JP4246035B2 - Carbon tool steel or composite comprising carbon steel and brass and joining method thereof - Google Patents

Carbon tool steel or composite comprising carbon steel and brass and joining method thereof Download PDF

Info

Publication number
JP4246035B2
JP4246035B2 JP2003384685A JP2003384685A JP4246035B2 JP 4246035 B2 JP4246035 B2 JP 4246035B2 JP 2003384685 A JP2003384685 A JP 2003384685A JP 2003384685 A JP2003384685 A JP 2003384685A JP 4246035 B2 JP4246035 B2 JP 4246035B2
Authority
JP
Japan
Prior art keywords
carbon
brass
steel
hip
tool steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003384685A
Other languages
Japanese (ja)
Other versions
JP2004181529A (en
Inventor
拓夫 今村
典之 藤田
忠美 大石
真吾 泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Materials Co Ltd filed Critical Nippon Steel Materials Co Ltd
Priority to JP2003384685A priority Critical patent/JP4246035B2/en
Publication of JP2004181529A publication Critical patent/JP2004181529A/en
Application granted granted Critical
Publication of JP4246035B2 publication Critical patent/JP4246035B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は、例えば機械構造物のメタルパッキン等に使用されている炭素工具鋼又は炭素鋼と黄銅からなる複合体及びその接合方法に関する。   The present invention relates to a carbon tool steel used for, for example, a metal packing of a machine structure or a composite made of carbon steel and brass and a joining method thereof.

一般に、前記如く複合異種材料の接合方法として、熱間等方加圧焼結(HIP)により接合することが古くから知られている。例えば、特開平1−273681号公報(特許文献1)には、主としてAl、Mg等の金属中にセラミックス等の繊維を強化材として分散させてなる金属基複合材料同士の接合において、インサート材として銅を金属基複合材料の間に配設し、その後、前記HIP(熱間等方加圧焼結)処理を施して両者を接合してなるものが開示されている。   Generally, as described above, as a method for joining composite dissimilar materials, joining by hot isostatic pressing (HIP) has been known for a long time. For example, in Japanese Patent Laid-Open No. 1-273381 (Patent Document 1), in joining of metal matrix composite materials in which fibers such as ceramics are mainly dispersed in a metal such as Al and Mg as a reinforcing material, an insert material is used. It is disclosed that copper is disposed between metal matrix composite materials, and then subjected to the HIP (hot isostatic pressing) treatment to join the two together.

特開平1−273681号公報JP-A-1-2733681

しかしながら、前記特許文献1に開示されている技術では、以下の課題を有しており、本発明が対象とする炭素工具鋼又は炭素鋼と黄銅からなる複合体を製造することが難しい。即ち、前記特許文献には、インサート材として銅の開示はあるが、接合にあたって重要な因子であるその厚みの開示がなく、また同様に、重要な因子であるHIPの処理温度及び圧力が低く母材の接合において、母材とインサート材との拡散接合が確実にできないという問題がある。   However, the technique disclosed in Patent Document 1 has the following problems, and it is difficult to manufacture a carbon tool steel or a composite made of carbon steel and brass, which is a subject of the present invention. That is, although the patent document discloses copper as an insert material, there is no disclosure of its thickness, which is an important factor in joining, and similarly, the processing temperature and pressure of HIP, which is an important factor, are low. In joining materials, there is a problem that diffusion joining between the base material and the insert material cannot be reliably performed.

また、銅メッキについては、一切の開示がなく、また母材の材質も本発明とは異なる。従って、前記特許文献に開示されている内容では、本発明が接合を対象としている炭素工具鋼又は炭素鋼と黄銅からなる複合体を確実に接合することはできない。
以上の従来技術の課題に鑑み本発明の目的は、炭素工具鋼又は炭素鋼と黄銅からなる複合体を確実に接合させ工業的に活用可能な複合材、及びその接合方法を提供することである。
Moreover, there is no disclosure about copper plating, and the material of the base material is also different from the present invention. Therefore, according to the contents disclosed in the patent document, it is not possible to reliably join the carbon tool steel or the composite made of carbon steel and brass targeted for joining according to the present invention.
SUMMARY OF THE INVENTION In view of the above-described problems of the prior art, an object of the present invention is to provide a composite material that can be used industrially by reliably joining carbon tool steel or a composite made of carbon steel and brass, and a joining method thereof. .

本発明は、上記の課題を解決するためのものであり、その発明の要旨とするところは、(1)一方の母材が炭素工具鋼又は炭素鋼、他方の母材が黄銅からなり、前記両母材を銅箔からなるインサート材を使用して、温度:620〜850℃、圧力:70〜200MPa、時間:1〜6時間とする熱間等方加圧焼結(HIP)により接合してなることを特徴とする炭素工具鋼又は炭素鋼と黄銅からなる複合体。
(2)前記熱間等方加圧焼結(HIP)処理前の銅箔の厚みt1 が30≦t1 ≦1000μmであることを特徴とする(1)記載の炭素工具鋼又は炭素鋼と黄銅からなる複合体。
This invention is for solving said subject, The place made into the summary of the invention is (1) One base material consists of carbon tool steel or carbon steel, the other base material consists of brass, Both base materials are joined by hot isostatic pressing (HIP) using an insert material made of copper foil and temperature: 620-850 ° C., pressure: 70-200 MPa, time: 1-6 hours. A carbon tool steel or a composite made of carbon steel and brass.
(2) The carbon tool steel or carbon steel according to (1), wherein a thickness t 1 of the copper foil before the hot isostatic pressing (HIP) treatment is 30 ≦ t 1 ≦ 1000 μm A composite made of brass.

(3)一方の母材が炭素工具鋼又は炭素鋼、他方の母材が黄銅からなり、前記両母材の少なくともいづれか一方の接合面に銅メッキが形成され、温度:620〜850℃、圧力:70〜200MPa、時間:1〜6時間とする熱間等方加圧焼結(HIP)により接合してなることを特徴とする炭素工具鋼又は炭素鋼と黄銅からなる複合体。
(4)前記熱間等方加圧焼結(HIP)処理前の銅メッキの厚みt2 が30≦t2 ≦1000μmであることを特徴とする(3)記載の炭素工具鋼又は炭素鋼と黄銅からなる複合体。
(3) One base material is made of carbon tool steel or carbon steel, and the other base material is made of brass, and copper plating is formed on at least one of the joint surfaces of the two base materials. Temperature: 620 to 850 ° C., pressure : Carbon tool steel or a composite composed of carbon steel and brass, characterized by being joined by hot isostatic pressing (HIP) of 70 to 200 MPa, time: 1 to 6 hours .
(4) The carbon tool steel or the carbon steel according to (3), wherein a thickness t 2 of the copper plating before the hot isostatic pressing (HIP) treatment is 30 ≦ t 2 ≦ 1000 μm A composite made of brass.

(5)一方の母材が炭素工具鋼又は炭素鋼、他方の母材が黄銅からなり、前記両母材の少なくともいづれか一方の接合面に銅メッキが形成され、かつ、前記両母材を銅箔からなるインサート材を使用して、温度:620〜850℃、圧力:70〜200MPa、時間:1〜6時間とする熱間等方加圧焼結(HIP)により接合してなることを特徴とする炭素工具鋼又は炭素鋼と黄銅からなる複合体。
(6)前記熱間等方加圧焼結(HIP)処理前の銅メッキの厚みt2 と前記熱間等方加圧焼結(HIP)処理前の銅箔の厚みt1 とが30≦t2 +t1 ≦1000μmであることを特徴とする(5)記載の炭素工具鋼又は炭素鋼と黄銅からなる複合体。
(5) One base material is carbon tool steel or carbon steel, the other base material is brass, copper plating is formed on at least one of the base materials, and both base materials are made of copper. Using insert material made of foil, it is joined by hot isostatic pressing (HIP) with a temperature of 620 to 850 ° C., a pressure of 70 to 200 MPa, and a time of 1 to 6 hours. Carbon tool steel or a composite made of carbon steel and brass.
(6) The thickness t 2 of the copper plating before the hot isostatic pressing (HIP) treatment and the thickness t 1 of the copper foil before the hot isostatic pressing (HIP) treatment are 30 ≦ The composite of carbon tool steel or carbon steel and brass according to (5), wherein t 2 + t 1 ≦ 1000 μm.

(7)一方の母材が炭素工具鋼又は炭素鋼、他方の母材が黄銅からなり、前記両母材の間に銅箔からなるインサート材を配置後および/または、前記両母材の少なくともいづれか一方の接合面に銅メッキを施した後、金属製カプセルにてカプセリングし、その後真空脱気後、温度:620〜850℃、圧力:70〜200MPa、時間:1〜6時間とする熱間等方加圧焼結(HIP)を施して接合することを特徴とする炭素工具鋼又は炭素鋼と黄銅からなる複合体の接合方法にある(7) One base material is made of carbon tool steel or carbon steel, the other base material is made of brass, and an insert material made of copper foil is disposed between the two base materials and / or at least of the two base materials. After copper plating is applied to one of the joint surfaces, it is encapsulated with a metal capsule, and after vacuum degassing, the temperature is 620 to 850 ° C., the pressure is 70 to 200 MPa, and the time is 1 to 6 hours. It exists in the joining method of the composite which consists of carbon tool steel or carbon steel and brass characterized by performing isotropic pressure sintering (HIP).

以上述べたように、本発明により、機械構造物のメタルパッキン等に使用されている炭素工具鋼又は炭素鋼と黄銅からなる複合体を確実に接合・製造することが可能であって、工業的に活用可能な複合材、及びその接合方法を提供でき、その工業化の意義は極めて大きい。   As described above, according to the present invention, it is possible to reliably join and manufacture carbon tool steel or a composite made of carbon steel and brass used for metal packing of a mechanical structure, The present invention can provide a composite material that can be utilized in the present invention and a joining method thereof, and the significance of industrialization thereof is extremely large.

以下、本発明について詳細に説明する。
本発明は、新規な接合母材である炭素工具鋼又は炭素鋼と黄銅からなる複合体を公知のHIP処理方法により、確実に接合・製造するにあたって、適切なるインサート材質及びその層厚、メッキ材質及びその層厚、適切なるHIP処理条件等を以下に述べる種々の試験により確立し、健全なる複合体及びその接合方法を完成したものである。以下、本発明の内容を添付の表に基づいて説明する。
Hereinafter, the present invention will be described in detail.
The present invention provides a new insert base material, a layer thickness, and a plating material suitable for reliably joining and manufacturing carbon tool steel or a composite made of carbon steel and brass by a known HIP processing method. And the layer thickness, appropriate HIP processing conditions, etc. were established by various tests described below, and a sound composite and its joining method were completed. Hereinafter, the content of the present invention will be described with reference to the attached table.

表1は、ラボテストによって、適正なるインサート材質、インサート材質としての銅箔厚み試験および適切なHIP処理条件を確認するために、No.1〜40を実施した。この試験に使用した接合前の一方の母材としては炭素工具鋼と炭素鋼の2種を、他方の母材としては黄銅を使用した。前記両母材のサイズとしては、いづれも各々直径50mm、厚みが50mmのものを使用した。
先ず、No.1〜8において、前記2種類の炭素工具鋼又は炭素鋼と、黄銅とのHIP処理による接合によって、インサート材として適切なる材質を確認するための試験を実施した。以下にその詳細を説明する。
Table 1 shows No. 1 in order to confirm an appropriate insert material, a copper foil thickness test as an insert material, and appropriate HIP processing conditions by a laboratory test. 1-40 were performed. Carbon tool steel and carbon steel were used as one base material before joining used in this test, and brass was used as the other base material. As the sizes of the two base materials, those having a diameter of 50 mm and a thickness of 50 mm were used.
First, no. In 1-8, the test for confirming a suitable material as an insert material was implemented by joining by the HIP process of the said 2 types of carbon tool steel or carbon steel, and brass. Details will be described below.

試験の要領は、上記のサイズからなる母材として各々炭素工具鋼と黄銅、炭素鋼と黄銅との間に、インサート材として、サイズが直径50mm、厚みが約500μmの概略線膨張率が類似するNi−Cr鋼、銅、SUS、Agの4種類を選定・配置し、その後、金属製のカプセリングを実施、その後真空脱気後、表1に示す同一条件のHIP処理(温度780℃、圧力150MPa、時間2時間)を各々実施した。   The outline of the test is that, as a base material having the above size, carbon tool steel and brass, carbon steel and brass, respectively, as insert materials, the approximate linear expansion coefficient is 50 mm in diameter and approximately 500 μm in thickness. Four types of Ni-Cr steel, copper, SUS, and Ag are selected and arranged, and then metal encapsulation is performed. After vacuum degassing, HIP treatment under the same conditions shown in Table 1 (temperature 780 ° C., pressure 150 MPa) , Time 2 hours).

試験後の接合部の評価方法として、UTによる接合部の欠陥調査、および接合材を機械加工により接合部を含んだ引張り試験片を作成し、接合強度の測定を実施した。その結果を表1のNo.1〜8に示す。この表1から明らかなようにインサート材としてNo.3〜4に示す銅は、UTおよび引張り試験の結果、いづれも接合部に未接合部はなく、かつ接合強度も高く健全であることが判る。一方、他のインサート材であるNo.1〜2のNi−Cr鋼、No.5〜6のSUS、No.7〜8のAgにおいては、いずれも接合部の一部又は全周にUTで検出された未接合部があり、かつ、接合強度も極めて低く接合不良を呈していた。以上の試験結果により、本発明に係る炭素工具鋼又は炭素鋼と黄銅とをHIP処理で接合する場合のインサート材として適切なる材質としては、銅が適切であることが判明した。   As an evaluation method of the joint after the test, a defect test of the joint by UT and a tensile test piece including the joint by machining the joining material were prepared, and the joint strength was measured. The results are shown in Table 1. Shown in 1-8. As apparent from Table 1, No. 1 was used as the insert material. As a result of the UT and the tensile test, the copper shown in 3 to 4 shows that there is no unjoined part in the joined part, and the joint strength is high and sound. On the other hand, No. which is another insert material. 1-2 Ni-Cr steel, No. 1 5-6 SUS, no. In all of Ags 7 to 8, there were unjoined parts detected by the UT at a part or the entire circumference of the joined part, and the joining strength was extremely low, indicating poor joining. From the above test results, it was found that copper is appropriate as a material suitable as an insert material when the carbon tool steel according to the present invention or carbon steel and brass are joined by HIP treatment.

次に、適切な銅箔の層厚について、No.9〜30で実施した。上記No.1〜8の試験結果により、本発明のインサート材として適切なる材料が銅であると判明したため、次に、炭素工具鋼又は炭素鋼と黄銅とのHIP処理による接合において、インサート材として銅を使用し、該銅箔の厚みを種々変え、適切なる銅の厚みを確認する試験を実施した。その試験の概要は、前記No.1〜8と同じサイズの2種類の炭素工具鋼又は炭素鋼と黄銅の間に、銅箔の厚みが種々異なるインサート材を設け、その後、金属製のカプセリングを実施、その後真空脱気後、表1に示す同一条件のHIP処理(温度790℃、圧力155MPa、時間2時間)を各々実施した。試験後の接合部の評価方法として、前記No.1〜8試験と同様に接合部をUTにより未接合部の有無の確認および引張り試験片での接合強度の測定を実施した。   Next, for the appropriate layer thickness of the copper foil, no. Performed 9-30. No. above. From the test results 1 to 8, it was found that a suitable material for the insert material of the present invention is copper. Next, in the joining by carbon fiber steel or carbon steel and brass by HIP treatment, copper is used as the insert material. Then, the thickness of the copper foil was changed variously, and a test for confirming an appropriate copper thickness was performed. The outline of the test is described in No. 1 above. 2 types of carbon tool steel of the same size as 1 to 8 or between carbon steel and brass, insert materials with various copper foil thicknesses are provided, then metal encapsulation is performed, and then vacuum degassing is performed. HIP treatment (temperature 790 ° C., pressure 155 MPa, time 2 hours) under the same conditions shown in FIG. As an evaluation method of the joint after the test, the above-mentioned No. In the same manner as in the tests 1 to 8, the joint portion was checked for the presence or absence of an unjoined portion by UT and the joint strength was measured with a tensile test piece.

その結果を表1のNo.9〜30、および図1に示す。図1は、上記No.9〜30のインサート材である銅箔の厚みt1 と接合強度のデータを図示したものである。表1および図1から明らかなように、母材が炭素工具鋼および炭素鋼のいづれにおいても、インサート材として配置した銅箔の厚みが30μm未満(No.9、10、No.20、21)では、UTの結果に示す如く、未接合部が発生しており、かつ、接合強度も低くなっている。一方、銅箔の厚みが1000μmを超えると(No.18、19、No.29、30)、図1に示す如く接合強度の増加は少くなっている。従って、銅箔のコスト面より、その上限は1000μm以下が好ましい。また、黄銅には快削性を与えるために少量の鉛を含有したものがあるが、30μm以上のインサート銅を設置することで鉛の拡散による黄銅と炭素鋼あるいは炭素工具鋼の接合界面への析出を抑制できるため、黄銅の成分によらず高い強度を確保できる。 The results are shown in Table 1. 9-30 and shown in FIG. FIG. The thickness t 1 of the copper foil which is insert material 9 to 30 and illustrates the data of the bonding strength. As apparent from Table 1 and FIG. 1, the thickness of the copper foil disposed as the insert material is less than 30 μm (No. 9, 10, No. 20, 21) regardless of whether the base material is carbon tool steel or carbon steel. Then, as shown in the result of UT, the unjoined part has occurred and the joining strength is low. On the other hand, when the thickness of the copper foil exceeds 1000 μm (No. 18, 19, No. 29, 30), the increase in bonding strength is small as shown in FIG. Therefore, the upper limit of the copper foil is preferably 1000 μm or less from the viewpoint of cost. In addition, some brass contains a small amount of lead to give free-cutting properties, but by installing an insert copper of 30 μm or more, the diffusion of lead to the bonding interface between brass and carbon steel or carbon tool steel Since precipitation can be suppressed, high strength can be ensured regardless of the brass component.

さらに、表1のNo.31〜40試験において、最適なHIP処理条件の確認試験を行った。上記No.1〜8試験及びNo.9〜30の試験結果により、本発明のインサート材として適切なる材料は銅であり、且つその適切厚みが50以上、1000μm以下であると判明したため、次に、本発明の炭素工具鋼又は炭素鋼と黄銅とのHIP処理による接合において、接合状態が最適となるHIP処理条件のための確認試験を実施した。尚、前記HIP処理条件である温度、圧力、処理時間において、前記のNo.1〜8試験およびNo.9〜30の試験結果により、該処理条件のうち、接合状態に著しく影響を与える要件としては、HIP温度であることが判明したため、No.31〜40の試験においては、以下に示す如く、HIP処理温度を種々変化させて試験を実施した。   Furthermore, No. 1 in Table 1 In 31 to 40 tests, a confirmation test of optimum HIP processing conditions was performed. No. above. 1-8 test and No.1. From the test results of 9 to 30, it was found that the material suitable as the insert material of the present invention is copper and the appropriate thickness is 50 or more and 1000 μm or less. Next, the carbon tool steel or carbon steel of the present invention In the joining by HIP processing of copper and brass, a confirmation test was conducted for HIP processing conditions in which the joining state was optimum. In addition, in the temperature, pressure, and processing time which are the HIP processing conditions, the above-mentioned No. 1-8 test and No.1. From the test results of 9 to 30, it was found that among the processing conditions, the requirement that significantly affects the bonding state is the HIP temperature. In the tests of 31 to 40, as shown below, the test was carried out by changing the HIP processing temperature in various ways.

また、HIP圧力については、該圧力が下限の70MPa未満になると接合のための圧力が低く接合不良が生ずる。一方、上限の200MPaを超えても接合部の安定性は変わることがなく、エネルギーコストがその分上昇する。従って、本発明における適切なるHIP圧力としては、70MPa以上、200MPa以下が好ましい。
更に、HIP処理時間については、下限の1時間未満になると接合するまでの拡散が進まず接合不良が生ずる。一方、上限の6時間を超えても接合部の安定性は変わることがなく、エネルギーコストがその分上昇する。従って、本発明における適切なるHIP処理時間としては、1時間以上、6時間以下とすることが好ましい。
As for the HIP pressure, when the pressure is less than the lower limit of 70 MPa, the pressure for bonding is low and poor bonding occurs. On the other hand, even if the upper limit of 200 MPa is exceeded, the stability of the joint does not change, and the energy cost increases accordingly. Accordingly, an appropriate HIP pressure in the present invention is preferably 70 MPa or more and 200 MPa or less.
Further, with respect to the HIP processing time, if it is less than the lower limit of 1 hour, diffusion until joining does not proceed and a joining failure occurs. On the other hand, even if the upper limit of 6 hours is exceeded, the stability of the joint does not change, and the energy cost increases accordingly. Therefore, the appropriate HIP processing time in the present invention is preferably 1 hour or more and 6 hours or less.

No.31〜40の試験における概要は、前記と同じサイズの2種類の炭素工具鋼又は炭素鋼と黄銅の間に、各々同じ銅箔の厚みが110μmのインサート材を設け、その後、金属製のカプセリングを実施、その後真空脱気後、各々、表1に示す同一のHIP処理(圧力160MPa、時間2時間)で温度を種々変えて該処理を実施した。試験後の接合部の評価方法として、前記No.1〜30の試験と同様にUTにより未接合部の有無の確認および引張り試験片による接合強度の測定を実施した。その結果を表1のNo.31〜40に示す。   No. The outline in the tests of 31 to 40 is that between two types of carbon tool steel of the same size as described above or between carbon steel and brass, insert materials each having the same copper foil thickness of 110 μm are provided, and then metal encapsulation is performed. After the implementation and then vacuum degassing, each of the same HIP treatment (pressure 160 MPa, time 2 hours) shown in Table 1 was used to change the temperature. As an evaluation method of the joint after the test, the above-mentioned No. As in the tests 1 to 30, the presence or absence of an unjoined portion was confirmed by UT and the joint strength was measured using a tensile test piece. The results are shown in Table 1. Shown in 31-40.

表1のNo.31〜40試験から、明らかなように母材が炭素工具鋼、炭素鋼のいづれにおいても、HIP処理時の温度が620℃未満、850℃を超えた場合、接合部に未接合部が発生している。即ち、前記温度が620℃未満(No.31、36)では、接合部に拡散層が生成されないため、一方、該温度が850℃を超えると(No.35、40)一方の母材である黄銅が溶解するため、いづれの場合においても接合部に未接合部が発生する。   No. in Table 1 As is apparent from the 31-40 test, when the base material is carbon tool steel or carbon steel, if the temperature during HIP treatment is less than 620 ° C or more than 850 ° C, an unjoined portion occurs in the joint. ing. That is, when the temperature is lower than 620 ° C. (No. 31, 36), no diffusion layer is formed at the joint. On the other hand, when the temperature exceeds 850 ° C. (No. 35, 40), it is one base material. Since brass dissolves, in any case, an unjoined part occurs in the joined part.

以上、No.1〜40による試験の結果、本発明の前記炭素工具鋼又は炭素鋼と黄銅とをインサート材として銅箔を使用してHIP処理により接合する場合、その適切なる銅箔の厚みは30μm以上、1000μm以下であり、また、適切なるHIP処理条件は、温度を620以上〜850℃以下、圧力を70MPa以上、200MPa以下、時間を1以上、6時間以下とすることにより、接合が健全に実施できることが判明した。   No. As a result of the test according to 1 to 40, when the carbon tool steel of the present invention or carbon steel and brass are used as an insert material and bonded by HIP treatment using a copper foil, the thickness of the appropriate copper foil is 30 μm or more and 1000 μm. In addition, the appropriate HIP treatment conditions are that the temperature can be 620 to 850 ° C., the pressure is 70 MPa or more and 200 MPa or less, and the time is 1 or more and 6 hours or less. found.

Figure 0004246035
Figure 0004246035

以上の試験の結果により、前記の如く、本発明の新規な母材である炭素工具鋼又は炭素工具鋼と黄銅との接合に銅箔のインサート材を使用し、HIPで接合して複合体を製造する場合の適正なる種々の条件が判明したため、一例として、各々サイズが直径500mm、厚みが50mmの実際の実機サイズの炭素工具鋼又は炭素工具鋼と黄銅とをインサート材として銅箔を使用してHIPにて接合した。表2にその結果を示す。表2に示す如くNo.1〜6の実施例共に、接合部における未溶着部は皆無、かつ接合強度も高く、両者の接合部は健全に接合しており本発明の作用・効果を充分に確認することができた。   As a result of the above test, as described above, a carbon tool steel or carbon tool steel, which is a novel base material of the present invention, is used as a copper foil insert material for joining brass and joined with HIP to form a composite. Since various appropriate conditions for manufacturing have been found, as an example, an actual actual size carbon tool steel or carbon tool steel each having a diameter of 500 mm and a thickness of 50 mm and brass and inserts of copper foil are used as insert materials. And joined by HIP. Table 2 shows the results. As shown in Table 2, no. In all of Examples 1 to 6, there were no unwelded portions in the bonded portion and the bonding strength was high, and both bonded portions were soundly bonded, and the actions and effects of the present invention could be sufficiently confirmed.

Figure 0004246035
Figure 0004246035

次に、メッキ層について試験を行った。前記、表1のNo.1〜40の銅箔試験で、確定した銅箔以外の適用範囲を確認するために、インサート材として、前記の銅箔の替わりに、銅メッキを施して、以下に述べる種々の試験を実施した。尚、試験用の母材としては前記同様、即ち、母材として各々炭素工具鋼と黄銅、炭素鋼と黄銅とを使用し、該母材のサイズとしては、いづれも各々直径50mm、厚みが50mmのものを使用した.   Next, the plating layer was tested. No. 1 in Table 1 above. In order to confirm the application range other than the determined copper foil in the copper foil test of 1 to 40, instead of the copper foil as an insert material, copper plating was performed, and various tests described below were performed. . The test base materials are the same as described above, that is, carbon tool steel and brass and carbon steel and brass are used as base materials, respectively. The base materials are each 50 mm in diameter and 50 mm in thickness. The thing of was used.

先ず、銅メッキ厚についての試験を表3のNo.1〜22にて行った。この試験の概要は、前記サイズの2種類の炭素工具鋼又は炭素鋼と黄銅において、この母材の一方に、表3に示す種々厚みのメッキ層を電気メッキ法によって、形成し、その後、金属製のカプセリングを実施、その後真空脱気後、表3に示す同一条件のHIP処理(温度790℃、圧力155MPa、時間2時間)を各々実施した。試験後の接合部の評価方法として、前記銅箔試験(表1のNo.1〜40)と同様に接合部をUTにより未接合部の有無の確認および引張り試験片による接合強さの測定を実施した。   First, the test for the copper plating thickness was conducted as shown in No. 3 of Table 3. 1 to 22. The outline of this test is that two types of carbon tool steel or carbon steel and brass of the above sizes are formed on one of the base materials by plating layers having various thicknesses shown in Table 3 by electroplating. After the vacuum degassing, HIP treatment (temperature 790 ° C., pressure 155 MPa, time 2 hours) shown in Table 3 was performed. As a method for evaluating the joint after the test, the joint was checked for presence / absence of an unjoined portion by UT and the joint strength was measured by a tensile test piece as in the copper foil test (Nos. 1 to 40 in Table 1). Carried out.

その結果を表3のNo.1〜22および図2に示す。図2は、上記No.1〜22の銅メッキの厚みt2 と接合強度のデータを図示したものである。表3および図2から明らかなように、母材が炭素工具鋼及び炭素鋼のいずれかにおいても、そのメッキ層の厚みが30μm未満(No.1、2,No.12、13)では、UTの結果に示す如く、未接着部が発生しており、かつ、接合強度も低くなっている。一方、メッキ層の厚みが1000μmを超えると(No.10、11,No.21、22)図2に示す如く接合強度の増加は少なくなっている。従って、メッキ層形成のためのコスト面、および生産性の面より、その上限は1000μm以下が好ましい。以上により接着材としてメッキ層を施工してHIP処理により接合する場合、その適切なるメッキ層の厚みは30μm以上、1000μmであることが判明した。 The results are shown in Table 3. 1 to 22 and FIG. FIG. Data of thickness t 2 and the bonding strength of 1 to 22 Copper plating illustrates the. As apparent from Table 3 and FIG. 2, when the base material is either carbon tool steel or carbon steel, the thickness of the plating layer is less than 30 μm (No. 1, 2, No. 12, 13). As shown in the results, unbonded portions are generated and the bonding strength is low. On the other hand, when the thickness of the plating layer exceeds 1000 μm (No. 10, 11, No. 21, 22), the increase in bonding strength is small as shown in FIG. Therefore, the upper limit is preferably 1000 μm or less from the viewpoint of cost for forming the plating layer and productivity. As described above, when a plated layer is applied as an adhesive and bonded by HIP treatment, the appropriate plated layer thickness is found to be 30 μm or more and 1000 μm.

次に、適切なるHIP処理条件としての試験を表3のNo.23〜32にて行った。すなわち、上記試験No.1〜22の結果により、本発明の銅メッキでの接合時の適切厚としては、30μm以上、1000μm以下であると判明したため、次に、本発明の炭素工具鋼又は炭素鋼と黄銅とのHIP処理による接合において、接合状態が最適となるHIP処理条件のための確認試験を実施した。
尚、前記HIP処理条件である温度、圧力、処理時間において、以上の種々の試験結果により、該処理条件のうち、接合状態に著しく影響を与える要件としては、HIP温度であることが判明したため、No.23〜32の試験においては、以下に示す如く、その温度を種々変化させて試験を実施した。
Next, a test as an appropriate HIP processing condition is shown in No. 3 of Table 3. 23-32. That is, the above test No. From the results of 1 to 22, it was found that the appropriate thickness at the time of joining in the copper plating of the present invention was 30 μm or more and 1000 μm or less. Next, the HIP of the carbon tool steel or carbon steel of the present invention and brass In joining by processing, a confirmation test for HIP processing conditions in which the joining state is optimum was performed.
In addition, at the temperature, pressure, and processing time, which are the HIP processing conditions, it was found from the above various test results that the HIP temperature is a requirement that significantly affects the bonding state among the processing conditions. No. In the tests of 23 to 32, the test was performed by changing the temperature variously as shown below.

また、HIP圧力については、前記銅箔と同様に、該圧力が下限の70MPa未満になると接合のための圧力が低く接合不良が生ずる。一方、上限の200MPaを超えても接合部の安定性は替わることがなく、エネルギーコストがその分上昇する。従って、本発明における適切なるHIP圧力としては、70MPa以上、200MPa以下が好ましい。更に、HIP処理時間については、前記銅箔と同様に、下限の1時間未満になると接合するまでの拡散が進まず接合不良が生ずる。一方、上限の4時間を超えても接合部の安定性は変わることがなく、エネルギーコストがその分上昇する.従って、本発明における適切なるHIP処理時間としては、1時間以上、6時間以下とすることが好ましい。   As for the HIP pressure, as in the case of the copper foil, when the pressure is less than the lower limit of 70 MPa, the pressure for bonding is low and bonding failure occurs. On the other hand, even if the upper limit of 200 MPa is exceeded, the stability of the joint is not changed, and the energy cost increases accordingly. Accordingly, an appropriate HIP pressure in the present invention is preferably 70 MPa or more and 200 MPa or less. Further, as for the HIP processing time, as in the case of the copper foil, if the time is less than the lower limit of 1 hour, diffusion until bonding does not proceed and bonding failure occurs. On the other hand, even if the upper limit of 4 hours is exceeded, the stability of the joint does not change, and the energy cost increases accordingly. Therefore, the appropriate HIP processing time in the present invention is preferably 1 hour or more and 6 hours or less.

表3のNo.23〜32における概要は、前記と同じサイズの2種類の炭素工具鋼又は炭素鋼と黄銅の母材の少なくともいづれか一方に、メッキ厚みが500μmのメッキ層を形成し、その後、金属製のカプセリングを実施、その後真空脱気後、各々、表1に示す同一HIP処理(圧力160MPa、時間2時間)で温度を種々変えて該処理を実施した。試験後の接合部の評価方法として、前記表1のNo.1〜22の試験と同様に接合部をUTにより未接合部の有無の確認および引張り試験片による接合強度の測定を実施した。その結果を表3のNo.13〜22に示す。   No. in Table 3 The outline in 23-32 is that at least one of two types of carbon tool steel of the same size as described above or a base material of carbon steel and brass is formed with a plating layer having a plating thickness of 500 μm, and then metal encapsulation is performed. After the implementation and then vacuum degassing, each of the same HIP treatment (pressure 160 MPa, time 2 hours) shown in Table 1 was used to change the temperature. As an evaluation method of the joint after the test, No. in Table 1 above. In the same manner as in the tests 1 to 22, the joined portion was checked for the presence or absence of an unjoined portion by UT and the joining strength was measured using a tensile test piece. The results are shown in Table 3. Shown in 13-22.

表3から、明らかなように母材が炭素工具鋼、炭素鋼のいづれにおいても、HIP処理時の温度が600℃未満(No.23、28)、850℃を超えた場合(No.27、32)、接合部に未接合部が発生している。
即ち、前記温度が600℃未満では、接合部に拡散層が生成されないため、一方、該温度が850℃を超えると一方の母材である黄銅が溶解するため、いづれの場合においても接合部に未接合部が発生する。
As apparent from Table 3, when the base material is carbon tool steel or carbon steel, the temperature during HIP treatment is less than 600 ° C. (No. 23, 28), and when the temperature exceeds 850 ° C. (No. 27, 32) The unjoined part has occurred in the joined part.
That is, when the temperature is lower than 600 ° C., no diffusion layer is formed at the joint. On the other hand, when the temperature exceeds 850 ° C., the base material of brass is dissolved. Unjoined parts occur.

以上の試験No.1〜32による結果、本発明の前記炭素工具鋼又は炭素鋼と黄銅との接合において、母材の一方に、メッキ層を中間材としてHIP処理により接合する場合、その適切なる銅の厚みは30μm以上、1000μm以下であり、また適切なるHIP処理条件は、温度を620以上〜850℃以下、圧力を70以上、200MPa以下、時間を1以上、6時間以下とすることにより、接合が健全に実施できることが判明した。   The above test No. As a result of 1 to 32, when joining the carbon tool steel or carbon steel and brass of the present invention to one of the base materials by a HIP process using a plating layer as an intermediate material, the appropriate copper thickness is 30 μm. As mentioned above, it is 1000 μm or less, and appropriate HIP processing conditions are that the temperature is 620 to 850 ° C., the pressure is 70 to 200 MPa, the time is 1 to 6 hours, and the bonding is soundly performed. It turns out that you can.

尚、母材の接合部に形成させるメッキ層は、両母材の形状、サイズ等から下記の要領にて、そのメッキを施す面を設定するとよい。すなわち、両母材のうち、形状が簡素な方、またはサイズが小さい方の母材の接合面にメッキを施すとコストの面より好ましい。ただし、このメッキは、必ずしも一方に限られるものではなく、例えば、両母材の形状、サイズ等に大差が無い場合には、生産効率の点からその両面にメッキを施すことが好ましい。   In addition, the plating layer formed in the joint part of a base material is good to set the surface which performs the plating in the following ways from the shape, size, etc. of both base materials. That is, it is more preferable in terms of cost to apply plating to the joint surface of the base material having a simple shape or a smaller size among the two base materials. However, this plating is not necessarily limited to one. For example, when there is no great difference in the shape and size of both base materials, it is preferable to perform plating on both surfaces from the viewpoint of production efficiency.

Figure 0004246035
Figure 0004246035

以上の試験の結果により、前記の如く、本発明の新規な母材である炭素工具鋼又は炭素鋼と黄銅との接合に銅メッキを中間材に使用し、HIPで接合して複合体を製造する場合の適正なる種々の条件が判明したため、一例として、各々サイズが直径500mm、厚みが50mmの実際の実機サイズの炭素工具鋼又は炭素鋼と黄銅とをインサート材として銅を使用してHIPにて接合した.表4にその結果を示す。表4に示す如くNo.1〜4の実施例共に、接合部における未溶着部は皆無、かつ、接合強度も高く、両者の接合部は健全に接合しており本発明の作用・効果を充分に確認することができた。   Based on the results of the above tests, as described above, carbon tool steel or carbon steel, which is the new base material of the present invention, is used as an intermediate material, and a composite is manufactured by joining with HIP. As an example, carbon tool steel or carbon steel and brass of actual actual size each having a diameter of 500 mm and a thickness of 50 mm are used as an insert material in HIP. And joined. Table 4 shows the results. As shown in Table 4, no. In all of Examples 1 to 4, there was no unwelded portion in the joint, and the joint strength was high, and the joint between the two was soundly joined, and the actions and effects of the present invention could be sufficiently confirmed. .

Figure 0004246035
Figure 0004246035

以上、種々の試験の結果、本発明が対象としている炭素工具鋼と黄銅、炭素鋼と黄銅との間に、インサート材として適切厚みの銅箔、または、鋼メッキを施して、適切なるHIP処理により、両者を健全に接合することが可能となった。続いて、前記両者を実施、すなわち、インサート材としての銅箔およびメッキ処理をした場合について、以下の試験を実施し、その有効性を確認した。以下に詳述する。   As described above, as a result of various tests, an appropriate HIP treatment is performed by applying an appropriate thickness of copper foil or steel plating as an insert material between carbon tool steel and brass, carbon steel and brass targeted by the present invention. As a result, it became possible to join the two soundly. Subsequently, both of the above were performed, that is, the case where the copper foil as the insert material and the plating treatment were performed, the following tests were performed, and the effectiveness was confirmed. This will be described in detail below.

表5は、ラボテストによって、適切なる銅箔およびメッキ層との合計厚み、およびHIP処理条件を確認するために、No.1〜40の試験を実施した。この試験に使した接合前の一方の母材として炭素工具鋼と炭素鋼の2種を、他方の母材としては黄銅を使用した。前記両母材のサイズとしては、いずれも各々直径50mm、厚みが50mmのものを使用した。先ず、No.1〜30に示す如く、前記2種類の炭素工具鋼または炭素鋼と、黄銅とのHIP処理による接合によって、インサート材としての銅箔と銅メッキとの適切なる厚みの試験の結果について、その詳細を説明する。   Table 5 shows No. 1 in order to confirm the total thickness of appropriate copper foil and plating layer, and HIP processing conditions by a laboratory test. 1-40 tests were performed. Two types of carbon tool steel and carbon steel were used as one base material before joining used in this test, and brass was used as the other base material. As the sizes of both the base materials, those having a diameter of 50 mm and a thickness of 50 mm were used. First, no. As shown in 1-30, the details of the results of a test of an appropriate thickness of the copper foil as an insert material and copper plating by joining the two types of carbon tool steel or carbon steel and brass by HIP treatment Will be explained.

試験の要領は、上記のサイズからなる母材として各々炭素工具鋼と黄銅、炭素鋼と黄銅において、この母材の一方に、表5に示す種々の厚みのメッキ層を電気メッキ法によって形成し、その後、両母材の間に、表5に示す種々の厚みの銅箔を配置し、その後、金属製のカプセリングを実施、その後真空脱気後、表1に示す同一条件のHIP処理(温度790℃、圧力155MPa、時間2時間)を各々実施した。試験後の接合部の評価方法として、これまでと同様にUTによる接合部の未溶着部の有無調査および試験片による接合強度の測定を実施した。   The test procedure is to use carbon tool steel and brass, and carbon steel and brass as the base materials each having the above-mentioned size. On one of the base materials, plating layers having various thicknesses shown in Table 5 are formed by electroplating. Thereafter, copper foils having various thicknesses shown in Table 5 were placed between both base materials, and then metal encapsulation was performed, and after vacuum degassing, HIP treatment (temperature) under the same conditions shown in Table 1 790 ° C., pressure 155 MPa, time 2 hours). As the evaluation method of the joint after the test, the presence / absence of the unwelded portion of the joint by UT and the measurement of the joint strength by the test piece were performed as before.

その結果を表5のNo.1〜30に示す。この表5から明らかなように、母材が炭素工具鋼および炭素鋼のいずれにおいても、インサート材として配置した銅箔と銅メッキをした合計層厚が30μm未満(No.1,2、またNo.16,17)ではUTの結果に示す如く、未接合部が発生しており、かつ、接合強度も極めて低く、一方、合計層厚が1000μm以上(No.13、14、15またはNo.28、29、30)では、接合強度の増加が少ない。従って、コスト面で好ましくない。要するに、両者の合計層厚が、30μm未満であると、接合効果が得られず、また、該厚みが1000μmを超えると銅箔および銅メッキのコストが上昇するため好ましくない。
以上、No.1〜30の試験結果より、本発明の前記炭素工具鋼または炭素鋼と黄銅とをHIP処理により接合する場合、その適切なる銅箔と銅メッキとの合計の層厚は、30μm以上、1000μm以下であることが判明した。
The results are shown in Table 5. 1-30. As apparent from Table 5, the total thickness of the copper foil and the copper plating disposed as the insert material is less than 30 μm (No. 1, 2 or No. 1), regardless of whether the base material is carbon tool steel or carbon steel. 16 and 17), as shown in the UT results, unbonded portions are generated and the bonding strength is extremely low, while the total layer thickness is 1000 μm or more (No. 13, 14, 15 or No. 28). 29, 30), the increase in bonding strength is small. Therefore, it is not preferable in terms of cost. In short, if the total layer thickness of both is less than 30 μm, the bonding effect cannot be obtained, and if the thickness exceeds 1000 μm, the costs of copper foil and copper plating increase, which is not preferable.
No. From the test results of 1 to 30, when the carbon tool steel of the present invention or carbon steel and brass are joined by HIP treatment, the total layer thickness of the appropriate copper foil and copper plating is 30 μm or more and 1000 μm or less. It turned out to be.

続いて、表5のNo.31〜40の試験において、最適なHIP処理条件の確認試験を行った。上記、銅箔、銅メッキでの種々の試験結果により前記HIP処理条件である温度、圧力、処理時間において、該処理条件のうち、接合状態に著しく影響を与える要件としては、HIP温度であることが判明したため、No.31〜40の試験においては、以下に示す如く、HIP処理温度を種々変化させて試験を実施した。   Subsequently, No. 5 in Table 5 was obtained. In the tests of 31 to 40, a confirmation test of optimum HIP processing conditions was performed. According to the above-mentioned various test results for copper foil and copper plating, the temperature, pressure, and processing time that are the HIP processing conditions include the HIP temperature as a requirement that significantly affects the bonding state. As a result, no. In the tests of 31 to 40, as shown below, the test was carried out by changing the HIP processing temperature in various ways.

また、HIP圧力については、該圧力が下限の70MPa未満になると接合のための圧力が低く接合不良が生ずる。一方、上限の200MPaを超えても接合部の安定性は変わることなく、エネルギーコストがその分上昇する。従って、本発明における適切なるHIP圧力としては、70MPa以上、200MPa以下が好ましい。さらに、HIP処理時間については、下限の1時間未満になると接合するまでの拡散が進まず接合不良が生ずる。一方、上限の6時間を超えても接合部の安定性は変わることなく、エネルギーコストがその分上昇する。従って、本発明における適切なるHIP処理時間としては、1時間以上、6時間以下とすることが好ましい。   As for the HIP pressure, when the pressure is less than the lower limit of 70 MPa, the pressure for bonding is low and poor bonding occurs. On the other hand, even if the upper limit of 200 MPa is exceeded, the stability of the joint does not change, and the energy cost increases accordingly. Accordingly, an appropriate HIP pressure in the present invention is preferably 70 MPa or more and 200 MPa or less. Further, with respect to the HIP processing time, if it is less than the lower limit of 1 hour, diffusion until joining does not proceed and a joining failure occurs. On the other hand, even if the upper limit of 6 hours is exceeded, the stability of the joint does not change, and the energy cost increases accordingly. Therefore, the appropriate HIP processing time in the present invention is preferably 1 hour or more and 6 hours or less.

No.21〜30の試験における概要は、前記と同じサイズの2種類の炭素工具鋼または炭素鋼と黄銅の間に、前記と同様に試験の要領は、上記のサイズからなる母材として各々炭素工具鋼と黄銅、炭素鋼と黄銅において、その母材の一方に、250μmの厚みのメッキ層を電気メッキ法によって形成し、その後、両母材の間に、250μmの厚みの銅箔を配置し、その後、金属製のカプセリングを実施、その後真空脱気後、表1に示す種々のHIP温度と、同一条件のHIP処理(圧力150MPa、時間2時間)を各々実施した。試験後の接合部の評価方法として、前記No.1〜30の試験と同様に接合部をUTにより未接合部の有無および試験片による接合強度の測定を実施した。   No. The outlines in the tests of 21 to 30 are two types of carbon tool steel of the same size as described above, or between carbon steel and brass, and the test procedure is the same as the above. And brass, carbon steel and brass, a plating layer having a thickness of 250 μm is formed on one of the base materials by an electroplating method, and then a copper foil having a thickness of 250 μm is disposed between both base materials. Then, metal encapsulation was performed, and after vacuum degassing, various HIP temperatures shown in Table 1 and HIP treatment under the same conditions (pressure 150 MPa, time 2 hours) were performed. As an evaluation method of the joint after the test, the above-mentioned No. Similarly to the tests 1 to 30, the joints were measured for the presence or absence of unjoined parts and the joint strength using test pieces.

表5のNo.31〜40の試験結果から、明らかなように、母材が炭素工具鋼、炭素鋼のいずれかにおいても、HIP処理時の温度が620℃未満、850℃を超えた場合、接合部に未接合部が発生していた。すなわち、前記温度が620℃未満(No.31、36)では、接合部に拡散層が生成されないため、一方、該温度が850℃を超えると(No.35、40)、一方の母材である黄銅が溶解するため、いずれの場合においても接合部に未溶着部が発生する。   No. in Table 5 As is clear from the test results of 31 to 40, when the base material is either carbon tool steel or carbon steel, when the temperature at the time of HIP treatment is less than 620 ° C. or more than 850 ° C., it is not joined to the joint. Had occurred. That is, when the temperature is lower than 620 ° C. (No. 31, 36), no diffusion layer is formed at the joint. On the other hand, when the temperature exceeds 850 ° C. (No. 35, 40), Since some brass is dissolved, an unwelded portion is generated at the joint in any case.

Figure 0004246035
Figure 0004246035

以上、No.1〜40による試験による結果、本発明の前記炭素工具鋼または炭素鋼と黄銅とを銅メッキおよび銅箔を使用してHIP処理により接合する場合、その適切なる銅の厚みは30μm以上、1000μm以下であり、また、適切なHIP処理条件は、温度を620〜850℃、圧力を70〜200MPa、時間を1〜6時間とすることにより、接合が健全に実施できることが判明した。   No. As a result of the test according to 1 to 40, when the carbon tool steel of the present invention or carbon steel and brass are joined by HIP treatment using copper plating and copper foil, the appropriate copper thickness is 30 μm or more and 1000 μm or less. In addition, it has been found that appropriate HIP treatment conditions can be achieved by sound joining by setting the temperature to 620 to 850 ° C., the pressure to 70 to 200 MPa, and the time to 1 to 6 hours.

以上の試験の結果により、前記の如く、本発明の新規な母材である炭素工具鋼または炭素工具鋼と黄銅との接合に、銅メッキおよび銅箔を使用し、HIPで接合して複合体を製造する場合の適正なる種々の条件が判明したため、一例として、各々サイズが直径500mm、厚みが50mmの実験の実機サイズの炭素工具鋼または炭素工具鋼と黄銅とをインサート材として銅を使用してHIPにて接合した。表2にその結果を示す。表6に示す如く、No.1〜6の実施例共に、接合図における未溶着部は皆無、かつ接合強度は高く、両者の接合部は健全に接合しており、本発明の作用、効果を充分に確認することができた。また、黄銅には快削性を与えるために少量の鉛を含有したものであるが、30μm以上のインサート銅を設置することで鉛の拡散による黄銅と炭素鋼あるいは炭素工具鋼の接合界面への析出を抑制できるため、黄銅の成分によるらず高い強度を確保できる。   As a result of the above test, as described above, the carbon tool steel or the carbon tool steel, which is the new base material of the present invention, is joined with brass, using copper plating and copper foil, and joined by HIP to form a composite. As an example, carbon tool steel or carbon tool steel and brass of an actual machine size each having a diameter of 500 mm and a thickness of 50 mm were used as an insert material. And joined by HIP. Table 2 shows the results. As shown in Table 6, no. In all of Examples 1 to 6, there were no unwelded portions in the bonding diagram, and the bonding strength was high, and the bonding portions of both were soundly bonded, and the effects and effects of the present invention could be sufficiently confirmed. . In addition, brass contains a small amount of lead to give free-cutting properties, but by installing insert copper of 30 μm or more, the diffusion of lead to the bonding interface between brass and carbon steel or carbon tool steel Since precipitation can be suppressed, high strength can be ensured regardless of brass components.

Figure 0004246035
Figure 0004246035

インサート材である銅箔の厚みと接合強度との関係を示す図である。It is a figure which shows the relationship between the thickness of copper foil which is insert material, and joining strength. インサート材である銅メッキの厚みと接合強度との関係を示す図である。It is a figure which shows the relationship between the thickness of copper plating which is an insert material, and joining strength.

Claims (7)

一方の母材が炭素工具鋼又は炭素鋼、他方の母材が黄銅からなり、前記両母材を銅箔からなるインサート材を使用して、温度:620〜850℃、圧力:70〜200MPa、時間:1〜6時間とする熱間等方加圧焼結(HIP)により接合してなることを特徴とする炭素工具鋼又は炭素鋼と黄銅からなる複合体。 One base material is carbon tool steel or carbon steel, the other base material is made of brass, and both base materials are made of insert material made of copper foil , temperature: 620-850 ° C., pressure: 70-200 MPa, Time: A carbon tool steel or a composite made of carbon steel and brass, which is joined by hot isostatic pressing (HIP) for 1 to 6 hours . 前記熱間等方加圧焼結(HIP)処理前の銅箔の厚みt1 が30≦t1 ≦1000μmであることを特徴とする請求項1記載の炭素工具鋼又は炭素鋼と黄銅からなる複合体。 The thickness t 1 of the copper foil before the hot isostatic pressing (HIP) treatment is 30 ≦ t 1 ≦ 1000 μm, comprising carbon tool steel or carbon steel and brass according to claim 1. Complex. 一方の母材が炭素工具鋼又は炭素鋼、他方の母材が黄銅からなり、前記両母材の少なくともいづれか一方の接合面に銅メッキが形成され、温度:620〜850℃、圧力:70〜200MPa、時間:1〜6時間とする熱間等方加圧焼結(HIP)により接合してなることを特徴とする炭素工具鋼又は炭素鋼と黄銅からなる複合体。 One base material is made of carbon tool steel or carbon steel, and the other base material is made of brass, and copper plating is formed on at least one of the joint surfaces of the two base materials, temperature: 620 to 850 ° C., pressure: 70 to 200 MPa, time: 1 to 6 hours, bonded by hot isostatic pressing (HIP), carbon tool steel or a composite made of carbon steel and brass. 前記熱間等方加圧焼結(HIP)処理前の銅メッキの厚みt2 が30≦t2 ≦1000μmであることを特徴とする請求項3記載の炭素工具鋼又は炭素鋼と黄銅からなる複合体。 4. The carbon tool steel or carbon steel and brass according to claim 3, wherein a thickness t 2 of the copper plating before the hot isostatic pressing (HIP) treatment is 30 ≦ t 2 ≦ 1000 μm. Complex. 一方の母材が炭素工具鋼又は炭素鋼、他方の母材が黄銅からなり、前記両母材の少なくともいづれか一方の接合面に銅メッキが形成され、かつ、前記両母材を銅箔からなるインサート材を使用して、温度:620〜850℃、圧力:70〜200MPa、時間:1〜6時間とする熱間等方加圧焼結(HIP)により接合してなることを特徴とする炭素工具鋼又は炭素鋼と黄銅からなる複合体。 One base material is carbon tool steel or carbon steel, the other base material is brass, copper plating is formed on at least one of the base materials, and both base materials are copper foil Carbon formed by joining by hot isostatic pressing (HIP) with an insert material at a temperature of 620 to 850 ° C., a pressure of 70 to 200 MPa, and a time of 1 to 6 hours. A composite consisting of tool steel or carbon steel and brass. 前記熱間等方加圧焼結(HIP)処理前の銅メッキの厚みt2 と前記熱間等方加圧焼結(HIP)処理前の銅箔の厚みt1 とが30≦t2 +t1 ≦1000μmであることを特徴とする請求項5記載の炭素工具鋼又は炭素鋼と黄銅からなる複合体。 The thickness t 2 of the copper plating before the hot isostatic pressing (HIP) treatment and the thickness t 1 of the copper foil before the hot isostatic pressing (HIP) treatment are 30 ≦ t 2 + t. It is 1 <= 1000micrometer, The composite material which consists of carbon tool steel of Claim 5, or carbon steel, and brass. 一方の母材が炭素工具鋼又は炭素鋼、他方の母材が黄銅からなり、前記両母材の間に銅箔からなるインサート材を配置後および/または、前記両母材の少なくともいづれか一方の接合面に銅メッキを施した後、金属製カプセルにてカプセリングし、その後真空脱気後、温度:620〜850℃、圧力:70〜200MPa、時間:1〜6時間とする熱間等方加圧焼結(HIP)を施して接合することを特徴とする炭素工具鋼又は炭素鋼と黄銅からなる複合体の接合方法。 One base material is carbon tool steel or carbon steel, the other base material is made of brass, and an insert material made of copper foil is disposed between the both base materials and / or at least one of the two base materials. After copper plating is applied to the joint surface, it is encapsulated with a metal capsule, and then after vacuum deaeration, hot isotropy with temperature: 620-850 ° C., pressure: 70-200 MPa, time: 1-6 hours A method of joining carbon tool steel or a composite made of carbon steel and brass, characterized by performing pressure sintering (HIP).
JP2003384685A 2002-11-18 2003-11-14 Carbon tool steel or composite comprising carbon steel and brass and joining method thereof Expired - Lifetime JP4246035B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003384685A JP4246035B2 (en) 2002-11-18 2003-11-14 Carbon tool steel or composite comprising carbon steel and brass and joining method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002333534 2002-11-18
JP2003384685A JP4246035B2 (en) 2002-11-18 2003-11-14 Carbon tool steel or composite comprising carbon steel and brass and joining method thereof

Publications (2)

Publication Number Publication Date
JP2004181529A JP2004181529A (en) 2004-07-02
JP4246035B2 true JP4246035B2 (en) 2009-04-02

Family

ID=32774567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003384685A Expired - Lifetime JP4246035B2 (en) 2002-11-18 2003-11-14 Carbon tool steel or composite comprising carbon steel and brass and joining method thereof

Country Status (1)

Country Link
JP (1) JP4246035B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101837899B (en) * 2009-03-18 2013-06-05 佳能株式会社 Sheet feeding apparatus and printer including the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4562569B2 (en) * 2005-03-29 2010-10-13 新日鉄マテリアルズ株式会社 Invar alloy and brass composite structure and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101837899B (en) * 2009-03-18 2013-06-05 佳能株式会社 Sheet feeding apparatus and printer including the same

Also Published As

Publication number Publication date
JP2004181529A (en) 2004-07-02

Similar Documents

Publication Publication Date Title
KR100734794B1 (en) Method for making a joint between copper and stainless steel
JPS6071579A (en) Method of bonding alumina and metal
US20080217379A1 (en) Method for cohesively bonding metal to a non-metallic substrate
EP2492029A1 (en) Constrained metal flanges and methods for making the same
CN104772542B (en) The hard alloy of WC particle In-sltu reinforcement and the ultrasonic brazing method of steel
JP4246035B2 (en) Carbon tool steel or composite comprising carbon steel and brass and joining method thereof
CN113020735B (en) Preparation method of silicon nitride ceramic/stainless steel braze welding joint with corrosion resistance and stress relief
US4736883A (en) Method for diffusion bonding of liquid phase sintered materials
CN109060519B (en) Method for testing bonding strength of ultrathin layered metal composite material
TW555722B (en) A method of manufacturing high-temperature sensor with metal/ceramic joint
JP2726796B2 (en) Multi-layer sliding member and manufacturing method thereof
US3359083A (en) Composite structural metal members with improved fracture toughness
JP3240211B2 (en) Copper-aluminum dissimilar metal joint material
JP6333268B2 (en) Layer composite
WO2005078428A1 (en) Method of manufacturing reference gauge for flaw inspection
JP2007245219A (en) Joining method of aluminum radical composite material and joined body of aluminum radical composite material
KR101131930B1 (en) Method of manufacturing terminals for secondary battery
Shirzadi et al. Novel method for diffusion bonding superalloys and aluminium alloys (USA patent 6,669,534 b2, european patent pending)
JP4131809B2 (en) Metal-ceramic composite material joined body and method for producing the same
JP4446073B2 (en) Joining method of titanium aluminum intermetallic compound and copper alloy
JP4607497B2 (en) Parallel metal plates of different metals and manufacturing method thereof
JP7475258B2 (en) Composite Materials
JP4482654B2 (en) Heat resistant material for high energy density equipment
KR102473120B1 (en) Apparatus and method for forming materials
JP4562569B2 (en) Invar alloy and brass composite structure and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050915

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090107

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4246035

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140116

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term