JP4249431B2 - Insulating coil for rotating electrical machine and method for manufacturing the same - Google Patents

Insulating coil for rotating electrical machine and method for manufacturing the same Download PDF

Info

Publication number
JP4249431B2
JP4249431B2 JP2002114703A JP2002114703A JP4249431B2 JP 4249431 B2 JP4249431 B2 JP 4249431B2 JP 2002114703 A JP2002114703 A JP 2002114703A JP 2002114703 A JP2002114703 A JP 2002114703A JP 4249431 B2 JP4249431 B2 JP 4249431B2
Authority
JP
Japan
Prior art keywords
insulating
insulating layer
coil
tape
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002114703A
Other languages
Japanese (ja)
Other versions
JP2003319592A (en
Inventor
光久 田城
誠一 井上
弘二 芳賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2002114703A priority Critical patent/JP4249431B2/en
Publication of JP2003319592A publication Critical patent/JP2003319592A/en
Application granted granted Critical
Publication of JP4249431B2 publication Critical patent/JP4249431B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、発電機および電動機等の回転電機、特に高電圧の回転電機の電機子コイルとして使用される絶縁コイルの改良に関するものである。
【0002】
【従来の技術】
高電圧の回転電機用絶縁コイルは、絶縁性を高めるためには、絶縁体内部から可能な限り空隙を除くことが肝要である。
【0003】
従来の通常の高電圧の絶縁コイルは、図5に示すように、コイルの絶縁された素線11を巻回して整列した後、高温で加圧成形して素線コイル1を製作し、この素線コイル1に集成マイカテープなどの対地絶縁テープを複数回巻回して絶縁樹脂の含浸されていない対地絶縁層を形成する。次に、この絶縁樹脂未含浸の対地絶縁層の形成された素線コイル1を樹脂含浸用の型に入れて、熱硬化性の絶縁樹脂22を真空加圧含浸させて硬化することによって絶縁コイルを形成する。この方法は、大形の回転電機のコイルの製造に多く用いられ、コイル単位で含浸が行なわれることからコイル単体含浸方式と呼ばれている。
【0004】
別の方法として未含浸の素線コイルを回転電機の鉄心のスロット内に挿入し、インターレイヤ、楔等を設置した後に、鉄心とコイルを一体で絶縁樹脂を含浸し、硬化させる、全含浸方式と呼ばれる方法もある。
【0005】
何れの方式の絶縁コイルにおいても、内部に空隙のない対地絶縁層を得るために、絶縁樹脂の含浸技術の向上が図られてきた。その結果、現在の対地絶縁層においては、ほぼ完全に空隙の存在しない良好な含浸状態が得られるレベルにある。
【0006】
【発明が解決しようとする課題】
このように絶縁技術が向上するのにともなって、近年においては、絶縁コイルのコイル導体の寸法はそのままで、コイルの絶縁層の厚さを薄くしてコイル寸法を縮小することによって回転電機を小形化する要求が高まっている。
【0007】
しかしながら、絶縁コイルの対地絶縁層を集成マイカテープと含浸樹脂とで構成した従来の絶縁コイルにおいては、小形化のために単純に絶縁層の厚さを薄くしたのでは、絶縁層が高電界化するため、絶縁破壊耐力が低下し、絶縁コイルの寿命が短くなる欠点が生じる。
【0008】
この発明は、回転電機の小形化のために、対地絶縁層の厚さが薄くても絶縁破壊耐力が高く、寿命を長くすることのできる、高電圧の回転電機用絶縁コイルを提供することを目的とするものである。
【0009】
【課題を解決するための手段】
この発明は、このような課題を達成するため、導体に絶縁を施した素線を巻回して構成した素線コイルの外周に、耐電界強度の高い無孔質のフィルム状絶縁材を基材とした集成マイカテープに半硬化状の熱硬化性樹脂を含ませてなるプリプレグ集成マイカテープを巻回し、加熱、加圧成形し、前記半硬化状の熱硬化性樹脂を硬化して形成された第1絶縁層と、この第1絶縁層の外周に多孔質のテープ状絶縁材を巻き回した後、熱硬化性樹脂を含浸、硬化して形成された第2絶縁層とから対地絶縁層を形成してなることを特徴とする。
【0010】
また、対地絶縁層内の第1絶縁層の内側に内部電界緩和層を設けてもよく、この内部電界緩和層は、導電性テープを、絶縁性のテープに半硬化状の熱硬化性樹脂を塗布処理したプリプレグテープで挟んで構成された導電性プリプレグテープにより構成することができる。
【0011】
さらに、前記対地絶縁層の角部を円弧状にして電界集中緩和処理を施すことができる。
【0012】
さらにまた、前記回転電機用絶縁コイルは、導体に絶縁を施した素線を巻回して構成した素線コイルの外周に耐電界強度の高い無孔質のフィルム状絶縁材を基材とした集成マイカテープに半硬化状の熱硬化性樹脂を含ませてなるプリプレグ集成マイカテープを巻回し、加熱、加圧成形し、前記半硬化状の熱硬化性樹脂を硬化して第1絶縁層を形成する工程と、前記第1絶縁層の外周に多孔質のテープ状絶縁材を巻回して、熱硬化性樹脂を含浸、硬化して第2絶縁層を形成する工程とを含む方法によって製造する。
【0013】
内部電界緩和層を設ける場合は、第1絶縁層を形成する工程において、プリプレグ集成マイカテープの下に導電性プリプレグテープを巻回して素線コイルを加熱、加圧成形する。
【0014】
【発明の実施の形態】
次に、この発明の実施の形態を、図に示す実施例を用いて説明する。
【0015】
−実施例1−
図1は、この発明の第1実施例を示す。
【0016】
この図において、1は、素線導体11に素線絶縁12を施してなる素線10を巻型を用いて巻回して形成した素線コイルである。この素線コイル1の外周に耐高電界絶縁層21と、対地絶縁テープを含む含浸樹脂絶縁層22からなる対地絶縁層2を形成している。13は、素線コイル1の頭部の空所を埋める絶縁材よりなる頭部詰め物である。
【0017】
耐高電界絶縁層21は、無孔質の耐高電界絶縁フィルムを基材にしてマイカを集成してなる集成マイカテープまたはシートの少なくとも一方の面に、Bステージの半硬化状の熱硬化性樹脂、例えば。エポキシ系樹脂、ポリイミド系樹脂を塗布処理して形成したプリプレグ集成マイカテープまたはシートで構成される。この絶縁層21は、素線コイル1上に前記のプリプレグ集成マイカテープまたはシートを巻回し、全体を高温加圧成形プレスにより高温加熱しながら加圧成形して形成する。これによって、無孔質の高電界絶縁フィルムおよびマイカが空隙を生じることなく素線コイル1の外周に接着され空隙なしの耐高電界絶縁層21が形成される。
【0018】
この耐高電界絶縁層21の上にガラス繊維等からなる多孔質のテープ基材上にマイカを集成して形成した集成マイカテープを対地絶縁テープとして巻回して、エポキシ系樹脂またはポリイミド系樹脂等の熱硬化性樹脂を真空加圧含浸し、硬化することによって対地絶縁層2を形成する。ここで使用する対地絶縁テープは、熱硬化性樹脂の含浸性をよくするために、多孔質の絶縁材を基材としたテープを用いるのがよい。
【0019】
このようにして形成された回転電機用絶縁コイルは、対地絶縁層2の耐高電界絶縁層21として、厚さ当たりの絶縁破壊電圧の高い耐高電界性の無孔質フィルム基材のマイカテープを用いることによって、高い絶縁性能を得ることができるので対地絶縁層2の厚さを薄くすることができ、絶縁コイルの寸法を縮小することが可能となる。
【0020】
無孔質の絶縁フィルムを基材にした集成マイカテープは高い耐絶縁破壊電圧特性を有するが、絶縁樹脂の含浸性が悪いため、そのまま使用したのでは、樹脂を含浸して形成した絶縁層内に空隙が発生したりして所望の絶縁性能を得ることができないが、この発明のように、この無孔質絶縁フィルム基材に予め半硬化状の絶縁樹脂を塗布処理して形成したプリプレグ集成マイカテープを用いることにより、このテープのプリプレグ樹脂が素線コイルに対して空隙のない接着層を形成することができるため、高い絶縁性能を得ることができる。
【0021】
−実施例2−
図2は、この発明の第2実施例を示す。
【0022】
この図の(a)、(b)において、1および2は、前記実施例1の場合と同じく、それぞれ素線コイルおよび対地絶縁層である。この実地例においては、素線コイル1と耐高電界絶縁層21との間に内部電界緩和層3が設けられている。この内部電界緩和層3は、有機または無機の絶縁繊維基材にカーボン繊維などの導電性繊維を織り込んで構成した導電性テープ31を上下から絶縁性のテープにBステージ(半硬化状)のエポキシ系樹脂、ポリイミド系樹脂等の熱硬化性樹脂を処理したプリプレグテープ32および33で挟んで素線コイルに1上に巻回して構成され、さらにその上に耐高電界絶縁層21を形成する無孔質フィルム基材のプリプレグ集成マイカテープを巻回して、加熱成形プレスにより、加熱しながら加圧成形して、これらのテープを空隙なしに接着する。そしてその上にさらに、多孔質繊維基材の集成マイカテープよりなる対地絶縁テープを巻回した上で、熱硬化性絶縁樹脂を真空加圧含浸し、樹脂を加熱硬化して対地絶縁層を仕上げる。各絶縁層の関係が図2(a)では不明瞭であるので、図2(a)のB部を拡大して図2(b)に示す。
【0023】
これにより、素線コイルの表面付近に電界緩和用の導電層が設けられるので素線コイル1の外周の不均一な電界分布が緩和されるため局部的な電界集中がなくなり、対地絶縁層2全体がほぼ均等に電界を分担することになる。このため、対地絶縁層2の厚さを薄くしても絶縁性能を維持することができ、絶縁コイルの小形化が図れるようになる。
【0024】
−実施例3−
図3は、この発明の第3実施例を示す
この実施例3の絶縁コイルは、前記実施例2の絶縁コイルとほぼ同じ構成であるが、異なる点は、内部電界緩和層3の構成である。すなわち、実施例2においては、導電性テープ31と上下層のプリプレグテープ32および33とで内部電界緩和層3を形成しているが、この実施例3においては、図3(b)に詳細を示すように、内部電界緩和層3導電性のプリプレグテープ34と下層プリプレグテープ32によって形成している。
【0025】
この導電性プリプレグテープ34は、導電性のテープまたはシートにBステージ(半硬化状)の熱硬化性のエポキシ系樹脂やポリイミド系樹脂の塗布処理をしたものである。
【0026】
これにより、内部電界緩和層3の厚さを薄くできるので、絶縁コイルをより小形にすることができる。
【0027】
―実施例4―
図4は、この発明の第4実施例を示す。
【0028】
この実施例4の絶縁コイルの内部構成は前記各実施例と同じであるが、異なる点は、素線コイルの頭部詰め物13の角部の円弧の曲率を大きくすることによって、その外周の対地絶縁層2の角部が曲率の大きな円弧として、角部に電界分布の緩和処理を施した点である。
【0029】
この実施例4のように構成すれば、対地絶縁層2の内部および外部の角部の電界集中が緩和されるので、絶縁コイル全体の電界分布がより均一化され、局部的な電界集中がなくなるため、絶縁性能をより高めることができる。
【0030】
【発明の効果】
この発明によれば、素線コイルの外周に形成する対地絶縁層の素線コイル側に無孔質の絶縁性フィルム基材に半硬化状の熱硬化性樹脂を塗布処理してなるプリプレグテープにより耐高電界絶縁層を形成しているので対地絶縁層の耐電界性能を高め、耐絶縁破壊電圧特性をたかくすることができる。したがって、対地絶縁層の厚さを薄くして従来と同等の絶縁性能を発揮することができるようになるので、絶縁コイルの寸法を縮小化することができ、回転電機の小形化に貢献できる効果が得られる。
【図面の簡単な説明】
【図1】 この発明の第1実施例を示す絶縁コイルの部分断面図である。
【図2】 (a)は、この発明の第2実施例を示す絶縁コイルの部分断面図、(b)はそのB部を拡大して示す断面図である。
【図3】 (a)は、この発明の第3実施例を示す絶縁コイルの部分断面図、(b)はそのB部を拡大して示す断面図である。
【図4】 この発明の第4実施例を示す絶縁コイルの部分断面図である。
【図5】 従来例を示す絶縁コイルの部分断面図である。
【符号の説明】
1 素線コイル
11 導体
12 素線絶縁
13 頭部詰め物
2 対地絶縁層
20 第2絶縁層
21 耐高電界絶縁層(第1絶縁層)
22 含浸絶縁樹脂
3 内部電界緩和層
31 導電性テープ
32、33 プリプレグ絶縁テープ
34 プリプレグ導電性テープ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an improvement of an insulating coil used as an armature coil of a rotating electric machine such as a generator and an electric motor, particularly a high-voltage rotating electric machine.
[0002]
[Prior art]
In order to increase the insulation of a high-voltage insulating coil for a rotating electrical machine, it is important to remove the air gap from the inside of the insulator as much as possible.
[0003]
As shown in FIG. 5, the conventional normal high-voltage insulated coil is formed by winding and aligning the insulated wires 11 of the coil and then press-molding them at a high temperature to produce the wire coil 1. A ground insulating layer not impregnated with an insulating resin is formed by winding a ground insulating tape such as a laminated mica tape around the wire coil 1 a plurality of times. Next, the wire coil 1 on which the ground insulating layer not impregnated with the insulating resin is formed is placed in a resin-impregnating mold, and the thermosetting insulating resin 22 is impregnated by vacuum and pressure to be cured. Form. This method is often used for manufacturing a coil of a large-sized rotating electrical machine, and is impregnated in units of coils, so that it is called a single coil impregnation method.
[0004]
Alternatively, an unimpregnated wire coil is inserted into the slot of the core of the rotating electrical machine, and after installing the interlayer, wedge, etc., the core and coil are integrally impregnated with an insulating resin and cured, and then fully impregnated. There is also a method called.
[0005]
In any type of insulating coil, in order to obtain a ground insulating layer having no voids inside, improvement of an impregnation technique with an insulating resin has been attempted. As a result, the current ground insulating layer is at a level where a good impregnation state almost completely free of voids can be obtained.
[0006]
[Problems to be solved by the invention]
As the insulation technology has improved in recent years, the size of the rotating electrical machine has been reduced by reducing the coil size by reducing the thickness of the coil insulation layer while keeping the coil conductor dimensions of the insulated coil unchanged. There is a growing demand for
[0007]
However, in the conventional insulation coil in which the ground insulation layer of the insulation coil is composed of laminated mica tape and impregnated resin, if the insulation layer thickness is simply reduced for miniaturization, the insulation layer has a higher electric field. For this reason, there is a disadvantage that the dielectric breakdown strength is reduced and the life of the insulating coil is shortened.
[0008]
The present invention provides a high voltage insulation coil for a rotating electrical machine that has a high dielectric breakdown resistance and can extend the life even when the thickness of the ground insulating layer is thin, in order to reduce the size of the rotating electrical machine. It is the purpose.
[0009]
[Means for Solving the Problems]
In order to achieve such a problem, the present invention provides a nonporous film-like insulating material having a high electric field strength as a base material on the outer periphery of a wire coil formed by winding an insulated wire on a conductor. It was formed by winding a prepreg laminated mica tape containing a semi-cured thermosetting resin on the laminated mica tape, heating and press-molding , and curing the semi-cured thermosetting resin . A ground insulating layer is formed from a first insulating layer and a second insulating layer formed by winding a porous tape-shaped insulating material around the outer periphery of the first insulating layer and then impregnating and curing the thermosetting resin. It is formed.
[0010]
In addition, an internal electric field relaxation layer may be provided inside the first insulating layer in the ground insulating layer. The internal electric field relaxation layer is formed of a conductive tape and a semi-cured thermosetting resin on the insulating tape. It can comprise with the conductive prepreg tape comprised between the prepreg tapes which apply | coated .
[0011]
Furthermore, the corner portion of the ground insulating layer can be arc-shaped to perform electric field concentration relaxation processing.
[0012]
Furthermore, the insulation coil for a rotating electrical machine is formed by assembling a non-porous film-like insulating material having a high electric field strength around the outer periphery of a wire coil formed by winding an insulated wire on a conductor. A prepreg assembled mica tape made of mica tape containing a semi-cured thermosetting resin is wound, heated and pressure-molded, and the semi-cured thermosetting resin is cured to form a first insulating layer. And a step of winding a porous tape-shaped insulating material around the outer periphery of the first insulating layer, impregnating and curing the thermosetting resin, and forming a second insulating layer.
[0013]
In the case of providing an internal electric field relaxation layer, in the step of forming the first insulating layer, heat the wire coil by winding a conductive prepreg tape under the prepreg mica tape, pressure forming.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described with reference to examples shown in the drawings.
[0015]
Example 1
FIG. 1 shows a first embodiment of the present invention.
[0016]
In this figure, reference numeral 1 denotes a strand coil formed by winding a strand 10 formed by applying strand insulation 12 to a strand conductor 11 using a winding form. A ground insulating layer 2 composed of a high electric field insulating layer 21 and an impregnated resin insulating layer 22 including a ground insulating tape is formed on the outer periphery of the wire coil 1. Reference numeral 13 denotes a head stuffing made of an insulating material that fills a void in the head of the wire coil 1.
[0017]
The high electric field insulation layer 21 is a semi-cured thermoset of a B stage on at least one surface of a laminated mica tape or sheet formed by collecting mica using a nonporous high electric field insulation film as a base material. Resin, for example. It consists of a prepreg laminated mica tape or sheet formed by applying an epoxy resin or a polyimide resin. The insulating layer 21 is formed by winding the prepreg laminated mica tape or sheet on the wire coil 1 and press-molding the whole while heating at a high temperature with a high-temperature press-molding press. Thus, resistance to high electric field insulating film and the mica nonporous is bonded to the outer periphery of the wire coil 1 without generating voids, resistance to high electric field insulating layer 21 without gap is formed.
[0018]
A laminated mica tape formed by collecting mica on a porous tape base material made of glass fiber or the like on the high electric field insulating layer 21 is wound as a ground insulating tape, and epoxy resin or polyimide resin is used. The ground insulating layer 2 is formed by impregnating the thermosetting resin with a vacuum and pressurizing and curing. The ground insulating tape used here is preferably a tape made of a porous insulating material as a base material in order to improve the impregnation property of the thermosetting resin.
[0019]
The insulating coil for a rotating electrical machine thus formed is a high-field-resistant nonporous film-based mica tape having a high dielectric breakdown voltage per thickness as a high-field-resistant insulating layer 21 of the ground insulating layer 2. By using this, high insulation performance can be obtained, so that the thickness of the ground insulating layer 2 can be reduced, and the dimensions of the insulating coil can be reduced.
[0020]
A laminated mica tape based on a nonporous insulating film has high dielectric breakdown voltage characteristics, but since it has a poor impregnation property with an insulating resin, if it is used as it is, the insulating layer formed by impregnating the resin As shown in the present invention, a prepreg assembly formed by applying a semi-cured insulating resin to the nonporous insulating film substrate in advance as in the present invention cannot be obtained. By using the mica tape, the prepreg resin of this tape can form an adhesive layer having no gap with respect to the wire coil, so that high insulation performance can be obtained.
[0021]
-Example 2-
FIG. 2 shows a second embodiment of the present invention.
[0022]
In FIGS. 2A and 2B, reference numerals 1 and 2 denote a wire coil and a ground insulating layer, respectively, as in the first embodiment. In this practical example, an internal electric field relaxation layer 3 is provided between the wire coil 1 and the high electric field insulating layer 21. This internal electric field relaxation layer 3 is made of B-stage (semi-cured) epoxy with conductive tape 31 formed by weaving conductive fibers such as carbon fibers in an organic or inorganic insulating fiber base material, and insulating tape from above and below. It is formed by being wound on a wire coil 1 and sandwiched between prepreg tapes 32 and 33 treated with a thermosetting resin such as a resin based on polyimide, a resin based on polyimide, and a high electric field insulation layer 21 is further formed thereon. A porous film base material prepreg aggregated mica tape is wound and pressure-molded while being heated by a thermoforming press, and these tapes are bonded without voids. Further, a ground insulating tape made of a laminated mica tape of a porous fiber base material is wound thereon, and then a thermosetting insulating resin is impregnated by vacuum and pressure, and the resin is heated and cured to finish the ground insulating layer. . Since the relationship between the insulating layers is not clear in FIG. 2A, the portion B in FIG. 2A is enlarged and shown in FIG.
[0023]
As a result, since a conductive layer for electric field relaxation is provided near the surface of the wire coil, the uneven electric field distribution on the outer periphery of the wire coil 1 is relaxed, so that local electric field concentration is eliminated and the ground insulating layer 2 as a whole. Will share the electric field almost equally. For this reason, even if the thickness of the ground insulating layer 2 is reduced, the insulating performance can be maintained, and the size of the insulating coil can be reduced.
[0024]
Example 3
FIG. 3 shows a third embodiment of the present invention. The insulating coil of the third embodiment has substantially the same configuration as the insulating coil of the second embodiment, but the difference is the configuration of the internal electric field relaxation layer 3. . That is, in Example 2, the internal electric field relaxation layer 3 is formed by the conductive tape 31 and the upper and lower prepreg tapes 32 and 33. In this Example 3, the details are shown in FIG. As shown, the internal electric field relaxation layer 3 is formed by a conductive prepreg tape 34 and a lower prepreg tape 32.
[0025]
The conductive prepreg tape 34 is obtained by applying a B-stage (semi-cured) thermosetting epoxy resin or polyimide resin to a conductive tape or sheet.
[0026]
Thereby, since the thickness of the internal electric field relaxation layer 3 can be reduced, the insulation coil can be made smaller.
[0027]
—Example 4—
FIG. 4 shows a fourth embodiment of the present invention.
[0028]
The internal configuration of the insulating coil of the fourth embodiment is the same as that of each of the embodiments described above, except that the curvature of the arc of the corner of the wire pad head stuffing 13 is increased so that the outer circumference of the insulation coil is grounded. This is that the corners of the insulating layer 2 are arcs having a large curvature, and the corners are subjected to electric field distribution relaxation processing.
[0029]
According to the configuration of the fourth embodiment, the electric field concentration in the corners inside and outside the ground insulating layer 2 is alleviated, so that the electric field distribution of the entire insulating coil is made more uniform and local electric field concentration is eliminated. Therefore, the insulation performance can be further improved.
[0030]
【The invention's effect】
According to this invention, by the prepreg tape formed by applying a semi-cured thermosetting resin to a nonporous insulating film substrate on the strand coil side of the ground insulating layer formed on the outer periphery of the strand coil Since the high electric field insulating layer is formed, the electric field performance of the ground insulating layer can be improved and the dielectric breakdown voltage characteristics can be improved. Therefore, it is possible to reduce the thickness of the ground insulating layer and to achieve the same insulation performance as before, so that the size of the insulating coil can be reduced and the effect of contributing to the downsizing of the rotating electrical machine can be achieved. Is obtained.
[Brief description of the drawings]
FIG. 1 is a partial cross-sectional view of an insulating coil showing a first embodiment of the present invention.
FIG. 2A is a partial cross-sectional view of an insulating coil showing a second embodiment of the present invention, and FIG. 2B is an enlarged cross-sectional view showing a B portion thereof.
FIG. 3A is a partial cross-sectional view of an insulating coil showing a third embodiment of the present invention, and FIG. 3B is an enlarged cross-sectional view of a B portion thereof.
FIG. 4 is a partial cross-sectional view of an insulating coil showing a fourth embodiment of the present invention.
FIG. 5 is a partial cross-sectional view of an insulating coil showing a conventional example.
[Explanation of symbols]
1 Wire coil
11 Conductor
12 Wire insulation
13 Head stuffing
2 Ground insulation layer
20 Second insulation layer
21. High electric field insulating layer (first insulating layer)
22 Impregnated insulating resin
3 Internal electric field relaxation layer
31 Conductive tape
32, 33 Prepreg insulation tape
34 Prepreg conductive tape

Claims (6)

導体に絶縁を施した素線を巻回して構成した素線コイルの外周に、耐電界強度の高い無孔質のフィルム状絶縁材を基材とした集成マイカテープに半硬化状の熱硬化性樹脂を含ませてなるプリプレグ集成マイカテープを巻回し、加熱、加圧成形し、前記半硬化状の熱硬化性樹脂を硬化して形成された第1絶縁層と、この第1絶縁層の外周に多孔質のテープ状絶縁材を巻き回した後、熱硬化性樹脂を含浸、硬化して形成された第2絶縁層とから対地絶縁層を形成してなることを特徴とする回転電機用絶縁コイル。A semi-cured thermoset on a laminated mica tape based on a non-porous film-like insulating material with high electric field strength around the outer periphery of a wire coil formed by winding an insulated wire on a conductor A first insulating layer formed by winding a prepreg laminated mica tape containing a resin, heating and pressing , and curing the semi-cured thermosetting resin, and an outer periphery of the first insulating layer after winding a porous tape-shaped insulating material, for rotary electric machine characterized by comprising forming a ground insulating layer of a thermosetting resin impregnated, and a second insulating layer formed by curing insulated coil. 請求項1記載の回転電機用絶縁コイルにおいて、前記第1絶縁層の内側に内部電界緩和層を設けたことを特徴とする回転電機用絶縁コイル。  The insulating coil for a rotating electrical machine according to claim 1, wherein an internal electric field relaxation layer is provided inside the first insulating layer. 請求項2記載の回転電機絶縁コイルにおいて、前記内部電界緩和層は、導電性テープを、絶縁性のテープに半硬化状の熱硬化性樹脂を塗布処理したプリプレグテープで挟んで構成された導電性プリプレグテープであることを特徴とする回転電機用絶縁コイル。  3. The rotating electrical machine insulation coil according to claim 2, wherein the internal electric field relaxation layer is formed by sandwiching a conductive tape with a prepreg tape obtained by applying a semi-cured thermosetting resin to an insulating tape. An insulating coil for a rotating electrical machine, characterized by being a prepreg tape. 請求項1ないし3の何れか1項に記載の回転電機用絶縁コイルにおいて、前記対地絶縁層の角部を円弧状にして電界集中緩和処理を施したことを特徴とする回転電機用絶縁コイル。  The insulating coil for a rotating electrical machine according to any one of claims 1 to 3, wherein an electric field concentration relaxation process is performed with a corner portion of the ground insulating layer formed in an arc shape. 導体に絶縁を施した素線を巻回して構成した素線コイルの外周に耐電界強度の高い無孔質のフィルム状絶縁材を基材とした集成マイカテープに半硬化状の熱硬化性樹脂を含ませてなるプリプレグ集成マイカテープを巻回し、加熱、加圧成形し、前記半硬化状の熱硬化性樹脂を硬化して第1絶縁層を形成する工程と、前記第1絶縁層の外周に多孔質のテープ状絶縁材を巻回して、熱硬化性樹脂を含浸、硬化して第2絶縁層を形成する工程とを含むことを特徴とする回転電機用絶縁コイルの製造方法。Semi-cured thermosetting resin on laminated mica tape based on non-porous film-like insulating material with high electric field strength around the periphery of the wire coil formed by winding the insulated wire on the conductor A step of winding a prepreg laminated mica tape containing, heating and pressure forming , curing the semi-cured thermosetting resin to form a first insulating layer, and an outer periphery of the first insulating layer A method of manufacturing an insulating coil for a rotating electrical machine, comprising: winding a porous tape-shaped insulating material on the substrate and impregnating and curing a thermosetting resin to form a second insulating layer. 導体に絶縁を施した素線を巻回して構成した素線コイルの外周に導電性プリプレグテープを巻回し、その上に耐電界強度の高い無孔質のフィルム状絶縁材を基材とした集成マイカテープに半硬化状の熱硬化性樹脂を含ませてなるプリプレグ集成マイカテープを巻回し、加熱、加圧成形し、前記半硬化状の熱硬化性樹脂を硬化して第1絶縁層を形成する工程と、前記第1絶縁層の外周に多孔質のテープ状絶縁材を巻回して、熱硬化性樹脂を含浸、硬化して第2絶縁層を形成する工程とを含むことを特徴とする回転電機用絶縁コイルの製造方法。Conductive prepreg tape is wound around the outer periphery of a wire coil constructed by winding an insulated wire on a conductor, and a non-porous film-like insulating material with high electric field strength is formed on the base A prepreg assembled mica tape made of mica tape containing a semi-cured thermosetting resin is wound, heated and pressure-molded, and the semi-cured thermosetting resin is cured to form a first insulating layer. And a step of winding a porous tape-shaped insulating material around the outer periphery of the first insulating layer, impregnating and curing the thermosetting resin, and forming a second insulating layer. A method of manufacturing an insulating coil for a rotating electrical machine.
JP2002114703A 2002-04-17 2002-04-17 Insulating coil for rotating electrical machine and method for manufacturing the same Expired - Lifetime JP4249431B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002114703A JP4249431B2 (en) 2002-04-17 2002-04-17 Insulating coil for rotating electrical machine and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002114703A JP4249431B2 (en) 2002-04-17 2002-04-17 Insulating coil for rotating electrical machine and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2003319592A JP2003319592A (en) 2003-11-07
JP4249431B2 true JP4249431B2 (en) 2009-04-02

Family

ID=29533579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002114703A Expired - Lifetime JP4249431B2 (en) 2002-04-17 2002-04-17 Insulating coil for rotating electrical machine and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP4249431B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102983655A (en) * 2012-12-29 2013-03-20 湘潭电机股份有限公司 Insulation structure for motor stator coils

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006262541A (en) * 2005-03-15 2006-09-28 Toshiba Mitsubishi-Electric Industrial System Corp Stator for dynamo-electric machine and its manufacturing method
JP4995433B2 (en) * 2005-05-20 2012-08-08 三菱電機株式会社 Stator coil of rotating electrical machine and method of manufacturing the same
JP2008236924A (en) * 2007-03-22 2008-10-02 Hitachi Ltd Rotary electrical machine and electric vehicle
JP2013240160A (en) * 2012-05-14 2013-11-28 Mitsubishi Electric Corp Armature and manufacturing method therefor
JP2017131088A (en) * 2016-01-22 2017-07-27 三菱電機株式会社 Manufacturing method of stator and stator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102983655A (en) * 2012-12-29 2013-03-20 湘潭电机股份有限公司 Insulation structure for motor stator coils

Also Published As

Publication number Publication date
JP2003319592A (en) 2003-11-07

Similar Documents

Publication Publication Date Title
US7893357B2 (en) Roebel winding with conductive felt
JPH077878A (en) Wall structure insulating outer face of high-voltage parts and its formation
JP4249431B2 (en) Insulating coil for rotating electrical machine and method for manufacturing the same
KR20020090861A (en) High temperature superconducting racetrack coil
US6724118B2 (en) Electrical isolation layer system strand assembly and method of forming for electrical generator
JP2007282410A (en) Rotating electric machine, stator coil thereof, its manufacturing method, and semiconductive sheet, semiconductive tape
EP0672521A1 (en) Composite thin film insulator, manufacturing method thereof, and electric rotating machines using the composite thin film insulator
US5973269A (en) Multi-layer insulation for winding elements of dynamoelectric machines (D.E.M.s)
JPS6319709A (en) High voltage insulating conductor
JP3651629B2 (en) High voltage rotating machine stator insulation coil
JP3284593B2 (en) Stator coil of high voltage rotating electric machine
JP3736821B2 (en) Insulated wire ring of rotating electrical machine
JP4004028B2 (en) Stator coil of rotating electric machine
JPH09149578A (en) High pressure rotating machine coil
JP3550071B2 (en) Pre-preg insulated coil for rotating electric machine
CA2231580C (en) Multi layer insulation for winding elements of d.e.m.s
JPH0723003Y2 (en) coil
JP2925903B2 (en) Mold coil
JPS624937B2 (en)
JPH08163839A (en) Manufacture of insulated coil for high voltage electric rotating machine
JPH11234938A (en) High-voltage dynamo-electric machine and its manufacture
JPS58144563A (en) Manufacture of coil conductor
JP2012023788A (en) Rotary electric machine
CN112771765A (en) Stator coil, method for manufacturing stator coil, and rotating electrical machine
JPH01147813A (en) Manufacture of superconducting coil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090108

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4249431

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140123

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term