JP4248233B2 - Airbag starter - Google Patents

Airbag starter Download PDF

Info

Publication number
JP4248233B2
JP4248233B2 JP2002519234A JP2002519234A JP4248233B2 JP 4248233 B2 JP4248233 B2 JP 4248233B2 JP 2002519234 A JP2002519234 A JP 2002519234A JP 2002519234 A JP2002519234 A JP 2002519234A JP 4248233 B2 JP4248233 B2 JP 4248233B2
Authority
JP
Japan
Prior art keywords
squib
air bag
potential
current
series
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002519234A
Other languages
Japanese (ja)
Inventor
隆介 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Application granted granted Critical
Publication of JP4248233B2 publication Critical patent/JP4248233B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/017Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including arrangements for providing electric power to safety arrangements or their actuating means, e.g. to pyrotechnic fuses or electro-mechanic valves

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Air Bags (AREA)

Description

この発明は、自動車等に搭載され、衝突事故発生時等に乗員を保護するエアーバック装置、特に、エアーバックの膨張を確実に行うエアーバック起動装置に関するものである。   The present invention relates to an airbag device that is mounted on an automobile or the like and protects an occupant when a collision accident occurs, and more particularly to an airbag activation device that reliably inflates an airbag.

図1は従来のエアーバック起動装置を示す回路図であり、図1において、101はエアーバックを膨張させるスクイブ、102,103はスクイブ101を挟んで直列に接続した半導体スイッチ、104は衝突等の衝撃を検知する機械的センサであり、半導体スイッチ102と直列に接続されるとともに、逆流防止用ダイオード118、イグニッションスイッチ119を介して電源120に接続されている。   FIG. 1 is a circuit diagram showing a conventional air bag starting device. In FIG. 1, 101 is a squib for inflating an air bag, 102 and 103 are semiconductor switches connected in series across the squib 101, 104 is a collision, etc. This mechanical sensor detects an impact, and is connected in series with the semiconductor switch 102 and is connected to the power source 120 via a backflow prevention diode 118 and an ignition switch 119.

105は半導体スイッチ102を導通させて前記スクイブ101にエアーバックを膨張させる制限された電流を流す電流制御回路、106は定期的にスクイブ101にエアーバックを展開させない定電流を流し該スクイブ両端の電位差を検出するスクイブ測定回路、107は基準電源、108は基準電源107に抵抗109を介して直列に接続し、電流制御回路105の入力つまり、接続点Pの電位を決定する抵抗、110は電流制御回路105と基準電源107との間に接続した抵抗、111は電流制御回路105を駆動するとともにスクイブ測定回路106で検出した電位差に基づいてスクイブの抵抗値を算出する演算回路としてのマイクロコンピュータ(以下、マイコンと略称する)、112は衝突等の衝撃を検知する加速度センサ、113は機械的センサ104の電源側とアース114間に接続したバックアップコンデンサである。なお、電流制御回路105及びスクイブ測定回路106及びその周辺回路は半導体集積回路で構成している。 A current control circuit 105 conducts a limited current that causes the semiconductor switch 102 to conduct and inflate the air bag to the squib 101, and 106 periodically sends a constant current that does not cause the air bag to expand to the squib 101, thereby causing a potential difference between both ends of the squib. The squib measurement circuit 107 detects a reference power supply, 107 is connected in series to the reference power supply 107 via a resistor 109, and is a resistor that determines the input of the current control circuit 105, that is, the potential at the connection point P, and 110 is current control A resistor 111 is connected between the circuit 105 and the reference power source 107. A microcomputer 111 drives the current control circuit 105 and calculates a squib resistance value based on the potential difference detected by the squib measurement circuit 106 (hereinafter referred to as a microcomputer). , 112 abbreviated as a microcomputer), 112 is an acceleration sensor for detecting an impact such as a collision, 13 is a backup capacitor connected between the power supply side and ground 114 of the mechanical sensor 104. Note that the current control circuit 105, the squib measurement circuit 106, and the peripheral circuits thereof are constituted by semiconductor integrated circuits.

図2は上記電流制御回路105の具体的構成を示すもので、抵抗108と抵抗109との接続点Pの電位と抵抗110を介した基準電源107の電位を比較する比較器115と、抵抗110とスクイブ101との間に直列に接続され、上記比較器115からの出力を受けて導通する半導体スイッチ116と、マイコン111によって導通制御され上記比較器115を基準電源107に接続する半導体スイッチ117とを有する。なお、上記の比較器115は、半導体スイッチ116に流れる電流による抵抗110の電圧降下により、比較すべき入力電圧が変わり、この結果、出力を変化させて半導体スイッチ102に流れる電流を一定に保つように作動する。 FIG. 2 shows a specific configuration of the current control circuit 105. The comparator 115 compares the potential of the connection point P between the resistor 108 and the resistor 109 and the potential of the reference power source 107 via the resistor 110, and the resistor 110. And a squib 101 are connected in series, and a semiconductor switch 116 that conducts in response to the output from the comparator 115, and a semiconductor switch 117 that is conduction-controlled by the microcomputer 111 and connects the comparator 115 to the reference power source 107, Have Note that the comparator 115 changes the input voltage to be compared due to the voltage drop of the resistor 110 due to the current flowing through the semiconductor switch 116, and as a result, changes the output to keep the current flowing through the semiconductor switch 102 constant. Operates on.

図3は上記スクイブ測定回路106の具体的構成を示すもので、スクイブ101と直列に第1の基準電源121とスイッチング素子122と定電流回路123を接続し、第2,第3の基準電源124,125に接続され、スクイブ101の両端の電位差を検出し増幅する増幅器126を有する。この増幅器126はスクイブ101の各端子に接続された抵抗127,128と、比較器129と、その比較器129の非反転端子と第3の基準電源125との間に接続された抵抗130と、比較器129の反転端子と出力端子間に接続した抵抗131とで構成されている。なお、第1〜第3の基準電源121,124,125はそれぞれ別個独立した電源を用意してもよいが、例えば、1つの基準電源を基にして作成することもできる。   FIG. 3 shows a specific configuration of the squib measuring circuit 106. A first reference power source 121, a switching element 122, and a constant current circuit 123 are connected in series with the squib 101, and second and third reference power sources 124 are connected. , 125 and an amplifier 126 for detecting and amplifying a potential difference between both ends of the squib 101. The amplifier 126 includes resistors 127 and 128 connected to respective terminals of the squib 101, a comparator 129, a resistor 130 connected between the non-inverting terminal of the comparator 129 and the third reference power supply 125, The resistor 131 is connected between the inverting terminal of the comparator 129 and the output terminal. The first to third reference power supplies 121, 124, and 125 may be prepared as separate and independent power supplies, but may be created based on one reference power supply, for example.

次に動作について説明する。
イグニッションスイッチ119を閉路すると、逆流防止用ダイオード118を介してバックアップコンデンサ113の充電が行われる。一方、基準電源107からは抵抗109と外付け抵抗108の直列回路に基準電流が流れ接続点Pに一定の電位が生じている。
Next, the operation will be described.
When the ignition switch 119 is closed, the backup capacitor 113 is charged via the backflow prevention diode 118. On the other hand, a reference current flows from the reference power source 107 to the series circuit of the resistor 109 and the external resistor 108 , and a constant potential is generated at the connection point P.

この状態において、マイコン111から定期的に供給される導通信号を受けてスクイブ測定回路106のスイッチング素子122が導通すると、第1の基準電源121からスイッチング素子122、スクイブ101、定電流回路123を介してスクイブ101にエアーバックを展開させることのない定電流が流れる。このとき、スクイブ101の電位差を増幅器126で検出し、この検出値をマイコン111に供給する。また、この電位差が検出できない場合は、スクイブ回路が断線等していることを検出できる。マイコン111は供給された検出値に基づいて、スクイブ101の抵抗値を算出して内部のメモリ(図示せず)に格納する。 In this state, when the switching element 122 of the squib measurement circuit 106 is turned on in response to a conduction signal periodically supplied from the microcomputer 111, the first reference power supply 121 passes through the switching element 122, the squib 101, and the constant current circuit 123. Thus, a constant current without causing the air bag to expand in the squib 101 flows. At this time, the potential difference of the squib 101 is detected by the amplifier 126 and the detected value is supplied to the microcomputer 111. If this potential difference cannot be detected, it is possible to detect that the squib circuit is disconnected or the like. The microcomputer 111 calculates the resistance value of the squib 101 based on the supplied detection value and stores it in an internal memory (not shown).

車両に衝撃が加わり、加速度センサ112からエアーバックを展開することが必要な検出信号がマイコン111に供給されると、マイコン111から導通信号を受けて半導体スイッチ117が導通し、比較器115は非反転端子に入力されている接続点Pの電位と、反転端子に抵抗110を介して入力されている基準電源107の電位とに基づいた出力で半導体スイッチ102,116を導通させる。   When a shock is applied to the vehicle and a detection signal required to deploy an air bag is supplied from the acceleration sensor 112 to the microcomputer 111, the semiconductor switch 117 is turned on in response to the conduction signal from the microcomputer 111, and the comparator 115 is turned off. The semiconductor switches 102 and 116 are turned on by an output based on the potential of the connection point P input to the inverting terminal and the potential of the reference power supply 107 input to the inverting terminal via the resistor 110.

半導体スイッチ116の導通によって、抵抗110には流れる電流に基づいて電圧降下が生じ、この電圧降下に基づく電位とP点における抵抗109の電位とを比較することにより決まる出力が比較器115から半導体スイッチ102に供給されるので、半導体スイッチ102の導通量が一定に保持され、スクイブ101にはバックアップコンデンサ113及び電源120から規定のエアーバック展開電流が流れる。   Due to the conduction of the semiconductor switch 116, a voltage drop occurs in the resistor 110 based on the flowing current, and an output determined by comparing the potential based on this voltage drop and the potential of the resistor 109 at the point P is output from the comparator 115 to the semiconductor switch. 102, the conduction amount of the semiconductor switch 102 is kept constant, and a prescribed air bag developed current flows from the backup capacitor 113 and the power source 120 to the squib 101.

従来のエアーバック装置は以上のように構成されているので、スクイブが正常であるか否かを測定することはできるが、比較器の入力電位を決める抵抗109,110、比較器115の出力で導通量を決定する半導体スイッチ102,116の特性ばらつきによって、半導体スイッチ102の導通量を規定量に保持することができず、エアーバック展開時にスクイブに流れる電流量にばらつきが生じる。このため、バックアップコンデンサの容量をスクイブがエアーバックを膨張させるに必要な規定値に近い電流を流せるようにすると、上記のばらつきにより、スクイブに流れる電流も変化し、エアーバックを膨張させることができない場合が生じる。このため、上記のようなばらつきが生じてもエアーバックを確実に膨張させることができるような、大容量のバックアップコンデンサが必要となり、大容量で大型のバックアップコンデンサを使用しなければならず、装置構成が大型化するとともに高価になるという課題があった。 Since the conventional air bag device is configured as described above, it is possible to measure whether or not the squib is normal, but the outputs of the resistors 109 and 110 and the comparator 115 that determine the input potential of the comparator are used. Due to variations in the characteristics of the semiconductor switches 102 and 116 that determine the amount of conduction, the amount of conduction of the semiconductor switch 102 cannot be maintained at a specified amount, and the amount of current flowing through the squib varies when the air bag is deployed. For this reason, if the squib allows the current close to the specified value necessary for the squib to inflate the air bag, the current flowing through the squib also changes due to the above variation, and the air bag cannot be inflated. Cases arise. For this reason, a large-capacity backup capacitor is required so that the air bag can be reliably inflated even if the above variations occur, and a large-capacity, large-scale backup capacitor must be used. There is a problem that the configuration becomes large and expensive.

この発明は上記のような課題を解消するためになされたもので、バックアップコンデンサとして、スクイブがエアーバック装置を膨張させるに必要な規定値に近い電流をながすことができる小型かつ小容量のものを使用して、確実にエアーバックを起動することのできるエアーバック起動装置を得ることを目的とする。   The present invention has been made to solve the above-described problems, and a backup capacitor having a small size and a small capacity capable of flowing a current close to a specified value necessary for the squib to inflate the air bag device. An object of the present invention is to obtain an air bag activation device that can be used to reliably activate an air bag.

この発明に係るエアーバック起動装置は、エアーバックを膨張させるスクイブと、スクイブと直列に接続された衝撃検知の機械的センサと、スクイブと直列に接続され入力量に基づいて通電量を変化させる半導体スイッチと、衝突時の衝撃の大きさを検出する加速度センサと、定期的にスクイブにエアーバックを展開させない定電流を流し該スクイブ両端の電位差を検出するスクイブ測定回路と、基準電源とアース間に直列に接続された少なくとも2つの抵抗と、一方に入力端に2つの抵抗の接続点の電位を入力し他方の入力端に抵抗を介して基準電源の電位を入力する比較器を有し、接続点の電位の変化に応じて該比較器の出力を変化させる電流制御回路と、直列に接続された2つの抵抗の一方に選択的に並列接続して該直列に接続された2つの抵抗の接続点の電位を変化させる複数の抵抗と、定期的にスクイブ測定回路を起動させてスクイブ測定回路からスクイブにエアーバックを展開させない定電流を流し、このときスクイブ測定回路を介して検出されたスクイブの電位差に基づいて該スクイブの抵抗値を算出して内蔵するメモリに記憶し、加速度センサからの検出信号に基づいてエアーバック展開が必要と判断したときは電流制御回路内の比較器を起動させ、この比較器の出力で半導体スイッチを導通させてスクイブにエアーバック展開初期の電流を流し、そのときスクイブに生じた電位差をスクイブ測定回路を介して入力してメモリに記憶した抵抗値とにより、スクイブに流れる電流値を算出し、この電流値が規定値より多くなるように複数の抵抗の接続および切り離しを選択的に行い、電流制御回路の比較器から半導体スイッチに対する入力量を増加させて、スクイブにエアーバックを展開させるに十分な規定量の電流を流すようにする演算回路とを備えたものである。
An air bag starter according to the present invention includes a squib for inflating an air bag, a mechanical sensor for impact detection connected in series with the squib, and a semiconductor connected in series with the squib to change the energization amount based on the input amount. A switch, an acceleration sensor for detecting the magnitude of impact at the time of a collision, a squib measuring circuit for periodically detecting a potential difference between both ends of the squib by supplying a constant current that does not cause the air bag to expand on the squib, and a reference power source and the ground. It has at least two resistors connected in series and a comparator that inputs the potential of the connection point of the two resistors to one input terminal and inputs the potential of the reference power supply to the other input terminal via the resistor. A current control circuit that changes the output of the comparator in response to a change in the potential of the point, and one of two resistors connected in series selectively connected in parallel and connected in series A plurality of resistors that change the potential at the connection point of the two resistors and a constant current that does not cause the air bag to expand from the squib measurement circuit to the squib measurement circuit are periodically activated and detected via the squib measurement circuit. A resistance value of the squib is calculated based on the potential difference of the squib and stored in a built-in memory, and when it is determined that air bag expansion is necessary based on the detection signal from the acceleration sensor, a comparator in the current control circuit The resistance value stored in the memory by inputting the potential difference generated in the squib through the squib measurement circuit at that time, causing the semiconductor switch to conduct by the output of this comparator and causing the current in the air bag development to flow through the squib. To calculate the current value that flows through the squib, and connect and disconnect multiple resistors so that this current value exceeds the specified value. Selectively performed, by increasing the input amount to the semiconductor switch from the comparator of the current control circuit, in which an arithmetic circuit to flow a sufficient predetermined amount of current to deploy the airbag squib .

このことによって、エアーバック膨張時には、スクイブに流れる電流を常に規定値になるように調整することができ、確実にエアーバックを膨張させるに必要な電流をスクイブに流すことができる。この結果、バックアップコンデンサは必要以上に大きな容量のものを用いなくてもよいので、小容量の小型な、バックアップコンデンサを利用できるようになるという効果がある。   As a result, when the airbag is inflated, the current flowing through the squib can be adjusted to a specified value at all times, and the current necessary for inflating the airbag can be reliably passed through the squib. As a result, since it is not necessary to use a backup capacitor having a larger capacity than necessary, it is possible to use a small-sized backup capacitor having a small capacity.

この発明に係るエアーバック起動装置の演算回路は、マイクロコンピュータであり、このマイクロコンピュータのポートの切り替えにより、抵抗の接続および切り離しを行うものである。
このことによって、抵抗の接続および切り離しをマイクロコンピュータによって自動的に行うことができるという効果がある。
Arithmetic circuit airbag activation apparatus according to the present invention is a microcomputer, Ri by the switching of the port of the microcomputer, and performs connection and disconnection of the resistor.
Depending on this, there is the effect that the connection and disconnection of the resistor can be automatically performed by the microcomputer.

この発明に係るエアーバック起動装置によれば、エアーバック膨張時には、スクイブに流れる電流を常に規定値になるように調整することができ、小容量の小型な、バックアップコンデンサを利用できる。また、抵抗の接続および切り離しを演算回路であるマイクロコンピュータで自動的に行うことができる。  According to the airbag starter according to the present invention, when the airbag is inflated, the current flowing through the squib can always be adjusted to a specified value, and a small-sized backup capacitor having a small capacity can be used. Further, the resistance can be automatically connected and disconnected by a microcomputer which is an arithmetic circuit.

以下、この発明をより詳細に説明するために、この発明を実施するための最良の形態について、添付の図面に従って説明する。
実施の形態1.
図4において、1はエアーバックを膨張させるスクイブ、2、3はスクイブ1を挟んで直列に接続した半導体スイッチ、4は衝突等の衝撃を検知する機械的センサであり、半導体スイッチ2と直列に接続されるとともに、逆流防止用ダイオード18、イグニッションスイッチ19を介して電源20に接続されている。
Hereinafter, in order to describe the present invention in more detail, the best mode for carrying out the present invention will be described with reference to the accompanying drawings.
Embodiment 1 FIG.
In FIG. 4, 1 is a squib for inflating an air bag, 2 is a semiconductor switch connected in series across the squib 1, and 4 is a mechanical sensor for detecting an impact such as a collision. In addition to being connected, it is connected to a power source 20 via a backflow preventing diode 18 and an ignition switch 19.

5は半導体スイッチ2を導通させて前記スクイブ1にエアーバックを膨張させる規定量の電流を流す電流制御回路、6は定期的にスクイブ1にエアーバックを展開させない定電流を流し該スクイブ両端の電位差を検出するスクイブ測定回路、7は基準電源、8は基準電源7に抵抗9を介して直列に接続し、電流制御回路5の入力を決定する抵抗、8a〜8nはスイッチ9a〜9nによって選択的に抵抗8と並列接続される抵抗である。10は基準電源7と電流制御回路5間に接続した抵抗、11は電流制御回路5を駆動するとともにスクイブ測定回路6で検出した電位差に基づいてスクイブの抵抗値を算出する演算回路としてのマイクロコンピュータ(以下、マイコンと略称する)、12は衝突等の衝撃を検知する加速度センサ、13は機械的センサ4の電源側とアース14間に接続したバックアップコンデンサである。なお、電流制御回路5及びスクイブ測定回路6及びその周辺回路は半導体集積回路で構成している。 Reference numeral 5 denotes a current control circuit for causing the semiconductor switch 2 to conduct and supplying a specified amount of current to inflate the air bag to the squib 1. Reference numeral 6 denotes a constant current that does not cause the air bag to expand periodically. squib measurement circuit for detecting, 7 reference power supply, 8 connected in series through a resistor 9 to the reference power supply 7, resistance that determine the input of the current control circuit 5, 8a-8n by switch 9a~9n a resistor which is selectively connected in parallel with the resistor 8. Reference numeral 10 denotes a resistor connected between the reference power supply 7 and the current control circuit 5, and reference numeral 11 denotes a microcomputer as an arithmetic circuit that drives the current control circuit 5 and calculates the resistance value of the squib based on the potential difference detected by the squib measurement circuit 6. (Hereinafter abbreviated as a microcomputer), 12 is an acceleration sensor for detecting an impact such as a collision, and 13 is a backup capacitor connected between the power supply side of the mechanical sensor 4 and the ground 14. Note that the current control circuit 5, the squib measurement circuit 6, and its peripheral circuits are constituted by semiconductor integrated circuits.

図5は上記電流制御回路5の具体的構成を示すもので、抵抗8と抵抗9との接続点Pの電位と抵抗10を介した基準電源7の電位を比較する比較器15と、抵抗10とスクイブ1との間に直列に接続され上記比較器15からの出力を受けて導通する半導体スイッチ16と、マイコン11によって導通制御され上記比較器15を基準電源7に接続する半導体スイッチ17とを有する。なお、上記の半導体スイッチ16は、これに流れる電流による抵抗10の電圧降下により、比較器15の入力電圧の差を変え、この結果、出力を変化させて半導体スイッチ2に流れる電流を規定量に保つように作動する。 Figure 5 shows a specific configuration of the current control circuit 5, a comparator 15 for comparing the potential of the reference power source 7 via the potential and resistance 10 of the connection point P between the resistor 8 and the resistor 9, A semiconductor switch 16 connected in series between the resistor 10 and the squib 1 and conducting by receiving an output from the comparator 15, and a semiconductor switch 17 connected by the microcomputer 11 and connected to the reference power supply 7 by the microcomputer 11. And have. The semiconductor switch 16 changes the difference in the input voltage of the comparator 15 due to the voltage drop of the resistor 10 due to the current flowing therethrough, and as a result, the output flows to change the current flowing through the semiconductor switch 2 to a specified amount. Operates to keep.

図6はスクイブ測定回路6の具体的構成を示すもので、スクイブ1と直列に第1の基準電源21とスイッチング素子22と定電流回路23を接続し、第2,第3の基準電源24,25に接続され、スクイブ1の両端の電位差を検出し増幅する増幅器26を有する。この増幅器26はスクイブ1の各端子に接続された抵抗27,28と、比較器15の非反転端子と第3の基準電源25との間に接続された抵抗29と、比較器15の反転端子と出力端子間に接続した抵抗30とで構成されている。なお、第1〜第3の基準電源21,24,25はそれぞれ別個独立した電源を用意してもよいが、例えば、1つの基準電源を基にして作成することもできる。 FIG. 6 shows a specific configuration of the squib measuring circuit 6, in which a first reference power source 21, a switching element 22, and a constant current circuit 23 are connected in series with the squib 1, and second, third reference power sources 24, 25, and has an amplifier 26 for detecting and amplifying a potential difference between both ends of the squib 1. The amplifier 26 includes resistors 27 and 28 connected to respective terminals of the squib 1, a resistor 29 connected between the non-inverting terminal of the comparator 15 and the third reference power supply 25, and an inverting terminal of the comparator 15. And a resistor 30 connected between the output terminals. The first to third reference power sources 21, 24, and 25 may be prepared as independent power sources, but may be created based on one reference power source, for example.

次に動作について説明する。
イグニッションスイッチ19を閉路すると、逆流防止用ダイオード18を介してバックアップコンデンサ13の充電が行われる。一方、基準電源7からは抵抗9と抵抗8の直列回路に基準電流が流れ接続点Pに一定の電位が生じている。
Next, the operation will be described.
When the ignition switch 19 is closed, the backup capacitor 13 is charged via the backflow prevention diode 18. On the other hand, a constant potential to a connection point P reference current flows through the series circuit of the resistors 9 and resistor 8 is generated from the reference power source 7.

この状態において、マイコン11から定期的に供給される導通信号を受けてスイッチング素子22が導通すると、第1の基準電源21からスイッチング素子22、スクイブ1、定電流回路23を介してスクイブ1に定電流が流れる。このとき、スクイブ1の電位差を増幅器26で検出し、この検出値を増幅してマイコン11に供給する。マイコン11は供給された検出値に基づいて、スクイブ1の抵抗値を算出して内部のメモリ(図示せず)に格納する。   In this state, when the switching element 22 is turned on by receiving a conduction signal periodically supplied from the microcomputer 11, the squib 1 is fixed from the first reference power supply 21 through the switching element 22, the squib 1, and the constant current circuit 23. Current flows. At this time, the potential difference of the squib 1 is detected by the amplifier 26, and the detected value is amplified and supplied to the microcomputer 11. The microcomputer 11 calculates the resistance value of the squib 1 based on the supplied detection value and stores it in an internal memory (not shown).

車両に衝撃が加わり、加速度センサ12からの検出信号がマイコン11に供給されると、マイコン11はその検出信号に基づいてエアーバック展開の必要を判断すると、半導体スイッチ3,17に導通信号を供給して導通させる。このため、比較器15は非反転端子に入力されている接続点Pの電位と、反転端子に抵抗10を介して入力されている基準電源7の電位とに基づいた出力で半導体スイッチ2,16を導通させる。   When an impact is applied to the vehicle and a detection signal from the acceleration sensor 12 is supplied to the microcomputer 11, the microcomputer 11 supplies a conduction signal to the semiconductor switches 3 and 17 when the microcomputer 11 determines that air bag expansion is necessary based on the detection signal. And make it conductive. For this reason, the comparator 15 outputs the semiconductor switches 2 and 16 with outputs based on the potential of the connection point P input to the non-inverting terminal and the potential of the reference power supply 7 input to the inverting terminal via the resistor 10. Is made conductive.

半導体スイッチ16の導通によって、抵抗10には流れる電流に応じて電圧降下が生じ、この電圧降下による電位とP点における抵抗9の電位との比較により決まる出力が半導体スイッチ2に供給されるので、このときの半導体スイッチ2の導通量に応じたエアーバック展開電流が、バックアップコンデンサ13及び電源20からスクイブ1に流れる。   Due to the conduction of the semiconductor switch 16, a voltage drop occurs in the resistor 10 according to the flowing current, and an output determined by comparing the potential due to this voltage drop and the potential of the resistor 9 at the point P is supplied to the semiconductor switch 2. At this time, an airbag expansion current corresponding to the conduction amount of the semiconductor switch 2 flows from the backup capacitor 13 and the power supply 20 to the squib 1.

このエアーバック展開初期の電流でスクイブ1に生じた電位差をスクイブ測定回路6で検出し、この電位差と前記算出してメモリに格納してある抵抗値とにより、マイコン11はスクイブ1に流れる電流値を算出する。   The squib measurement circuit 6 detects the potential difference generated in the squib 1 by the current at the initial stage of the air bag deployment, and the microcomputer 11 determines the current value flowing through the squib 1 based on the potential difference and the resistance value calculated and stored in the memory. Is calculated.

マイコン11は算出したスクイブ1の電流値が該マイコン内部に設定した規定値より少ないと判断すると、予めONしている抵抗8aのスイッチ9aあるいは予めOFFしている抵抗8b〜8nのスイッチ9b〜9nを選択的にOFF、ONして、選択された抵抗8a〜8nを抵抗8と並列に接続し、接続点Pの電位を高める。これにより、比較器15の出力が増加して半導体スイッチ2の導通量を増加させて、スクイブ1にエアーバックを展開させるに十分な規定量の電流を流すようにする。なお、図示例は機械的スイッチ9a〜9nを図示したが、この機械的スイッチ9a〜9nの代わりにマイコン11のポートを利用して抵抗の接続、切り離しを行うこともできる。 When the microcomputer 11 is the current value of the squib 1 calculated is determined to less than the specified value set inside the microcomputer, the resistance 8b~8n you are switch 9a or pre OFF the resistor 8a that have previously ON switch 9b selectively OFF the ~9N, and it turned oN, to connect the selected resistor 8a~8n in parallel with the resistor 8, increasing the potential of the node P. As a result, the output of the comparator 15 increases to increase the conduction amount of the semiconductor switch 2 so that a specified amount of current sufficient to deploy the air bag in the squib 1 flows. Incidentally, the illustrated example has been illustrated mechanical switch 9A~9n, the mechanical switch 9A~9n Instead connection resistance by utilizing the port of the microcomputer 11, and can be performed detach.

このように、スクイブに流れる電流値を規定値となるようにしたことにより、実際の衝突事故発生時、比較器15の出力で半導体スイッチ2の導通量を十分に保つことができる。この結果、加速度センサ12の出力を受けて衝突状態を判断したマイコン11の出力で半導体スイッチ3を導通させるとともに、衝突の衝撃で機械的センサ4が閉じると、イグニッションスイッチ19、逆流防止用ダイオード18、機械的スイッチ4、半導体スイッチ2、スクイブ1、半導体スイッチ3を通じて電源20及びバックアップコンデンサ13から大電流がスクイブ1に流れ、確実にエアーバックを膨張させることができる。 Thus, by setting the value of the current flowing through the squib to the specified value, the conduction amount of the semiconductor switch 2 can be sufficiently maintained by the output of the comparator 15 when an actual collision accident occurs. As a result, when the semiconductor switch 3 is turned on by the output of the microcomputer 11 that has received the output of the acceleration sensor 12 and the collision state has been determined, and when the mechanical sensor 4 is closed due to the impact of the collision, the ignition switch 19 and the backflow prevention diode 18. A large current flows from the power supply 20 and the backup capacitor 13 to the squib 1 through the mechanical switch 4, the semiconductor switch 2, the squib 1, and the semiconductor switch 3, so that the air bag can be reliably inflated.

以上のように、この実施の形態1によれば、この定電流を流したときのスクイブ両端の電位差を検出し、その電位差に基づいてスクイブの抵抗値を算出し、エアーバック展開時におけるスクイブの電位差と前記算出した抵抗値から該スクイブに流れる電流値を算出し、この電流値が規定値となるように電流制御回路の入力側に複数の抵抗を選択的に接続することにより、確実にエアーバックを膨張させるに必要な電流をスクイブ1に流すことができる。 As described above, according to the first embodiment, the potential difference between both ends of the squib when the constant current is supplied is detected, the resistance value of the squib is calculated based on the potential difference, and the squib resistance at the time of air bag deployment is calculated. calculating a current value flowing through the squib from the calculated potential difference resistance, by selectively connecting the plurality of resistors to the input side of the current control circuit so that the current value becomes the prescribed value, reliably A current necessary for inflating the air bag can be passed through the squib 1.

従来のエアーバック起動装置を示す回路図である。It is a circuit diagram which shows the conventional air bag starting device. そのエアーバック起動装置の電流制御回路を詳細に示す回路図である。It is a circuit diagram which shows the electric current control circuit of the air bag starting device in detail. そのエアーバック起動装置のスクイブ測定回路を詳細に示す回路図である。It is a circuit diagram which shows the squib measurement circuit of the air bag starting device in detail. この発明の実施の形態1によるエアーバック起動装置を示す回路図である。It is a circuit diagram which shows the air bag starting device by Embodiment 1 of this invention. そのエアーバック起動装置の電流制御回路を詳細に示す回路図である。It is a circuit diagram which shows the electric current control circuit of the air bag starting device in detail. そのエアーバック起動装置のスクイブ測定回路を詳細に示す回路図である。It is a circuit diagram which shows the squib measurement circuit of the air bag starting device in detail.

符号の説明Explanation of symbols

1 スクイブ、2,3 半導体スイッチ、4 機械的センサ、5 電流制御回路、6 スクイブ測定回路、7 基準電源、8、(8a〜8n)、9 抵抗、9a〜9n、10 スイッチ、11 マイクロコンピュータ、12 加速度センサ、13 バックアップコンデンサ DESCRIPTION OF SYMBOLS 1 Squib, 2, 3 Semiconductor switch, 4 Mechanical sensor, 5 Current control circuit, 6 Squib measurement circuit, 7 Reference power supply, 8, (8a-8n), 9 Resistance, 9a-9n, 10 Switch, 11 Microcomputer, 12 Acceleration sensor, 13 Backup capacitor .

Claims (2)

エアーバックを膨張させるスクイブと、
前記スクイブと直列に接続された衝撃検知の機械的センサと、
前記スクイブと直列に接続され入力量に基づいて通電量を変化させる半導体スイッチと、
衝突時の衝撃の大きさを検出する加速度センサと、
定期的にスクイブにエアーバックを展開させない定電流を流し該スクイブ両端の電位差を検出するスクイブ測定回路と、
基準電源とアース間に直列に接続された少なくとも2つの抵抗と、
一方の入力端に前記2つの抵抗の接続点の電位を入力し他方の入力端に抵抗を介して前記基準電源の電位を入力する比較器を有し、前記接続点の電位の変化に応じて該比較器の出力を変化させる電流制御回路と、
直列に接続された2つの抵抗の一方に選択的に並列接続して該直列に接続された2つの抵抗の接続点の電位を変化させる複数の抵抗と、
定期的にスクイブ測定回路を起動させて前記スクイブ測定回路から前記スクイブにエアーバックを展開させない定電流を流し、このとき前記スクイブ測定回路を介して検出された前記スクイブの電位差に基づいて該スクイブの抵抗値を算出して内蔵するメモリに記憶し、前記加速度センサからの検出信号に基づいてエアーバック展開が必要と判断したときは前記電流制御回路内の前記比較器を起動させ、この比較器の出力で前記半導体スイッチを導通させて前記スクイブにエアーバック展開初期の電流を流し、そのときスクイブに生じた電位差を前記スクイブ測定回路を介して入力して前記メモリに記憶した抵抗値とにより、前記スクイブに流れる電流値を算出し、この電流値が規定値より多くなるように前記複数の抵抗の接続および切り離しを選択的に行い、前記電流制御回路の比較器から前記半導体スイッチに対する入力量を増加させて、前記スクイブにエアーバックを展開させるに十分な規定量の電流を流すようにする演算回路と
を備えたエアーバック起動装置。
A squib that inflates the airbag,
A mechanical sensor for impact detection connected in series with the squib;
A semiconductor switch connected in series with the squib to change the energization amount based on the input amount;
An acceleration sensor that detects the magnitude of impact during a collision;
A squib measuring circuit for periodically detecting a potential difference between both ends of the squib by passing a constant current that does not cause the air bag to expand on the squib;
At least two resistors connected in series between a reference power source and ground;
A comparator that inputs the potential of the connection point of the two resistors to one input terminal and inputs the potential of the reference power supply via the resistor to the other input terminal, and according to a change in the potential of the connection point A current control circuit for changing the output of the comparator;
A plurality of resistors that are selectively connected in parallel to one of the two resistors connected in series to change the potential at the connection point of the two resistors connected in series;
A squib measurement circuit is periodically activated to pass a constant current from the squib measurement circuit so as not to deploy an air bag to the squib, and at this time, the squib potential is detected based on the squib potential difference detected through the squib measurement circuit. The resistance value is calculated and stored in a built-in memory. When it is determined that air bag expansion is necessary based on the detection signal from the acceleration sensor, the comparator in the current control circuit is activated, and the comparator The semiconductor switch is made conductive with an output, and an electric current at the initial stage of air bag development is caused to flow through the squib, and a potential difference generated in the squib at that time is input through the squib measurement circuit and stored in the memory according to the resistance value. Calculate the current value flowing through the squib, and connect and disconnect the resistors so that the current value exceeds the specified value. Selectively performed, by increasing the input amount for the semiconductor switch from the comparator of the current control circuit, an arithmetic circuit to flow a sufficient predetermined amount of current to deploy the airbag to the squib Airbag activation device.
演算回路を構成するマイクロコンピュータのポートの切り替えにより、直列に接続された2つの抵抗の一方に並列接続して該直列に接続された2つの抵抗の接続点の電位を変化させる複数の抵抗の接続および切り離しを選択的に行なうことを特徴とする請求項1記載のエアーバック起動装置。 Connection of a plurality of resistors that are connected in parallel to one of two resistors connected in series by changing the port of the microcomputer constituting the arithmetic circuit and change the potential at the connection point of the two resistors connected in series The air bag starting device according to claim 1, wherein the air bag starting device selectively performs separation and separation .
JP2002519234A 2000-08-11 2000-08-11 Airbag starter Expired - Fee Related JP4248233B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2000/005418 WO2002014120A1 (en) 2000-08-11 2000-08-11 Device for actuating airbag

Publications (1)

Publication Number Publication Date
JP4248233B2 true JP4248233B2 (en) 2009-04-02

Family

ID=11736353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002519234A Expired - Fee Related JP4248233B2 (en) 2000-08-11 2000-08-11 Airbag starter

Country Status (2)

Country Link
JP (1) JP4248233B2 (en)
WO (1) WO2002014120A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5736212B2 (en) * 2011-03-30 2015-06-17 セイコーインスツル株式会社 Signal processing circuit, vibration detection circuit, and electronic apparatus

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08119061A (en) * 1994-10-27 1996-05-14 Fujitsu Ten Ltd Occupant protective device for driver and front passenger seats
JP3289620B2 (en) * 1996-10-30 2002-06-10 日本電気株式会社 Airbag system and diagnostic method therefor
JP3779434B2 (en) * 1997-06-27 2006-05-31 株式会社東海理化電機製作所 Airbag device
JPH1134794A (en) * 1997-07-23 1999-02-09 Toyota Motor Corp Occupant protective device
JPH11115677A (en) * 1997-10-09 1999-04-27 Tokai Rika Co Ltd Air bag device
JP3417285B2 (en) * 1998-02-13 2003-06-16 トヨタ自動車株式会社 Airbag manual cut-off system
JPH11321545A (en) * 1998-05-15 1999-11-24 Keihin Corp Air bag control device

Also Published As

Publication number Publication date
WO2002014120A1 (en) 2002-02-21

Similar Documents

Publication Publication Date Title
JPH04227A (en) Fault detector for passenger protective unit
JP2826839B2 (en) Control circuit of vehicle safety device
JP4817026B2 (en) Electrostatic occupant detection device
US8378819B2 (en) Electrostatic occupant detection apparatus and method for detecting failure of the same
JPS6157219B2 (en)
KR0156665B1 (en) Fault detection method and apparatus for air bag activation device
JPH01297335A (en) Trouble judging device for driver protecting system for vehicle
JPS5823264B2 (en) air bag device
JP4248233B2 (en) Airbag starter
JP4094140B2 (en) Capacitor capacity diagnosis circuit
JP5566874B2 (en) Airbag operation circuit
JP2000009781A (en) Failure detection device for occupant protecting device
JP3859840B2 (en) Crew protection device
JP3080494B2 (en) Airbag ignition device testing equipment
JPH01306343A (en) Device for detecting failures of air bag apparatus
JPH0638771Y2 (en) Airbag control device
JP2001206190A (en) Occupant protective device
JP3324841B2 (en) Air bag ignition circuit
JP2004284388A (en) Failure detecting device of ecu for control
JP3558108B2 (en) Driver circuit for occupant protection device
JP3486042B2 (en) Air bag system ignition switch status detector
JP3992755B2 (en) Acceleration detection device and airbag activation device
JP2004276633A (en) Backup capacity detection device of occupant protection device
JPH07137599A (en) Occupant crash protection
JPH04321454A (en) Air bag device for vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071031

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071031

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080729

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080812

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees