the release equilibrium pressure average value, both of which are values obtained from the plateau portion of the pressure-composition isotherm.

【0008】[0008]

【発明の実施の形態】従来の水素吸蔵合金では、ヒステ
リシスが存在するため水素の有効使用量が、材料特性よ
りも大幅に少なくなる。通常のBCC合金の活性化処理
は、圧力2MPa(20kgf/cm2 )より低い条件
で行われるが、本発明では、合金の通常の活性化処理と
は別に特定の条件で水素の吸放出を繰り返すことによ
り、ヒステリシスの縮小を実現した。これにより水素の
有効使用量の拡大が可能となった。すなわち、水素吸蔵
合金の水素吸放出特性は圧力組成等温測定(PCT図)
によって、図4のように合金特有の使用環境域および水
素有効使用量が求まる。この時、ヒステリシスが大きい
場合には、一定の使用環境域に対して水素有効使用量が
小さくなり水素容量が不足する等の問題が生ずる。この
問題を解決するための検討において、図7に示されるよ
うに、ある条件において水素吸蔵合金の活性化処理を繰
り返した場合に、例えばPCT図のヒステリシスが初期
の大きい状態から5、10サイクル後において次第に減
少していく現象があることを知見した。この時の条件
は、活性化条件:0〜60℃、0〜1MPa(0〜10
kgf/cm2 )、使用環境:0〜40℃、0〜1MP
a(0〜10kgf/cm2 )である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In a conventional hydrogen storage alloy, the amount of effective use of hydrogen is significantly smaller than the material characteristics because of the existence of hysteresis. The normal activation treatment of the BCC alloy is performed under a pressure lower than 2 MPa (20 kgf / cm 2 ), but in the present invention, hydrogen absorption and desorption are repeated under specific conditions separately from the normal activation treatment of the alloy. As a result, the hysteresis was reduced. This has made it possible to increase the effective usage of hydrogen. That is, the hydrogen absorption / desorption characteristics of the hydrogen storage alloy are measured by pressure composition isothermal measurement (PCT diagram)
As a result, as shown in FIG. 4, a use environment region and an effective hydrogen use amount specific to the alloy are obtained. At this time, if the hysteresis is large, there arises a problem that the effective use amount of hydrogen becomes small with respect to a certain use environment range and the hydrogen capacity becomes insufficient. In the study for solving this problem, as shown in FIG. 7, when the activation treatment of the hydrogen storage alloy is repeated under a certain condition, for example, after 5 or 10 cycles from the initial large hysteresis of the PCT diagram It was found that there was a phenomenon that gradually decreased in. The conditions at this time are activation conditions: 0 to 60 ° C., 0 to 1 MPa (0 to 10 MPa).
kgf / cm 2 ), usage environment: 0-40 ° C, 0-1MP
a (0 to 10 kgf / cm 2 ).

【0009】また、図2に示すAB5 型のMmNi5
PCT特性のように、40℃における測定で、ヒステリ
シスは存在しないことが確認され、この状態で活性化処
理を繰り返してもこの系におけるヒステリシスに変化は
なかった。図3は他の系であるAB2 型のZrMn0.6
Cr0.2 Ni1.2 の0℃での活性化処理を1回と10回
施した後のPCT特性を示す。この図から、ヒステリシ
スが小さい系においては、繰り返しの活性化処理によっ
て変化しないことを知見した。従って、大きなヒステリ
シスはBCC型合金固有の問題である。以上のことから
本発明では、BCC型水素吸蔵合金が有するヒステリシ
スを、通常の使用条件とは異なる一定条件での水素の吸
放出の繰り返しにより短時間で縮小できる。その時の条
件として好ましくは、吸蔵時では0℃、3.9MPa
(40kgf/cm2 )、30min、放出時では60
℃5kPa(0.05kgf/cm2 )以下、1hrで
5サイクル以上とする。この範囲外、すなわち圧力、温
度がこの範囲外の場合には、水素吸蔵合金に容易に水素
が移動できる道を付与する効果が十分に得られないこと
による。
Further, as a PCT characteristic of AB 5 type MmNi 5 shown in FIG. 2, as measured on a 40 ° C., hysteresis is confirmed that there is no, even after repeated activation treatment in this state in this system There was no change in hysteresis. Figure 3 ZrMn 0.6 is the AB 2 type, which is another system
The PCT characteristics after the activation treatment of Cr 0.2 Ni 1.2 at 0 ° C. once and 10 times are shown. From this figure, it was found that in a system having a small hysteresis, no change was caused by repeated activation treatment. Therefore, large hysteresis is a problem unique to BCC type alloys. As described above, in the present invention, the hysteresis of the BCC type hydrogen storage alloy can be reduced in a short time by repeating the absorption and release of hydrogen under constant conditions different from normal use conditions. The condition at that time is preferably 0 ° C., 3.9 MPa during occlusion.
(40 kgf / cm 2 ), 30 min, 60 at release
C. 5 kPa (0.05 kgf / cm 2 ) or less, 5 cycles or more at 1 hr. If the pressure and temperature are outside these ranges, that is, if the pressure and temperature are outside these ranges, the effect of providing the hydrogen storage alloy with a path through which hydrogen can easily move cannot be sufficiently obtained.

【0010】以上の知見に基づく本発明は、通常の活性
化処理より高圧で水素を吸蔵させることで、水素が強制
的に合金の元素間に侵入させられる。これを繰り返すこ
とにより、原子間に水素の移動する道が形成され、水素
が容易に入るようになり、吸蔵側のプラトー圧が低下し
た結果、ヒステリシスが低減すると推察される。尚、通
常のBCC型合金の活性化処理時の加圧及び使用環境上
限の圧力は1.1MPa(11kgf/cm2 )であ
る。本サイクル処理でも活性化されていると考えられる
が、本サイクル処理を行った後、水素貯蔵容器に合金を
充填したり、電池電極を形成する場合には、そのハンド
リング中に被毒する恐れがある。そのため、本サイクル
処理の後に活性化処理を行うのが好ましい。特に、製品
として完成した後、例えば水素貯蔵容器に充填した後に
行うことが望ましい。逆に、充填前に活性化処理を行っ
ておくと、次のサイクル処理時に容易に水素を吸蔵させ
ることもできる。以下に本発明について実施例に基づい
てさらに詳述する。
In the present invention based on the above findings, hydrogen is forcibly penetrated between the elements of the alloy by storing hydrogen at a higher pressure than in the ordinary activation treatment. By repeating this, it is presumed that a path for hydrogen to move between atoms is formed, hydrogen easily enters, and the plateau pressure on the occlusion side decreases, resulting in a decrease in hysteresis. In addition, the pressure at the time of the activation treatment of the normal BCC type alloy and the pressure at the upper limit of the use environment are 1.1 MPa (11 kgf / cm 2 ). Although it is considered that the hydrogen storage tank is activated in this cycle processing, if the hydrogen storage container is filled with an alloy or a battery electrode is formed after this cycle processing, there is a risk of poisoning during the handling. is there. Therefore, it is preferable to perform the activation processing after this cycle processing. In particular, it is desirable to perform the process after the product is completed, for example, after filling in a hydrogen storage container. Conversely, if the activation treatment is performed before filling, hydrogen can be easily absorbed during the next cycle treatment. Hereinafter, the present invention will be described in more detail based on examples.

【0011】[0011]

【実施例】本実施例では、Ti−Cr−V系合金組成を
使用して実施したものである。水素吸蔵合金の試料は次
のように作成した。本実施例の試料は、全て水冷銅ハー
スを用いたアルゴン中アーク溶解で約20gのインゴッ
トで行った。本実施例の資料はすべて鋳造したままのイ
ンゴットを空気中で粉砕し、活性化処理は行わず本サイ
クル処理として表1の条件で処理した。
EXAMPLE In this example, a Ti-Cr-V alloy composition was used. A sample of the hydrogen storage alloy was prepared as follows. All of the samples of this example were arc-melted in argon using a water-cooled copper hearth in an ingot of about 20 g. In the data of the present example, the ingot as cast was pulverized in the air, and the ingot was not subjected to the activation treatment, and was subjected to the cycle treatment under the conditions shown in Table 1.

【0012】[0012]

【表1】 [Table 1]

【0013】図1は表1の結果をPCT特性図で示した
ものである。処理条件は、0℃、3.9MPa(40k
gf/cm2 )、60℃VAC(5kPa(0.05k
gf/cm2 ))の条件でのサイクル処理とした。表1
のa,b,c,d,eは図1の横軸のそれぞれと対応さ
せたものである。この表1から1サイクルから100サ
イクルに増加した場合におけるヒステリシスの減少によ
る使用範囲の拡大割合を示すものである。この表から、
100サイクル後では、0.88H/M、1.63倍の
水素吸蔵量の増大が得られることになる。次に、本実施
例においてサイクル条件を変更した試験を実施した結果
について説明する。表2にその結果を纏めて示す。
FIG. 1 shows the results of Table 1 in the form of a PCT characteristic diagram. The processing conditions are 0 ° C., 3.9 MPa (40 k
gf / cm 2 ), 60 ° C VAC (5 kPa (0.05 k
gf / cm 2 )). Table 1
A, b, c, d, and e correspond to each of the horizontal axes in FIG. Table 1 shows the rate of expansion of the range of use due to the decrease in hysteresis when the number of cycles increases from 1 cycle to 100 cycles. From this table,
After 100 cycles, an increase in hydrogen storage capacity of 0.88 H / M, 1.63 times, is obtained. Next, results of a test in which the cycle conditions are changed in the present embodiment will be described. Table 2 summarizes the results.

【0014】[0014]

【表2】 [Table 2]

【0015】表2では、従来条件として0℃、1.1M
Pa(11kgf/cm2 )、60℃VACで10サイ
クル後の40℃、1MPa(1kgf/cm2 )での吸
蔵量は0.58H/Mで、有効使用量は、(40℃、
1.1MPa(11kgf/cm2 )での吸蔵量)−
(40℃、0.1MPa(1kgf/cm2 )での放出
量)で定義した場合に、各実施例の10サイクル後の4
0℃、1kgf/cm2 での吸蔵量は、0.61〜0.
82H/Mで、有効使用量は、0.33〜0.56H/
Mと良好な値となることがわかる。さらに、本サイクル
処理条件を多くして10サイクル後のヒステリシス減少
率とサイクル処理時の加圧との関係を求めた。その時の
サイクル処理条件は表3に示され、図6に前記特性値の
測定結果を示す。尚、縦軸は、従来の活性化条件を10
サイクル繰り返した後のHfを1として比較したもので
ある。
Table 2 shows that the conventional conditions are 0 ° C., 1.1M
The storage amount at 40 ° C. and 1 MPa (1 kgf / cm 2 ) after 10 cycles of Pa (11 kgf / cm 2 ) and 60 ° C. VAC is 0.58 H / M, and the effective usage amount is (40 ° C.,
Storage amount at 1.1 MPa (11 kgf / cm 2 ))
(Amount released at 40 ° C. and 0.1 MPa (1 kgf / cm 2 )), 4
The occlusion amount at 0 ° C. and 1 kgf / cm 2 is 0.61-0.
At 82H / M, the effective use amount is 0.33-0.56H /
It turns out that it becomes a favorable value with M. Further, the relationship between the hysteresis reduction rate after 10 cycles and the pressurization during the cycle processing was determined by increasing the cycle processing conditions. The cycle processing conditions at that time are shown in Table 3, and FIG. 6 shows the measurement results of the characteristic values. The vertical axis represents the conventional activation condition of 10
This is a comparison in which Hf after repeating the cycle is set to 1.

【0016】[0016]

【表3】 [Table 3]

【0017】表3から条件として、加圧温度を本発明範
囲の0,15℃として、比較例では25℃と−20℃と
して、圧力は実施例で1.5,2.5,3.9,9.8
MPa(15,25,40,100kgf/cm2 )と
して、比較例は3.9,2.5MPa(40,25kg
f/cm2 )とした。また、VAC条件としては、温度
60℃で、この温度の上限はBCC構造が変化しない温
度までに限定される。また、図6から、サイクル条件と
してNo.、、、では特にヒステリシス減少率が
顕著に良好となっている。それ以外においては従来のレ
ベルに近いが、やゝ向上していることがわかる。すなわ
ち、本実施例の結果を纏めると、図5に示されるよう
に、使用環境より圧力の高い加圧領域でのサイクル条件
を採用することによって、しかも、VAC(真空条件)
として従来の活性化条件より高い温度領域で行うことに
よって、水素吸蔵合金のヒステリシスを顕著に狭くで
き、吸放出特性を改善することが確認できた。
As shown in Table 3, the conditions are as follows: the pressurizing temperature is 0,15 ° C. within the range of the present invention, the comparative example is 25 ° C. and −20 ° C., and the pressure is 1.5, 2.5, 3.9 in the embodiment. , 9.8
Comparative examples were 3.9 and 2.5 MPa (40, 25 kg) as MPa (15, 25, 40, 100 kgf / cm 2 ).
f / cm 2 ). The VAC condition is a temperature of 60 ° C., and the upper limit of this temperature is limited to a temperature at which the BCC structure does not change. Also, from FIG. ,, And in particular, the hysteresis reduction rate is remarkably good. Other than that, it is close to the conventional level, but it can be seen that it is slightly improved. That is, as shown in FIG. 5, the results of the present embodiment can be summarized as follows. As shown in FIG.
As a result, it was confirmed that by performing the treatment in a temperature range higher than the conventional activation condition, the hysteresis of the hydrogen storage alloy can be remarkably narrowed and the absorption / desorption characteristics are improved.

【0018】[0018]

【発明の効果】本発明によれば、BCC水素吸蔵合金の
ヒステリシスを小さくでき、水素吸放出特性を向上でき
る。本発明のサイクル処理では従来の活性化処理と異な
る温度および圧力範囲であるので、従来のような活性化
処理は水素吸蔵合金を充填した後においても可能とな
り、工業的実施における酸化等による被毒の問題等も解
決され、かつ処理自体の簡便さによってコスト的にも有
利となる。
According to the present invention, the hysteresis of the BCC hydrogen storage alloy can be reduced, and the hydrogen storage / release characteristics can be improved. In the cycle treatment of the present invention, since the temperature and the pressure range are different from those of the conventional activation treatment, the conventional activation treatment becomes possible even after filling the hydrogen storage alloy, and the poisoning due to oxidation or the like in industrial practice is possible. Is solved, and the simplicity of the processing itself is advantageous in terms of cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例に係るPCT線のヒステリシス
とサイクル処理のサイクル数との関係を示す図である。
FIG. 1 is a diagram illustrating a relationship between hysteresis of a PCT line and the number of cycles of a cycle process according to an embodiment of the present invention.

【図2】従来の合金に係るPCT線のヒステリシスがサ
イクル処理によって不変であったものを示す図である。
FIG. 2 is a diagram showing a conventional alloy in which the hysteresis of a PCT line is unchanged by a cycle process.

【図3】従来の他の合金に係るPCT線のヒステリシス
がサイクル処理によって不変であったものを示す図であ
る。
FIG. 3 is a view showing a case in which the hysteresis of a PCT line of another conventional alloy is unchanged by a cycle process.

【図4】従来の合金に係るPCT線のヒステリシスの使
用環境と水素有効使用量との関係を示す図である。
FIG. 4 is a diagram showing a relationship between a usage environment of hysteresis of a PCT line and an effective hydrogen usage amount of a conventional alloy.

【図5】本発明と従来の合金に係る使用環境と加圧条
件、活性化処理とサイクル処理の関係を示す図である。
FIG. 5 is a diagram showing the relationship between the use environment and the pressurizing condition, the activation process and the cycle process according to the present invention and the conventional alloy.

【図6】本発明の実施例に係るヒステリシス減少率と加
圧条件との関係を示す図である。
FIG. 6 is a diagram illustrating a relationship between a hysteresis reduction rate and a pressurizing condition according to the example of the present invention.

【図7】従来の合金に係る活性化処理のサイクルとPC
T線のヒステリシスがサイクルによって変化する状況を
示す図である。
FIG. 7 shows a cycle of activation processing and PC of a conventional alloy.
It is a figure showing the situation where hysteresis of a T line changes with a cycle.

【図8】本発明に係るヒステリシスファクター(Hf=
Pa/Pd)の定義を示す説明図である。
FIG. 8 shows a hysteresis factor (Hf =
It is an explanatory view showing the definition of (Pa / Pd).

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 体心立方型の構造を持つ水素吸蔵合金の
製造方法であって、水素吸蔵合金に活性化処理の条件よ
り高圧で水素を吸蔵させる工程と、真空に減圧して放出
させる工程とを複数回繰り返すサイクル処理を施すこと
を特徴とする水素吸蔵合金の製造方法。
1. A method for producing a hydrogen storage alloy having a body-centered cubic structure, comprising the steps of: causing the hydrogen storage alloy to store hydrogen at a higher pressure than the activation treatment conditions; And a cycle process in which the above is repeated a plurality of times.
【請求項2】 請求項1のサイクル処理の後、通常の活
性化処理を行うことを特徴とする水素吸蔵合金の製造方
法。
2. A method for producing a hydrogen storage alloy, wherein a normal activation treatment is performed after the cycle treatment of claim 1.
【請求項3】 請求項1のサイクル処理を、通常の活性
化処理の後で行うことを特徴とする水素吸蔵合金の製造
方法。
3. A method for producing a hydrogen storage alloy, wherein the cycle treatment according to claim 1 is performed after a normal activation treatment.
【請求項4】 請求項1のサイクル処理が、水素吸蔵時
20℃未満、圧力2MPa(20kgf/cm2 )以上
15MPa(150kgf/cm2 )以下であり、水素
放出時50℃以上真空度5kPa(0.05kgf/c
2 )以下であることを特徴とする水素吸蔵合金の製造
方法。
4. The cycle treatment according to claim 1, wherein the hydrogen is occluded at a temperature of less than 20 ° C., the pressure is 2 MPa (20 kgf / cm 2 ) or more and 15 MPa (150 kgf / cm 2 ) or less, and the hydrogen is released at a temperature of 50 ° C. or more and a degree of vacuum of 5 kPa ( 0.05kgf / c
m 2 ) A method for producing a hydrogen storage alloy, characterized in that:
【請求項5】 主相として体心立方型の構造を有する水
素吸蔵合金であって、Hf=Pa/Pd、Pa:吸蔵平
衡圧平均値、Pd:放出平衡圧平均値(いずれも圧力−
組成等温線のプラトー部)で定義されるヒステリシスフ
ァクターとして、1.0〜5.0を有することを特徴と
する水素の吸放出特性に優れた水素吸蔵合金。
5. A hydrogen storage alloy having a body-centered cubic structure as a main phase, wherein Hf = Pa / Pd, Pa: average value of storage equilibrium pressure, Pd: average value of release equilibrium pressure (both are pressure-
A hydrogen storage alloy excellent in hydrogen absorption / desorption characteristics, characterized by having a hysteresis factor defined by a plateau portion of a composition isotherm) of 1.0 to 5.0.
JP10149659A 1998-05-29 1998-05-29 Production of hydrogen storage alloy and the alloy Pending JPH11343524A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10149659A JPH11343524A (en) 1998-05-29 1998-05-29 Production of hydrogen storage alloy and the alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10149659A JPH11343524A (en) 1998-05-29 1998-05-29 Production of hydrogen storage alloy and the alloy

Publications (1)

Publication Number Publication Date
JPH11343524A true JPH11343524A (en) 1999-12-14

Family

ID=15480056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10149659A Pending JPH11343524A (en) 1998-05-29 1998-05-29 Production of hydrogen storage alloy and the alloy

Country Status (1)

Country Link
JP (1) JPH11343524A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013069464A1 (en) * 2011-11-08 2013-05-16 株式会社アツミテック Method for hydrogen occlusion

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013069464A1 (en) * 2011-11-08 2013-05-16 株式会社アツミテック Method for hydrogen occlusion
JP2013100193A (en) * 2011-11-08 2013-05-23 Atsumi Tec:Kk Method for occluding hydrogen
CN103917486A (en) * 2011-11-08 2014-07-09 株式会社渥美精机 Method for hydrogen occlusion
US9334163B2 (en) 2011-11-08 2016-05-10 Kabushiki Kaisha Atsumitec Hydrogen storage method

Similar Documents

Publication Publication Date Title
JPH11335770A (en) Hydrogen storage alloy
JP5449989B2 (en) Hydrogen storage alloy, method for producing the same, and hydrogen storage device
JP4103252B2 (en) Hydrogen storage alloy
JPH11310844A (en) Hydrogen storage alloy and hydrogen storage alloy electrode
JPH11106859A (en) Hydrogen storage alloy excellent in plateau flatness
JPH11343524A (en) Production of hydrogen storage alloy and the alloy
JPS5938293B2 (en) Titanium-chromium-vanadium hydrogen storage alloy
US4421718A (en) Alloy for occlusion of hydrogen
JP4062819B2 (en) Hydrogen storage alloy and method for producing the same
JPS619544A (en) Titanium alloy for occluding hydrogen
JPS6158545B2 (en)
JPS597772B2 (en) Titanium multi-component hydrogen storage alloy
CN110249066B (en) Hydrogen-storage alloy
JPS61250136A (en) Titanium-type hydrogen occluding alloy
JPH04337045A (en) Hydrogen storage material
JP2002212663A (en) High capacity hydrogen occlusion alloy and production method therefor
JPS6369701A (en) Metallic material for occluding hydrogen
JP4250218B2 (en) Hydrogen storage alloy
KR100361908B1 (en) Titanium-zirconium-based Laves phase alloy for hydrogen storage
JP3795443B2 (en) Titanium-chromium-manganese hydrogen storage alloy
JP2004277829A (en) Hydrogen storage alloy
JPS59208037A (en) Alloy for storing hydrogen
JPH0338327B2 (en)
JP2002105562A (en) Hydrogen storage alloy
JPH08157980A (en) Production of hydrogen storage alloy

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040203