JPH11209842A - Hydrogen storage alloy - Google Patents
Hydrogen storage alloyInfo
- Publication number
- JPH11209842A JPH11209842A JP2375198A JP2375198A JPH11209842A JP H11209842 A JPH11209842 A JP H11209842A JP 2375198 A JP2375198 A JP 2375198A JP 2375198 A JP2375198 A JP 2375198A JP H11209842 A JPH11209842 A JP H11209842A
- Authority
- JP
- Japan
- Prior art keywords
- hydrogen
- alloy
- hydrogen storage
- storage alloy
- pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Hydrogen, Water And Hydrids (AREA)
- Powder Metallurgy (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、水素貯蔵材料や触
媒材料等として用いられる水素吸蔵合金に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage alloy used as a hydrogen storage material or a catalyst material.
【0002】[0002]
【従来の技術】水素吸蔵合金は、1964年、米国ブル
ックヘブン国立研究所でマグネシウム−ニッケル合金
(Mg2Ni)の発見を端緒に、1974年にはTiF
e、1968年にはオランダ・フィリップス研究所でL
aNi5が発見されており、さらにその後の研究によっ
て、希土類・ニッケル系合金、マグネシウム−ニッケル
系合金、ジルコニウム−マンガン系合金などの水素吸蔵
合金が開発されるに至っている。2. Description of the Related Art In 1964, the discovery of a magnesium-nickel alloy (Mg 2 Ni) at Brookhaven National Laboratory in the United States was started in 1964, and in 1974 TiF was used.
e, L at Philips Research Institute in the Netherlands in 1968
aNi and 5 is found, by further subsequent study, the rare earth-nickel alloy, a magnesium - nickel alloy, a zirconium - hydrogen storage alloy, such as manganese-based alloys have come to be developed.
【0003】一般に水素吸蔵合金に要求される特性とし
ては、初期活性化が容易であること、水素吸放出量が大
きいこと、吸放出速度が速いこと、耐久性に優れている
こと等が挙げられるが、従来の合金ではいずれも一長一
短がある。ところが、いずれの合金でも初期活性化が必
要であるという点では一致している。これは、水素吸蔵
合金は、その表面に酸化皮膜や水分等の付着があり、そ
のままでは水素を吸収させることができないため前処理
としての活性化処理が必要になるわけである。この活性
化処理は、通常、減圧下で水素吸蔵合金を高温に加熱し
て水素吸蔵合金の脱ガスを行った後、低温で高圧水素ガ
ス雰囲気中に水素吸蔵合金を保持して該合金に水素を吸
蔵させるという一連の工程を繰り返すことにより行われ
る。繰り返し数は水素が吸収される状態になるまで行わ
れることになる。[0003] Generally, properties required for a hydrogen storage alloy include easy initial activation, a large amount of hydrogen storage and release, a high absorption and release rate, and excellent durability. However, conventional alloys all have advantages and disadvantages. However, there is agreement that any alloy requires initial activation. This is because a hydrogen storage alloy has an oxide film or moisture attached to its surface and cannot absorb hydrogen as it is, so that an activation treatment as a pretreatment is required. In this activation treatment, usually, the hydrogen storage alloy is heated to a high temperature under reduced pressure to degas the hydrogen storage alloy, and then the hydrogen storage alloy is held in a high-pressure hydrogen gas atmosphere at a low temperature, and hydrogen is added to the alloy. Is performed by repeating a series of steps of causing occlusion. The number of repetitions will be repeated until hydrogen is absorbed.
【0004】ところで上記活性化の難易は合金の種別に
よっても異なる。例えば、活性化が困難な合金としては
TiFeが知られており、その活性化ではTiFe合金
を予め粉砕して粉状にし、これを400〜450℃で真
空脱ガスした後、室温で約65気圧の水素を加圧すると
いう処理を繰り返すことによりはじめて水素が吸収され
るようになる。一方、従来の水素吸蔵合金中で活性化が
最も容易とされている合金は、希土類−ニッケル系合金
(LaNi5、MmNi5)であり、製造直後の希土類−
ニッケル系合金塊は室温・1気圧状態では水素を殆ど吸
収しないが、TiFeよりは条件が緩和された活性化処
理(例えば水素雰囲気中で高温(500℃)・高圧(1
0気圧)操作の繰り返し(2回)の処理)により水素吸
収が可能となる。[0004] The difficulty of the activation varies depending on the type of the alloy. For example, TiFe is known as an alloy that is difficult to activate. In the activation, a TiFe alloy is pulverized in advance into a powder form, which is degassed under vacuum at 400 to 450 ° C., and then cooled to about 65 atm at room temperature. Hydrogen is absorbed only by repeating the process of pressurizing hydrogen. On the other hand, among the conventional hydrogen storage alloys, the alloy which is most easily activated is a rare earth-nickel alloy (LaNi 5 , MmNi 5 ).
The nickel-based alloy lump hardly absorbs hydrogen at room temperature and 1 atm, but the activation process is more relaxed than TiFe (for example, high temperature (500 ° C.) and high pressure (1
Hydrogen absorption becomes possible by repeating (zero pressure) the operation (processing twice).
【0005】[0005]
【発明が解決しようとする課題】上記のように水素を合
金に吸収させるようにするためには初期活性化が必須で
あり、比較的活性化が容易な合金においても高温、高圧
の処理を繰り返し行う必要がある。このため、水素吸蔵
合金においては活性化処理の負担が大きいということが
大きな問題になっており、最近でも、処理温度や圧力、
繰り返し数を一層緩和するための研究が行われている
が、十分な成果が得られるには至っておらず、活性化処
理が水素吸蔵合金の製造コスト(前処理コスト)を上げ
る原因になっている。As described above, in order for the alloy to absorb hydrogen, initial activation is indispensable, and high-temperature, high-pressure processing is repeated even for an alloy that is relatively easily activated. There is a need to do. For this reason, it is a big problem that the burden of the activation treatment is large in the hydrogen storage alloy, and even recently, the treatment temperature, pressure,
Research has been conducted to further reduce the number of repetitions, but sufficient results have not been obtained, and activation treatment raises the production cost (pretreatment cost) of hydrogen storage alloys. .
【0006】本発明は、上記事情を背景としてなされた
ものであり、初期活性化を特別に施すことなく、または
ごく簡単な活性化処理によって水素の吸蔵が可能であ
り、しかもその水素の吸放出特性も良好な水素吸蔵合金
を提供することを目的とする。The present invention has been made in view of the above circumstances, and it is possible to occlude hydrogen without specially performing an initial activation or by a very simple activation treatment. It is an object of the present invention to provide a hydrogen storage alloy having good characteristics.
【0007】[0007]
【課題を解決するための手段】上記課題を解決するため
本発明の水素吸蔵合金は、Nb、Feまたは、Nb、T
i、Feを構成成分として、(Nb重量%、Ti重量
%、Fe重量%)からなる三角座標上において、各成分
含有量が、点A(96,0,4)、B(30,60,1
0)、C(20,40,40)、D(60,0,40)
を結んだ直線AB、BC、CD、DAで囲まれる領域内
にあることを特徴とする。Means for Solving the Problems To solve the above problems, the hydrogen storage alloy according to the present invention comprises Nb, Fe or Nb, T
In the triangular coordinates of (Nb wt%, Ti wt%, Fe wt%) with i and Fe as constituents, the content of each component is represented by points A (96, 0, 4) and B (30, 60, 1
0), C (20, 40, 40), D (60, 0, 40)
Are located in a region surrounded by straight lines AB, BC, CD, and DA connecting.
【0008】本発明は、Nb、FeまたはNb、Ti、
Feを構成成分としており、Nb−Ti−Fe系の合金
といえる。ただし、Tiを構成成分としないNb−Fe
系合金も含まれる。そして、これら成分の含有量が上記
A,B,C,D点を頂点とする四角形領域内に含まれる
ように調整することにより、初期活性化が不要になった
り、その条件を大幅に緩和することができる。なお、こ
の領域には、各点および各点を結ぶ直線上にある成分も
含まれるものである。また、上記領域内の水素吸蔵合金
では、室温、1気圧の状態で高速に水素の吸収を行うこ
とができ、さらに高い温度、低い平衡圧での水素の吸放
出が可能で、水素の吸放出特性にも優れている。一方、
この範囲を外れると、活性化を緩和できるという効果を
十分に得ることができず、所期の目的を達成することが
できない。[0008] The present invention relates to Nb, Fe or Nb, Ti,
It can be said that it is an Nb-Ti-Fe alloy containing Fe as a constituent. However, Nb-Fe not containing Ti as a constituent component
System alloys are also included. By adjusting the contents of these components so as to be included in the quadrangular region having the vertices of the points A, B, C, and D, the initial activation becomes unnecessary or the condition is greatly eased. be able to. Note that this area includes each point and components on a straight line connecting each point. Further, the hydrogen storage alloy in the above region can absorb hydrogen at a high speed at room temperature and 1 atm, and can absorb and release hydrogen at a higher temperature and a lower equilibrium pressure. Excellent characteristics. on the other hand,
If the ratio is out of this range, the effect of reducing the activation cannot be sufficiently obtained, and the intended purpose cannot be achieved.
【0009】なお、上記範囲内おいて、より確実な効果
を得るためには、Ti、Feの重量比(Ti/Fe)を
1とするのが望ましく、さらにNb濃度を40重量%以
上にするのが一層望ましい。In order to obtain a more reliable effect within the above range, the weight ratio of Ti and Fe (Ti / Fe) is desirably set to 1, and the Nb concentration is set to 40% by weight or more. Is more desirable.
【0010】[0010]
【発明の実施の形態】本発明の水素吸蔵合金は、常法に
より製造することができ、本発明としては特にその製造
方法が限定されることはない。例えば、所定の成分比で
調製した合金塊をアーク溶解等によって溶解して水素吸
蔵合金を得る。BEST MODE FOR CARRYING OUT THE INVENTION The hydrogen storage alloy of the present invention can be produced by a conventional method, and the production method is not particularly limited in the present invention. For example, an alloy lump prepared at a predetermined component ratio is melted by arc melting or the like to obtain a hydrogen storage alloy.
【0011】上記方法等により得られた水素吸蔵合金
は、粉末状の状態で使用したり、塊状等の状態で使用さ
れるが、使用形態が特に限定されるものでもない。ま
た、本発明の水素吸蔵合金は、活性化処理の負担を大幅
に軽減するものの、良好な水素吸放出特性を有してお
り、各種用途に使用することができる。例えば、水素の
輸送、貯蔵用の材料として使用でき、またエネルギ変換
用の材料や水素反応を伴う触媒材料等として使用するこ
とができる。The hydrogen storage alloy obtained by the above method or the like is used in the form of a powder or in the form of a lump, but the form of use is not particularly limited. Further, the hydrogen storage alloy of the present invention has excellent hydrogen absorption / desorption characteristics, although it greatly reduces the load of the activation treatment, and can be used for various applications. For example, it can be used as a material for transporting and storing hydrogen, and can be used as a material for energy conversion, a catalyst material involving a hydrogen reaction, and the like.
【0012】[0012]
【実施例】以下、実施例により本発明を具体的に説明す
る。実施試料として本発明のNb−Fe二元合金または
Nb−Ti−Fe三元合金を下記表1に示す組成比(重
量パーセント)に秤量した後、数%の水素を含むアルゴ
ン雰囲気中でアーク溶解法により再溶解した。このよう
にして作製した表面清浄合金塊をロータリーポンプで装
置内を排気(10Pa程度)した後、100%水素ガス
を装置内に導入して1気圧の状態にした。また、標準比
較試料(従来材)としてはLaNi5合金を使用し、さ
らに、Nb,Ti,Fe含有量を本発明の範囲外とした
比較材を用意し、これらに対しても上記と同様の処理お
よび水素吸蔵試験を行った。The present invention will be described below in detail with reference to examples. After weighing the Nb-Fe binary alloy or the Nb-Ti-Fe ternary alloy of the present invention as a working sample to the composition ratio (weight percent) shown in Table 1 below, arc melting was performed in an argon atmosphere containing several percent of hydrogen. Redissolved by the method. After the inside of the apparatus was evacuated (about 10 Pa) using a rotary pump, the surface-clean alloy lump produced in this manner was introduced into the apparatus with 100% hydrogen gas to a pressure of 1 atm. As a standard comparative sample (conventional material), a LaNi 5 alloy was used, and a comparative material having Nb, Ti, and Fe contents outside the range of the present invention was prepared. A treatment and a hydrogen storage test were performed.
【0013】上記水素吸蔵試験の結果、本発明の水素吸
蔵合金はいずれも、上記のように水素ガスを装置内に導
入した後に水素ガスを急速に吸蔵すると同時に合金塊は
粉化し微粉末となり、水素を多く吸蔵した合金微粉末と
なった。一方、LaNi5水素吸蔵合金では、上記室温
・水素圧力1気圧における水素吸蔵量測定結果は表1に
示すごとく0.1重量%以下である。すなわちLaNi
5合金は活性化処理をしていないため水素吸蔵が殆ど起
こらなかった。また、本発明の範囲外の比較材において
も、室温・水素圧力1気圧における水素吸蔵量は表1に
示すごとく零である。上記の点から、Nb、Ti、Fe
の含有量を適正範囲内に定めた場合にのみ活性化処理を
施すことなく、製造のままで水素が急速に吸蔵されるこ
とが明らかである。また、これらの材料に大幅に緩和さ
れた活性化処理を施すことも可能であり、このような場
合でも十分に水素が吸蔵されることが予測される。As a result of the above hydrogen storage test, any of the hydrogen storage alloys of the present invention rapidly absorbs hydrogen gas after introducing hydrogen gas into the apparatus as described above, and at the same time, the alloy lumps turn into fine powder, It became an alloy fine powder that absorbed a lot of hydrogen. On the other hand, in the case of the LaNi 5 hydrogen storage alloy, the hydrogen storage amount measurement result at the room temperature and the hydrogen pressure of 1 atm is 0.1% by weight or less as shown in Table 1. That is, LaNi
Since the alloy No. 5 had not been activated, hydrogen absorption hardly occurred. Also, in the comparative materials outside the scope of the present invention, the hydrogen storage amount at room temperature and 1 atm of hydrogen pressure is zero as shown in Table 1. From the above points, Nb, Ti, Fe
It is evident that hydrogen is rapidly absorbed as produced without activation treatment only when the content of is within an appropriate range. In addition, it is possible to perform a significantly relaxed activation treatment on these materials, and in such a case, it is expected that hydrogen is sufficiently absorbed.
【0014】なお、本発明の水素吸蔵合金では、ジーベ
ルト型ガス吸・放出測定装置により水素吸蔵量を測定し
た。その結果は表1に示すように、合金組成および雰囲
気水素圧力により0.3〜1.6重量%の範囲内で変動
するが、Ti/Fe比を1とし、Nb濃度を40重量%
以上にすることにより顕著に水素吸蔵量が増加している
ことも明らかである。また、標準比較試料(従来材)L
aNi5合金と、上記合金試料No.2(NTF62
2)、No.8(NTF811)の室温(303K)に
おける水素吸放出の合金中水素濃度と平衡水素圧力との
関係の測定結果を図2(PCT図)に示した。図から、
平衡水素圧力100KPa(約1気圧)における合金中
水素濃度は、標準比較試料(従来材)LaNi5合金で
は約0.1重量%以下、合金試料No.2(NTF62
2)では吸収時に約1重量%、放出時には約1.17重
量%、合金試料No.8(NTF811)では吸収時に
約1重量%、放出時には約1.6重量%となっており、
標準比較試料(従来材)LaNi5合金よりも本発明合
金の方が水素を多量に吸蔵することが明らかである。本
発明合金の室温における、水素吸蔵量は合金組成により
変動するが、合金試料No.8(NTF811)は平衡
水素圧力400KPa(約4気圧)で1.6重量%と、
極めて大きい値である。そこで、高温(500K−10
00K)における合金試料No.8(NTF811)の
水素吸放出の合金中水素濃度と平衡水素圧力との関係の
測定結果を図3(PCT図)に示した。図から、合金試
料の水素濃度は水素吸収時と放出時に履歴差があり、同
一水素濃度を与える平衡水素圧力は吸収時の方が低くな
るが温度上昇と共に、履歴差が小さくなる。また、57
3Kの高温においても、水素を大量に吸収し、100K
Paで0.9重量%となり、高温でも水素を吸蔵し易い
ことも明らかである。In the hydrogen storage alloy of the present invention, the hydrogen storage amount was measured by a Sievert type gas absorption / desorption measuring device. As shown in Table 1, the results fluctuate within the range of 0.3 to 1.6% by weight depending on the alloy composition and the hydrogen pressure in the atmosphere, but the Ti / Fe ratio is set to 1 and the Nb concentration is set to 40% by weight.
It is also apparent that the amount of hydrogen storage is significantly increased by the above. In addition, the standard comparison sample (conventional material) L
aNi 5 alloy and the above alloy sample no. 2 (NTF62
2), No. FIG. 2 (PCT diagram) shows the measurement results of the relationship between the hydrogen concentration in the alloy and the equilibrium hydrogen pressure for hydrogen absorption and desorption at room temperature (303 K) of No. 8 (NTF 811). From the figure,
The hydrogen concentration in the alloy at an equilibrium hydrogen pressure of 100 KPa (about 1 atm) was about 0.1% by weight or less for the standard comparative sample (conventional material) LaNi 5 alloy, and the alloy sample No. 2 (NTF62
In the case of alloy sample No. 2), about 1% by weight at the time of absorption, about 1.17% by weight at the time of release, and 8 (NTF811) is about 1% by weight at the time of absorption and about 1.6% by weight at the time of release.
It is clear that the alloy of the present invention absorbs a larger amount of hydrogen than the standard comparative sample (conventional material) LaNi 5 alloy. The hydrogen storage capacity of the alloy of the present invention at room temperature varies depending on the alloy composition. 8 (NTF811) is 1.6% by weight at an equilibrium hydrogen pressure of 400 KPa (about 4 atm),
This is a very large value. Then, high temperature (500K-10
00K). FIG. 3 (PCT diagram) shows the measurement results of the relationship between the hydrogen concentration in the alloy for absorbing and releasing hydrogen of No. 8 (NTF811) and the equilibrium hydrogen pressure. From the figure, it can be seen that there is a history difference between the hydrogen concentration of the alloy sample at the time of hydrogen absorption and the history of hydrogen release, and the equilibrium hydrogen pressure giving the same hydrogen concentration is lower at the time of absorption, but becomes smaller as the temperature rises. Also, 57
Even at a high temperature of 3K, it absorbs a large amount of hydrogen,
It is 0.9% by weight in Pa, and it is clear that hydrogen is easily absorbed even at high temperatures.
【0015】また、本発明の水素吸蔵合金は、常温〜高
温、1気圧で水素を確実に多く吸蔵する上に、その吸蔵
速度が大きいという利点も有しており、これを確認する
ため、活性化処理をすることなく得られた上記合金試料
No.2(NTF622)と標準比較試料につき、上記
とは別に以下の水素吸蔵試験を行った。すなわち、それ
ぞれの合金10.17gをジーベルト型圧力測定装置の
反応容器(容積15900ml)に入れ、初期水素圧力
92KPaとして、時間経過とともに合金に水素が吸蔵
され水素圧力が低下する状況を調査し、その関係を図4
に示した。図から明らかなように、水素吸蔵速度は水素
導入直後(0〜120秒)までは遅いが、300秒経過
頃から急速に水素吸蔵速度が増大して最大約5ml/s
・gにまで達しており、大きな吸蔵速度を有しているこ
とが示されている。なお、標準比較試料のLaNi5で
は、長時間経過しても水素圧の変化は見られなかった。Further, the hydrogen storage alloy of the present invention has the advantage that it reliably stores a large amount of hydrogen at normal temperature to high temperature and 1 atm and has a high storage rate. The alloy sample no. 2 (NTF622) and the standard comparative sample were subjected to the following hydrogen absorption test separately from the above. That is, 10.17 g of each alloy was put into a reaction vessel (capacity: 15900 ml) of a Geebelt type pressure measuring device, and an initial hydrogen pressure of 92 KPa was used to investigate the situation where hydrogen was absorbed into the alloy over time and the hydrogen pressure decreased. Figure 4
It was shown to. As is clear from the figure, the hydrogen storage rate is slow until immediately after the introduction of hydrogen (0 to 120 seconds), but the hydrogen storage rate increases rapidly after about 300 seconds and the maximum is about 5 ml / s.
G, indicating that it has a large occlusion rate. In the case of LaNi 5 as a standard comparative sample, no change in hydrogen pressure was observed even after a long time.
【0016】[0016]
【表1】 [Table 1]
【0017】[0017]
【発明の効果】以上説明したように本発明の水素吸蔵合
金によれば、Nb、Feまたは、Nb、Fe、Tiを構
成成分として、(Nb重量%、Ti重量%、Fe重量
%)からなる三角座標上において、各成分含有量が、点
A(96,0,4)、B(30,60,10)、C(2
0,40,40)、D(60,0,40)を結んだ直線
AB、BC、CD、DAで囲まれる領域内にあるので、
活性化処理を不要またはより緩和した条件での処理を可
能にするとともに、室温〜高温・1気圧の状態で水素ガ
スを吸放出することができ、水素吸放出特性の優れた水
素吸蔵合金を低コストで得られるという効果がある。As described above, according to the hydrogen storage alloy of the present invention, Nb, Fe or Nb, Fe, Ti is used as a component and is composed of (Nb wt%, Ti wt%, Fe wt%). On the triangular coordinates, the content of each component is represented by points A (96, 0, 4), B (30, 60, 10), C (2
0, 40, 40) and D (60, 0, 40) are in the region surrounded by straight lines AB, BC, CD, and DA.
In addition to enabling the treatment under conditions where the activation treatment is unnecessary or more relaxed, it can absorb and release hydrogen gas at room temperature to high temperature and 1 atm. The effect is obtained at a cost.
【0018】なお、上記合金でFe含有量を3重量%以
上で、Ti、Feの重量比(Ti/Fe)が0.3以
上、1.2以下とすれば、上記効果は一層確実になる。
また、上記合金において、Ti、Feの重量比(Ti/
Fe)を1とし、Nb濃度を40重量%以上にすれば上
記効果に加え、水素吸放出量を一層多くできるという効
果がある。If the Fe content of the above alloy is 3% by weight or more and the weight ratio of Ti and Fe (Ti / Fe) is 0.3 or more and 1.2 or less, the above-mentioned effect is further ensured. .
In the above alloy, the weight ratio of Ti and Fe (Ti /
When Fe) is set to 1 and the Nb concentration is set to 40% by weight or more, in addition to the above effects, there is an effect that the amount of absorbed and released hydrogen can be further increased.
【図1】 本発明のA,B,C,D点および実施例にお
けるNb−Ti−Fe系試験合金をその含有量に基づき
プロットした(Nb,Ti,Fe)三角座標を示す図で
ある。FIG. 1 is a diagram showing (Nb, Ti, Fe) triangular coordinates plotting points A, B, C, and D of the present invention and Nb—Ti—Fe-based test alloys in Examples based on their contents.
【図2】 試験合金の各種温度での水素吸収・放出時に
おける平衡水素圧力と水素吸蔵量との関係を示すグラフ
である。FIG. 2 is a graph showing a relationship between an equilibrium hydrogen pressure and a hydrogen storage amount at the time of hydrogen absorption / release at various temperatures of a test alloy.
【図3】 試験合金の室温での水素吸収・放出時におけ
る平衡水素圧力と水素吸蔵量との関係を示すグラフであ
る。FIG. 3 is a graph showing the relationship between the equilibrium hydrogen pressure and the amount of hydrogen occlusion at the time of hydrogen absorption / release at room temperature of a test alloy.
【図4】 試験合金の水素吸蔵量(水素圧力の変化)と
経過時間との関係を示すグラフである。FIG. 4 is a graph showing the relationship between the hydrogen storage amount (change in hydrogen pressure) of a test alloy and elapsed time.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 川嵜 一博 神奈川県平塚市田村5893番地 高周波熱錬 株式会社内 (72)発明者 宇高 政道 神奈川県平塚市田村5893番地 高周波熱錬 株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kazuhiro Kawasaki 5983 Tamura, Hiratsuka-shi, Kanagawa Prefecture High-frequency refining Co., Ltd.
Claims (1)
構成成分として、(Nb重量%、Ti重量%、Fe重量
%)からなる三角座標上において、各成分含有量が、点
A(96,0,4)、B(30,60,10)、C(2
0,40,40)、D(60,0,40)を結んだ直線
AB、BC、CD、DAで囲まれる領域内にあることを
特徴とする水素吸蔵合金1. On a triangular coordinate system composed of (Nb wt%, Ti wt%, Fe wt%) containing Nb, Fe or Nb, Ti, Fe as constituents, the content of each component is represented by a point A (96%). , 0, 4), B (30, 60, 10), C (2
0, 40, 40) and D (60, 0, 40), in a region surrounded by straight lines AB, BC, CD, and DA.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP02375198A JP4250218B2 (en) | 1998-01-21 | 1998-01-21 | Hydrogen storage alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP02375198A JP4250218B2 (en) | 1998-01-21 | 1998-01-21 | Hydrogen storage alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11209842A true JPH11209842A (en) | 1999-08-03 |
JP4250218B2 JP4250218B2 (en) | 2009-04-08 |
Family
ID=12119030
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP02375198A Expired - Fee Related JP4250218B2 (en) | 1998-01-21 | 1998-01-21 | Hydrogen storage alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4250218B2 (en) |
-
1998
- 1998-01-21 JP JP02375198A patent/JP4250218B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP4250218B2 (en) | 2009-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lee et al. | Effect of the second phase on the initiation of hydrogenation of TiFe1− xMx (M= Cr, Mn) alloys | |
Huston et al. | Engineering properties of metal hydrides | |
EP1817439B1 (en) | Non-evaporable getter alloys for hydrogen sorption | |
AU2007262337A1 (en) | Non-evaporable getter alloys based on yttrium for hydrogen sorption | |
JPH11209842A (en) | Hydrogen storage alloy | |
JP3322486B2 (en) | Hydrogen storage alloy with excellent poisoning resistance and regenerative recovery | |
JP2859187B2 (en) | Hydrogen storage alloy | |
JP3528502B2 (en) | Hydrogen storage alloy with excellent initial activity and reaction rate | |
Hsu et al. | Hydrogenation of multicomponent Zr-base C15 type alloys | |
JPS61250136A (en) | Titanium-type hydrogen occluding alloy | |
JPH0247535B2 (en) | ||
JPS619544A (en) | Titanium alloy for occluding hydrogen | |
JPS62284033A (en) | Reversible hydrogen occluding and releasing material | |
JPH11343524A (en) | Production of hydrogen storage alloy and the alloy | |
JP4768111B2 (en) | Hydrogen storage alloy | |
CN110249066B (en) | Hydrogen-storage alloy | |
JP3322460B2 (en) | Hydrogen storage alloy | |
JP3000680B2 (en) | Materials for hydrogen storage | |
JPS60251238A (en) | Hydrogen occluding titanium alloy | |
JPS62191401A (en) | Production of metal hydride | |
Dayan et al. | Anomalous isotope effect for hydrogen absorption in La0. 4Ce0. 6Ni5 | |
JPH11117036A (en) | Hydrogen storage alloy | |
JPH0797654A (en) | Hydrogen storage alloy | |
JPH1030138A (en) | Hydrogen storage body | |
JPH09316571A (en) | Hydrogen storage alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050117 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060831 |
|
A131 | Notification of reasons for refusal |
Effective date: 20080507 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080630 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20080729 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080901 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Effective date: 20081202 Free format text: JAPANESE INTERMEDIATE CODE: A911 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090113 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090119 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 3 Free format text: PAYMENT UNTIL: 20120123 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |