JPS6319709A - High voltage insulating conductor - Google Patents
High voltage insulating conductorInfo
- Publication number
- JPS6319709A JPS6319709A JP16283686A JP16283686A JPS6319709A JP S6319709 A JPS6319709 A JP S6319709A JP 16283686 A JP16283686 A JP 16283686A JP 16283686 A JP16283686 A JP 16283686A JP S6319709 A JPS6319709 A JP S6319709A
- Authority
- JP
- Japan
- Prior art keywords
- conductor
- electric field
- layer
- main
- insulation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004020 conductor Substances 0.000 title claims description 70
- 239000010410 layer Substances 0.000 claims description 43
- 239000011247 coating layer Substances 0.000 claims description 19
- 239000000843 powder Substances 0.000 claims description 9
- 239000004840 adhesive resin Substances 0.000 claims description 8
- 229920006223 adhesive resin Polymers 0.000 claims description 8
- 230000005684 electric field Effects 0.000 description 33
- 238000009413 insulation Methods 0.000 description 25
- 238000000034 method Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 7
- 230000007423 decrease Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 4
- 229910002113 barium titanate Inorganic materials 0.000 description 4
- 230000015556 catabolic process Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000010445 mica Substances 0.000 description 4
- 229910052618 mica group Inorganic materials 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 229930185605 Bisphenol Natural products 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- WNRJWWJFBUEZHF-UHFFFAOYSA-N F.F.F.CN Chemical compound F.F.F.CN WNRJWWJFBUEZHF-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 230000002040 relaxant effect Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
- DJSKLKQRHSKRDZ-UHFFFAOYSA-N zinc dioxido(oxo)titanium Chemical compound [Zn+2].[O-][Ti]([O-])=O DJSKLKQRHSKRDZ-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Insulated Conductors (AREA)
- Insulation, Fastening Of Motor, Generator Windings (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔発明の属する技術分野〕
本発明は高電圧回転電機のコイル、乾式静止誘41!器
のコイルなど高電圧絶縁導体の絶縁簿成に関する。[Detailed description of the invention] [Technical field to which the invention pertains] The present invention relates to a coil for a high voltage rotating electric machine, a dry type static induction 41! Concerning the insulation structure of high-voltage insulated conductors such as coils of electric appliances.
一般1/C3KVを超える高電圧絶縁導体においては、
導体を包囲する絶縁層中にはく離や残存気泡などの空隙
(ボイド)があると、#定容量分圧の原理に基づいて訪
電率の小さいボイドに電界が集中してボイド中で部分放
電が発生し、絶縁層が損傷するなどの不都合を生ずるの
で、絶縁層はボイドを含まず、また熱劣化などによりボ
イドが生じ難いものが望まれている。For high voltage insulated conductors exceeding 1/C3KV,
If there are voids such as peeling or residual air bubbles in the insulating layer surrounding the conductor, the electric field will concentrate in the voids with a small electric contact rate based on the principle of constant capacitance partial pressure, and partial discharge will occur in the voids. Therefore, it is desired that the insulating layer does not contain voids and is difficult to form voids due to thermal deterioration.
第6図は従来技術の一例を示す断面図であり、高電圧回
転電機の固定子コイルの断面構造の一例を示したもので
ある。図において、1は整形導体であ)、角部に半径r
なる面取シを施した絶縁被覆された複数の素線1A、
1B等を相互に固着させて一体化するよう形成されてお
シ、整形導体1の外側は厚みdなる主絶R層2によシ包
囲されている。主絶縁層2け、織布、不織布あるいは耐
熱性フィルムからなる基材に、はがしマイカ、集成マイ
カ等を貼p合わせたシートあるいはテープをコイル導体
1に複数層巻回した後、ポリエステル樹脂、エポキシ樹
脂などの熱硬化性樹脂を真空加圧含浸、加熱加圧硬化す
る(真空加圧含浸法)Aあるいは上記シートマたはテー
プにあらかじめ樹脂を含浸、半硬化させ、コイル導体に
巻回した機成定温度で刀口圧成形する(プリプレグ法)
などの方法によシ、前述の妾求性能を満たす高電圧絶縁
導体が得られる技術がすでに確立されている。また、3
は主絶縁層2の外周面に被着された接地導電層である。FIG. 6 is a cross-sectional view showing an example of a conventional technique, and shows an example of a cross-sectional structure of a stator coil of a high-voltage rotating electric machine. In the figure, 1 is a shaped conductor), and the corner has a radius r
A plurality of insulating coated strands 1A with chamfered edges,
The shaped conductor 1 is formed so as to be fixed and integrated with each other, and the outside of the shaped conductor 1 is surrounded by a main insulation layer 2 having a thickness of d. After winding multiple layers of sheets or tapes with peelable mica, laminated mica, etc. pasted onto a base material consisting of two main insulating layers, woven fabric, non-woven fabric, or heat-resistant film, around the coil conductor 1, polyester resin, epoxy A thermosetting resin such as resin is impregnated with vacuum pressure and cured with heat and pressure (vacuum pressure impregnation method) A, or the above-mentioned sheet material or tape is pre-impregnated with resin and semi-cured, and then wound around a coil conductor. Pressure forming at constant temperature (prepreg method)
Techniques have already been established for obtaining high-voltage insulated conductors that meet the desired performance requirements described above. Also, 3
is a ground conductive layer deposited on the outer peripheral surface of the main insulating layer 2.
第4図は第6図に示す高電圧絶縁導体を回転電機のスロ
ットに収納した状態を示す説明図であシ、回転電機の固
定子鉄心5のスロットに収納された高電圧絶R4体の接
地導電層3Jri鉄心5を介して大地電位に保持される
ことによシ、主絶縁層2と鉄心5との間に間隙があった
場合発生する部分放電を阻止できるとともに、接地導電
層6の端部には半導電性の電界緩和層4が被着され、接
地導電/63の端部における電界集中を主絶縁層2の聚
面の沿面方向に分散させることにより、接地導電層乙の
端部における部分放電の発生をも阻止するよう構成され
ている。FIG. 4 is an explanatory diagram showing a state in which the high voltage insulated conductor shown in FIG. 6 is housed in a slot of a rotating electric machine. By holding the conductive layer 3 at the ground potential via the iron core 5, it is possible to prevent partial discharge that would occur if there is a gap between the main insulating layer 2 and the iron core 5, and also to prevent the edge of the ground conductive layer 6 from occurring. A semiconductive electric field relaxation layer 4 is deposited on the edge of the ground conductive layer 63 to disperse electric field concentration at the end of the ground conductive layer 63 in the creeping direction of the bottom surface of the main insulating layer 2. The structure is also designed to prevent partial discharges from occurring.
前述のように絶縁上の欠陥が逐次排除された結果、高電
圧絶縁導体の主絶縁Ni2の厚みdは徐々に縮小され、
したがって印加電圧Vを絶縁厚dで除した平均電界Eo
=V/dが高まシつつある。ところが平均電界EOを高
めようとする場合、従来問題とならなかった面取半径r
なる整形導体1の角部の局部的な電界集中Emが新たに
問題となり、その対策が求められている。As mentioned above, as a result of successive elimination of insulation defects, the thickness d of the main insulation Ni2 of the high voltage insulated conductor is gradually reduced,
Therefore, the average electric field Eo obtained by dividing the applied voltage V by the insulation thickness d
=V/d is increasing. However, when trying to increase the average electric field EO, the chamfer radius r
The local electric field concentration Em at the corners of the shaped conductor 1 has become a new problem, and countermeasures are required.
面取半径rなる角□部の電界の強さEmは次式で表わさ
れる。The electric field strength Em at the corner □ with the chamfer radius r is expressed by the following equation.
第5図は導体角部における電界の集中度を表わす特性線
図であシ、縦軸は角部の電界Kmと平均電界Eoとの比
T2m/Eo 、横軸は面取半径rと主絶縁厚さdとの
比r/dでそれぞれ標準化しである。図において、r
= 0.6 rrtn 、 d = 5閣とした場合、
半径rなる導体1の角部には平均電界Eoの約6.5倍
に相当する電界Emが発生することになシ、この部分が
絶縁の欠陥となるとともに、主絶縁寸法dt−縮小して
導体の占積率を高めることを阻害する原因になっている
。また、電界の集中度を一定に保つためには、絶縁厚さ
dに比例して面取半径rを大きくする必要があることを
示しておシ、素線の面取加工費の増大ならびに導体占積
率の低下をまねく欠点がある。Figure 5 is a characteristic diagram showing the degree of concentration of the electric field at the corner of the conductor, where the vertical axis is the ratio T2m/Eo of the electric field Km at the corner and the average electric field Eo, and the horizontal axis is the chamfer radius r and the main insulation. Each is standardized by the ratio r/d to the thickness d. In the figure, r
= 0.6 rrtn, d = 5 cabinets,
An electric field Em equivalent to approximately 6.5 times the average electric field Eo is generated at the corner of the conductor 1 with radius r, and this portion becomes an insulation defect and the main insulation dimension dt - is reduced. This becomes a cause of hindering the increase in the space factor of the conductor. In addition, in order to keep the degree of concentration of the electric field constant, it is necessary to increase the chamfer radius r in proportion to the insulation thickness d. There is a drawback that it leads to a decrease in the space factor.
さらに、コイル導体1の外側に半導電性のシートまたは
テープを巻回して面取半径rを等測的に大きくする方法
も知られているが、導体占積率の大幅な低下をまねくと
ともに、導電性物質によシ主絶縁層が汚損するという大
荒がある。Furthermore, a method is known in which a semiconductive sheet or tape is wrapped around the outside of the coil conductor 1 to increase the chamfer radius r isometrically, but this leads to a significant decrease in the conductor space factor and There is a serious problem in which the main insulating layer is contaminated by conductive substances.
さらにまた、主絶縁層中に導電層t−複数層設け、各導
電層間の静電容量を調整することによシ、導体角部の電
界集中を緩和する方法も知られているが、導電層と絶縁
層の接着性に新たな問題が発生するばかりか、加工費の
大幅な増大をまねくという欠点がある。Furthermore, a method is known in which electric field concentration at the corners of the conductor is alleviated by providing a plurality of conductive layers in the main insulating layer and adjusting the capacitance between each conductive layer. This method not only causes new problems with the adhesion of the insulating layer, but also has the drawback of significantly increasing processing costs.
本発明は前述の状況に鑑みてなされたもので、導体占積
率の低下や絶縁加工工数の増大を伴うことなく導体角部
の局部的な電界集中を緩和でき、したがって高電圧化、
高電界化可能な高電圧絶縁導体を提供することを目的と
する。The present invention has been made in view of the above-mentioned situation, and it is possible to alleviate local electric field concentration at the corners of the conductor without reducing the conductor space factor or increasing the number of steps required for insulation processing.
The purpose of the present invention is to provide a high voltage insulated conductor that can be used in high electric fields.
本発明は、絶縁被覆された平角導体からなる素線の絶縁
被覆層を高誘電率材料で、複数の素線の集合体からなる
整形導体を覆う主絶縁層を前記絶縁被覆層に比べて誘電
率の小さい絶縁材で形成するよう構成したことにより、
高電圧絶縁導体に加わる電圧によって生ずる絶縁層中の
平均電界を、静電容量分圧の原理に基づいて比誘電率の
大きいイ則
絶縁被覆層例で低く、比誘電率の小さい主絶縁層側で高
く制御することが可能となシ、整形導体角部の局部的な
電界集中を絶縁被覆層中の平均電界が低減されることに
よシ緩和できるようにしたものであり、素線の絶縁被覆
層の比誘電率を大きくすることによシ、導体の形状や主
絶縁層の構成を変えることなく平角導体角部の局部的な
電界集中の低減効果を最大限に活用するとともに、絶縁
被覆層が平角導体角部から剥離することが無いことを利
用して電界緩和効果の耐久性を高めるようにしたもので
ある。The present invention provides an insulating coating layer of a wire made of an insulated rectangular conductor made of a high dielectric constant material, and a main insulating layer covering a shaped conductor made of an aggregate of a plurality of wires having a lower dielectric potential than the insulating coating layer. By configuring it to be made of an insulating material with a low ratio,
Based on the principle of capacitance partial pressure, the average electric field in the insulating layer caused by the voltage applied to a high-voltage insulated conductor is lower on the side of the main insulating layer, which has a lower relative permittivity. It is possible to reduce the local electric field concentration at the corners of the shaped conductor by reducing the average electric field in the insulating coating layer, and the insulation of the strands is reduced. By increasing the dielectric constant of the coating layer, the effect of reducing local electric field concentration at the corners of the rectangular conductor can be maximized without changing the shape of the conductor or the composition of the main insulation layer, and the insulation coating can be The durability of the electric field relaxation effect is increased by taking advantage of the fact that the layer does not peel off from the corners of the rectangular conductor.
以下本発明を実施例に基づいて説明する。 The present invention will be explained below based on examples.
第1図は本発明の実施例を示す要部の断面図であシ、高
圧回転電機の固定子コイルへの適用例を示したものであ
る。図において、整形導体1を構成する素線IA、IB
、 1C,ID等それぞれの平角導体11にはその角部
11Aに面取半径rなる丸みが形成されており、平角導
体11の外周は高誘電率絶縁テープからなる絶縁被覆層
12によって覆われておシ、整形導体1の外周は従来技
術におけると同様な主絶縁層2および図示しない接地導
電層6によって覆われるよう構成されている。FIG. 1 is a sectional view of a main part showing an embodiment of the present invention, and shows an example of application to a stator coil of a high-voltage rotating electric machine. In the figure, strands IA and IB constituting the shaped conductor 1
, 1C, ID, etc., each rectangular conductor 11 has a corner 11A rounded with a chamfer radius r, and the outer periphery of the rectangular conductor 11 is covered with an insulating coating layer 12 made of a high dielectric constant insulating tape. The outer periphery of the shaped conductor 1 is covered with a main insulating layer 2 and a ground conductive layer 6 (not shown) as in the prior art.
前述のように構成された高電圧導体において、印加電圧
を■、絶縁被覆層12の角部(外周側)の曲率半径をr
l、比誘1!率を’t s主絶縁層2の厚みをd、比誘
電率をgl とした場合、平角導体11の角部11Aの
表面における電界強度Em□は次式で表わされる。また
、(1)式で表わされる従来技術における電界強度Em
と(2)式で表わされる電界強度Km、との比は(3)
式で表わされ、gl〉ε、。In the high voltage conductor configured as described above, the applied voltage is .
l, ratio 1! When the ratio is 'ts, the thickness of the main insulating layer 2 is d, and the dielectric constant is gl, the electric field strength Em□ at the surface of the corner 11A of the rectangular conductor 11 is expressed by the following equation. Also, the electric field strength Em in the conventional technology expressed by equation (1)
The ratio of the electric field strength Km expressed by equation (2) is (3)
It is expressed by the formula, gl〉ε,.
rl)rすなわち主絶縁層の誘電率ε、よシ大きな誘電
率ε1なる絶縁被覆層12で導体角部11Aを覆うこと
により、Em17Km は1:り小さくなシ、平角導
体11の角部の電界強度Emlを従来技術におけるEm
に比べて低減することができる。rl)r, that is, the dielectric constant ε of the main insulating layer, and by covering the conductor corner 11A with an insulating coating layer 12 having a larger dielectric constant ε1, Em17Km is 1: the electric field at the corner of the rectangular conductor 11 is smaller than 1. The intensity Eml is compared to Em in the conventional technology.
can be reduced compared to
上述の原理に基づいて実施例における高置1!率絶縁被
葎層の具体的構成を説明する。先ず、高誘電率の接着樹
脂として、ビスフェノール形エポキシ樹脂(チパ社製、
Cy 205) 100m景部に硬化剤として三ふり
化はう素モノメチルアミン(セニルチェルニー社製、
BF#−400) 5 Mi部を配合した樹脂をペース
樹脂とし、これにアセトン50重量部に加えて溶液とし
、この溶液に粒径0106μmのチタン酸バリウム微粉
末を15!:11部加えて攪拌したものを用いた。つぎ
に、厚さ0.1閑のガラスクロスと集成マイカシートと
を前記高誘電率の接着樹脂的809/−で相互に貼シ合
わせ、常温で60分、120℃で20分間の乾燥。High position 1 in the embodiment based on the above-mentioned principle! The specific structure of the insulation sheath layer will be explained. First, as a high dielectric constant adhesive resin, we used bisphenol type epoxy resin (manufactured by Chipa Co., Ltd.,
Cy 205) In the 100 m landscape area, boronic monomethylamine trifluoride (manufactured by Cenil Cerny Co., Ltd.,
BF#-400) A resin containing 5 parts of Mi was used as a paste resin, and 50 parts by weight of acetone was added to this to form a solution, and 15 parts of fine barium titanate powder with a particle size of 0106 μm was added to this solution. :11 parts were added and stirred and used. Next, a 0.1-thick glass cloth and a laminated mica sheet were laminated together using the high dielectric constant adhesive resin 809/-, and dried at room temperature for 60 minutes and at 120° C. for 20 minutes.
半硬化処理を行い厚さ0.15mの高誘1!率集成マイ
カシーIf作成した。ついで、シートを幅12Iのテー
プに切断し、角部の曲率半径r = 0.6ttn。High tensile strength 1 with a thickness of 0.15m after semi-hardening treatment! I created a rate collection Mykacy If. The sheet was then cut into tapes with a width of 12I, with a corner radius of curvature r = 0.6ttn.
断面寸法2X10+sの平角銅線に半重ね2回巻回して
厚さ約0.6 mの絶縁被覆層を有する素線を製作した
。得られた素線1A、jB等の絶縁被覆層12の比誘電
率ε1 は約8であった。このようにして製作した素線
を10段積み重ねて整形導体1を作シ、この整形導体1
の外周にガラスクロス基材の集成マイカテープf、巻回
し、エポキシ樹脂を真空加圧含浸、加熱硬化することに
よシ厚さd=6關の主絶縁)fit 2を形成した。主
絶縁層の比誘電率ε1は別の積層板試料を用いて測定し
た結果約4であった。したがって(3)式によp Em
l / Em を求めると約0.6となる。A rectangular copper wire with a cross-sectional dimension of 2×10+s was wound twice in a half overlap to produce a wire having an insulating coating layer of approximately 0.6 m in thickness. The dielectric constant ε1 of the insulating coating layer 12 of the obtained wires 1A, jB, etc. was about 8. A shaped conductor 1 is made by stacking the strands produced in this way in 10 layers, and this shaped conductor 1 is
A main insulation (fit 2) having a thickness of d=6 was formed by winding a composite mica tape (f) made of glass cloth base material around the outer periphery of the insulator, impregnating it with epoxy resin under vacuum pressure, and curing it by heating. The dielectric constant ε1 of the main insulating layer was approximately 4 as a result of measurement using another laminate sample. Therefore, according to equation (3), p Em
When l/Em is calculated, it is approximately 0.6.
第2図は実施例絶縁被覆導体の交流破壊電圧特性図であ
シ、図中従来法とは前述の実施例導体の高誘電率接着樹
脂からチタン酸バリウム微粉末を除いたものを用いて製
作した絶縁導体である。図から明らかなように、実施例
絶縁導体の破壊電圧は従来技術のそれの1.2倍を示し
、平角導体11の角部11Aを主絶縁層2の厚みdの1
/10程度の厚みを有する高誘電率の絶縁被覆層で覆う
ことによる約40%の局部的電界集中の緩和効果によ)
、変流絶縁破壊電圧を20%も向上できることが明らか
となった。また本発明によれば、素線の絶縁被覆層の接
着樹脂にチタン酸バリウム微粉末のような強誘電体微粉
末を配合するだけの極めて簡単な方法によって局部的電
界集中を緩和でき、したがって導体の占積率の低下を伴
わないという利点が得られる。ま念、素線の絶縁被覆層
をあらかじめ高誘v1率化しておくことによシ、高電圧
絶縁導体の製作にあたって整形導体および主絶縁層の形
成を従来技術において培われた技術をそのまま利用して
行うことができ、絶縁加工工数の増加を伴うことなく信
頼性の高い絶縁導体を得ることができる。さらにまた、
整形導体の素線間の静電容量が増大するので、例えば高
圧コイルのターン間に加わるサージ電圧等の異常送圧を
吸収することができ、かつ主絶縁層の熱劣化に伴って絶
縁被覆層と主絶縁層との間に剥離が生じた場合において
も、高誘電率の絶縁被覆層は導体角部の電界集中部を密
着して覆い電界緩和効果を安定して維持できる利点が得
られる。Figure 2 is an AC breakdown voltage characteristic diagram of the insulated conductor of the example. In the figure, the conventional method is manufactured using the high dielectric constant adhesive resin of the example conductor described above with barium titanate fine powder removed. It is an insulated conductor. As is clear from the figure, the breakdown voltage of the insulated conductor of the example is 1.2 times that of the prior art, and the corner 11A of the rectangular conductor 11 is
(due to the effect of mitigating local electric field concentration by about 40% by covering with a high dielectric constant insulating coating layer having a thickness of about /10)
It has become clear that the current dielectric breakdown voltage can be improved by as much as 20%. Further, according to the present invention, local electric field concentration can be alleviated by an extremely simple method of adding ferroelectric fine powder such as barium titanate fine powder to the adhesive resin of the insulating coating layer of the wire, and therefore the conductor This has the advantage that the space factor does not decrease. By making the insulating coating layer of the strands high in permittivity in advance, it is possible to use the techniques cultivated in the prior art for forming the shaped conductor and the main insulating layer when producing the high voltage insulated conductor. A highly reliable insulated conductor can be obtained without increasing the number of insulation processing steps. Furthermore,
Since the capacitance between the strands of the shaped conductor increases, it is possible to absorb abnormal voltages such as surge voltages applied between turns of a high-voltage coil, and the insulation coating layer decreases due to thermal deterioration of the main insulation layer. Even if peeling occurs between the conductor and the main insulating layer, the high dielectric constant insulating coating layer tightly covers the electric field concentration area at the corner of the conductor and has the advantage of stably maintaining the electric field relaxation effect.
なお、高誘1!率の接着樹脂に配合する強誘電体微粉末
としては、チタン酸バリウム粉末の他に、チタン酸マグ
ネシウム粉末、チタン酸亜鉛粉末を用いてもよく、また
テトラシアノキノジメタン(TCNQ)踏体などを添加
しても高誘電率の接着樹脂を得ることができる。また、
本発明は高圧回転電慨の整形コイルにとどまらず、静止
誘4電器のコイル導体等に適用しても電界緩和作用を得
ることができる。In addition, high invitation 1! In addition to barium titanate powder, magnesium titanate powder or zinc titanate powder may be used as the ferroelectric fine powder to be mixed in the adhesive resin. An adhesive resin with a high dielectric constant can be obtained even by adding . Also,
The present invention is not limited to shaping coils for high-voltage rotating electric appliances, but can also be applied to coil conductors of stationary dielectric appliances, etc. to obtain an electric field relaxing effect.
本発明は前述のように、主絶縁層によって覆われた整形
導体を構成する素線の絶縁被覆層を主絶縁層の比誘電率
に比べて高誘電率のテープ絶縁層で形成するよう構成し
た。その結果、素線の平角導体角部における局部的電界
集中を大幅に緩和することが可能とな)、耐電圧性能に
優れ、したがって高電界化、高電圧化可能な高電圧絶縁
被覆導体を提供することができる。また、高訪電嘉の絶
縁被覆層は強誘電体微粉末を配合した接着樹脂を用いる
ことによって容易に形成することができ、平角導体の面
取半径を犬きくしたシ、整形導体を導電層で覆ったりす
る従来技術における導体占積率の低下を伴わず、また主
絶縁層の形成に影響を及ぼさないので、絶縁加工工数の
増加を伴わず、優れた導電性能を有する絶縁導体を小形
かつ安価に形成することができ、高電圧回vrA電機や
静止誘導電器の高電圧化、大容量化に貢献することがで
きる。また、素線の絶縁被覆層を高誘電率化したことに
より、素線間に加わるサージ電圧等の異常電圧を吸収で
きるとともに、主絶縁層が熱劣化した場合においても平
角導体角部を密着包囲し、局部的電界集中の緩和効果を
安定して維持できるので、絶縁信頼性の高い高電圧絶縁
導体を提供することができる。As described above, the present invention is configured such that the insulation coating layer of the wire constituting the shaped conductor covered with the main insulation layer is formed of a tape insulation layer having a dielectric constant higher than that of the main insulation layer. . As a result, it is possible to significantly alleviate the local electric field concentration at the corners of the rectangular conductor of strands), providing a high-voltage insulated conductor with excellent withstand voltage performance, and therefore capable of increasing electric fields and voltages. can do. In addition, Denka Takabo's insulating coating layer can be easily formed by using an adhesive resin containing fine ferroelectric powder. This method does not involve a decrease in the conductor space factor, which is required by conventional techniques such as covering the conductor with a thin film, and does not affect the formation of the main insulating layer. It can be formed at low cost and can contribute to increasing the voltage and capacity of high-voltage circuits and stationary induction appliances. In addition, by increasing the dielectric constant of the insulation coating layer of the strands, it is possible to absorb abnormal voltages such as surge voltages applied between the strands, and even if the main insulation layer deteriorates due to heat, the corners of the rectangular conductor are closely surrounded. However, since the effect of alleviating local electric field concentration can be stably maintained, a high voltage insulated conductor with high insulation reliability can be provided.
第1図は本発明の実施例を示す要部の概略断面図、第2
図は実施例における絶縁破壊電圧向上効果を示す特性図
、第6図は従来技術を示す要部の断面図、第4図は回転
電機への適用状況を示す要部の断面図、第5図は導体角
部のα界集中度特性線図である。
1・・・竪形導体、1A、 1B、 1C・・・素線、
2・・・主絶縁層、6・・・接地導電層、11・・・平
角導体、12・・・高誘電率の絶縁被覆層、11A・・
・平角導体角部、r・・・面取半径、d・・・主絶縁層
。
第1図
第2図Fig. 1 is a schematic sectional view of the main part showing an embodiment of the present invention, Fig.
The figure is a characteristic diagram showing the dielectric breakdown voltage improvement effect in the example, Figure 6 is a cross-sectional view of the main part showing the conventional technology, Figure 4 is a cross-sectional view of the main part showing the state of application to rotating electric machines, and Figure 5 is an α-field concentration characteristic diagram at a corner of a conductor. 1... Vertical conductor, 1A, 1B, 1C... Element wire,
2... Main insulating layer, 6... Ground conductive layer, 11... Rectangular conductor, 12... High dielectric constant insulating coating layer, 11A...
- Rectangular conductor corner, r... chamfer radius, d... main insulating layer. Figure 1 Figure 2
Claims (1)
互に固着させて断面がほぼ方形に整形された整形導体と
、この整形導体を密着包囲するよう形成された主絶縁層
とを有するものにおいて、前記主絶縁層に比べて比誘電
率の大きい絶縁被覆層を有する複数の素線からなる整形
導体を備えてなることを特徴とする高電圧絶縁導体。 2)特許請求の範囲第1項記載のものにおいて、絶縁被
覆層が強誘電体微粉末が配合された接着樹脂を含むこと
を特徴とする高電圧絶縁導体。[Scope of Claims] 1) A shaped conductor having a substantially rectangular cross section by fixing a plurality of wires made of insulated rectangular conductors to each other, and a shaped conductor formed to tightly surround this shaped conductor. 1. A high-voltage insulated conductor comprising a main insulating layer, the shaped conductor comprising a plurality of wires having an insulating coating layer having a higher dielectric constant than the main insulating layer. 2) A high voltage insulated conductor according to claim 1, wherein the insulating coating layer contains an adhesive resin blended with fine ferroelectric powder.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61162836A JPH0685283B2 (en) | 1986-07-10 | 1986-07-10 | High voltage insulated conductor consisting of shaped conductor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61162836A JPH0685283B2 (en) | 1986-07-10 | 1986-07-10 | High voltage insulated conductor consisting of shaped conductor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6319709A true JPS6319709A (en) | 1988-01-27 |
JPH0685283B2 JPH0685283B2 (en) | 1994-10-26 |
Family
ID=15762169
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61162836A Expired - Fee Related JPH0685283B2 (en) | 1986-07-10 | 1986-07-10 | High voltage insulated conductor consisting of shaped conductor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0685283B2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004111456A (en) * | 2002-09-13 | 2004-04-08 | Matsushita Electric Ind Co Ltd | Coil component |
JP2004111457A (en) * | 2002-09-13 | 2004-04-08 | Matsushita Electric Ind Co Ltd | Method of manufacturing coil component |
US6997604B2 (en) | 2003-01-07 | 2006-02-14 | Ngk Spark Plug Co., Ltd. | Temperature sensor |
JP2007059123A (en) * | 2005-08-23 | 2007-03-08 | Sumitomo Wiring Syst Ltd | Electric wire for automobile |
JP2008153665A (en) * | 2006-12-15 | 2008-07-03 | General Electric Co <Ge> | Insulation system and insulation method for transformer |
WO2014128954A1 (en) * | 2013-02-25 | 2014-08-28 | 株式会社 日立製作所 | Rotating machine |
JP2018082091A (en) * | 2016-11-17 | 2018-05-24 | Tdk株式会社 | Coil device |
JP2019161196A (en) * | 2018-03-17 | 2019-09-19 | 株式会社村田製作所 | Coil component |
JP2021118651A (en) * | 2020-01-28 | 2021-08-10 | 株式会社デンソー | Rotary electric machine |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4810245U (en) * | 1971-06-18 | 1973-02-05 | ||
JPS4916122A (en) * | 1972-06-10 | 1974-02-13 | ||
JPS5042387A (en) * | 1973-07-18 | 1975-04-17 | ||
JPS50110304U (en) * | 1974-02-18 | 1975-09-09 | ||
JPS5386401A (en) * | 1977-01-10 | 1978-07-29 | Toshiba Corp | Electrical insulation coil |
JPS55120319A (en) * | 1979-03-09 | 1980-09-16 | Showa Electric Wire & Cable Co | Method of alleviating electric field |
JPS57141808A (en) * | 1982-01-29 | 1982-09-02 | Tokyo Shibaura Electric Co | Insulating conductor for winding |
-
1986
- 1986-07-10 JP JP61162836A patent/JPH0685283B2/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4810245U (en) * | 1971-06-18 | 1973-02-05 | ||
JPS4916122A (en) * | 1972-06-10 | 1974-02-13 | ||
JPS5042387A (en) * | 1973-07-18 | 1975-04-17 | ||
JPS50110304U (en) * | 1974-02-18 | 1975-09-09 | ||
JPS5386401A (en) * | 1977-01-10 | 1978-07-29 | Toshiba Corp | Electrical insulation coil |
JPS55120319A (en) * | 1979-03-09 | 1980-09-16 | Showa Electric Wire & Cable Co | Method of alleviating electric field |
JPS57141808A (en) * | 1982-01-29 | 1982-09-02 | Tokyo Shibaura Electric Co | Insulating conductor for winding |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004111456A (en) * | 2002-09-13 | 2004-04-08 | Matsushita Electric Ind Co Ltd | Coil component |
JP2004111457A (en) * | 2002-09-13 | 2004-04-08 | Matsushita Electric Ind Co Ltd | Method of manufacturing coil component |
US6997604B2 (en) | 2003-01-07 | 2006-02-14 | Ngk Spark Plug Co., Ltd. | Temperature sensor |
JP2007059123A (en) * | 2005-08-23 | 2007-03-08 | Sumitomo Wiring Syst Ltd | Electric wire for automobile |
JP2008153665A (en) * | 2006-12-15 | 2008-07-03 | General Electric Co <Ge> | Insulation system and insulation method for transformer |
WO2014128954A1 (en) * | 2013-02-25 | 2014-08-28 | 株式会社 日立製作所 | Rotating machine |
JPWO2014128954A1 (en) * | 2013-02-25 | 2017-02-02 | 株式会社日立製作所 | Rotating machine |
JP2018082091A (en) * | 2016-11-17 | 2018-05-24 | Tdk株式会社 | Coil device |
JP2019161196A (en) * | 2018-03-17 | 2019-09-19 | 株式会社村田製作所 | Coil component |
US11664155B2 (en) | 2018-03-17 | 2023-05-30 | Murata Manufacturing Co., Ltd. | Coil component |
JP2021118651A (en) * | 2020-01-28 | 2021-08-10 | 株式会社デンソー | Rotary electric machine |
Also Published As
Publication number | Publication date |
---|---|
JPH0685283B2 (en) | 1994-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3679925A (en) | Electrical apparatus with corona suppression means | |
EP1319266A1 (en) | Graded electric field insulation system for dynamoelectric machine | |
JPS6319709A (en) | High voltage insulating conductor | |
US5674340A (en) | Insulating tape for the winding of an electric machine | |
JP3220319B2 (en) | Sheet material for electrical insulation, prepreg, and electrically insulated wire loop using the same | |
US4836769A (en) | Water-cooled winding for electromagnetic stirrer | |
JP4249431B2 (en) | Insulating coil for rotating electrical machine and method for manufacturing the same | |
JP3736821B2 (en) | Insulated wire ring of rotating electrical machine | |
JPS5899249A (en) | Manufacture of coil for rotary electric machinery | |
JP3284593B2 (en) | Stator coil of high voltage rotating electric machine | |
JPS62193103A (en) | Insulated coil | |
JPS62117211A (en) | High voltage insulated conductor | |
US20220376577A1 (en) | Winding insulation system | |
JPS58157350A (en) | Insulated coil for rotary electric machine | |
JPH11234938A (en) | High-voltage dynamo-electric machine and its manufacture | |
EP3866307B1 (en) | Stator coil, method for manufacturing same, and rotary electrical machine | |
JPH06237559A (en) | Coil insulation of rotating electric machine | |
JPH11346450A (en) | Stator coil for high tension rotating machine | |
JP2616103B2 (en) | Manufacturing method of heat resistant coil | |
JPH0640727B2 (en) | Method for manufacturing randomly wound coil of high-voltage rotating electric machine | |
JPH0526916Y2 (en) | ||
JPS60200510A (en) | Insulating coil for electric equipment | |
JPS63257428A (en) | Winding of rotating electric machine | |
JPS61224844A (en) | Manufacture of electric coil | |
JPH04222431A (en) | Insulation structure for electric rotating machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |