JP2020197453A - Method for estimating nitrogen concentration in coke and method of producing coke - Google Patents

Method for estimating nitrogen concentration in coke and method of producing coke Download PDF

Info

Publication number
JP2020197453A
JP2020197453A JP2019103806A JP2019103806A JP2020197453A JP 2020197453 A JP2020197453 A JP 2020197453A JP 2019103806 A JP2019103806 A JP 2019103806A JP 2019103806 A JP2019103806 A JP 2019103806A JP 2020197453 A JP2020197453 A JP 2020197453A
Authority
JP
Japan
Prior art keywords
coke
nitrogen concentration
coal
coking coal
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019103806A
Other languages
Japanese (ja)
Other versions
JP7295407B2 (en
Inventor
野村 誠治
Seiji Nomura
誠治 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2019103806A priority Critical patent/JP7295407B2/en
Publication of JP2020197453A publication Critical patent/JP2020197453A/en
Application granted granted Critical
Publication of JP7295407B2 publication Critical patent/JP7295407B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Coke Industry (AREA)

Abstract

To estimate the concentration of nitrogen contained in coke.SOLUTION: The present invention is a method for estimating the concentration of nitrogen contained in coke. First, regarding a raw material coal used for production of coke, a parameter is measured, which includes the concentration of nitrogen in at least the raw material coal. Based on the correlation between the parameter and the concentration of nitrogen in the coke and the measured parameter, the concentration of nitrogen in the coke produced from the raw material coal is calculated (estimated).SELECTED DRAWING: Figure 3

Description

本発明は、コークスに含まれる窒素濃度を推定する方法と、この推定方法に基づいて調整された原料炭に基づいてコークスを製造する方法に関する。 The present invention relates to a method of estimating the nitrogen concentration contained in coke and a method of producing coke based on coking coal adjusted based on this estimation method.

特許文献1では、石灰系原料由来のCaを36質量%以上含有する被覆物を炭材表面に被覆した表面被覆炭材を、焼結燃料として配合炭中に含めることにより、焼結鉱の製造時におけるNOxの発生を抑制するようにしている。 In Patent Document 1, a sintered ore is produced by including a surface-coated coal material having a coating material containing 36% by mass or more of Ca derived from a lime-based raw material on the surface of the coal material as a sintered fuel in the blended coal. The generation of NOx at the time is suppressed.

特許第4870247号Patent No. 4870247

NOxの発生原因はコークスに含まれる窒素になるが、特許文献1では、コークス中の窒素濃度については何ら着目していない。そこで、本発明は、コークス中の窒素濃度を推定することを目的とする。 The cause of NOx generation is nitrogen contained in coke, but Patent Document 1 does not pay any attention to the nitrogen concentration in coke. Therefore, an object of the present invention is to estimate the nitrogen concentration in coke.

本発明は、コークスに含まれる窒素濃度を推定する方法である。まず、コークスの製造に用いられる原料炭について、少なくとも原料炭中の窒素濃度を含むパラメータを測定する。そして、パラメータ及びコークス中の窒素濃度の相関関係と、測定したパラメータとに基づいて、原料炭から製造されるコークス中の窒素濃度を算出(推定)する。 The present invention is a method for estimating the nitrogen concentration contained in coke. First, for the coking coal used in the production of coke, parameters including at least the nitrogen concentration in the coking coal are measured. Then, the nitrogen concentration in coke produced from coking coal is calculated (estimated) based on the correlation between the parameters and the nitrogen concentration in coke and the measured parameters.

パラメータとしては、原料炭中の窒素濃度とすることができる。そして、下記式(I)に基づいて、コークス中の窒素濃度を算出することができる。 The parameter can be the nitrogen concentration in the coking coal. Then, the nitrogen concentration in coke can be calculated based on the following formula (I).

上記式(I)において、CNはコークス中の窒素濃度[質量%]であり、CNは原料炭中の窒素濃度[質量%]であり、a1及びa2は定数[−]である。 In the above formula (I), CN 1 is the nitrogen concentration [mass%] in coke, CN 2 is the nitrogen concentration [mass%] in coking coal, and a1 and a2 are constants [−].

パラメータとしては、原料炭中の窒素濃度、原料炭の最高流動度及び原料炭中のMgO濃度とすることができる。そして、下記式(II)に基づいて、コークス中の窒素濃度を算出することができる。 The parameters can be the nitrogen concentration in the coking coal, the maximum fluidity of the coking coal, and the MgO concentration in the coking coal. Then, the nitrogen concentration in coke can be calculated based on the following formula (II).

上記式(II)において、CNはコークス中の窒素濃度[質量%]であり、CNは原料炭中の窒素濃度[質量%]であり、MFは原料炭の最高流動度[−]であり、MgOは原料炭中のMgO濃度[質量%]であり、d1,d2,d3及びd4は定数[−]である。 In the above formula (II), CN 1 is the nitrogen concentration [mass%] in coke, CN 2 is the nitrogen concentration [mass%] in the coking coal, and MF is the maximum fluidity [-] of the coking coal. Yes, MgO is the MgO concentration [mass%] in the coking coal, and d1, d2, d3 and d4 are constants [−].

原料炭が配合炭であるとき、パラメータとしては、配合炭に含まれる各単味炭の配合比率に基づいて、各単味炭のパラメータを加重平均した値とすることができる。 When the coking coal is a compound coal, the parameter can be a weighted average value of the parameters of each simple coal based on the compounding ratio of each simple coal contained in the compound coal.

本発明の推定方法によって推定したコークス中の窒素濃度が目標値となるように原料炭を調整し、調整した原料炭を乾留してコークスを製造することができる。 The coking coal can be adjusted so that the nitrogen concentration in the coke estimated by the estimation method of the present invention becomes a target value, and the adjusted coking coal can be carbonized to produce coke.

本発明によれば、コークスに含まれる窒素濃度を推定することができる。 According to the present invention, the nitrogen concentration contained in coke can be estimated.

原料炭中の窒素濃度(実測値)とコークス中の窒素濃度(実測値)との関係を示す図である。It is a figure which shows the relationship between the nitrogen concentration in coking coal (measured value), and the nitrogen concentration in coke (measured value). 推定方法1によるコークス中の窒素濃度(推定値)とコークス中の窒素濃度(実測値)との関係を示す図である。It is a figure which shows the relationship between the nitrogen concentration (estimated value) in coke and the nitrogen concentration (measured value) in coke by the estimation method 1. 推定方法2によるコークス中の窒素濃度(推定値)とコークス中の窒素濃度(実測値)との関係を示す図である。It is a figure which shows the relationship between the nitrogen concentration (estimated value) in coke and the nitrogen concentration (measured value) in coke by the estimation method 2. 原料炭中の揮発分と窒素残留率との関係を示す図である。It is a figure which shows the relationship between the volatile matter in coking coal and the nitrogen residual ratio.

本発明者は、コークス中の窒素濃度が、コークス炉に装入される原料炭中の窒素濃度に依存したり、原料炭中の窒素濃度、原料炭の最高流動度MF及び原料炭中のMgO濃度に依存したりすることを見出した。これにより、原料炭中の窒素濃度に基づいて、又は原料炭における窒素濃度、最高流動度MF及びMgO濃度に基づいて、コークス中の窒素濃度を推定できることが分かった。以下、コークス中の窒素濃度を推定する方法(推定方法1,2)について説明する。 According to the present inventor, the nitrogen concentration in coke depends on the nitrogen concentration in the coking coal charged into the coke oven, the nitrogen concentration in the coking coal, the maximum fluidity MF of the coking coal, and MgO in the coking coal. We found that it depends on the concentration. From this, it was found that the nitrogen concentration in coke can be estimated based on the nitrogen concentration in the coking coal or based on the nitrogen concentration in the coking coal, the maximum fluidity MF and the MgO concentration. Hereinafter, a method for estimating the nitrogen concentration in coke (estimation methods 1 and 2) will be described.

(推定方法1)
コークス中の窒素濃度と原料炭中の窒素濃度との間には、ある程度の相関があることが分かった。図1には、原料炭中の窒素濃度(実測値)[質量%]と、この原料炭から製造されたコークス中の窒素濃度(実測値)[質量%]との関係を示す。図1において、決定係数Rは0.3948であった。図1から分かるように、原料炭中の窒素濃度が高いほど、コークス中の窒素濃度が高くなる傾向がある。言い換えれば、原料炭中の窒素濃度が低いほど、コークス中の窒素濃度が低くなる傾向がある。
(Estimation method 1)
It was found that there is some correlation between the nitrogen concentration in coke and the nitrogen concentration in coking coal. FIG. 1 shows the relationship between the nitrogen concentration (measured value) [mass%] in the coking coal and the nitrogen concentration (measured value) [mass%] in the coke produced from this coking coal. In FIG. 1, the coefficient of determination R 2 was 0.3948. As can be seen from FIG. 1, the higher the nitrogen concentration in the coking coal, the higher the nitrogen concentration in the coke tends to be. In other words, the lower the nitrogen concentration in coking coal, the lower the nitrogen concentration in coke tends to be.

したがって、コークス中の窒素濃度は、下記式(1)に基づいて算出(推定)される。 Therefore, the nitrogen concentration in coke is calculated (estimated) based on the following formula (1).

上記式(1)において、CNはコークス中の窒素濃度[質量%]であり、CNは原料炭中の窒素濃度[質量%]であり、a1及びa2は定数[−]である。図1に示す測定結果によれば、定数a1が0.211であり、定数a2が0.547である。 In the above formula (1), CN 1 is the nitrogen concentration [mass%] in coke, CN 2 is the nitrogen concentration [mass%] in coking coal, and a1 and a2 are constants [−]. According to the measurement results shown in FIG. 1, the constant a1 is 0.211 and the constant a2 is 0.547.

原料炭中の窒素濃度CNは、JIS M8813の規定に基づいて測定することができる。ここで、原料炭が配合炭であるとき、配合炭に含まれる各単味炭の窒素濃度を測定し、各単味炭の配合比率[質量%]に基づいて、各単味炭の窒素濃度を加重平均することにより、原料炭(配合炭)の窒素濃度CNを算出することができる。 The nitrogen concentration CN 2 in the coking coal can be measured based on the regulations of JIS M8813. Here, when the coking coal is a compound coal, the nitrogen concentration of each simple coal contained in the compound coal is measured, and the nitrogen concentration of each simple coal is measured based on the compounding ratio [mass%] of each simple coal. The nitrogen concentration CN 2 of the coking coal (combined coal) can be calculated by weighted averaging.

上記式(1)によってコークス中の窒素濃度CNを推定すれば、この推定結果に基づいて、原料炭中の窒素濃度CNを調整して、コークス中の窒素濃度CNを調整することができる。具体的には、コークスを製造するとき、推定したコークス中の窒素濃度CNが目標値となるように、所望の窒素濃度CNを有する原料炭を用いることができる。この原料炭を乾留してコークスを製造すれば、このコークス中の窒素濃度を目標値とすることができる。 If the nitrogen concentration CN 1 in coke is estimated by the above formula (1), the nitrogen concentration CN 2 in coking coal can be adjusted to adjust the nitrogen concentration CN 1 in coke based on this estimation result. it can. Specifically, when coke is produced, coking coal having a desired nitrogen concentration CN 2 can be used so that the estimated nitrogen concentration CN 1 in the coke becomes a target value. If this coking coal is carbonized to produce coke, the nitrogen concentration in the coke can be set as a target value.

一方、例えば、コークス中の窒素濃度CNを低減する必要があるときには、原料炭中の窒素濃度CNを測定して、上記式(1)に基づいてコークス中の窒素濃度CNを推定し、推定した窒素濃度CNが低くなるように、原料炭を調整することができる。ここで、原料炭が単味炭であるときには、推定した窒素濃度CNが低くなるように、単味炭の種類(銘柄)を変更することができる。また、原料炭が配合炭であるときには、推定した窒素濃度CNが低くなるように、単味炭の種類(銘柄)を変更したり、各単味炭の配合比率を変更したりすることができる。 On the other hand, for example, when it is necessary to reduce the nitrogen concentration CN 1 in coke, the nitrogen concentration CN 2 in coking coal is measured, and the nitrogen concentration CN 1 in coke is estimated based on the above formula (1). The coking coal can be adjusted so that the estimated nitrogen concentration CN 1 is low. Here, when the coking coal is a simple coal, the type (brand) of the simple coal can be changed so that the estimated nitrogen concentration CN 1 is low. In addition, when the coking coal is a compound coal, the type (brand) of the simple coal or the compounding ratio of each simple coal may be changed so that the estimated nitrogen concentration CN 1 is low. it can.

コークス中の窒素濃度CNを低減する必要がある場合としては、例えば、焼結鉱を製造するための凝結材として、通常コークスに対して、窒素の含有量が少ない無煙炭やNOxの発生量が少ない表面被覆炭材(特許文献1等に記載の表面被覆炭材)を組み合わせて使用する場合において、通常コークスの使用量を増やしたい場合が挙げられる。通常コークスの使用量を増やそうとすると、この使用量の増加によってNOxの発生量が増加してしまうが、通常コークス中の窒素濃度CNを低減することにより、NOxの発生量の増加を抑制することができる。 When it is necessary to reduce the nitrogen concentration CN 1 in coke, for example, as a coagulant for producing sinter, the amount of anthracite or NOx generated, which usually has a lower nitrogen content than coke, is high. When a small amount of surface-coated carbonaceous material (surface-coated carbonaceous material described in Patent Document 1 and the like) is used in combination, there is a case where it is usually desired to increase the amount of coke used. If an attempt is made to increase the amount of normal coke used, the amount of NOx generated will increase due to this increase in the amount used, but by reducing the nitrogen concentration CN 1 in normal coke, the increase in the amount of NOx generated will be suppressed. be able to.

次に、推定方法1によるコークス中の窒素濃度CNの推定精度を確認した。 Next, the estimation accuracy of the nitrogen concentration CN 1 in coke by the estimation method 1 was confirmed.

まず、複数種類の原料炭を用意し、各原料炭を乾留してコークスを製造した。そして、製造されたコークス中の窒素濃度を測定した。一方、各原料炭の窒素濃度CNを測定し、測定した窒素濃度CNを上記式(1)に代入することにより、コークス中の窒素濃度CNを推定した。 First, a plurality of types of coking coal were prepared, and each coking coal was carbonized to produce coke. Then, the nitrogen concentration in the produced coke was measured. On the other hand, the nitrogen concentration CN 2 of each coking coal was measured, and the measured nitrogen concentration CN 2 was substituted into the above formula (1) to estimate the nitrogen concentration CN 1 in coke.

図2には、上記式(1)に基づいて推定されたコークス中の窒素濃度(推定値)と、測定したコークス中の窒素濃度(実測値)との関係を示す。図2において、決定係数Rは0.3948であった。図2に示すように、推定方法1によれば、原料炭中の窒素濃度CNに基づいて、この原料炭から製造されたコークス中の窒素濃度CNを大まかに把握することができる。 FIG. 2 shows the relationship between the nitrogen concentration in coke (estimated value) estimated based on the above formula (1) and the measured nitrogen concentration in coke (measured value). In FIG. 2, the coefficient of determination R 2 was 0.3948. As shown in FIG. 2, according to the estimation method 1, the nitrogen concentration CN 1 in the coke produced from this coking coal can be roughly grasped based on the nitrogen concentration CN 2 in the coking coal.

(推定方法2)
上述した推定方法1によれば、コークス中の窒素濃度CNは、原料炭中の窒素濃度CNにより推定することができる。また、原料炭中の窒素濃度CN、原料炭の最高流動度MF及び原料炭中のMgO濃度のすべてを考慮することで、コークス中の窒素濃度CNを推定できることが判った。
(Estimation method 2)
According to the estimation method 1 described above, the nitrogen concentration CN 1 in coke can be estimated from the nitrogen concentration CN 2 in the coking coal. It was also found that the nitrogen concentration CN 1 in coke can be estimated by considering all of the nitrogen concentration CN 2 in the coking coal, the maximum fluidity MF of the coking coal and the MgO concentration in the coking coal.

推定方法2によれば、コークス中の窒素濃度は下記式(2)に基づいて算出(推定)される。 According to the estimation method 2, the nitrogen concentration in coke is calculated (estimated) based on the following equation (2).

上記式(2)において、CNはコークス中の窒素濃度[質量%]であり、CNは原料炭中の窒素濃度[質量%]であり、MFは原料炭の最高流動度[−]であり、MgOは原料炭中のMgO濃度[質量%]である。 In the above formula (2), CN 1 is the nitrogen concentration [mass%] in coke, CN 2 is the nitrogen concentration [mass%] in the coking coal, and MF is the maximum fluidity [-] of the coking coal. Yes, MgO is the MgO concentration [mass%] in the coking coal.

原料炭における窒素濃度CNの測定方法は、上述したとおりである。 The method for measuring the nitrogen concentration CN 2 in the coking coal is as described above.

また、原料炭の最高流動度MFは、JIS M8801で規定されているギーセラープラストメータ測定法によって測定することができる。ここで、原料炭が配合炭であるとき、配合炭に含まれる各単味炭の最高流動度MFを測定し、各単味炭の配合比率[質量%]に基づいて、各単味炭の最高流動度MFを加重平均することにより、原料炭(配合炭)の最高流動度MFを算出することができる。 Further, the maximum fluidity MF of the coking coal can be measured by the giesel plastometer measuring method specified in JIS M8801. Here, when the coking coal is a compound coal, the maximum fluidity MF of each simple coal contained in the compound coal is measured, and based on the compounding ratio [mass%] of each simple coal, each simple coal The maximum fluidity MF of the coking coal (blended coal) can be calculated by weighted averaging the maximum fluidity MF.

さらに、原料炭中のMgO濃度は、JIS M8815の規定に基づいて測定することができる。ここで、原料炭が配合炭であるとき、配合炭に含まれる各単味炭のMgO濃度を測定し、各単味炭の配合比率[質量%]に基づいて、各単味炭のMgO濃度を加重平均することにより、原料炭(配合炭)のMgO濃度を算出することができる。 Further, the MgO concentration in the coking coal can be measured based on the regulations of JIS M8815. Here, when the coking coal is a compound coal, the MgO concentration of each simple coal contained in the compound coal is measured, and the MgO concentration of each simple coal is measured based on the compounding ratio [mass%] of each simple coal. By weighting averaging, the MgO concentration of the coking coal (blended coal) can be calculated.

上記式(2)において、d1,d2,d3及びd4は定数[−]である。本発明者が複数の石炭を用いて、原料炭中の窒素濃度(実測値)[質量%]、原料炭の最高流動度[−]、原料炭中のMgO濃度[質量%]と、この原料炭から製造されたコークス中の窒素濃度(実測値)[質量%]との関係を求めた結果によれば、定数d1が0.194であり、定数d2が0.487であり、定数d3が0.0721であり、定数d4が0.691である。 In the above equation (2), d1, d2, d3 and d4 are constants [−]. The present inventor used a plurality of coals to obtain the nitrogen concentration (measured value) [mass%] in the coking coal, the maximum fluidity [-] of the coking coal, and the MgO concentration [mass%] in the coking coal. According to the result of obtaining the relationship with the nitrogen concentration (measured value) [mass%] in the coke produced from charcoal, the constant d1 is 0.194, the constant d2 is 0.487, and the constant d3 is. It is 0.0721 and the constant d4 is 0.691.

上記式(2)によってコークス中の窒素濃度CNを推定すれば、この推定結果に基づいて、原料炭中の窒素濃度CN、原料炭の最高流動度MF及び原料炭中のMgO濃度のうちの少なくとも1つのパラメータを調整して、コークス中の窒素濃度CNを調整することができる。具体的には、コークスを製造するとき、推定したコークス中の窒素濃度CNが目標値となるように、所望の窒素濃度CN、最高流動度MF及びMgO濃度を有する原料炭を用いることができる。この原料炭を乾留してコークスを製造すれば、このコークス中の窒素濃度を目標値とすることができる。 If the nitrogen concentration CN 1 in coke is estimated by the above formula (2), the nitrogen concentration CN 2 in the coking coal, the maximum fluidity MF of the coking coal, and the MgO concentration in the coking coal are based on this estimation result. The nitrogen concentration CN 1 in coke can be adjusted by adjusting at least one parameter of. Specifically, when producing coke, it is possible to use coking coal having a desired nitrogen concentration CN 2 , maximum fluidity MF and MgO concentration so that the estimated nitrogen concentration CN 1 in the coke becomes a target value. it can. If this coking coal is carbonized to produce coke, the nitrogen concentration in the coke can be set as a target value.

一方、上述したようにコークス中の窒素濃度CNを低減する必要があるときには、原料炭における窒素濃度CN、最高流動度MF及びMgO濃度をそれぞれ測定して、上記式(2)に基づいてコークス中の窒素濃度CNを推定し、推定した窒素濃度CNが低くなるように、原料炭を調整することができる。ここで、原料炭が単味炭であるときには、窒素濃度CNが低くなるように、単味炭の種類(銘柄)を変更することができる。また、原料炭が配合炭であるときには、窒素濃度CNが低くなるように、単味炭の種類(銘柄)を変更したり、各単味炭の配合比率を変更したりすることができる。 On the other hand, when it is necessary to reduce the nitrogen concentration CN 1 in the coke as described above, the nitrogen concentration CN 2 , the maximum fluidity MF and the MgO concentration in the coking coal are measured, respectively, and based on the above formula (2). The nitrogen concentration CN 1 in coke can be estimated, and the coking coal can be adjusted so that the estimated nitrogen concentration CN 1 becomes low. Here, when the coking coal is a simple coal, the type (brand) of the simple coal can be changed so that the nitrogen concentration CN 1 is low. Further, when the coking coal is a blended coal, the type (brand) of the simple coal can be changed or the blending ratio of each simple coal can be changed so that the nitrogen concentration CN 1 is low.

次に、推定方法2によるコークス中の窒素濃度CNの推定精度を確認した。 Next, the estimation accuracy of the nitrogen concentration CN 1 in coke by the estimation method 2 was confirmed.

まず、複数種類の原料炭を用意し、各原料炭を乾留してコークスを製造した。そして、製造されたコークス中の窒素濃度を測定した。一方、各原料炭中の窒素濃度CNと、各原料炭の最高流動度MFと、各原料炭のMgO濃度をそれぞれ測定し、測定した窒素濃度CN、最高流動度MF及びMgO濃度を上記式(2)に代入することにより、コークス中の窒素濃度CNを推定した。 First, a plurality of types of coking coal were prepared, and each coking coal was carbonized to produce coke. Then, the nitrogen concentration in the produced coke was measured. On the other hand, the nitrogen concentration CN 2 in each coking coal, the maximum fluidity MF of each coking coal, and the MgO concentration of each coking coal were measured, and the measured nitrogen concentration CN 2 , the maximum fluidity MF, and the MgO concentration were measured as described above. The nitrogen concentration CN 1 in coke was estimated by substituting into equation (2).

図3には、上記式(2)に基づいて推定されたコークス中の窒素濃度(推定値)と、測定したコークス中の窒素濃度(実測値)との関係を示す。図3において、決定係数Rは0.6347であった。図3に示すように、推定方法2によれば、原料炭における窒素濃度CN、最高流動度MF及びMgO濃度に基づいて、この原料炭から製造されたコークス中の窒素濃度CNを把握することができる。 FIG. 3 shows the relationship between the nitrogen concentration in coke (estimated value) estimated based on the above formula (2) and the measured nitrogen concentration in coke (measured value). In FIG. 3, the coefficient of determination R 2 was 0.6347. As shown in FIG. 3, according to the estimation method 2, the nitrogen concentration CN 1 in the coke produced from this coking coal is grasped based on the nitrogen concentration CN 2 in the coking coal, the maximum fluidity MF and the MgO concentration. be able to.

(揮発分VMの影響)
一方、原料炭に含まれる揮発分VMがコークス中の窒素濃度に与える影響を検討した。原料炭中の揮発分VMは原料炭の乾留中にガスとして脱離し、残渣がコークスとなる。この点を考慮すると、原料炭中の揮発分VMは、原料炭中の窒素がコークス中で残留する割合(窒素残留率)と相関があると考えることもできる。
(Effect of volatile VM)
On the other hand, the effect of the volatile component VM contained in the coking coal on the nitrogen concentration in coke was investigated. The volatile matter VM in the coking coal is desorbed as a gas during carbonization of the coking coal, and the residue becomes coke. Considering this point, it can be considered that the volatile content VM in the coking coal correlates with the ratio of nitrogen in the coking coal remaining in the coke (nitrogen residual ratio).

しかし、図4に示す測定結果によれば、揮発分VM及び窒素残留率RPの間には相関が見られなかった。図4において、横軸は原料炭の揮発分VM(実測値)[質量%]を示し、縦軸は窒素残留率(実測値)[質量%]を示す。揮発分VMは、JIS M8812の規定に基づいて測定した。また、窒素残留率RPは、下記式(3)に基づいて算出した。 However, according to the measurement results shown in FIG. 4, no correlation was found between the volatile matter VM and the nitrogen residual rate RP. In FIG. 4, the horizontal axis represents the volatile content VM (measured value) [mass%] of the coking coal, and the vertical axis represents the nitrogen residual ratio (measured value) [mass%]. Volatile VM was measured according to JIS M8812. The nitrogen residual rate RP was calculated based on the following formula (3).

上記式(3)において、RPは窒素残留率[質量%]であり、CNはコークス中の窒素濃度[質量%]であり、CNは原料炭中の窒素濃度[質量%]であり、Ycはコークス歩留[%]である。窒素濃度CN,CNのそれぞれは、JIS M8813の規定に基づいて測定した。コークス歩留Ycは、原料炭を焼成して得られるコークス質量の焼成前の石炭質量に対する比であり、コークス質量及び石炭質量を測定することによって求められる。 In the above formula (3), RP is the nitrogen residual ratio [mass%], CN 1 is the nitrogen concentration [mass%] in coke, and CN 2 is the nitrogen concentration [mass%] in the coking coal. Yc is the coke yield [%]. Nitrogen concentrations CN 1 and CN 2 were measured in accordance with JIS M8813. The coke yield Yc is a ratio of the coke mass obtained by firing the coking coal to the coal mass before firing, and is obtained by measuring the coke mass and the coal mass.

図4に示す直線は、揮発分VM及び窒素残留率RPの関係から得られた回帰直線であり、決定係数Rは0.2709であった。図4に示すように、揮発分VMは、窒素残留率RPと相関性が極めて低いことが分かった。 The straight line shown in FIG. 4 is a regression line obtained from the relationship between the volatile matter VM and the nitrogen residual rate RP, and the coefficient of determination R 2 was 0.2709. As shown in FIG. 4, it was found that the volatile content VM has an extremely low correlation with the nitrogen residual rate RP.

(コークス中の窒素濃度の調整)
次に、下記表1に示す5種類の石炭(単味炭)A〜Eを用いて、コークス中の窒素濃度が目標値となるように、単味炭の組み合わせを調整して配合炭1,2を用意した。配合炭1については、コークス中の窒素濃度の目標値を1.19[質量%]とした。配合炭2については、コークス中の窒素濃度の目標値を1.00[質量%]とした。
(Adjustment of nitrogen concentration in coke)
Next, using the five types of coal (single coal) A to E shown in Table 1 below, the combination of simple coal is adjusted so that the nitrogen concentration in the coke becomes the target value, and the compound coal 1, I prepared 2. For the blended coal 1, the target value of the nitrogen concentration in coke was set to 1.19 [mass%]. For the blended coal 2, the target value of the nitrogen concentration in coke was set to 1.00 [mass%].

下記表1には、各石炭A〜Eについて、窒素濃度CN、最高流動度MF及びMgO濃度の測定結果を示す。また、下記表2には、各配合炭1,2を構成する単味炭の配合比率[質量%]を示す。 Table 1 below shows the measurement results of the nitrogen concentration CN 2 , the maximum fluidity MF and the MgO concentration for each of the coals A to E. Further, Table 2 below shows the blending ratio [mass%] of the simple coals constituting the blended coals 1 and 2.

各配合炭1,2について、窒素濃度CN、最高流動度MF及びMgO濃度を求めた。各配合炭1,2の窒素濃度CNについては、各配合炭1,2に含まれる各単味炭の窒素濃度を測定し、各単味炭の配合比率に基づいて各単味炭の窒素濃度を加重平均した値とした。 For each of the compounded coals 1 and 2, the nitrogen concentration CN 2 , the maximum fluidity MF and the MgO concentration were determined. For the nitrogen concentration CN 2 of each compound coal 1, 2, the nitrogen concentration of each simple coal contained in each compound coal 1 and 2 is measured, and the nitrogen concentration of each simple coal is measured based on the compounding ratio of each simple coal. The concentration was used as a weighted average value.

各配合炭1,2の最高流動度MFについては、各配合炭1,2に含まれる各単味炭の最高流動度MFを測定し、各単味炭の配合比率に基づいて各単味炭の最高流動度MFを加重平均した値とした。各配合炭1,2のMgO濃度については、各配合炭1,2に含まれる各単味炭のMgO濃度を測定し、各単味炭の配合比率に基づいて各単味炭のMgO濃度を加重平均した値とした。 For the maximum fluidity MF of each compounded coal 1 and 2, the maximum fluidity MF of each simple coal contained in each compounded coal 1 and 2 is measured, and each simple coal is based on the compounding ratio of each simple coal. The maximum fluidity MF of was used as a weighted average value. Regarding the MgO concentration of each of the compounded coals 1 and 2, the MgO concentration of each simple coal contained in each of the compounded coals 1 and 2 is measured, and the MgO concentration of each simple coal is determined based on the compounding ratio of each simple coal. The weighted average value was used.

各配合炭1,2について、窒素濃度CN、最高流動度MF及びMgO濃度を下記表3に示す。 Table 3 below shows the nitrogen concentration CN 2 , the maximum fluidity MF, and the MgO concentration for each of the compounded coals 1 and 2.

配合炭1について、上記表3に示す値(窒素濃度CN、最高流動度MF及びMgO濃度)を上記式(2)に代入してコークス中の窒素濃度CNを求めたところ、窒素濃度CNが1.19[質量%]であった。一方、実際に配合炭1を乾留してコークスを製造し、このコークス中の窒素濃度CNを測定したところ、窒素濃度CNが1.19[質量%]であった。したがって、本実施形態の推定方法によれば、コークス中の窒素濃度の推定精度を確保することができた。 For the blended coal 1, the values shown in Table 3 above (nitrogen concentration CN 2 , maximum fluidity MF and MgO concentration) were substituted into the above formula (2) to obtain the nitrogen concentration CN 1 in coke. 1 was 1.19 [mass%]. On the other hand, when the coke was actually carbonized to produce coke and the nitrogen concentration CN 1 in the coke was measured, the nitrogen concentration CN 1 was 1.19 [mass%]. Therefore, according to the estimation method of the present embodiment, the estimation accuracy of the nitrogen concentration in coke could be ensured.

配合炭2について、上記表3に示す値(窒素濃度CN、最高流動度MF及びMgO濃度)を上記式(2)に代入してコークス中の窒素濃度CNを求めたところ、窒素濃度CNが1.00[質量%]であった。一方、実際に配合炭2を乾留してコークスを製造し、このコークス中の窒素濃度CNを測定したところ、窒素濃度CNが1.00[質量%]であった。したがって、本実施形態の推定方法によれば、コークス中の窒素濃度の推定精度を確保することができた。 For the blended coal 2, the values shown in Table 3 above (nitrogen concentration CN 2 , maximum fluidity MF and MgO concentration) were substituted into the above formula (2) to obtain the nitrogen concentration CN 1 in coke. 1 was 1.00 [mass%]. On the other hand, when the mixed coal 2 was actually carbonized to produce coke and the nitrogen concentration CN 1 in the coke was measured, the nitrogen concentration CN 1 was 1.00 [mass%]. Therefore, according to the estimation method of the present embodiment, the estimation accuracy of the nitrogen concentration in coke could be ensured.

Claims (5)

コークスに含まれる窒素濃度を推定する方法であって、
コークスの製造に用いられる原料炭について、少なくとも原料炭中の窒素濃度を含むパラメータを測定し、
前記パラメータ及びコークス中の窒素濃度の相関関係と、測定した前記パラメータとに基づいて、前記原料炭から製造されるコークス中の窒素濃度を算出することを特徴とする推定方法。
A method of estimating the nitrogen concentration in coke,
For coking coal used in the production of coke, parameters including at least the nitrogen concentration in coking coal were measured.
An estimation method characterized in that the nitrogen concentration in coke produced from the coking coal is calculated based on the correlation between the parameters and the nitrogen concentration in coke and the measured parameters.
前記パラメータは、原料炭中の窒素濃度であり、
下記式(I)に基づいて、コークス中の窒素濃度を算出することを特徴とする請求項1に記載の推定方法。
上記式(I)において、CNはコークス中の窒素濃度[質量%]であり、CNは原料炭中の窒素濃度[質量%]であり、a1及びa2は定数[−]である。
The parameter is the nitrogen concentration in the coking coal.
The estimation method according to claim 1, wherein the nitrogen concentration in coke is calculated based on the following formula (I).
In the above formula (I), CN 1 is the nitrogen concentration [mass%] in coke, CN 2 is the nitrogen concentration [mass%] in coking coal, and a1 and a2 are constants [−].
前記パラメータは、原料炭中の窒素濃度、原料炭の最高流動度及び原料炭中のMgO濃度であり、
下記式(II)に基づいて、コークス中の窒素濃度を算出することを特徴とする請求項1に記載の推定方法。
上記式(II)において、CNはコークス中の窒素濃度[質量%]であり、CNは原料炭中の窒素濃度[質量%]であり、MFは原料炭の最高流動度[−]であり、MgOは原料炭中のMgO濃度[質量%]であり、d1,d2,d3及びd4は定数[−]である。
The parameters are the nitrogen concentration in the coking coal, the maximum fluidity of the coking coal, and the MgO concentration in the coking coal.
The estimation method according to claim 1, wherein the nitrogen concentration in coke is calculated based on the following formula (II).
In the above formula (II), CN 1 is the nitrogen concentration [mass%] in coke, CN 2 is the nitrogen concentration [mass%] in the coking coal, and MF is the maximum fluidity [-] of the coking coal. Yes, MgO is the MgO concentration [mass%] in the coking coal, and d1, d2, d3 and d4 are constants [−].
前記原料炭が配合炭であるとき、前記パラメータは、配合炭に含まれる各単味炭の配合比率に基づいて、前記各単味炭の前記パラメータを加重平均した値であることを特徴とする請求項1から3のいずれか一項に記載の推定方法。 When the coking coal is a blended coal, the parameter is a weighted average value of the parameters of each simple coal based on the blending ratio of each simple coal contained in the blended coal. The estimation method according to any one of claims 1 to 3. 請求項1から4のいずれか1つに記載の推定方法によって推定したコークス中の窒素濃度が目標値となるように原料炭を調整し、
調整した原料炭を乾留してコークスを製造することを特徴とするコークスの製造方法。
The coking coal is adjusted so that the nitrogen concentration in the coke estimated by the estimation method according to any one of claims 1 to 4 becomes a target value.
A method for producing coke, which comprises dry-distilling the prepared coking coal to produce coke.
JP2019103806A 2019-06-03 2019-06-03 Method for estimating nitrogen concentration in coke and method for producing coke Active JP7295407B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019103806A JP7295407B2 (en) 2019-06-03 2019-06-03 Method for estimating nitrogen concentration in coke and method for producing coke

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019103806A JP7295407B2 (en) 2019-06-03 2019-06-03 Method for estimating nitrogen concentration in coke and method for producing coke

Publications (2)

Publication Number Publication Date
JP2020197453A true JP2020197453A (en) 2020-12-10
JP7295407B2 JP7295407B2 (en) 2023-06-21

Family

ID=73648480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019103806A Active JP7295407B2 (en) 2019-06-03 2019-06-03 Method for estimating nitrogen concentration in coke and method for producing coke

Country Status (1)

Country Link
JP (1) JP7295407B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5014701A (en) * 1973-06-09 1975-02-17
JPS52147601A (en) * 1976-06-02 1977-12-08 Nippon Steel Corp Manufacture of coke with low emission of no#
JPH06207933A (en) * 1993-01-11 1994-07-26 Nippon Steel Corp Estimation of yield of product through carbonization of coal
JPH08297082A (en) * 1995-04-27 1996-11-12 Kawasaki Steel Corp Fluidity estimation method of coal blend
JP2000282053A (en) * 1999-04-01 2000-10-10 Nippon Steel Corp Adjustment of chlorine concentration in coke
JP2004285098A (en) * 2003-03-19 2004-10-14 Nippon Steel Corp Fuel coke for sintering and method for producing the same
JP2009074048A (en) * 2007-08-30 2009-04-09 Jfe Steel Kk Manufacturing method of metallurgical coke

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5014701A (en) * 1973-06-09 1975-02-17
JPS52147601A (en) * 1976-06-02 1977-12-08 Nippon Steel Corp Manufacture of coke with low emission of no#
JPH06207933A (en) * 1993-01-11 1994-07-26 Nippon Steel Corp Estimation of yield of product through carbonization of coal
JPH08297082A (en) * 1995-04-27 1996-11-12 Kawasaki Steel Corp Fluidity estimation method of coal blend
JP2000282053A (en) * 1999-04-01 2000-10-10 Nippon Steel Corp Adjustment of chlorine concentration in coke
JP2004285098A (en) * 2003-03-19 2004-10-14 Nippon Steel Corp Fuel coke for sintering and method for producing the same
JP2009074048A (en) * 2007-08-30 2009-04-09 Jfe Steel Kk Manufacturing method of metallurgical coke

Also Published As

Publication number Publication date
JP7295407B2 (en) 2023-06-21

Similar Documents

Publication Publication Date Title
JP2020200360A (en) Method for estimating coke strength after hot reaction and method for manufacturing coke
JP5772277B2 (en) Coke hot reaction strength estimation method
JP2020197453A (en) Method for estimating nitrogen concentration in coke and method of producing coke
JP2007262296A (en) Method for producing metallurgical coke
JP6874502B2 (en) Coke strength estimation method
JP2005232350A (en) Estimation method of coke strength after hot-reaction and manufacturing method of coke
RU2675567C1 (en) Coal assessment method and the coke production method
JP5820668B2 (en) Method for estimating maximum fluidity of raw material for coke production, blending method for raw material for coke production, and raw material for coke production produced by the blending method
JP2019007943A (en) Estimation method of coke strength
JP2017171718A (en) Intensity estimation method of coke and manufacturing method of coke
JP2005194358A (en) Method for estimating coke strength
JP4551493B2 (en) Manufacturing method of high strength coke
JP4464835B2 (en) Coke production method
JP3742525B2 (en) Adjustment method of chlorine concentration in coke
JP2001133379A (en) Method for estimating maximum fluidity of coal blend added with caking additive
JP4279972B2 (en) Method for producing blast furnace coke
JPH09255967A (en) Production of coke for blast furnace
JP2018053295A (en) Visible level evaluation method of exhaust gas of sintering machine and selection method of carbonaceous material for sintering
JPH08143867A (en) Estimation of production ratio of coal carbonization product
JP5780011B2 (en) Coke surface fracture strength estimation method and coke production method using the same
JP4306406B2 (en) Method for producing blast furnace coke
JP2004224844A (en) Method for producing coke
JP7188245B2 (en) Method for estimating surface fracture strength of blast furnace coke
JP4888452B2 (en) Method for producing blast furnace coke
JPH1036855A (en) Compounding method for coal to be used in producing coke

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230522

R151 Written notification of patent or utility model registration

Ref document number: 7295407

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151