JP4246351B2 - Method for producing low sulfur coke - Google Patents
Method for producing low sulfur coke Download PDFInfo
- Publication number
- JP4246351B2 JP4246351B2 JP2000079908A JP2000079908A JP4246351B2 JP 4246351 B2 JP4246351 B2 JP 4246351B2 JP 2000079908 A JP2000079908 A JP 2000079908A JP 2000079908 A JP2000079908 A JP 2000079908A JP 4246351 B2 JP4246351 B2 JP 4246351B2
- Authority
- JP
- Japan
- Prior art keywords
- coke
- coal
- sulfur
- blended coal
- ash
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Coke Industry (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、コークス、特に高炉用コークスの製造方法に関して、特に含有硫黄濃度が低いコークスを製造する方法に関する。
【0002】
【従来の技術】
一般に、コークス炉で原料炭を乾留してコークスを製造する場合、原料炭中に含まれている硫黄の一部は、コークス炉の排ガスとともに系外に排出されるが、その一部は排出されずに製品コークス中に残留する。
上記の製品コークスは、高炉に装入されて羽口から吹き込んだ空気中の酸素との反応により大部分は還元ガスとなるが、この際、コークス中に含有された硫黄の一部は溶銑中にとけ込む。高炉プロセスでは、溶銑中のかなり多くの硫黄がスラグ中に移行することによって脱硫が進行するが、その脱硫率は高炉の操業条件によって大きくばらつくが、一般的にはコークス中に含有する硫黄濃度が上がるほど、溶銑中に残存する硫黄濃度は上昇する傾向にある。
【0003】
一方、高炉における溶銑中の硫黄濃度については、次の処理工程である製鋼工程における脱硫処理能力から高炉溶銑中の硫黄濃度の上限値が決められている。このため、従来の高炉操業においては、上部から装入するコークスや羽口から吹き込む微粉炭から持ち込まれる高炉へのインプット硫黄量を所定値以下に調整することで溶銑中の硫黄濃度を所定値以下に管理していた。
しかしながら、上記インプット硫黄量は、管理基準をもうけてはいるものの、ばらつきがあるためにその管理値の上限を越える場合があり、その結果、溶銑中の硫黄濃度が上昇し、製鋼工程での脱硫処理コストが増えたり、脱硫処理時に発生するスラグ廃棄物が増えるという問題点があった。
【0004】
従来の高炉へのインプット硫黄量を低減する方法としては、コークス製品中の含有硫黄濃度を低減するために、硫黄含有量の少い銘柄の石炭を用いてコークスを製造したり、羽口吹き込み用の微粉炭の石炭銘柄を調整して微粉炭中の硫黄濃を低減したりしていた。よって、高炉操業に使用するコークスや微粉炭に使用できる石炭銘柄及び石炭配合において制約があり自由度が低かった。
このうち、特に高炉で多量に使用されるコークス中の硫黄濃度を低減できれば高炉へのインプット硫黄量を低減するための効果は大きく、近年、高炉用コークスに含有する硫黄濃度を低減する方法の開発が望まれている。しかしながら、従来、コークス炉で原料炭を乾留してコークスを製造する際に、原料炭中の含有硫黄の一部が製品コークス中に残留するメカニズムが充分解明されていないため、製品コークス中の残留硫黄濃度を低下させる効果的な方法はなかった。
【0005】
【発明が解決しようとする課題】
上記の従来の問題に鑑みて、本発明は、コークス炉で高炉用コークスを製造する際に、製品コークス中の硫黄濃度を低減できる低硫黄濃度コークスの製造方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明は、上記技術課題を解決するものであり、その発明の要旨とするところは以下のとおりである。
(1)コークスの製造方法において、コークス炉に装入する配合炭の石炭銘柄及び配合割合を調整することにより、前記配合炭中の灰分の下記(1)式で求められる塩基性度(B)を所定値以下にすることを特徴とする低硫黄濃度コークスの製造方法。
B=([Fe2O3]+[CaO]+[MgO]+[Na2O]+[K2O]
)/([SiO2]+[Al2O3]) ・・・・・(1)
但し、B:配合炭中の灰分の塩基性度
[a]:配合炭中の灰分中の酸化物aの濃度(wt%)
a=Fe2O3,CaO,MgO,Na2O,K2O,SiO2, Al2O3
【0007】
(2)コークスの製造方法において、コークス炉に装入する配合炭にSi化合物及びAl化合物の内の少なくとも1種の化合物を添加することにより、前記配合炭中の灰分の下記(2)式で求められる塩基性度(B)を所定値以下に調整することを特徴とする低硫黄濃度コークスの製造方法。
B=([Fe2O3]+[CaO]+[MgO]+[Na2O]+[K2O]
)/([SiO2]+[Al2O3]+[α]) ・・・・・(2)
但し、B:配合炭中の灰分の塩基性度
[a]:配合炭中の灰分中の酸化物aの濃度(wt%)
a=Fe2O3,CaO,MgO,Na2O,K2O,SiO2, Al2O3
[α]:配合炭に添加するSi化合物及びAl化合物の内の少なくとも1種の化合物の添加量(wt%)
【0008】
【発明の実施の形態】
本発明者らは、乾留後に得られた製品コークス中に残留する硫黄の残留率は、装入する配合炭を構成する石炭銘柄及びその配合割合によって大きく異なることを見出した。そしてこの原因を詳細に調査検討した結果、コークス炉に装入する配合炭に含まれる不純物成分によって配合炭中の硫黄が製品コークス中に残存する硫黄残留率が支配され、コークス中の硫黄残留率は、配合炭中の灰の塩基性度と相関があることがわかった。
【0009】
図1は、コークス配合炭中の灰の塩基性度(B)とその配合炭をコークス炉で乾留して得られた製品コークス中の硫黄残留率(R)の関係を示す図であるが、非常に良い相関があり、コークス原料石炭の灰の塩基性度(B)が高いほど、コークス中硫黄残留率(R)は高くなる。ここで、上記塩基性度(B)及び硫黄残留率(R)は以下のように定義される。
コークス配合炭中の灰の塩基性度(B)
=([Fe2O3]+[CaO]+[MgO]+[Na2O]+[K2O])
/([SiO2]+[Al2O3]) ・・・・・(1)
但し、 B:配合炭中の灰分の塩基性度
[a]:配合炭中の灰分中の酸化物aの濃度(wt%)
a=Fe2O3,CaO,MgO,Na2O,K2O,SiO2, Al2O3
製品コークス中の硫黄残留率(R)
=コークス中に残存する全硫黄量/配合炭中に含有する全硫黄量×100
=コークス中硫黄濃度×コークス歩留(%)/原料石炭中硫黄濃度・・・・・ (3)
これは、配合炭中の塩基性成分は硫黄を固定し、酸性成分は逆に硫黄化合物の分解を助けるためであると考えられる。
【0010】
本発明はこれらの知見からなされたものであり、▲1▼配合炭を構成する石炭銘柄及びそれらの配合割合を調整する方法及び▲2▼塩基性度に影響を与えるSi化合物及びAl化合物の内の少なくとも1種の化合物を配合炭に添加する方法の内の何れかまたは両方の方法によって、下記(1)式により定義される配合炭中の灰の塩基性度(B)を調整することによって、その配合炭をコークス炉で乾留後に得られる製品コークス中の硫黄濃度を所定値以下にするものである。
B=([Fe2O3]+[CaO]+[MgO]+[Na2O]+[K2O]
)/([SiO2]+[Al2O3]+[α]) ・・・・・ (2)
但し、B:配合炭中の灰分の塩基性度
[a]:配合炭中の灰分中の酸化物aの濃度(wt%)
a=Fe2O3,CaO,MgO,Na2O,K2O,SiO2,Al2O3
[α]:配合炭に添加するSi化合物及びAl化合物の内の少なくとも1種の化合物の添加量(wt%)
【0011】
コークス炉に挿入する配合炭中の灰に含有されたFe2O3、CaO、MgO、Na2O、K2O、SiO2、Al2O3濃度の測定は、JIS M8815「石炭灰およびコークス灰の分析方法」に記載の方法を用いて、配合炭を灰化した後、蛍光X線分析装置等の機器分析装置、あるいはJIS M8815に記載の方法を用いて、灰中のFe,Ca,Mg,Na,K,Si,Alの定量分析を行った後、それらをFe2O3、CaO、MgO、Na2O、K2O、SiO2、Al2O3等の酸化物に換算して評価することによって行うことができる。
【0012】
本発明では、コークス炉に装入される配合炭毎あるいはそれらを構成する石炭銘柄毎に、予めFe2O3、CaO、MgO、Na2O、K2O、SiO2、Al2O3濃度の測定をおこなっておき、上記(1)式又は(2)式で定義される配合炭中の灰の塩基性度(B)が所定値以下になるように石炭銘柄またはその配合割合を調整したり、配合炭に添加するSi化合物及びAl化合物の添加量を調整することによって製品コークス中の硫黄濃度を所定値に以下にすることができる。
【0013】
通常の高炉操業では、高炉溶銑中の硫黄濃度を所定以下に維持するために高炉へのインプット硫黄量、つまり高炉に吹き込む微粉炭中の硫黄濃度及び製品コークス中の硫黄濃度を所定値以下になるよう管理している。上記(3)式から製品コークス中の硫黄残存率は、製品コークス中の硫黄濃度、コークス製品歩留及びコー原料石炭中硫黄濃度で決まるものであるから、高炉溶銑中の硫黄濃度を所定以下に維持するための製品コークス中の硫黄残存率の所定値は、高炉溶銑品質から決められる。
従って、高炉溶銑品質を維持するための上記配合炭中の灰の塩基性度(B)の所定値(上限値)は、高炉溶銑品質を維持するための製品コークス中の硫黄残存率の所定値(上限値)から図1の石炭中の灰の塩基性度(B)とコークス中の硫黄残存率の関係から決められる。
【0014】
配合炭中の灰の塩基性度(B)の所定値を超えると、製品コークス中の硫黄残存率が高くなり、この製品コークスを高炉で用いた際に溶銑中の硫黄濃度が高くなり、脱硫工程のコスト低下効果が得られないため、本発明では、塩基性度(B)が所定値以下になるように▲1▼配合炭を構成する石炭銘柄及びそれらの配合割合を調整する方法及び▲2▼塩基性度に影響を与えるSi化合物及びAl化合物の内の少なくとも1種の化合物を配合炭に添加する方法の内の何れかまたは両方の方法を用いて調整するものである。
【0015】
また、本発明では、コークス炉に装入する配合炭に、Si化合物及びAl化合物の1種または2種の化合物を添加することによっても配合炭中の灰の塩基性度(B)を低減でき、製品コークス中の硫黄濃度を低減できる。
ここで、Si化合物及びAl化合物としては、例えば、珪石粉、アルミナ粉などを用いればよい。
しかしながら、この方法は、配合炭にこれらの化合物を添加することにより、製品コークス中の灰成分が増えることとなるため、高炉におけるスラグ量を増加する原因となる。したがって、製品コークス中の硫黄濃度低減による経済的メリット(脱硫工程コスト低減)と高炉の溶銑中スラグ量の増加による経済的デメリット(スラグ処理コスト)を考慮して、この方法を採用することが望ましい。
【0016】
【実施例】
表1に示すように、配合炭を試験コークス炉において乾留し、配合炭の揮発分、配合炭中の硫黄濃度及び灰の塩基度、コークス中の硫黄残留率及び硫黄濃度を測定した。
表1に示された配合炭1と配合炭2は、硫黄濃度と揮発分はほぼ同じであるが灰の塩基性度(=[Fe2O3+CaO+MgO+Na2O+K2O]/[SiO2+Al2O3])が異なるものであり、配合炭1の灰の塩基性度は0.20、配合炭2の灰の塩基性度は0.11である。
【0017】
【表1】
【0018】
表1の比較例と発明例1と比較してわかるように、発明例1では、硫黄濃度はほぼ同じであるが、比較例で使用した配合炭1の灰の塩基性度(=0.20)よりも低い配合炭2(灰の塩基度=0.11)を使用することにより、製品コークス中の硫黄残留率を比較例よりも低くすることができた。つまり、配合炭中の硫黄濃度を規制することなく、配合炭の配合割合により灰の塩基度を調整して製品コークス中の硫黄濃度を低減することができた。
また、発明例2は、比較例と同じ灰の塩基性度が0.20である配合炭1を使用し、配合炭に珪石粉を3%添加した場合である。発明例2は、配合炭にSi化合物である珪石粉を添加して灰の塩基度を調整することによって、比較例に比べて製品コークス中の硫黄残留率が低下し、その結果、製品コークス中の硫黄濃度を低減することができた。
【0019】
【発明の効果】
本発明により、コークス炉に装入する配合炭を構成する石炭銘柄及びそれらのの配合割合を調整するか、配合炭に添加物を加えることにより、製品コークス中の硫黄濃度を低減することが可能になった。これにより、高炉における溶銑中の硫黄濃度が低減でき、溶銑中の脱硫コスト低減及びスラグ廃棄物の低減等の大きな経済的効果が期待できる。さらに高炉における溶銑中の硫黄濃度を所定レベルに低減しながら、硫黄含有量の高い石炭をより多くコークス製造用原料に使うことができ、さらに、微粉炭吹き込み用の石炭としても硫黄含有量の高い石炭を用いることが可能となり、石炭の炭種制約が緩和され、より安価な石炭を多量に使用することができるという経済的効果も期待できる。
【図面の簡単な説明】
【図1】コークス原料石炭の灰の塩基性度(=[Fe2O3+CaO+MgO+Na2O+K2O]/[SiO2+Al2O3])と、コークス中硫黄残留率との関係を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing coke, particularly coke for blast furnace, and particularly to a method for producing coke having a low content of sulfur.
[0002]
[Prior art]
Generally, when coke is produced by carbonizing coking coal in a coke oven, part of the sulfur contained in the coking coal is discharged out of the system together with the exhaust gas from the coke oven, but part of it is discharged. Without remaining in the product coke.
Most of the product coke is reduced gas due to the reaction with oxygen in the air introduced into the blast furnace and blown from the tuyere. At this time, some of the sulfur contained in the coke is in the hot metal. Get into In the blast furnace process, desulfurization proceeds by transferring a large amount of sulfur in the hot metal into the slag, but the desulfurization rate varies greatly depending on the operating conditions of the blast furnace, but generally the concentration of sulfur contained in coke is As the level increases, the concentration of sulfur remaining in the hot metal tends to increase.
[0003]
On the other hand, regarding the sulfur concentration in the hot metal in the blast furnace, the upper limit value of the sulfur concentration in the hot metal in the blast furnace is determined from the desulfurization processing capability in the steelmaking process which is the next processing step. For this reason, in the conventional blast furnace operation, the sulfur concentration in the hot metal is adjusted to a predetermined value or less by adjusting the amount of input sulfur to the blast furnace brought in from the coke charged from the upper part or the pulverized coal blown from the tuyere I managed to.
However, although the above-mentioned input sulfur amount has a control standard, it may exceed the upper limit of the control value due to variations, resulting in an increase in the sulfur concentration in the hot metal and desulfurization in the steelmaking process. There was a problem that processing costs increased and slag waste generated during desulfurization processing increased.
[0004]
Conventional methods for reducing the amount of sulfur input to the blast furnace include the production of coke using low-sulfur brand coal to reduce the concentration of sulfur in coke products, The coal brand of pulverized coal was adjusted to reduce the sulfur concentration in the pulverized coal. Therefore, there are restrictions on the coal brands and coal blends that can be used for coke and pulverized coal used in blast furnace operation, and the degree of freedom is low.
Of these, the effect of reducing the amount of sulfur input to the blast furnace is significant if the sulfur concentration in the coke used in large quantities in the blast furnace can be reduced. In recent years, a method for reducing the sulfur concentration contained in coke for blast furnaces has been developed. Is desired. However, when coke is produced by carbonizing coking coal in a coke oven, the mechanism by which part of the sulfur contained in the coking coal remains in the product coke has not been fully elucidated. There was no effective way to reduce the sulfur concentration.
[0005]
[Problems to be solved by the invention]
In view of the above-described conventional problems, an object of the present invention is to provide a method for producing a low-sulfur concentration coke that can reduce the sulfur concentration in product coke when producing coke for a blast furnace in a coke oven.
[0006]
[Means for Solving the Problems]
The present invention solves the above technical problems, and the gist of the invention is as follows.
(1) Basicity (B) determined by the following formula (1) of the ash content in the blended coal by adjusting the coal brand and blending ratio of the blended coal charged into the coke oven in the coke production method Is a predetermined value or less. A method for producing a low sulfur coke.
B = ([Fe 2 O 3 ] + [CaO] + [MgO] + [Na 2 O] + [K 2 O]
) / ([SiO 2 ] + [Al 2 O 3 ]) (1)
However, B: Basicity of ash in blended coal [a]: Concentration of oxide a in ash in blended coal (wt%)
a = Fe 2 O 3 , CaO, MgO, Na 2 O, K 2 O, SiO 2 , Al 2 O 3
[0007]
(2) In the method for producing coke, by adding at least one of the Si compound and the Al compound to the blended coal charged into the coke oven, the following formula (2) of the ash content in the blended coal A method for producing low sulfur coke, characterized in that the required basicity (B) is adjusted to a predetermined value or less.
B = ([Fe 2 O 3 ] + [CaO] + [MgO] + [Na 2 O] + [K 2 O]
) / ([SiO 2 ] + [Al 2 O 3 ] + [α]) (2)
However, B: Basicity of ash in blended coal [a]: Concentration of oxide a in ash in blended coal (wt%)
a = Fe 2 O 3 , CaO, MgO, Na 2 O, K 2 O, SiO 2 , Al 2 O 3
[Α]: Addition amount (wt%) of at least one of Si compound and Al compound added to blended coal
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The present inventors have found that the residual ratio of sulfur remaining in the product coke obtained after dry distillation varies greatly depending on the coal brand constituting the blended coal to be charged and its blending ratio. As a result of detailed investigation and investigation of this cause, the sulfur residual rate in which sulfur in the blended coal remains in the product coke is controlled by the impurity components contained in the blended coal charged into the coke oven, and the sulfur residual rate in the coke. Was found to correlate with the basicity of ash in blended coal.
[0009]
FIG. 1 is a diagram showing the relationship between the basicity (B) of ash in coke blended coal and the sulfur residual ratio (R) in product coke obtained by dry distillation of the blended coal in a coke oven. There is a very good correlation, and the higher the basicity (B) of the ash of the coke feed coal, the higher the sulfur residual rate (R) in the coke. Here, the basicity (B) and the sulfur residual ratio (R) are defined as follows.
Basicity of ash in coke blended coal (B)
= ([Fe 2 O 3 ] + [CaO] + [MgO] + [Na 2 O] + [K 2 O])
/ ([SiO 2 ] + [Al 2 O 3 ]) (1)
However, B: Basicity of ash in blended coal [a]: Concentration of oxide a in ash in blended coal (wt%)
a = Fe 2 O 3 , CaO, MgO, Na 2 O, K 2 O, SiO 2 , Al 2 O 3
Sulfur residual rate (R) in product coke
= Total amount of sulfur remaining in coke / Total amount of sulfur contained in blended coal x 100
= Sulfur concentration in coke x coke yield (%) / sulfur concentration in raw coal ... (3)
This is considered to be because the basic component in the blended coal fixes sulfur and the acidic component conversely helps to decompose the sulfur compound.
[0010]
The present invention has been made based on these findings. (1) Coal brands constituting blended coal, methods for adjusting the blending ratio, and (2) Si compounds and Al compounds affecting basicity. By adjusting the basicity (B) of the ash in the blended coal defined by the following formula (1) by either or both of the methods of adding at least one compound of The sulfur concentration in the product coke obtained after carbonizing the blended coal in a coke oven is set to a predetermined value or less.
B = ([Fe 2 O 3 ] + [CaO] + [MgO] + [Na 2 O] + [K 2 O]
) / ([SiO 2 ] + [Al 2 O 3 ] + [α]) (2)
However, B: Basicity of ash in blended coal [a]: Concentration of oxide a in ash in blended coal (wt%)
a = Fe 2 O 3 , CaO, MgO, Na 2 O, K 2 O, SiO 2 , Al 2 O 3
[Α]: Addition amount (wt%) of at least one of Si compound and Al compound added to blended coal
[0011]
The measurement of the Fe 2 O 3 , CaO, MgO, Na 2 O, K 2 O, SiO 2 , and Al 2 O 3 concentrations contained in the ash in the coal blend to be inserted into the coke oven is JIS M8815 “Coal ash and coke. After ashing the blended coal using the method described in “Analysis method of ash”, using an instrumental analyzer such as a fluorescent X-ray analyzer, or the method described in JIS M8815, Fe, Ca, After quantitative analysis of Mg, Na, K, Si, and Al, they are converted into oxides such as Fe 2 O 3 , CaO, MgO, Na 2 O, K 2 O, SiO 2 , Al 2 O 3. It can be done by evaluating.
[0012]
In the present invention, the concentration of Fe 2 O 3 , CaO, MgO, Na 2 O, K 2 O, SiO 2 , Al 2 O 3 is previously determined for each blended coal charged into the coke oven or for each coal brand constituting the coal. The coal brand or its blending ratio is adjusted so that the basicity (B) of the ash in the blended coal defined by the above formula (1) or (2) is not more than a predetermined value. In addition, the sulfur concentration in the product coke can be reduced to a predetermined value or less by adjusting the amount of Si compound and Al compound added to the blended coal.
[0013]
In normal blast furnace operation, the amount of sulfur input to the blast furnace, that is, the sulfur concentration in the pulverized coal blown into the blast furnace and the sulfur concentration in the product coke, are kept below a predetermined value in order to maintain the sulfur concentration in the blast furnace molten metal below a predetermined value. I manage it. From the above formula (3), the sulfur residual rate in the product coke is determined by the sulfur concentration in the product coke, the coke product yield and the sulfur concentration in the co-coal coal. The predetermined value of the sulfur residual rate in the product coke to maintain is determined from the blast furnace hot metal quality.
Therefore, the predetermined value (upper limit value) of the ash basicity (B) in the blended coal for maintaining the blast furnace hot metal quality is the predetermined value of the sulfur residual ratio in the product coke for maintaining the blast furnace hot metal quality. It is determined from the relationship between the basicity (B) of the ash in the coal of FIG.
[0014]
If the basic value (B) of the ash in the coal blend exceeds the specified value, the sulfur residual rate in the product coke will increase, and when this product coke is used in a blast furnace, the sulfur concentration in the hot metal will increase and desulfurization will occur. Since the cost reduction effect of the process cannot be obtained, in the present invention, (1) the method of adjusting the coal brands constituting the blended coal and the blending ratio thereof so that the basicity (B) is a predetermined value or less, and 2) Adjustment is made by using either or both of the methods of adding at least one of the Si compound and Al compound affecting the basicity to the blended coal.
[0015]
In the present invention, the basicity (B) of the ash in the blended coal can also be reduced by adding one or two compounds of Si compound and Al compound to the blended coal charged into the coke oven. The sulfur concentration in product coke can be reduced.
Here, as the Si compound and the Al compound, for example, silica powder, alumina powder, or the like may be used.
However, this method causes an increase in the amount of slag in the blast furnace because the ash component in the product coke increases by adding these compounds to the blended coal. Therefore, it is desirable to adopt this method in consideration of the economic merit (reduction of desulfurization process cost) due to the reduction of sulfur concentration in product coke and the economic demerit (slag treatment cost) due to an increase in the amount of slag in hot metal of the blast furnace. .
[0016]
【Example】
As shown in Table 1, the coal blend was dry-distilled in a test coke oven, and the volatile content of the coal blend, the sulfur concentration in the coal blend and the basicity of the ash, the sulfur residual ratio and the sulfur concentration in the coke were measured.
The blended coal 1 and blended coal 2 shown in Table 1 have substantially the same sulfur concentration and volatile content, but the basicity of ash (= [Fe 2 O 3 + CaO + MgO + Na 2 O + K 2 O] / [SiO 2 + Al 2) O 3 ]) is different, the basicity of the ash of blended coal 1 is 0.20, and the basicity of the ash of blended coal 2 is 0.11.
[0017]
[Table 1]
[0018]
As can be seen by comparing the comparative example of Table 1 with the inventive example 1, in the inventive example 1, the sulfur concentration is substantially the same, but the basicity of the ash of the blended coal 1 used in the comparative example (= 0.20). ), The sulfur residual rate in the product coke could be made lower than that of the comparative example. That is, without restricting the sulfur concentration in the coal blend, the sulfur concentration in the product coke could be reduced by adjusting the basicity of the ash according to the blending ratio of the coal blend.
Inventive Example 2 is a case where the blended coal 1 having the same basicity of ash as the comparative example is 0.20 and 3% of silica powder is added to the blended coal. Inventive example 2 adds the silica powder, which is a Si compound, to the blended coal to adjust the basicity of the ash, so that the sulfur residual ratio in the product coke is lower than that in the comparative example, and as a result, in the product coke. Was able to reduce the sulfur concentration.
[0019]
【The invention's effect】
According to the present invention, it is possible to reduce the sulfur concentration in the product coke by adjusting the coal brands constituting the blended coal to be charged into the coke oven and the blending ratio thereof, or by adding additives to the blended coal. Became. Thereby, the sulfur concentration in the hot metal in the blast furnace can be reduced, and great economic effects such as a reduction in desulfurization cost in the hot metal and reduction of slag waste can be expected. Furthermore, while reducing the sulfur concentration in the hot metal in the blast furnace to a predetermined level, more coal with a high sulfur content can be used as a raw material for coke production, and furthermore, the sulfur content is also high as coal for pulverized coal injection Coal can be used, coal type restrictions on coal are relaxed, and an economic effect that cheaper coal can be used in large quantities can be expected.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the basicity of ash of coke raw material coal (= [Fe 2 O 3 + CaO + MgO + Na 2 O + K 2 O] / [SiO 2 + Al 2 O 3 ]) and sulfur residual ratio in coke. is there.
Claims (2)
B=([Fe2O3]+[CaO]+[MgO]+[Na2O]+[K2O]
)/([SiO2]+[Al2O3]) ・・・・・(1)
但し、B:配合炭中の灰分の塩基性度
[a]:配合炭中の灰分中の酸化物aの濃度(wt%)
a=Fe2O3,CaO,MgO,Na2O,K2O,SiO2, Al2O3 In the coke production method, the basicity (B) determined by the following formula (1) of the ash content in the blended coal is adjusted to a predetermined value by adjusting the coal brand and blending ratio of the blended coal charged into the coke oven. The manufacturing method of the low sulfur concentration coke characterized by the following.
B = ([Fe 2 O 3 ] + [CaO] + [MgO] + [Na 2 O] + [K 2 O]
) / ([SiO 2 ] + [Al 2 O 3 ]) (1)
However, B: Basicity of ash in blended coal [a]: Concentration of oxide a in ash in blended coal (wt%)
a = Fe 2 O 3 , CaO, MgO, Na 2 O, K 2 O, SiO 2 , Al 2 O 3
B=([Fe2O3]+[CaO]+[MgO]+[Na2O]+[K2O]
)/([SiO2]+[Al2O3]+[α]) ・・・・・(2)
但し、B:配合炭中の灰分の塩基性度
[a]:配合炭中の灰分中の酸化物aの濃度(wt%)
a=Fe2O3,CaO,MgO,Na2O,K2O,SiO2, Al2O3
[α]:配合炭に添加するSi化合物及びAl化合物の内の少なくとも1種の化合物の添加量(wt%)In the method for producing coke, a base obtained by the following formula (2) of ash content in the blended coal by adding at least one compound of Si compound and Al compound to the blended coal charged into the coke oven. A method for producing low-sulfur concentration coke, wherein the property (B) is set to a predetermined value or less.
B = ([Fe 2 O 3 ] + [CaO] + [MgO] + [Na 2 O] + [K 2 O]
) / ([SiO 2 ] + [Al 2 O 3 ] + [α]) (2)
However, B: Basicity of ash in blended coal [a]: Concentration of oxide a in ash in blended coal (wt%)
a = Fe 2 O 3 , CaO, MgO, Na 2 O, K 2 O, SiO 2 , Al 2 O 3
[Α]: Addition amount (wt%) of at least one of Si compound and Al compound added to blended coal
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000079908A JP4246351B2 (en) | 2000-03-22 | 2000-03-22 | Method for producing low sulfur coke |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000079908A JP4246351B2 (en) | 2000-03-22 | 2000-03-22 | Method for producing low sulfur coke |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001262153A JP2001262153A (en) | 2001-09-26 |
JP4246351B2 true JP4246351B2 (en) | 2009-04-02 |
Family
ID=18597091
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000079908A Expired - Fee Related JP4246351B2 (en) | 2000-03-22 | 2000-03-22 | Method for producing low sulfur coke |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4246351B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100340635C (en) * | 2003-06-18 | 2007-10-03 | 中国矿业大学(北京) | New coking process resulting in lower sulfur component in coke |
JP5025890B2 (en) * | 2004-02-18 | 2012-09-12 | 株式会社キャタラー | Carbon material for electric double layer capacitor and electric double layer capacitor |
RU2530109C2 (en) * | 2013-01-10 | 2014-10-10 | Общество С Ограниченной Ответственностью "Коралайна Инжиниринг" | Method of preparation of coal, including high-sulphur, for coking |
CN105062531B (en) * | 2015-08-12 | 2018-04-06 | 中钢集团鞍山热能研究院有限公司 | Coking raw material application is classified and Quality evaluation and its instructs blending method |
CN115044385B (en) * | 2022-07-15 | 2023-07-21 | 河北中煤旭阳能源有限公司 | Method for producing low-sulfur coke by using ultra-high sulfur gas and fat coal |
-
2000
- 2000-03-22 JP JP2000079908A patent/JP4246351B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2001262153A (en) | 2001-09-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2034033B1 (en) | A method for manufacturing briquette directly using coal with wide range of size, the method using the same and the apparatus using the same | |
US20060169103A1 (en) | Process for producing particulate iron metal | |
KR101634054B1 (en) | Method for preparing blast furnace blow-in coal | |
CN101990581B (en) | Titanium oxide-containing agglomerate for producing granular metallic iron | |
JP4246351B2 (en) | Method for producing low sulfur coke | |
US20100171072A1 (en) | Method for manufacturing granular metallic iron | |
JP3152159B2 (en) | Manufacturing method of metallurgical coke | |
JP4751010B2 (en) | Blast furnace operation method | |
JPS62199706A (en) | Blast furnace operating method by powder blowing | |
KR100611167B1 (en) | Method for producing low silicon hot-metal | |
KR101552142B1 (en) | Agent for dephosphorization and treatment method of molten metal using the same | |
KR20150023765A (en) | Method for preparing blast furnace blow-in coal | |
JP2889093B2 (en) | Hot metal composition control method for blast furnace | |
KR20180134771A (en) | A recarburizing agent for steel manufacture and method for msteelmaking | |
JP2004263256A (en) | Method for charging raw material into blast furnace | |
EP2743357B1 (en) | Blast-furnace smelting method | |
JPH0816225B2 (en) | High strength coke and method of manufacturing the same | |
WO1999051710A1 (en) | Carbon pellets | |
JP3742525B2 (en) | Adjustment method of chlorine concentration in coke | |
JP3617464B2 (en) | Blast furnace operation method | |
JP2007119812A (en) | Refining material for molten iron, and method for refining molten iron | |
RU2148085C1 (en) | Method of smelting ferromanganese in blast furnace | |
SU753810A1 (en) | Iron-containing additive to cement raw mixture | |
RU2186042C2 (en) | Lime fabrication process | |
JP3927456B2 (en) | Method for producing highly reactive coke for blast furnace |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060906 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20061006 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061010 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20081211 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20081216 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090108 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4246351 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120116 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130116 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130116 Year of fee payment: 4 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130116 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130116 Year of fee payment: 4 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130116 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140116 Year of fee payment: 5 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |