JP4248030B2 - Ruminant feed additive - Google Patents

Ruminant feed additive Download PDF

Info

Publication number
JP4248030B2
JP4248030B2 JP17562396A JP17562396A JP4248030B2 JP 4248030 B2 JP4248030 B2 JP 4248030B2 JP 17562396 A JP17562396 A JP 17562396A JP 17562396 A JP17562396 A JP 17562396A JP 4248030 B2 JP4248030 B2 JP 4248030B2
Authority
JP
Japan
Prior art keywords
acid
fatty acid
parts
weight
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17562396A
Other languages
Japanese (ja)
Other versions
JPH09187228A (en
Inventor
隆男 森川
誠治 笹岡
繁 斎藤
正人 菅原
香 武藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Soda Co Ltd
Original Assignee
Nippon Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soda Co Ltd filed Critical Nippon Soda Co Ltd
Priority to JP17562396A priority Critical patent/JP4248030B2/en
Publication of JPH09187228A publication Critical patent/JPH09187228A/en
Application granted granted Critical
Publication of JP4248030B2 publication Critical patent/JP4248030B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明が属する技術分野】
本発明は、飼料添加剤に係わり、さらに詳しくは反芻動物用として好適な生物学的活性物質を保護物質中に分散し保護したマトリックス型のルーメン(第1胃)バイパス製剤に関する。
【0002】
【従来の技術】
反芻動物用ルーメンバイパス製剤は、各種アミノ酸、各種ビタミン、その他の生物学的活性物質の一種または複数種を含んだ製剤であって、反芻動物のルーメン内における生物学的活性物質の溶出と微生物による分解を制限する一方で、第四胃以降の消化器官での生物学的活性物質の溶出と吸収を可能とする機能を有するものである。
【0003】
反芻動物の飼育に際し、飼料と共にルーメンバイパス製剤を投与することは栄養学的、臨床学的な有益性から普及が進んでいる。ルーメンバイパス製剤において、生物学的活性物質を高濃度に含むことは、実用上経済的に有利で望ましいことである。また、製剤硬度も飼料混合や咀嚼に対する耐久性等の点で重要である。しかしながら、生物学的活性物質の濃度を高めようとすると製剤中の保護物質の比率が低下するためルーメンバイパス性や硬度を保つのが困難な傾向があり、保護物質にも従来よりも高度な特性が必要になる。このため、従来のマトリックス型ルーメンバイパス製剤の生物学的活性物質の濃度は、50%以下の低濃度であった。
【0004】
ルーメンバイパス製剤の概念と実例はすでに多くのものが公知となっているが、マトリックス型製剤で生物学的活性物質を50%以上の高濃度で含有する製剤(高含有製剤)の実用例はない。脂肪族モノカルボン酸(脂肪酸)の塩(脂肪酸塩)を保護剤とする例も開示されているが、50%以上の高濃度の生物学的活性物質を含む組成で良好なルーメンバイパス性を示す例は開示されていない。
【0005】
特開平2−163043号には、脂肪酸塩とそれに相溶する油脂系化合物を保護物質とするマトリックス型製剤の概念が開示されているが、生物学的活性物質の濃度については10%以下で50%以上の例についての具体的記載はない。
また、国際公開WO/12731号には保護物質として脂肪酸カルシウムとステアリルアルコールを58:2(97:3)の比率で使用した例が記載されているが生物学的活性物質の濃度は50%以下である。
【0006】
特開昭56−154956号には、油脂系の保護物質を使用したマトリックス型製剤の例があるが、生物学的活性物質の組成比は50%以下であり、保護物質の組成も異なっていて、本発明の範囲の例示はない。
【0007】
USP5425963号には飼料添加物として高純度脂肪酸カルシウム塩およびその製造方法が開示されているが、本発明とは目的が異なり、保護物質の組成、生物学的活性物質の含有量も大幅に異なっている。
【0008】
【発明が解決しようとする課題】
本発明は、上記のような従来技術の問題点に鑑みてなされたもので、油脂、ロウのような生態系に安全な天然物由来物質を保護物質として生物学的活性物質を高濃度に含み経済的に有利なルーメンバイパス製剤を得ることを目的としている。
【0009】
【課題を解決するための手段】
本発明者らは、すでに生物学的活性物質を脂肪酸塩とそれに相溶する油脂系化合物とからなる保護物質をマトリックスとするルーメンバイパス製剤を開示(WO91/12731号)しているが、さらに検討を進めた結果、高濃度の生物学的活性物質を保護してルーメンを通過させる保護物質の組成は、低濃度の場合とは異なって非常に限定された範囲となり、特定の組成比の脂肪族モノカルボン酸の塩と脂肪族カルボン酸または脂肪アルコールからなる保護マトリックスにより50%以上の高濃度で優れたルーメンバイパス製剤が得られることを見出し本発明に到達した。
【0010】
即ち、本発明は、製剤の50〜90重量%の生物学的活性物質を10〜50重量%の下記保護物質〔I〕中に分散してなることを特徴とする反芻動物用ルーメンバイパス製剤である。
〔I〕下記1)と2)からなり、1)と2)の重量比が30:70〜10:90の範囲にある保護物質;
1)下記a)b)c)から選ばれる少なくとも1種
a)炭素数8〜24を有する直鎖または分岐の飽和または不飽和の脂肪族モノカルボン酸
b)炭素数8〜24を有する直鎖または分岐の飽和または不飽和の水酸基を1有する脂肪アルコール
c)炭素数2〜8を有する直鎖または分岐の飽和または不飽和の脂肪族ジまたはトリカルボン酸
2)炭素数12〜24を有する直鎖または分岐の飽和または不飽和の脂肪族モノカルボン酸の塩
ただし、本発明における重量%は乾燥重量%を意味し、80〜120℃の通常の乾燥で除かれる水分(吸着水分)を除いた重量に基づいている。
【0011】
【発明の実施の形態】
以下さらに詳細に本発明を説明する。
本発明に用いられる生物学的活性物質は、反芻動物に投与することにより生物学的な活性を示す物質で、かつ、経口投与ではルーメンで分解され、有効に消化吸収されにくい物質、例えば、メチオニン、リジン塩酸塩等のアミノ酸、2−ヒドロキシ−4−メチルメルカプト酪酸およびその塩等のアミノ酸誘導体、ニコチン酸、ニコチン酸アミド、ビタミンA、ビタミンE等のビタミン類、ぶどう糖、果糖等の糖類、抗生物質、駆虫薬等の各種獣医薬等である。
これらの活性物質は単独でも使用されるが2種以上を混合使用してもよい。
【0012】
これらの生物学的活性物質の総量は製剤の50〜90重量%であり、好ましくは60〜85重量%の高濃度が好ましい。この範囲よりも少ない範囲では経済的に不利になり、多い範囲は、ルーメンバイパス性が低下するとともに製造が困難となる。
【0013】
本発明に用いられる保護物質は、実質的に脂肪酸塩と脂肪族(モノ、ジ、トリ)カルボン酸または脂肪アルコールからなる。使用される保護物質の量は生物学的活性物質と必要に応じて添加された改質剤の量により変化し、10〜50重量%の範囲で選択される。脂肪酸塩は、バイパス油脂とも称され、ルーメンで分解されず第四胃以降で消化される性質があり、本発明における保護物質の主成分である。この脂肪酸塩は保護物質の70〜90重量%の範囲の量で用いられる。この範囲外では生物学的活性物質が高濃度でかつルーメンバイパス性の優れた製剤は得られない。
【0014】
本発明に用いられる脂肪酸塩とは、直鎖または分岐の飽和または不飽和の脂肪酸族モノカルボン酸の塩であり、該塩の脂肪族モノカルボン酸の炭素数は12〜24で、これより少ない範囲ではルーメンバイパス性が低下し、これより多い範囲は、第四胃以降の消化性が低下するためいずれも好ましくない。脂肪族モノカルボン酸を例示すれば、ラウリル酸、パルミチン酸、ミリスチン酸、ステアリン酸、オレイン酸、リノール酸、リノレイン酸などを挙げることができ、これらの1種または2種以上を使用することができる。特に入手の容易さよりパーム脂肪酸や牛脂脂肪酸のような動植物由来の前記酸の混合物が好ましく使用できる。
【0015】
脂肪酸塩の例としては、上記範囲の炭素数を有する脂肪族モノカルボン酸のカルシウム塩、マグネシウム塩、アルミニウム塩、亜鉛塩等が挙げられるが、好ましくはカルシウム塩である。
【0016】
本発明に用いられる脂肪酸塩は、高純度であることが好ましく、特に固形分中の脂肪酸塩純度(以下純度と記す)が、90%以上であることが好ましい。ここでいう脂肪酸塩の純度は、油脂分析法の常法であるエーテル類、ケトン類等の溶剤で脂肪酸塩を抽出処理した時の不溶解残分を意味し、吸着水分を除外して算出した重量%である。ただし、この抽出処理に用いる溶剤は脂肪酸塩を溶解せず混入する油脂分を溶解するものを選定する。
【0017】
また、脂肪酸塩中に含まれるカルシウム等の塩基は、ほぼ当量か過剰であることが硬度等の物性面で好ましく、カルシウム塩の場合にはカルシウムとして7〜12重量%好ましくは8〜10重量%が好ましい。カルシウムの定量は、公知の分析法を使用できるが、通常は脂肪酸塩を灰化した後、その灰分に含まれるカルシウムを定量する。
【0018】
脂肪酸塩の原料になる牛脂脂肪酸やパーム油脂肪酸には通常5〜40%程度のトリグリセライド等が含まれており、その他に反応制御剤や安定剤等の各種化合物が添加されることがある。これらは、反応生成物である脂肪酸塩に未反応成分として混入し不純物となる。市販の脂肪酸塩には不純物を20%程度含有するものもある。高含有製剤においては、このような不純物は製剤のルーメンバイパス性や硬度を低下させるため脂肪酸塩の純度は高いことが好ましい。
【0019】
本発明の保護物質として脂肪酸塩とともに用いられる脂肪族カルボン酸または脂肪族アルコールは、脂肪酸塩の結晶性を低下させるとともに生物学的活性物質と保護マトリックスとの親和性を改善する成分と考えられ、脂肪酸塩に相溶する範囲の量で用いることが好ましい。これらの融点は、反芻動物の体温に近い方が好ましい傾向がある。その使用量の範囲は、保護物質の10〜30重量%でこの範囲外では良好なルーメンバイパス性が得られない。
【0020】
本発明に用いられる脂肪族モノカルボン酸の炭素数は、8〜24好ましくは12〜18で、これよりも少ないものでは製剤が軟化してルーメンバイパス性が低下し、これより多い範囲では、第四胃以降の消化性が低下して、いずれも良い結果が得られない。
【0021】
脂肪族モノカルボン酸としては、カプリル酸、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、パルミトレイン酸、ステアリン酸、オレイン酸、リノール酸、リノレン酸、ベヘニン酸、水素添加したひまし油脂肪酸等の脂肪族モノカルボン酸およびそれら混合物が例示でき、市場品の多くは、動植物油のケン化精製品である。
【0022】
本発明に用いられる水酸基を1有する(一価の)脂肪アルコールの炭素数は、8〜24好ましくは12〜18で、これよりも少ないものでは製剤が軟化してルーメンバイパス性が低下し、これより多い範囲では、第四胃以降の消化性が低下して、いずれも良い結果が得られない。
【0023】
本発明に用いられる脂肪アルコールの例としては、オクタノール、ノナノール、デカノール、ウンデカノール、ラウリルアルコール、ミリスチルアルコール、セチルアルコール、ステアリルアルコール、エイコサノール、ドコサノール、ドデセノール、フィセテリルアルコール、ゾーマリルアルコール、オレイルアルコール、ガドレイルアルコールおよびこれらの異性体が挙げられる。
【0024】
本発明に用いられる脂肪族ジまたはトリカルボン酸の炭素数は2〜8好ましくは2〜6で、この範囲外では良好なルーメンバイパス性が得られない。
脂肪族ジまたはトリカルボン酸の例としては、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、リンゴ酸、クエン酸等が挙げられる。
【0025】
本発明においては、成形性、機械的強度、その他の改質のためにライスワックス、カルナウバロウ、密ロウ等のロウ、ワックス類、エチルセルロース、プロピルセルロース、ポリエチレン、キトサンおよびその誘導体、pH感知性のポリマー等の各種ポリマー類、有機物、無機物の粉末、安定剤、香料等の各種添加剤等を必要に応じて改質剤として添加することができる。また、これらの改質剤で表面を被覆して改質することもできる。
【0026】
本発明のルーメンバイパス製剤の製造方法は、公知の各種造粒法が可能であるが、押出造粒法が好ましく、さらに空隙率が小さく、水分含量の少ない製剤を得るため、混練工程での真空脱気と造粒直後に水、冷風等により製剤を急冷することが好ましい。
【0027】
製剤の形状は、特に制限はないが、球形、回転楕円形、砲弾形、円筒形等の角の少ない形状が好ましい。製剤の大きさは、飼料成分として適正であれば良いが、好ましくは、粒径、長さ等で0.5mm〜10mmの範囲、いわゆる顆粒からペレットの大きさで任意に選択できる。
【0028】
【実施例】
本発明を、実施例および比較例により、さらに詳細に説明する。
ただし、本発明の範囲は、以下の実施例により何らの制限を受けるものではない。
【0029】
実施例1
牛脂脂肪酸カルシウム塩(純度97.3%)28重量部(以下、部と記す)、パルミチン酸7部、メチオニン65部を混合した。混合物を2軸押出造粒機のホッパーに投入し、真空脱気しながら孔径2mmのダイから溶融押出し、水冷却式カッターで切断し、遠心脱水処理後、室温で送風乾燥して、平均直径2mm、平均長さ2mmのほぼ円筒形のルーメンバイパス製剤を得た。
【0030】
実施例2
パーム油脂肪酸カルシウム塩(純度94.0%)25部、ラウリン酸5部、、メチオニン70部を混合した。混合物を2軸押出造粒機のホッパーに投入し、真空脱気しながら孔径1.2mmのダイから溶融押出し、水冷式カッターで切断して、平均最大径1.2mm、平均長さ1.2mmの砲弾形の製剤を得た。遠心脱水処理後、この製剤100部とタルク粉1部を混合して60°Cのオーブンに入れ16時間乾燥して目的のルーメンバイパス製剤を得た。
【0031】
実施例3
牛脂脂肪酸カルシウム塩(純度97.3%)23部、パルミチン酸4部、メチオニン71部、エチルセルロース1部を混合した。混合物を2軸押出造粒機のホッパーに投入し、真空脱気しながら孔径1.6mmのダイから溶融押出し、水冷式カッターで切断し、平均径1.6mm、平均長さ1.6mmのほぼ円筒形の製剤を得た。遠心脱水処理後、40°Cで16時間乾燥して目的のルーメンバイパス製剤を得た。
【0032】
実施例4
パーム油脂肪酸カルシウム塩(純度97.1%)32部、ミリスチン酸5部、メチオニン62.5部、ビタミンEアセテート0.5部を混合した。混合物を2軸押出造粒機のホッパーに投入し、真空脱気しながら孔径1.2mmのダイから溶融押出し、水冷式カッターで切断して、平均径1.2mm、平均長さ1.2mmのほぼ円筒形の製剤を得た。次にこの製剤100部に骨粉1部を混合し50°Cに加熱したキルンに入れゆっくり回転させながら40分間かけて通過させ、冷風を当てて室温に冷却し、目的のルーメンバイパス製剤を得た。
【0033】
実施例5
パーム油脂肪酸カルシウム塩(純度94.0%)20部、ラウリン酸4部、グリセリルモノステアレート1部、メチオニン65部、リジン塩酸塩10部を混合した。混合物を2軸押出造粒機のホッパーに投入し、真空脱気しながら孔径1.2mmのダイから溶融押出し、水冷式カッターで切断して、平均径1.2mm、平均長さ1.2mmのほぼ円筒形の製剤を得た。次にこの製剤を50°Cに加熱したキルンに入れゆっくり回転させながら50分間かけて通過させ、冷風を当てて室温に冷却し、目的のルーメンバイパス製剤を得た。
【0034】
実施例6
牛脂脂肪酸カルシウム塩(純度97.3%)22部、ステアリルアルコール6部、カルナウバロウ1部、メチオニン73部を混合した。混合物を2軸押出造粒機のホッパーに投入し、真空脱気しながら孔径1.2mmのダイから溶融押出し、水冷式カッターで切断して、平均径1.2mm、平均長さ1.2mmのほぼ円筒形の製剤を得た。次にこの製剤を遠心脱水処理した後、40°Cに加熱したオーブンで16時間乾燥し、目的のルーメンバイパス製剤を得た。
【0035】
実施例7
パーム油脂肪酸カルシウム塩(純度97.1%)29重量部、セチルアルコール6部、メチオニン65部を混合した。混合物を2軸押出造粒機のホッパーに投入し、真空脱気しながら孔径2mmのダイから溶融押出し、水冷却式カッターで切断し、遠心脱水処理後、室温で送風乾燥して、平均直径2mm、平均長さ2mmの目的の砲弾形の目的のルーメンバイパス製剤を得た。
【0036】
実施例8
牛脂脂肪酸カルシウム塩(純度97.3%)29重量部、ラウリン酸3部、パルミチン酸3部、メチオニン65部を混合した。混合物を2軸押出造粒機のホッパーに投入し、真空脱気しながら孔径2mmのダイから溶融押出し、水冷却式カッターで切断し、遠心脱水処理後、室温で送風乾燥して、平均直径2mm、平均長さ2mmの砲弾形の目的のルーメンバイパス製剤を得た。
【0037】
実施例9
パーム油脂肪酸カルシウム塩(純度97.1%)29重量部、ミリスチン酸4部、コハク酸2部、メチオニン65部を混合した。混合物を2軸押出造粒機のホッパーに投入し、真空脱気しながら孔径2mmのダイから溶融押出し、水冷却式カッターで切断し、遠心脱水処理後、室温で送風乾燥して、平均直径2mm、平均長さ2mmの目的の砲弾形の目的のルーメンバイパス製剤を得た。
【0038】
比較例1
牛脂脂肪酸カルシウム塩(純度97.3%)35部、メチオニン65部を混合した。混合物を2軸押出造粒機のホッパーに投入し、真空脱気しながら孔径2mmのダイから溶融押出し、水冷却式カッターで切断し、遠心脱水処理後、室温で送風乾燥して、平均直径2mm、平均長さ2mmのほぼ円筒形の製剤を得た。
【0039】
比較例2
牛脂脂肪酸カルシウム塩(純度97.3%)20部、ステアリン酸15部、メチオニン65部を混合した。混合物を2軸押出造粒機のホッパーに投入し、真空脱気しながら孔径2mmのダイから溶融押出し、水冷却式カッターで切断し、遠心脱水処理後、室温で送風乾燥して、平均直径2mm、平均長さ2mmのほぼ円筒形の製剤を得た。
【0040】
比較例3
パーム油脂肪酸カルシウム塩(純度94.0%)20部、グリセリルモノステアレート5部、メチオニン65部、リジン塩酸塩10部を混合した。混合物を2軸押出造粒機のホッパーに投入し、真空脱気しながら孔径1.2mmのダイから溶融押出し、水冷式カッターで切断し、遠心脱水処理後、室温で送風乾燥して、平均径1.2mm、平均長さ1.2mmのほぼ円筒形の製剤を得た。
【0041】
比較例4
パーム油脂肪酸カルシウム塩(純度94.0%)28部、ステアリルアルコール2部、メチオニン70部を混合した。混合物を2軸押出造粒機のホッパーに投入し、真空脱気しながら孔径1.2mmのダイから溶融押出し、水冷式カッターで切断し、遠心脱水処理後、室温で送風乾燥して平均最大径1.2mm、平均長さ1.2mmの砲弾形の製剤を得た。
【0042】
評価
脂肪酸塩の純度:ソックスレー抽出器を用い、アセトンで8時間還流抽出を行った。還流抽出操作前後の乾燥重量の差より脂肪酸塩の純度を算出した。
脂肪酸塩のカルシウム濃度:脂肪酸塩1gを550°Cで灰化後、塩酸に溶解し希釈後発光分光光度計(ICP)で定量分析し、脂肪酸塩の乾燥重量に対するカルシウム濃度を算出した。
硬度:錠剤硬度計を使用。製剤に加重をかけ破壊が開始する加重を測定し硬度とした。
上記の製剤を下記各模擬溶出液(液温40℃)に順次浸漬し、その溶出性から製剤性能を評価した。
第一胃溶出率:製剤をpH6.4の模擬第一胃液に浸漬し16時間振とうした時に溶出した活性物質量の製剤中活性物質量に対する比であり、第一胃溶出性を評価する。
第四胃溶出率:第一胃溶出率測定後、固形物を瀘別し、その固形物をpH2.0の模擬第四胃液に浸漬し2時間振とうした時に液に溶出した生物学的活性物質量の製剤中活性物質量に対する比であり、第四胃溶出性を評価する。
小腸溶出率:第四胃溶出率測定後、固形物を瀘別し、その固形物をpH8.2の模擬小腸液に浸漬し4時間振とうした時に液に溶出した生物学的活性物質量の製剤中活性物質量に対する比であり、小腸溶出性を評価する。
【0043】
模擬第一胃液:第一胃胃液対応液であり、リン酸水素2ナトリウム2.5g、リン酸2水素カリウム6.7gを水に溶解して全量を11とした溶液で、pHは6.4。
【0044】
模擬第四胃液:第四胃胃液対応液であり、0.2N塩化カリウム50ml、及び0.2N塩酸10mlに水を加えて全量を200mlとした溶液で、pHは2.0。
【0045】
模擬小腸液:炭酸水素ナトリウム9.8g、塩化カリウム0.57g、リン酸2ナトリウム12水塩9.30g、塩化ナトリウム0.47g、及び硫酸マグネシウム7水塩0.12g、牛の胆汁末0.05g、リパーゼ0.05gを水に溶解して全量を11とした溶液で、pHは8.2。
【0046】
【表1】

Figure 0004248030
【0047】
【表2】
Figure 0004248030
【0048】
【発明の効果】
第1表に示した様に、本発明の実施例1〜9のルーメンバイパス製剤はいずれも模擬第一胃液溶出率が低く、バイパス性が良好であり、第四胃と小腸の模擬液での溶出率の合計が大きく良好な消化性を示している。
一方、第2表では、脂肪族モノカルボン酸の塩のみを保護物質とした比較例1、本発明の範囲外の保護剤組成を使用した比較例2〜4は模擬第一胃液での溶出率が大きく、ルーメンバイパス性が劣り、これらはいずれも実用性が低いことが示されている。
【0049】
このように特定の組成比の脂肪酸塩と特定の脂肪族カルボン酸または一価の脂肪アルコールからなる保護物質により50重量%以上の高濃度の生物学的活性物質を含み良好なルーメンバイパス性を示すマトリックス型ルーメンバイパス製剤を得ることができた。[0001]
[Technical field to which the invention belongs]
The present invention relates to a feed additive, and more particularly to a matrix-type lumen (first stomach) bypass preparation in which a biologically active substance suitable for ruminants is dispersed and protected in a protective substance.
[0002]
[Prior art]
Rumen bypass formulation for ruminants is a formulation containing one or more of various amino acids, various vitamins, and other biologically active substances. While limiting the degradation, it has the function of enabling the elution and absorption of biologically active substances in the digestive tract after the fourth stomach.
[0003]
In the breeding of ruminants, the administration of rumen bypass preparations with feed has become widespread due to nutritional and clinical benefits. In a lumen bypass formulation, it is practically economically advantageous and desirable to include a high concentration of biologically active substance. In addition, the formulation hardness is also important in terms of durability against feed mixing and chewing. However, increasing the concentration of biologically active substances tends to make it difficult to maintain lumen bypassability and hardness due to a decrease in the ratio of protective substances in the formulation. Is required. For this reason, the concentration of the biologically active substance in the conventional matrix-type lumen bypass preparation was a low concentration of 50% or less.
[0004]
Many concepts and examples of rumen bypass preparations are already known, but there is no practical example of a preparation containing a biologically active substance at a high concentration of 50% or more (high preparation) in a matrix type preparation. . Although an example of using a salt (fatty acid salt) of an aliphatic monocarboxylic acid (fatty acid) as a protective agent is also disclosed, a composition containing a biologically active substance with a high concentration of 50% or more shows a good rumen bypass property. Examples are not disclosed.
[0005]
Japanese Patent Laid-Open No. 2-163043 discloses the concept of a matrix-type preparation using a fatty acid salt and an oil-based compound compatible therewith as a protective substance, but the concentration of the biologically active substance is 50% or less. There is no specific description about% or more examples.
International Publication WO / 12731 describes an example in which fatty acid calcium and stearyl alcohol are used as protective substances in a ratio of 58: 2 (97: 3), but the concentration of the biologically active substance is 50% or less. It is.
[0006]
Japanese Patent Application Laid-Open No. 56-154958 has an example of a matrix type preparation using an oil-based protective substance, but the composition ratio of the biologically active substance is 50% or less, and the composition of the protective substance is also different. There is no illustration of the scope of the present invention.
[0007]
US Pat. No. 5,425,963 discloses a high-purity fatty acid calcium salt as a feed additive and a method for producing the same, but the object is different from the present invention, and the composition of the protective substance and the content of the biologically active substance are also significantly different. Yes.
[0008]
[Problems to be solved by the invention]
The present invention has been made in view of the above-mentioned problems of the prior art, and contains a biologically active substance at a high concentration using a natural product-derived substance that is safe for ecosystems such as fats and oils as a protective substance. The objective is to obtain an economically advantageous lumen bypass formulation.
[0009]
[Means for Solving the Problems]
The present inventors have already disclosed a lumen bypass preparation using a protective substance composed of a biologically active substance as a fatty acid salt and an oil-based compound compatible therewith (WO91 / 12731). As a result, the composition of the protective substance that protects the biologically active substance at a high concentration and passes through the lumen is in a very limited range, unlike the case of the low concentration, and has an aliphatic composition with a specific composition ratio. The present inventors have found that an excellent rumen bypass preparation can be obtained at a high concentration of 50% or more by a protective matrix comprising a salt of monocarboxylic acid and an aliphatic carboxylic acid or fatty alcohol.
[0010]
That is, the present invention relates to a rumen bypass formulation for ruminants characterized in that 50 to 90% by weight of the biologically active substance of the preparation is dispersed in 10 to 50% by weight of the following protective substance [I]. is there.
[I] a protective substance comprising the following 1) and 2), wherein the weight ratio of 1) and 2) is in the range of 30:70 to 10:90;
1) At least one selected from the following a) b) c) a) a linear or branched saturated or unsaturated aliphatic monocarboxylic acid having 8 to 24 carbon atoms b) a linear chain having 8 to 24 carbon atoms Or a fatty alcohol having a branched saturated or unsaturated hydroxyl group c) a straight chain having 2 to 8 carbon atoms or a branched saturated or unsaturated aliphatic di- or tricarboxylic acid 2) a straight chain having 12 to 24 carbon atoms Or a salt of a branched saturated or unsaturated aliphatic monocarboxylic acid. However, the weight% in the present invention means dry weight%, and excludes moisture (adsorbed moisture) removed by normal drying at 80 to 120 ° C. Based on.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is described in further detail below.
The biologically active substance used in the present invention is a substance that shows biological activity when administered to ruminants, and a substance that is decomposed by rumen and is not easily digested and absorbed by oral administration, for example, methionine. , Amino acids such as lysine hydrochloride, amino acid derivatives such as 2-hydroxy-4-methylmercaptobutyric acid and its salts, nicotinic acid, nicotinic acid amide, vitamins such as vitamin A and vitamin E, sugars such as glucose and fructose, antibiotics Various veterinary medicines such as substances and anthelmintics.
These active substances may be used alone or in combination of two or more.
[0012]
The total amount of these biologically active substances is 50-90% by weight of the formulation, preferably a high concentration of 60-85% by weight. If the range is less than this range, it is economically disadvantageous, and if the range is large, the lumen bypass property is lowered and the production is difficult.
[0013]
The protective substance used in the present invention consists essentially of a fatty acid salt and an aliphatic (mono, di, tri) carboxylic acid or fatty alcohol. The amount of protective substance used depends on the amount of biologically active substance and the modifier added as required and is selected in the range of 10-50% by weight. Fatty acid salts are also called bypass fats and oils, have the property of being digested from the rumen without being broken down by rumen, and are the main component of the protective substance in the present invention. This fatty acid salt is used in an amount ranging from 70 to 90% by weight of the protective substance. Outside this range, a preparation having a high concentration of biologically active substance and excellent rumen bypass property cannot be obtained.
[0014]
The fatty acid salt used in the present invention is a salt of a linear or branched saturated or unsaturated fatty acid monocarboxylic acid, and the aliphatic monocarboxylic acid of the salt has 12 to 24 carbon atoms, which is less than this. In the range, the rumen bypass property is lowered, and a range larger than this is not preferable because digestibility after the fourth stomach is lowered. Examples of aliphatic monocarboxylic acids include lauric acid, palmitic acid, myristic acid, stearic acid, oleic acid, linoleic acid, linolenic acid, and the like. One or more of these may be used. it can. In particular, a mixture of acids derived from animals and plants such as palm fatty acid and beef tallow fatty acid can be preferably used because of its availability.
[0015]
Examples of fatty acid salts include calcium, magnesium, aluminum, and zinc salts of aliphatic monocarboxylic acids having carbon numbers in the above range, with calcium salts being preferred.
[0016]
The fatty acid salt used in the present invention preferably has a high purity, and in particular, the fatty acid salt purity (hereinafter referred to as purity) in the solid content is preferably 90% or more. The purity of the fatty acid salt here means an insoluble residue when the fatty acid salt is extracted with a solvent such as ethers and ketones, which is a conventional method for analyzing fats and oils, and is calculated by excluding adsorbed moisture. % By weight. However, the solvent used for this extraction treatment is selected so as not to dissolve the fatty acid salt but to dissolve the mixed fats and oils.
[0017]
In addition, the base such as calcium contained in the fatty acid salt is preferably substantially equivalent or excessive in terms of physical properties such as hardness, and in the case of a calcium salt, 7 to 12% by weight, preferably 8 to 10% by weight as calcium. Is preferred. A known analytical method can be used for quantification of calcium. Usually, after fatty acid salt is incinerated, calcium contained in the ash is quantified.
[0018]
The beef tallow fatty acid and palm oil fatty acid used as the raw material for the fatty acid salt usually contain about 5 to 40% of triglyceride and the like, and in addition, various compounds such as a reaction control agent and a stabilizer may be added. These are mixed into the fatty acid salt as a reaction product as an unreacted component and become impurities. Some commercially available fatty acid salts contain about 20% impurities. In high-content preparations, it is preferable that the purity of the fatty acid salt is high because such impurities reduce the lumen bypass property and hardness of the preparation.
[0019]
The aliphatic carboxylic acid or fatty alcohol used together with the fatty acid salt as the protective substance of the present invention is considered to be a component that reduces the crystallinity of the fatty acid salt and improves the affinity between the biologically active substance and the protective matrix, It is preferably used in an amount in a range compatible with the fatty acid salt. These melting points tend to be preferably closer to the body temperature of ruminants. The range of the amount used is 10 to 30% by weight of the protective substance, and good lumen bypass properties cannot be obtained outside this range.
[0020]
The aliphatic monocarboxylic acid used in the present invention has 8 to 24, preferably 12 to 18 carbon atoms, and if it is less than this, the preparation softens and the rumen bypass property is lowered. Digestibility after the four stomachs decreases, and none of the results are good.
[0021]
Aliphatic monocarboxylic acids include aliphatics such as caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, palmitoleic acid, stearic acid, oleic acid, linoleic acid, linolenic acid, behenic acid, hydrogenated castor oil fatty acid, etc. Monocarboxylic acids and mixtures thereof can be exemplified, and many of the commercial products are saponified refined products of animal and vegetable oils.
[0022]
The carbon number of the (monovalent) fatty alcohol having 1 hydroxyl group used in the present invention is 8 to 24, preferably 12 to 18. If it is less than this, the preparation is softened and the rumen bypass property is lowered. In a larger range, digestibility after the fourth stomach is lowered, and none of the results is good.
[0023]
Examples of fatty alcohols used in the present invention include octanol, nonanol, decanol, undecanol, lauryl alcohol, myristyl alcohol, cetyl alcohol, stearyl alcohol, eicosanol, docosanol, dodecenol, fiseteryl alcohol, somalryl alcohol, oleyl alcohol, Gadrel alcohol and isomers thereof are mentioned.
[0024]
The aliphatic di- or tricarboxylic acid used in the present invention has 2 to 8 carbon atoms, preferably 2 to 6 carbon atoms, and good lumen bypass properties cannot be obtained outside this range.
Examples of the aliphatic di- or tricarboxylic acid include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, malic acid, citric acid and the like.
[0025]
In the present invention, a wax such as rice wax, carnauba wax, beeswax, waxes, ethyl cellulose, propyl cellulose, polyethylene, chitosan and derivatives thereof, pH sensitive polymer for moldability, mechanical strength and other modifications. Various additives such as organic polymers, inorganic powders, stabilizers, fragrances, and the like can be added as a modifier as necessary. Moreover, it can also be modified by coating the surface with these modifiers.
[0026]
The production method of the lumen bypass preparation of the present invention can be performed by various known granulation methods, but the extrusion granulation method is preferable, and in order to obtain a preparation having a low porosity and a low water content, a vacuum in the kneading step is used. It is preferable to quench the preparation with water, cold air or the like immediately after deaeration and granulation.
[0027]
The shape of the preparation is not particularly limited, but a shape having a small angle such as a spherical shape, a spheroid shape, a bullet shape, or a cylindrical shape is preferable. The size of the preparation may be appropriate as long as it is a feed ingredient, but it can be arbitrarily selected from the range of 0.5 mm to 10 mm in terms of particle size, length, etc., so-called granule to pellet size.
[0028]
【Example】
The present invention will be described in more detail with reference to examples and comparative examples.
However, the scope of the present invention is not limited in any way by the following examples.
[0029]
Example 1
28 parts by weight (hereinafter referred to as “parts”) of beef tallow fatty acid calcium salt (purity 97.3%), 7 parts of palmitic acid and 65 parts of methionine were mixed. The mixture is put into a hopper of a twin screw granulator, melt extruded from a die with a hole diameter of 2 mm while being vacuum deaerated, cut with a water-cooled cutter, blown and dried at room temperature after centrifugal dehydration, and an average diameter of 2 mm. An approximately cylindrical lumen bypass formulation with an average length of 2 mm was obtained.
[0030]
Example 2
25 parts of palm oil fatty acid calcium salt (purity 94.0%), 5 parts of lauric acid, and 70 parts of methionine were mixed. The mixture is put into a hopper of a twin-screw extrusion granulator, melt extruded from a die having a hole diameter of 1.2 mm while being vacuum degassed, and cut with a water-cooled cutter, with an average maximum diameter of 1.2 mm and an average length of 1.2 mm. A bullet-shaped preparation was obtained. After the centrifugal dehydration treatment, 100 parts of this preparation and 1 part of talc powder were mixed, put in an oven at 60 ° C. and dried for 16 hours to obtain the desired lumen bypass preparation.
[0031]
Example 3
23 parts of beef tallow fatty acid calcium salt (purity 97.3%), 4 parts of palmitic acid, 71 parts of methionine, and 1 part of ethyl cellulose were mixed. The mixture is put into a hopper of a twin screw granulator, melt extruded from a die having a hole diameter of 1.6 mm while being vacuum deaerated, and cut with a water-cooled cutter, and has an average diameter of 1.6 mm and an average length of 1.6 mm. A cylindrical formulation was obtained. After the centrifugal dehydration treatment, the desired lumen bypass preparation was obtained by drying at 40 ° C. for 16 hours.
[0032]
Example 4
Palm oil fatty acid calcium salt (purity 97.1%) 32 parts, myristic acid 5 parts, methionine 62.5 parts, vitamin E acetate 0.5 parts were mixed. The mixture is put into a hopper of a twin screw granulator, melt-extruded from a die having a hole diameter of 1.2 mm while being vacuum deaerated, and cut by a water-cooled cutter, and has an average diameter of 1.2 mm and an average length of 1.2 mm. A nearly cylindrical formulation was obtained. Next, 100 parts of this preparation was mixed with 1 part of bone powder, placed in a kiln heated to 50 ° C., passed slowly over 40 minutes, cooled to room temperature by applying cold air, and the desired lumen bypass preparation was obtained. .
[0033]
Example 5
20 parts of palm oil fatty acid calcium salt (purity 94.0%), 4 parts of lauric acid, 1 part of glyceryl monostearate, 65 parts of methionine and 10 parts of lysine hydrochloride were mixed. The mixture is put into a hopper of a twin screw granulator, melt-extruded from a die having a hole diameter of 1.2 mm while being vacuum deaerated, and cut by a water-cooled cutter, and has an average diameter of 1.2 mm and an average length of 1.2 mm. A nearly cylindrical formulation was obtained. Next, this preparation was put in a kiln heated to 50 ° C. and allowed to pass over 50 minutes while rotating slowly, and cooled to room temperature by applying cold air to obtain the desired lumen bypass preparation.
[0034]
Example 6
22 parts of beef tallow fatty acid calcium salt (purity 97.3%), 6 parts of stearyl alcohol, 1 part of carnauba wax and 73 parts of methionine were mixed. The mixture is put into a hopper of a twin screw granulator, melt-extruded from a die having a hole diameter of 1.2 mm while being vacuum deaerated, and cut by a water-cooled cutter, and has an average diameter of 1.2 mm and an average length of 1.2 mm. A nearly cylindrical formulation was obtained. Next, this preparation was subjected to centrifugal dehydration treatment and then dried in an oven heated to 40 ° C. for 16 hours to obtain a target lumen bypass preparation.
[0035]
Example 7
29 parts by weight of palm oil fatty acid calcium salt (purity 97.1%), 6 parts of cetyl alcohol, and 65 parts of methionine were mixed. The mixture is put into a hopper of a twin screw granulator, melt extruded from a die with a hole diameter of 2 mm while being vacuum deaerated, cut with a water-cooled cutter, blown and dried at room temperature after centrifugal dehydration, and an average diameter of 2 mm. The desired lumen bypass formulation of the desired bullet shape with an average length of 2 mm was obtained.
[0036]
Example 8
29 parts by weight of beef tallow fatty acid calcium salt (purity 97.3%), 3 parts of lauric acid, 3 parts of palmitic acid and 65 parts of methionine were mixed. The mixture is put into a hopper of a twin screw granulator, melt extruded from a die with a hole diameter of 2 mm while being vacuum deaerated, cut with a water-cooled cutter, blown and dried at room temperature after centrifugal dehydration, and an average diameter of 2 mm. The target lumen bypass preparation with an average length of 2 mm was obtained.
[0037]
Example 9
29 parts by weight of palm oil fatty acid calcium salt (purity 97.1%), 4 parts of myristic acid, 2 parts of succinic acid and 65 parts of methionine were mixed. The mixture is put into a hopper of a twin screw granulator, melt extruded from a die with a hole diameter of 2 mm while being vacuum deaerated, cut with a water-cooled cutter, blown and dried at room temperature after centrifugal dehydration, and an average diameter of 2 mm. The desired lumen bypass formulation of the desired bullet shape with an average length of 2 mm was obtained.
[0038]
Comparative Example 1
35 parts of beef tallow fatty acid calcium salt (purity 97.3%) and 65 parts of methionine were mixed. The mixture is put into a hopper of a twin screw granulator, melt extruded from a die with a hole diameter of 2 mm while being vacuum deaerated, cut with a water-cooled cutter, blown and dried at room temperature after centrifugal dehydration, and an average diameter of 2 mm. A substantially cylindrical preparation with an average length of 2 mm was obtained.
[0039]
Comparative Example 2
20 parts of beef tallow fatty acid calcium salt (purity 97.3%), 15 parts of stearic acid and 65 parts of methionine were mixed. The mixture is put into a hopper of a twin screw granulator, melt extruded from a die with a hole diameter of 2 mm while being vacuum deaerated, cut with a water-cooled cutter, blown and dried at room temperature after centrifugal dehydration, and an average diameter of 2 mm. A substantially cylindrical preparation with an average length of 2 mm was obtained.
[0040]
Comparative Example 3
Palm oil fatty acid calcium salt (purity 94.0%) 20 parts, glyceryl monostearate 5 parts, methionine 65 parts, lysine hydrochloride 10 parts were mixed. The mixture is put into a hopper of a twin screw granulator, melt-extruded from a die having a pore diameter of 1.2 mm while being vacuum deaerated, cut with a water-cooled cutter, centrifuged and dehydrated at room temperature, and air-dried at an average diameter. An approximately cylindrical preparation having a diameter of 1.2 mm and an average length of 1.2 mm was obtained.
[0041]
Comparative Example 4
28 parts of palm oil fatty acid calcium salt (purity 94.0%), 2 parts of stearyl alcohol, and 70 parts of methionine were mixed. The mixture is put into a hopper of a twin screw granulator, melt-extruded from a die with a hole diameter of 1.2 mm while vacuum degassing, cut with a water-cooled cutter, centrifuged and dehydrated, and then blown and dried at room temperature to obtain an average maximum diameter. A bullet-shaped preparation of 1.2 mm and an average length of 1.2 mm was obtained.
[0042]
Evaluation Purity of Fatty Acid Salt: Reflux extraction was performed with acetone for 8 hours using a Soxhlet extractor. The purity of the fatty acid salt was calculated from the difference in dry weight before and after the reflux extraction operation.
Calcium concentration of fatty acid salt: 1 g of fatty acid salt was incinerated at 550 ° C., dissolved in hydrochloric acid, diluted, and quantitatively analyzed with an emission spectrophotometer (ICP) to calculate the calcium concentration relative to the dry weight of the fatty acid salt.
Hardness: A tablet hardness meter is used. The weight was applied to the preparation and the breakage was started, and the hardness was measured.
The above preparations were sequentially immersed in the following simulated eluents (solution temperature 40 ° C.), and the preparation performance was evaluated from the dissolution properties.
Ruminal dissolution rate: The ratio of the amount of active substance eluted when the preparation is immersed in simulated rumen fluid at pH 6.4 and shaken for 16 hours to the amount of active substance in the preparation, and the rumen dissolution property is evaluated.
Ruminal elution rate: after measuring the rumen elution rate, the solids were separated, and the biological activity eluted into the solution when the solids were immersed in a simulated rumen fluid at pH 2.0 and shaken for 2 hours. It is the ratio of the amount of substance to the amount of active substance in the preparation, and the dissolution of the rumen is evaluated.
Elution rate of the small intestine: After measuring the elution rate of the rumen, the amount of biologically active substance eluted in the solution when the solid was separated and immersed in simulated small intestinal fluid of pH 8.2 and shaken for 4 hours. It is a ratio to the amount of active substance in the preparation, and the small intestine dissolution is evaluated.
[0043]
Simulated rumen fluid: A solution corresponding to rumen gastric juice, which is a solution in which 2.5 g of disodium hydrogen phosphate and 6.7 g of potassium dihydrogen phosphate are dissolved in water to make the total amount 11 and the pH is 6.4. .
[0044]
Simulated rumen gastric fluid: A solution corresponding to rumen gastric juice, a solution in which water is added to 50 ml of 0.2N potassium chloride and 10 ml of 0.2N hydrochloric acid to make the total volume 200 ml, and pH is 2.0.
[0045]
Simulated intestinal fluid: 9.8 g of sodium bicarbonate, 0.57 g of potassium chloride, 9.30 g of disodium phosphate 12-hydrate, 0.47 g of sodium chloride, 0.12 g of magnesium sulfate heptahydrate, 0.12 g of bovine bile powder A solution in which 05 g and 0.05 g of lipase are dissolved in water to bring the total amount to 11, the pH is 8.2.
[0046]
[Table 1]
Figure 0004248030
[0047]
[Table 2]
Figure 0004248030
[0048]
【The invention's effect】
As shown in Table 1, the rumen bypass preparations of Examples 1 to 9 of the present invention all have a low simulated rumen gastric elution rate, good bypass properties, and a simulated solution of the rumen and small intestine. The total dissolution rate is large, indicating good digestibility.
On the other hand, in Table 2, Comparative Example 1 using only a salt of an aliphatic monocarboxylic acid as a protective substance and Comparative Examples 2 to 4 using a protective agent composition outside the scope of the present invention are the dissolution rates in simulated rumen fluid Is large, and the lumen bypass property is inferior, and all of these are shown to have low practicality.
[0049]
As described above, a protective substance comprising a fatty acid salt having a specific composition ratio and a specific aliphatic carboxylic acid or a monovalent fatty alcohol contains a biologically active substance at a high concentration of 50% by weight or more and exhibits a good rumen bypass property. A matrix-type lumen bypass formulation could be obtained.

Claims (6)

製剤の50〜90重量%の生物学的活性物質を10〜50重量%の下記保護物質〔I〕中に分散してなることを特徴とする反芻動物用ルーメンバイパス製剤。
〔I〕下記1)と2)からなり、1)と2)の重量比が30:70〜10:90の範囲にある保護物質;
1)パルミチン酸、ラウリン酸、ミリスチン酸、ステアリルアルコール又はセチルアルコール
2)牛脂又はパーム油の脂肪酸カルシウム塩
A rumen bypass formulation for ruminants, wherein 50 to 90% by weight of the biologically active substance of the preparation is dispersed in 10 to 50% by weight of the following protective substance [I].
[I] A protective substance comprising the following 1) and 2), wherein the weight ratio of 1) and 2) is in the range of 30:70 to 10:90;
1) Palmitic acid, lauric acid, myristic acid, stearyl alcohol or cetyl alcohol 2) Fatty acid calcium salt of beef tallow or palm oil
生物学的活性物質がアミノ酸である請求項1記載のルーメンバイパス製剤。The rumen bypass preparation according to claim 1, wherein the biologically active substance is an amino acid. 生物学的活性物質がメチオニン、リジン塩酸塩から選ばれた少なくとも1種である請求項2記載のルーメンバイパス製剤。The rumen bypass preparation according to claim 2, wherein the biologically active substance is at least one selected from methionine and lysine hydrochloride. 生物学的活性物質が2−ヒドロキシ−4−メチルメルカプト酪酸、2−ヒドロキシ−4−メチルメルカプト酪酸の塩から選ばれた少なくとも1種である請求項1記載のルーメンバイパス製剤。The rumen bypass preparation according to claim 1, wherein the biologically active substance is at least one selected from 2-hydroxy-4-methylmercaptobutyric acid and a salt of 2-hydroxy-4-methylmercaptobutyric acid. 牛脂又はパーム油の脂肪酸カルシウム塩のCa濃度が該カルシウム塩重量の7〜12重量%である請求項1〜4のいずれかに記載のルーメンバイパス製剤。Tallow or lumen bypass formulation according to any one of claims 1 to 4 Ca concentration of fatty acid calcium salt of palm oil is 7 to 12% by weight of the calcium salt by weight. 牛脂又はパーム油の脂肪酸カルシウム塩の純度が90重量%以上である請求項1〜5のいずれかに記載のルーメンバイパス製剤。The rumen bypass preparation according to any one of claims 1 to 5, wherein the fatty acid calcium salt of beef tallow or palm oil has a purity of 90% by weight or more.
JP17562396A 1995-06-15 1996-06-14 Ruminant feed additive Expired - Lifetime JP4248030B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17562396A JP4248030B2 (en) 1995-06-15 1996-06-14 Ruminant feed additive

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP17278395 1995-06-15
JP7-172783 1995-06-15
JP7-314790 1995-11-08
JP31479095 1995-11-08
JP17562396A JP4248030B2 (en) 1995-06-15 1996-06-14 Ruminant feed additive

Publications (2)

Publication Number Publication Date
JPH09187228A JPH09187228A (en) 1997-07-22
JP4248030B2 true JP4248030B2 (en) 2009-04-02

Family

ID=27323679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17562396A Expired - Lifetime JP4248030B2 (en) 1995-06-15 1996-06-14 Ruminant feed additive

Country Status (1)

Country Link
JP (1) JP4248030B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4017227B2 (en) * 1998-01-20 2007-12-05 白石カルシウム株式会社 Pelletized fatty acid-containing mixed feed granulated product and method for producing the same
CA2556781C (en) 2004-04-30 2010-06-22 Bio Science Co., Ltd. Feed additive composition for ruminant, feed containing the same and process for producing feed additive composition for ruminant
CN104394706A (en) * 2012-07-05 2015-03-04 日曹商事株式会社 Composition containing biologically active substance

Also Published As

Publication number Publication date
JPH09187228A (en) 1997-07-22

Similar Documents

Publication Publication Date Title
DE4100920A1 (en) ACTIVE SUBSTANCE PREPARATION FOR ORAL ADMINISTRATION TO Ruminants
WO2020073800A1 (en) Rumen protected choline chloride microcapsule and preparatin method thereof
WO1998024329A1 (en) Feed additives for ruminants
WO2018154532A1 (en) Composition for controlled release of physiologically active substances and process for its preparation
JP4248030B2 (en) Ruminant feed additive
JP2879269B2 (en) Ruminant granules
JPS58175449A (en) Feed additive composition for ruminant
US5776483A (en) Feed additive for ruminants
JPH10215789A (en) Feed additive for ruminant
JPH0720422B2 (en) Feed additives for ruminants containing vitamins
JPH0545221B2 (en)
JPWO2014006867A1 (en) Biologically active substance-containing composition
WO2018154531A1 (en) Composition for controlled release of physiologically active substances and process for its preparation
JP2847882B2 (en) Ruminant feed additives
JP2645497B2 (en) Ruminant feed additives
WO2021060388A1 (en) Additive composition for ruminant feeds
JP2847879B2 (en) Ruminant feed additives
JP2847881B2 (en) Ruminant feed additives
JP2847880B2 (en) Ruminant feed additives
KR101812520B1 (en) Improved pharmaceutical starter pellets
JPS6398360A (en) Reed additive composition for ruminant
JPH0411847A (en) Feed additive for ruminant

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060116

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080905

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140123

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term