JP3742525B2 - Adjustment method of chlorine concentration in coke - Google Patents
Adjustment method of chlorine concentration in coke Download PDFInfo
- Publication number
- JP3742525B2 JP3742525B2 JP09450199A JP9450199A JP3742525B2 JP 3742525 B2 JP3742525 B2 JP 3742525B2 JP 09450199 A JP09450199 A JP 09450199A JP 9450199 A JP9450199 A JP 9450199A JP 3742525 B2 JP3742525 B2 JP 3742525B2
- Authority
- JP
- Japan
- Prior art keywords
- concentration
- coke
- coal
- chlorine
- average value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Coke Industry (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、コークス、特に高炉用コークスの製造方法において、製造したコークス中の塩素濃度を調整するコークスの製造方法に関する。
【0002】
【従来の技術】
石炭を乾留してコークスを製造する方法において、原料石炭や添加物は微量であるが塩素を含有している。コークス乾留中に原料中に含まれる塩素の一部はガスとともに系外に排出されるものの、一部は製品コークス中に残留する。
【0003】
製銑原料として上記製造したコークスを高炉に装入すると、コークス中に含まれる塩素は高炉内において揮発し、高炉排ガスに含まれて排出される。コークス中に含まれる塩素濃度が高くなると、高炉排ガス設備の配管腐食等の原因となるため、コークス中塩素濃度はできるだけ低いレベルにすることが望まれる。
【0004】
一方、石炭中塩素濃度、あるいはコークス中塩素濃度の分析方法として、ボンブ燃焼−イオンクロマト法等を用いることができるが、この分析方法は時間と手間を要するため、通常のコークス製造現場において多数の石炭あるいはコークスの分析を行うには適していない。そのため、従来はコークス中の塩素濃度の調整は行われていなかった。
【0005】
【発明が解決しようとする課題】
本発明は、簡便な方法で原料石炭を評価して製品コークス中に含まれる塩素濃度を予測し、該予測に基づいて石炭銘柄の配合を調整することによってコークス中の塩素濃度を調整するコークスの製造方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明者らは、コークス炉に装入する原料石炭中に含まれる塩素濃度は石炭銘柄によって大きく異なること、および原料石炭中塩素がコークスに残留する残留率も石炭銘柄によって大きく異なることを見出した。そして、この事実から、原料石炭中の塩素濃度および原料石炭からコークスへの塩素残留率のいずれもが原料石炭中の他の不純物濃度によって支配されていることを見出した。
【0007】
本発明は、上記知見に基づいてなされたものであり、その要旨とするところは以下のとおりである。
(1)コークス原料石炭中のNa2O濃度加成平均値、CaO濃度加成平均値、MgO濃度加成平均値の1種又は2種以上を調整することにより、コークス中の塩素濃度を調整することを特徴とするコークスの製造方法。
(2)コークス原料石炭の灰中のNa2O濃度加成平均値、CaO濃度加成平均値、MgO濃度加成平均値の1種又は2種以上を調整することにより、コークス中の塩素濃度を調整することを特徴とするコークスの製造方法。
【0008】
【発明の実施の形態】
原料石炭中の塩素濃度は、図1に示すように原料石炭中のNa2O濃度と強い関係がある。原料石炭として複数銘柄の石炭を用いる場合、塩素濃度の加成平均値はNa2O濃度の加成平均値によって表される。ここで、
石炭中Na2O濃度加成平均値(%)=Σ[(石炭iの灰分(%))×(石炭iの灰中のNa2O割合(%))/100]×[石炭iの配合割合]/100
石炭中塩素濃度(ppm)=7593.8×[石炭中Na2O濃度加成平均値(%)]+157.72
である。即ち、石炭中Na2O濃度加成平均値を低くするほど、石炭中塩素濃度を低くできることがわかった。
【0009】
また、図2に示すように石炭中塩素濃度は灰中Na2O濃度の加成平均値とも良い相関があるので、簡易的には例えば下記の式で表すことも可能である。
灰中Na2O濃度加成平均値(%)=Σ[石炭iの灰中のNa2O濃度(%)]×[石炭iの配合割合]/100
石炭中塩素濃度(ppm)=670.618×[灰中Na2O濃度加成平均値(%)]+165.45
ここで、石炭の灰中Na2O濃度加成平均値を調整することは、とりもなおさず石炭中のNa2O濃度加成平均値を調整することにほかならない。
【0010】
次に、コークス中塩素残留率(=コークス中塩素分/原料石炭中塩素分×100)は、図3に示すように石炭中CaO濃度の加成平均値と良い関係があり、一般的な配合炭中のCaO濃度である0.30%近傍においては、例えば下記の式で表される。
石炭中CaO濃度加成平均値(%)=Σ[(石炭iの灰分(%))×(石炭iの灰中のCaO濃度(%))/100]×[石炭iの配合割合]/100
塩素残留率(%)=183.73×[石炭中CaO濃度加成平均値(%)]−7.4865
また、コークス中塩素残留率は灰中CaO濃度の加成平均値とも良い相関があるので、簡易的には灰中CaO濃度加成平均値の一次式で表すことも可能である。
【0011】
あるいは、さらにCaO濃度の広い範囲については、図4に示すように塩素残留率を石炭中塩素濃度の2次式で表すことも可能である。
塩素残留率(%)=−290.44×X2+342.45×X−28.454
(ここでXは石炭中CaO濃度加成平均値(%))
さらに、灰中CaO濃度とMgO濃度には相関があるので、塩素残留率を石炭中MgO濃度の加成平均値、灰中MgO濃度の加成平均値、石炭中CaO+MgO濃度の加成平均値、灰中CaO+MgO濃度の加成平均値の一次式あるいは二次式で表すことも可能である。
【0012】
また、石炭の灰中CaO濃度とMgO濃度加成平均値を調整することは、とりもなおさず石炭中のCaO濃度とMgO濃度加成平均値を調整することにほかならない。
【0013】
上記のように、コークス中の塩素残留率は石炭中のアルカリ土類金属であるCa量と良い相関がある。これは、コークス炉内においては石炭は900〜1200℃の高温にさらされるが、この温度ではNaの塩化物よりもCaの塩化物(CaCl2)の方が安定であるためと考えられる。
【0014】
これらの事実から、石炭中塩素濃度の値がたとえ同一であっても、石炭中のCaO濃度やMgO濃度の加成平均値を低減すれば、コークス中塩素濃度を低減することができることが明らかになった。
【0015】
以上より、原料石炭中のNa2OやCaO、MgO濃度の加成平均値を調整することにより、原料石炭中の塩素濃度やコークス製造における塩素残留率を調整することができ、結果としてコークス中の塩素濃度を調整することが可能になった。即ち、コークス中の塩素濃度を低減する必要がある場合は、原料石炭のNa2O、CaO、MgO濃度を測定し、最終的なコークス中の塩素濃度を低く抑えることができるように原料石炭を配合することができる。
【0016】
上記のように原料石炭を選別してコークス中の塩素濃度を低減することが可能になったが、Na2O濃度やCaO濃度、MgO濃度が高いために選別で除外された石炭を使用せずにおくわけにはいかない。複数の高炉が稼動している場合において、高炉の排ガス系統の腐食耐性に優劣がある場合、設備が腐食に弱い側の高炉にはコークス中塩素濃度を低く調整したコークスを使用し、設備が腐食に強い側の高炉には選別で除外された石炭を混合して製造したコークスを使用することとすれば、購入した石炭をすべて使用しつつ、総合的に高炉炉寿命の改善を得ることができる。
【0017】
また、従来のようにコークス中の塩素濃度を全く調整せずにコークスの製造を行うと、ある一定の期間においてコークス中塩素濃度が高めに推移する期間が継続し、その間に高炉設備の腐食が一気に進行する事態が発生する。本発明によってコークス中の塩素濃度を調整することにより、高炉に使用するコークス中の塩素濃度を常に一定に保ち、設備の腐食の急激な進行を防止することができる。このような調整を行う場合には、石炭の選別によって使用不可能な石炭銘柄が残ってしまう問題を回避することができる。
【0018】
高炉には装入主原料として焼結鉱及びコークス、それに微粉炭吹き込みが行われる。そのため、高炉へのインプット塩素量は、焼結鉱、コークス、微粉炭からの持ち込み塩素量の合計となる。ここで、微粉炭中の含有塩素量は、本発明によれば微粉炭中のNa2O濃度を分析することにより推定することができる。従って、高炉へのインプット塩素量合計の目標値から該推定した微粉炭からの塩素持ち込み量推定値を差し引くことにより、コークスからの持ち込み塩素量の目標を定めることができる。次に本発明によってコークス中の塩素濃度を当該目標以下となるように制御すれば、高炉へのインプット塩素量合計を目標以下に調整することが可能になる。
【0019】
原料石炭のNa2O、CaO、MgO濃度測定方法としては、JIS M8815「石炭灰およびコークス灰の分析方法」に記載の方法に従い石炭を灰化した後、蛍光X線分析装置等の機器分析装置、あるいはJIS M8815に記載の方法に従い、Na、Ca、Mgの定量分析を行い、すべてNa2O、CaO、MgO等の酸化物に換算して評価することができる。
【0020】
また、石炭およびコークス中の塩素の評価においては、ボンブ燃焼−イオンクロマト法によって分析した。即ち、ボンブあるいは燃焼管において高温で石炭あるいはコークス試料を燃焼させ、燃焼ガスを吸収液に吸収させた後、吸収液中の塩素をイオンクロマト法で測定する方法を採用した。
【0021】
【実施例】
原料石炭中のNa2O、CaO、MgO濃度の加成平均値からコークス中の塩素濃度を推定する発明を適用し、高炉用コークスの塩素濃度の低減を図った。対象とする高炉におけるコークス塩素濃度の上限目標値は1000ppmであるが、図5に示すように本発明実施前は石炭配合の変化に従って目標値を超える塩素濃度となることがしばしばあった。これに対し、本発明により原料石炭中のNa2O、CaO、MgO濃度を分析し、その加成平均値からコークス中の塩素濃度を推定し、推定塩素濃度が1000ppmを超えないように石炭配合を調整した結果、図5の本発明実施後に見られるごとく、コークス中塩素濃度を目標値以下に保つことができた。
【0022】
【発明の効果】
本発明により、コークス原料石炭の簡便な分析結果に基づき、コークス中の塩素濃度を調整することが可能になった。これにより、高炉に装入するコークス中の塩素濃度を低減し、あるいは塩素濃度の期間変動を抑制し、その結果として高炉設備の配管腐食等を抑制することができた。
【図面の簡単な説明】
【図1】石炭中のNa2O濃度と石炭中の塩素濃度との関係を示す図である。
【図2】灰中のNa2O濃度と石炭中の塩素濃度との関係を示す図である。
【図3】石炭中のCaO濃度とコークスの塩素残留率との関係を示す図である。
【図4】石炭中のCaO濃度とコークスの塩素残留率との関係を示す図である。
【図5】本発明の適用によるコークス中の塩素濃度の推移を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing coke, particularly a method for producing coke in a blast furnace, in which the concentration of chlorine in the produced coke is adjusted.
[0002]
[Prior art]
In a method for producing coke by dry distillation of coal, raw material coal and additives are contained in trace amounts but contain chlorine. While some of the chlorine contained in the raw material during coke dry distillation is discharged out of the system together with the gas, some remains in the product coke.
[0003]
When the coke produced as a raw material for making iron is charged into the blast furnace, chlorine contained in the coke volatilizes in the blast furnace and is contained and discharged in the blast furnace exhaust gas. When the concentration of chlorine contained in the coke becomes high, it causes pipe corrosion of the blast furnace exhaust gas equipment and the like, so it is desired that the concentration of chlorine in the coke be as low as possible.
[0004]
On the other hand, as a method for analyzing the chlorine concentration in coal or the chlorine concentration in coke, a bomb combustion-ion chromatography method or the like can be used. However, since this analysis method requires time and labor, many methods are used in ordinary coke production sites. It is not suitable for analyzing coal or coke. For this reason, conventionally, the chlorine concentration in coke has not been adjusted.
[0005]
[Problems to be solved by the invention]
The present invention evaluates raw material coal by a simple method, predicts the chlorine concentration contained in product coke, and adjusts the chlorine concentration in coke by adjusting the blend of coal brand based on the prediction. An object is to provide a manufacturing method.
[0006]
[Means for Solving the Problems]
The present inventors have found that the chlorine concentration contained in the raw material coal charged into the coke oven varies greatly depending on the coal brand, and the residual ratio of residual chlorine in the raw coal varies greatly depending on the coal brand. . From this fact, it has been found that both the chlorine concentration in the raw coal and the chlorine residual ratio from the raw coal to the coke are governed by other impurity concentrations in the raw coal.
[0007]
This invention is made | formed based on the said knowledge, The place made into the summary is as follows.
(1) Adjust the chlorine concentration in coke by adjusting one or more of Na 2 O concentration additive average value, CaO concentration additive average value, and MgO concentration additive average value in coke raw material coal. A method for producing coke, characterized in that:
(2) Chlorine concentration in coke by adjusting one or more of Na 2 O concentration additive average value, CaO concentration additive average value, MgO concentration additive average value in ash of coke raw material coal A method for producing coke, characterized by adjusting the pH.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The chlorine concentration in the raw coal is strongly related to the Na 2 O concentration in the raw coal as shown in FIG. When multiple brands of coal are used as raw material coal, the additive average value of chlorine concentration is represented by the additive average value of Na 2 O concentration. here,
Additive average value of Na 2 O concentration in coal (%) = Σ [(ash content of coal i (%)) × (Na 2 O ratio in coal i ash (%)) / 100] × [combination of coal i Ratio] / 100
Coal chlorine concentration (ppm) = 7593.8 x [Na 2 O concentration additive average value (%) in coal] + 157.72
It is. That is, it was found that the chlorine concentration in the coal can be lowered as the additive average value of the Na 2 O concentration in the coal is lowered.
[0009]
Further, as shown in FIG. 2, the chlorine concentration in coal has a good correlation with the additive average value of the Na 2 O concentration in the ash, so it can be simply expressed by the following equation, for example.
Additive average value of Na 2 O concentration in ash (%) = Σ [Na 2 O concentration in ash of coal i (%)] × [mixing ratio of coal i] / 100
Coal chlorine concentration (ppm) = 670.618 × [ash in concentration of Na 2 O additivity average (%)] + 165.45
Here, adjusting the Na 2 O concentration additive average value in coal ash is nothing but adjusting the Na 2 O concentration additive average value in coal.
[0010]
Next, the residual chlorine ratio in coke (= chlorine content in coke / chlorine content in raw coal x 100) has a good relationship with the additive mean value of the CaO concentration in coal as shown in FIG. In the vicinity of 0.30%, which is the CaO concentration in charcoal, for example, it is expressed by the following formula.
Coal CaO concentration additive average value (%) = Σ [(ash content of coal i (%)) × (CaO concentration in coal i ash (%)) / 100] × [mixing ratio of coal i] / 100
Chlorine residual rate (%) = 183.73 x [additional average value of CaO concentration in coal (%)] -7.4865
Moreover, since the chlorine residual rate in coke has a good correlation with the additive average value of CaO concentration in ash, it can be simply expressed by a linear expression of the additive average value of CaO concentration in ash.
[0011]
Or about the wide range of CaO density | concentration, as shown in FIG. 4, it is also possible to represent a chlorine residual rate with the quadratic formula of the chlorine concentration in coal.
Chlorine residual rate (%) = − 290.44 × X 2 + 342.45 × X−28.454
(Where X is the mean value of CaO concentration in coal (%))
Furthermore, since there is a correlation between the CaO concentration in ash and the MgO concentration, the chlorine residual ratio is an additive average value of MgO concentration in coal, an additive average value of MgO concentration in ash, an additive average value of CaO + MgO concentration in coal, It can also be expressed by a primary expression or a secondary expression of an additive average value of CaO + MgO concentration in ash.
[0012]
Moreover, adjusting the CaO concentration and the MgO concentration additive average value in the ash of the coal is nothing but adjusting the CaO concentration and MgO concentration additive average value in the coal.
[0013]
As described above, the chlorine residual rate in coke has a good correlation with the amount of Ca which is an alkaline earth metal in coal. This is presumably because the coal is exposed to a high temperature of 900 to 1200 ° C. in the coke oven, but at this temperature, the Ca chloride (CaCl 2 ) is more stable than the Na chloride.
[0014]
From these facts, it is clear that even if the value of chlorine concentration in coal is the same, the chlorine concentration in coke can be reduced if the additive average value of CaO concentration or MgO concentration in coal is reduced. became.
[0015]
From the above, by adjusting the additive mean value of Na 2 O, CaO, and MgO concentrations in the raw coal, the chlorine concentration in the raw coal and the chlorine residual rate in coke production can be adjusted, resulting in the coke It became possible to adjust the chlorine concentration of That is, when it is necessary to reduce the chlorine concentration in the coke, the Na 2 O, CaO, and MgO concentrations of the raw coal are measured, and the raw coal is adjusted so that the final chlorine concentration in the coke can be kept low. Can be blended.
[0016]
Although it is possible to reduce the chlorine concentration in coke by selecting the raw coal as described above, it does not use the coal excluded in the selection because the Na 2 O concentration, CaO concentration and MgO concentration are high. I can't leave it in. When multiple blast furnaces are in operation and the corrosion resistance of the exhaust gas system of the blast furnace is superior or inferior, the coke with a low chlorine concentration in the coke is used for the blast furnace on the side where the equipment is vulnerable to corrosion, and the equipment is corroded. If the coke produced by mixing the coal excluded in the sorting is used for the blast furnace on the strong side, the life of the blast furnace can be improved comprehensively while using all the purchased coal. .
[0017]
In addition, when coke is produced without adjusting the chlorine concentration in the coke as in the past, the period during which the chlorine concentration in the coke continues to increase during a certain period continues, during which the blast furnace equipment corrodes. A situation that progresses at a stretch occurs. By adjusting the chlorine concentration in the coke according to the present invention, the chlorine concentration in the coke used in the blast furnace can always be kept constant, and rapid progress of corrosion of the equipment can be prevented. In the case of performing such adjustment, it is possible to avoid the problem that unusable coal brands remain due to the sorting of coal.
[0018]
Sinter ore and coke and pulverized coal are injected into the blast furnace as main raw materials. Therefore, the amount of chlorine input to the blast furnace is the total amount of chlorine brought in from sintered ore, coke, and pulverized coal. Here, according to the present invention, the amount of chlorine contained in the pulverized coal can be estimated by analyzing the Na 2 O concentration in the pulverized coal. Therefore, a target of the amount of chlorine brought in from coke can be determined by subtracting the estimated amount of chlorine brought in from the pulverized coal from the target value of the total amount of input chlorine to the blast furnace. Next, if the chlorine concentration in the coke is controlled to be below the target according to the present invention, the total amount of input chlorine to the blast furnace can be adjusted to be below the target.
[0019]
As a method for measuring Na 2 O, CaO, and MgO concentrations of raw material coal, after ashing the coal according to the method described in JIS M8815 “Analysis method of coal ash and coke ash”, an instrument analyzer such as a fluorescent X-ray analyzer Alternatively, according to the method described in JIS M8815, quantitative analysis of Na, Ca and Mg can be performed, and all can be converted into oxides such as Na 2 O, CaO and MgO for evaluation.
[0020]
Moreover, in the evaluation of chlorine in coal and coke, it was analyzed by a bomb combustion-ion chromatography method. That is, a method was adopted in which a coal or coke sample was burned at a high temperature in a bomb or a combustion tube, the combustion gas was absorbed into the absorption liquid, and then chlorine in the absorption liquid was measured by ion chromatography.
[0021]
【Example】
The invention for estimating the chlorine concentration in the coke from the additive average values of the Na 2 O, CaO, and MgO concentrations in the raw coal was applied to reduce the chlorine concentration in the blast furnace coke. Although the upper limit target value of coke chlorine concentration in the target blast furnace is 1000 ppm, as shown in FIG. 5, before implementation of the present invention, the chlorine concentration often exceeded the target value according to the change in the coal composition. On the other hand, according to the present invention, the Na 2 O, CaO, and MgO concentrations in the raw coal are analyzed, the chlorine concentration in the coke is estimated from the additive average value, and the blended coal is set so that the estimated chlorine concentration does not exceed 1000 ppm. As a result, the chlorine concentration in the coke could be kept below the target value as seen after implementation of the present invention in FIG.
[0022]
【The invention's effect】
According to the present invention, the chlorine concentration in coke can be adjusted based on simple analysis results of coke raw material coal. As a result, the chlorine concentration in the coke charged into the blast furnace was reduced, or the fluctuation in the chlorine concentration over time was suppressed, and as a result, pipe corrosion of the blast furnace equipment could be suppressed.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between Na 2 O concentration in coal and chlorine concentration in coal.
FIG. 2 is a graph showing the relationship between Na 2 O concentration in ash and chlorine concentration in coal.
FIG. 3 is a graph showing the relationship between the CaO concentration in coal and the chlorine residual rate of coke.
FIG. 4 is a graph showing the relationship between the CaO concentration in coal and the chlorine residual rate of coke.
FIG. 5 is a graph showing a transition of chlorine concentration in coke by application of the present invention.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP09450199A JP3742525B2 (en) | 1999-04-01 | 1999-04-01 | Adjustment method of chlorine concentration in coke |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP09450199A JP3742525B2 (en) | 1999-04-01 | 1999-04-01 | Adjustment method of chlorine concentration in coke |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000282053A JP2000282053A (en) | 2000-10-10 |
JP3742525B2 true JP3742525B2 (en) | 2006-02-08 |
Family
ID=14112071
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP09450199A Expired - Fee Related JP3742525B2 (en) | 1999-04-01 | 1999-04-01 | Adjustment method of chlorine concentration in coke |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3742525B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7295407B2 (en) * | 2019-06-03 | 2023-06-21 | 日本製鉄株式会社 | Method for estimating nitrogen concentration in coke and method for producing coke |
-
1999
- 1999-04-01 JP JP09450199A patent/JP3742525B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2000282053A (en) | 2000-10-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lanzerstorfer et al. | Recycling of blast furnace dust in the iron ore sintering process: investigation of coke breeze substitution and the influence on off-gas emissions | |
JP5006088B2 (en) | Method for selecting granulated blast furnace slag for cement and method for producing cement composition | |
CN110411885A (en) | A kind of method of coke degradation in evaluation blast furnace | |
CN104471078A (en) | Method for preparing blast furnace blow-in coal | |
JP6354373B2 (en) | Blast furnace slag sorting method and blast furnace cement production method | |
JP3742525B2 (en) | Adjustment method of chlorine concentration in coke | |
JP2016180748A (en) | Selection method of blast furnace slag, and manufacturing method of blast furnace cement | |
KR101100537B1 (en) | Method for predicting of drum index of cokes | |
JPH0711354A (en) | Method for operating rotary kiln for reduction of iron and steel | |
Lloyd et al. | Ash fusion temperatures under oxidizing conditions | |
JP4246351B2 (en) | Method for producing low sulfur coke | |
JP6052191B2 (en) | Recycling method of steelmaking slag | |
KR101938085B1 (en) | Methods of predicting fluidity of coal | |
JP2003049227A (en) | Method for producing sintered ore | |
EP3438290B1 (en) | Method for operating blast furnace | |
JPH0155313B2 (en) | ||
JP2020197453A (en) | Method for estimating nitrogen concentration in coke and method of producing coke | |
JP4874470B2 (en) | Method for producing cement clinker | |
JP7265162B2 (en) | Method for reducing NOx in sintering exhaust gas | |
EP3819272B1 (en) | Method for recovering fly ash | |
JP3302446B2 (en) | Determination method of coal weathering degree | |
US20170009311A1 (en) | Secondary material for steel refining | |
JP3959875B2 (en) | Method for suppressing expansion of steelmaking slag | |
JP4306406B2 (en) | Method for producing blast furnace coke | |
Wheeler | Chemical analysis of coal by energy dispersive x-ray fluorescence utilizing artificial standards |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20051027 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20051108 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20051111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081118 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091118 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101118 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101118 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111118 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111118 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121118 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121118 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131118 Year of fee payment: 8 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131118 Year of fee payment: 8 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131118 Year of fee payment: 8 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |