JP2007245219A - Joining method of aluminum radical composite material and joined body of aluminum radical composite material - Google Patents
Joining method of aluminum radical composite material and joined body of aluminum radical composite material Download PDFInfo
- Publication number
- JP2007245219A JP2007245219A JP2006074686A JP2006074686A JP2007245219A JP 2007245219 A JP2007245219 A JP 2007245219A JP 2006074686 A JP2006074686 A JP 2006074686A JP 2006074686 A JP2006074686 A JP 2006074686A JP 2007245219 A JP2007245219 A JP 2007245219A
- Authority
- JP
- Japan
- Prior art keywords
- composite material
- aluminum
- joining
- joined body
- based composite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Pressure Welding/Diffusion-Bonding (AREA)
Abstract
Description
本発明は、アルミニウム基複合材料とアルミニウム基複合材料またはアルミニウム合金との接合方法および当該方法により作製されたアルミニウム基複合材料接合体に関する。 The present invention relates to a method for joining an aluminum matrix composite material and an aluminum matrix composite material or an aluminum alloy, and an aluminum matrix composite material joined body produced by the method.
金属とセラミックスとの複合材である金属基複合材料(MMC;Metal Matrix Composites)は、軽量性,高剛性,低熱膨張性,高熱伝導性等の優れた特性を有しており、そのため、内燃機関のピストン、シリンダブロック、ブレーキディスク、電子回路基板、ヒートシンク等への適用が検討されている。 Metal Matrix Composites (MMC), which is a composite of metal and ceramics, has excellent properties such as lightness, high rigidity, low thermal expansion, and high thermal conductivity. Application to pistons, cylinder blocks, brake disks, electronic circuit boards, heat sinks, etc. is under consideration.
MMCは、比較的単純な形状のものの製造は容易であるが、複雑な形状の物の製造は必ずしも容易ではない。そのため、単純な形状のMMC部品を他の金属部品や他のMMC部品と接合する技術の確立が急務となっており、金属ろう材を用いる接合方法や、FSW法による接合方法等が提案されている(例えば、特許文献1,2参照)。
MMC is easy to manufacture in a relatively simple shape, but it is not always easy to manufacture a complex shape. Therefore, it is urgently necessary to establish a technology for joining simple-shaped MMC parts to other metal parts and other MMC parts, and a joining method using a metal brazing material, a joining method using an FSW method, and the like have been proposed. (For example, see
アルミニウム基複合材料の接合では、アルミニウムがその表面に酸化被膜を形成してしまうために、金属ろう材を用いた接合方法では、この酸化被膜の存在によって十分な接合強度を得ることができず、また、使用できるろう材の温度はアルミニウム基複合材料の耐熱温度よりも相当低くなるので、アルミニウム基複合材料の熱的特性を十分に発揮させることができない。また、FSW法による接合方法は、アルミニウム基複合材料の組成依存性が大きく、特にセラミックス含有率が高い材料には不向きである。
本発明はかかる事情に鑑みてなされたものであり、アルミニウム基複合材料とアルミニウム基複合材料またはアルミニウム合金とを強固に接合する方法およびこの接合方法により作製されたアルミニウム基複合材料接合体を提供することを目的とする。 The present invention has been made in view of such circumstances, and provides a method for firmly joining an aluminum-based composite material and an aluminum-based composite material or an aluminum alloy, and an aluminum-based composite material joined body produced by this joining method. For the purpose.
本発明によれば、アルミニウム基複合材料からなる第1部材と、アルミニウム基複合材料またはアルミニウム合金からなる第2部材とを接合する方法であって、前記第1部材と前記第2部材との間に、中間材として0.2〜3質量%のマグネシウムを含有するアルミニウムまたはアルミニウム合金を介在させて、前記第1部材と前記第2部材に所定の圧力を印加し、かつ、前記第1部材と前記第2部材の接合部をマグネシウムの拡散温度に加熱することを特徴とするアルミニウム基複合材料の接合方法が提供される。 According to the present invention, there is provided a method for joining a first member made of an aluminum-based composite material and a second member made of an aluminum-based composite material or an aluminum alloy, between the first member and the second member A predetermined pressure is applied to the first member and the second member by interposing an aluminum or aluminum alloy containing 0.2 to 3% by mass of magnesium as an intermediate material, and the first member and There is provided a joining method of an aluminum-based composite material, wherein the joining portion of the second member is heated to a diffusion temperature of magnesium.
中間材としては粉末または板材が好適に用いられる。また、第1部材と第2部材の接合部の加熱には、通電加熱法や高周波誘導加熱法が好適に用いられる。 As the intermediate material, a powder or a plate material is preferably used. In addition, for heating the joint between the first member and the second member, an electric heating method or a high frequency induction heating method is preferably used.
また本発明によれば、この接合方法により作製された接合体、すなわち、アルミニウム基複合材料からなる第1部材と、中間層を介して前記第1部材と接合されたアルミニウム基複合材料またはアルミニウム合金からなる第2部材とを具備し、前記中間層は0.2〜3質量%のマグネシウムを含有するアルミニウムまたはアルミニウム合金からなることを特徴とするアルミニウム基複合材料接合体が提供される。 According to the invention, a joined body produced by this joining method, that is, a first member made of an aluminum-based composite material, and an aluminum-based composite material or an aluminum alloy joined to the first member via an intermediate layer. And the intermediate layer is made of aluminum or aluminum alloy containing 0.2 to 3% by mass of magnesium.
本発明は、アルミニウム基複合材料を、アルミニウム基複合材料またはアルミニウム合金と強固に接合することができるという効果を奏する。また、本発明のアルミニウム基複合材料接合体は、通電加熱による作製が可能であることから、その接合体を用いる現場での組立や接合、補修等が可能になるという効果も得られる。 The present invention has an effect that the aluminum-based composite material can be firmly bonded to the aluminum-based composite material or the aluminum alloy. Moreover, since the aluminum matrix composite material joined body of the present invention can be produced by energization heating, it is possible to obtain the effect that on-site assembly, joining, repair and the like using the joined body are possible.
以下、本発明の実施の形態について図面を参照しながら説明する。図1はアルミニウム基複合材料接合体(以下「接合体」という)の概略構造を示した断面図である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view showing a schematic structure of an aluminum matrix composite material joined body (hereinafter referred to as “joined body”).
この接合体10は、アルミニウム基複合材料(以下「Al基複合材料」と記す)からなる第1部材12と、中間層16を介して接合されたAl基複合材料またはAl合金からなる第2部材14から構成されている。
The joined
第1部材12に用いられるAl基複合材料としては、Al−SiC,Al−Al2O3,Al−AlNが挙げられ、SiC等のセラミックスの含有率が5体積%〜80体積%のものが好適である。第2部材14がAl基複合材料である場合にはこれと同様である。第2部材14がAl合金である場合には、Mgを3質量%以上含むアルミニウム合金を除く全てのアルミニウム合金を用いることができる。その一例として、AC4C材(Al−7Si−0.3Mg)が挙げられる。
Examples of the Al-based composite material used for the
中間層16は、0.2〜3質量%のマグネシウム(Mg)を含有するAl(つまり、この所定量のMgと不可避不純物以外の金属元素を含まないAl)またはAl合金(つまり、この所定量のMgに加えてMg以外の金属成分をさらに一定量含有しているAl)からなる。この所定量のMgを含むAl合金としては、Mgを3質量%以上含むアルミニウム合金を除く全てのアルミニウム合金を用いることができ、その一例として、2024合金(Al−4.38Cu−0.63Mn−1.48Mg)が挙げられる。
The
図2に接合体10の作製方法を模式的に示す。この接合体10は、第1部材12と第2部材14との間に、0.2〜3質量%のMgを含有するAlまたはAl合金を中間材18として介在させ、第1部材12と第2部材14の接合方向に所定の圧力を印加するとともに、第1部材12と第2部材14の接合部である中間材18および近傍をMgの拡散温度に加熱することにより、作製することができる。
FIG. 2 schematically shows a method for manufacturing the joined
中間材18には粉末または板材が好適に用いられる。中間材18はこの加圧加熱によって図1に示す中間層16となる材料であるから、中間材18として粉末材を用いた場合には、加圧,加熱によって粉末どうしが結合した微構造となることが必要である。中間材18として粉末を用いる場合には、例えば、粉末を予めプレス成形する方法や粉末を樹脂で成型する方法によって作製した成形体を第1部材12と第2部材14の間に配置して、加圧,加熱する方法や、粉末を液体に保持させて第1部材12と第2部材14の接合面の両面または片面にスプレー塗布し、その液体を蒸発させて乾燥させ、接合面を突き合わせて、加圧,加熱する方法、第1部材12と第2部材14のうち下側に位置する部材の上表面に篩等で粉末を落として厚さの均一な層を形成させ、この層を上側に位置する部材で挟み込み、加圧,加熱する方法等を用いることができる。
As the
第1部材12と第2部材14の接合部の加熱には、局所加熱が可能な通電加熱法(直流通電加熱法、パルス通電加熱法)、高周波誘導加熱法が好適に用いられる。通電加熱法では、例えば、第1部材12および第2部材14に圧力を印加するために用いられる治具に直流電流やパルス電流を印加する。これにより抵抗の大きい接合面で大きなジュール熱が発生し、接合面を接合させる。高周波誘導加熱方法では、接合部の周囲にコイルを巻いて、これに一定周波数の電流を流すことにより、接合面近傍に発生する渦電流によるジュール熱で接合面どうしを接合する。このような局所加熱により、第1部材12および第2部材14の熱による変形を抑制することができる。また、このような接合方法によれば、接合体10の設置現場での組立や接合、補修等が可能になる。
For heating the joint between the
接合処理前において、第1部材12および第2部材14は、金属Alを主成分とするために、その表面には酸化被膜(Al2O3膜)が自然形成される。この酸化被膜は接合を阻害するので、接合強度を高めるためには、接合時にこの酸化被膜を取り除くことが必要となる。中間材18を介して第1部材12と第2部材14を接合する際に、その接合部を「Mgの拡散温度に加熱する」とは、Mgによる酸化被膜の還元反応が生じる温度に加熱すること、より具体的には400℃以上に加熱することをいう。
Before the bonding process, the
Mgによる酸化被膜の除去反応は、より具体的には、第1部材12および第2部材14の各接合面および中間材18に存在するAl2O3が、中間材18の含有するMgと反応し、MgO,MgAl2O3となって凝集する反応であり、これにより、金属的な接合部が増加し、接合強度を高めることができる。
More specifically, the removal reaction of the oxide film with Mg is performed by reacting the Al 2 O 3 present on the joint surfaces of the
そのため、中間材18のMg含有量が0.2質量%よりも少ないときには、酸化被膜の還元反応が不十分になり、確実な接合を行うことができない。また、中間材18のMg含有量が3質量%よりも多いと、中間材18にMgOの酸化被膜が形成されやすくなってしまうために、Mgによる接合面でのマグネシウムの還元反応が発生せず、確実な接合を行うことができなくなる。
Therefore, when the Mg content of the
中間材18を介して第1部材12と第2部材14を接合させる際の温度および圧力は、第1部材12および第2部材14の機械的な特性が劣化しない範囲に、適宜、設定される。また、接合処理雰囲気は、加熱時に接合体10の構成材料に酸化が起こらないように、減圧(真空)雰囲気または不活性ガス雰囲気とすることが好ましい。
The temperature and pressure when joining the
なお、第1部材12および第2部材14がMgを多く含む場合には、中間材18としてMg量の少ないものを用い、逆に、第1部材12および第2部材14のMg含有量が少ない場合には、中間材18としてMg量の多いものを用いることが好ましい。また、第1部材12と第2部材14の接合に、中間材18として所定量のMgを含むAl合金を用いた場合には、その成分の一部が第1部材12と第2部材14に拡散することによって、中間材18により形成される中間層16の組成は、厳密には中間材18の組成からずれることがあるが、そのような拡散量は全体量に対して極めて少ないために、近似的に中間層16のMg含有量は中間材18のMg含有量と同一と考えることができる。
In addition, when the
次に本発明の実施例について説明する。 Next, examples of the present invention will be described.
(Mg含有AlによるAl基複合材料とAl合金の接合試験)
金属部の組成がAl−10Si−2Mg(質量%)で、体積率で30%のSiC(粒径;10μm)を含むAl基複合材料からなり、φ30mm×30mmの形状を有する第1部材と、Al合金の1種であるAC4C材(Al−7Si−0.3Mg)からなるφ30mm×30mmの形状を有する第2部材を準備した。 また、これらの第1部材と第2部材を接合するためにこれらの接合面に挿入する中間材として、Al、Al−0.2Mg、Al−0.4Mg、Al−1.0Mg、Al−1.5Mg、Al−3.0Mg、Al−4.0Mg(組成は質量%)の粉末および板材を準備した。
(Joint test of Al-based composite material and Al alloy with Mg-containing Al)
A first member having a metal part composition of Al-10Si-2Mg (mass%) and made of an Al-based composite material containing SiC (particle size: 10 μm) of 30% by volume and having a shape of φ30 mm × 30 mm; A second member having a shape of φ30 mm × 30 mm made of AC4C material (Al-7Si-0.3Mg), which is a kind of Al alloy, was prepared. Further, Al, Al-0.2Mg, Al-0.4Mg, Al-1.0Mg, Al-1 are used as intermediate materials to be inserted into these joining surfaces in order to join these first and second members. .5Mg, Al-3.0Mg, Al-4.0Mg (composition is mass%) powder and plate material were prepared.
中間材としてこれらの粉末を用いる場合には、粉末を篩で接合面上に均一に分布させ、その厚さを40μmとした。また、中間材として板材を用いる場合、その厚さを3)mmとした。 When these powders were used as an intermediate material, the powder was uniformly distributed on the joint surface with a sieve, and the thickness was 40 μm. Moreover, when using a board | plate material as an intermediate material, the thickness was 3) mm.
第1部材と第2部材の間に上記中間材を配置して、真空雰囲気中、5MPaの圧力で第1部材と第2部材を加圧し、500℃で5分間、接合処理を行った。このときの加熱方法としては、高周波誘導加熱法を用いた。なお、第2部材(Al合金)の接合面から5mm離れた位置に穴を空けて、そこに熱電対を差し込み、これにより測定される温度を接合温度とした。
The intermediate member was placed between the first member and the second member, and the first member and the second member were pressurized at a pressure of 5 MPa in a vacuum atmosphere, and a bonding process was performed at 500 ° C. for 5 minutes. As a heating method at this time, a high frequency induction heating method was used. In addition, a hole was made at a
接合処理後に得られた試料について、その試料の引張強度と、母材であるAl合金の引張強度の比を算出し、その値が50%以上であれば「接合した」と判断し、50%未満であれば「接合せず」と判断した。 For the sample obtained after the bonding treatment, the ratio of the tensile strength of the sample and the tensile strength of the Al alloy that is the base material is calculated. If it was less than that, it was judged as “not joined”.
なお、引張強度は、得られた接合体から引張試験の試験片(10mm×10mm×約60mm)を切り出し、その引張強度を“JIS Z2241”に基づいて、引張速度2mm/分で測定することにより求めた。 The tensile strength is obtained by cutting a test piece (10 mm × 10 mm × about 60 mm) for a tensile test from the obtained joined body and measuring the tensile strength at a tensile speed of 2 mm / min based on “JIS Z2241”. Asked.
結果を表1に示す。中間材としてMgを含有しないAlとAl−4.0Mgを用いた場合には、Al基複合材料とAl合金とが中間材を介して接合しなかったが、Al−0.2〜3.0Mgを用いることで、これらを良好に接合させることができることを確認した。
(Mg含有AlによるAl基複合材料とAl基複合材料との接合試験)
金属部の組成がAl−10Si−2Mg(質量%)で、体積率で30%のSiC(粒径;10μm)を含むAl基複合材料からなり、φ30mm×30mmの形状を有する部材を第1部材および第2部材として、上述したAl基複合材料とAl合金の接合試験と同様にして、接合試験および得られた接合体の評価を行った。
(Joint test of Al-based composite material and Al-based composite material with Mg-containing Al)
A member having a metal part composition of Al-10Si-2Mg (mass%) and made of an Al-based composite material containing SiC (particle diameter: 10 μm) of 30% by volume and having a shape of φ30 mm × 30 mm is a first member. And as a 2nd member, the joining test and evaluation of the obtained joined body were performed like the joining test of Al group composite material and Al alloy which were mentioned above.
結果を表2に示す。この表2に示すように、中間材としてMgを含有しないAlとAl−4.0Mgを用いた場合には、Al基複合材料どうしを中間材を介して接合させることができなかったが、Al−0.2〜3.0Mgを用いることにより、Al基複合材料どうしを良好に接合させることができることを確認した。
(Mg含有Al合金によるAl基複合材料とAl合金の接合試験)
金属部の組成がAl−10Si−2Mg(質量%)で、体積率で30%のSiC(粒径;10μm)を含むAl基複合材料からなり、φ30mm×5mmの形状を有する第1部材と、Al合金の1種であるAC4C材(Al−7Si−0.3Mg)からなるφ30mm×30mmの形状を有する第2部材を準備した。
(Joint test of Al-based composite material and Al alloy with Mg-containing Al alloy)
A first member having a metal part composition of Al-10Si-2Mg (mass%) and made of an Al-based composite material containing 30% SiC (particle size: 10 μm) by volume, and having a shape of φ30 mm × 5 mm; A second member having a shape of φ30 mm × 30 mm made of AC4C material (Al-7Si-0.3Mg), which is a kind of Al alloy, was prepared.
これらの第1部材と第2部材を接合するためにこれらの接合面に挿入する中間材として、粒径が40μmの2024合金(Al−4.38Cu−0.63Mn−1.48Mg)の粉末を用いた。 As an intermediate material to be inserted into these joining surfaces in order to join these first and second members, a powder of 2024 alloy (Al-4.38Cu-0.63Mn-1.48Mg) having a particle size of 40 μm is used. Using.
第1部材と第2部材の接合形態を、第1部材を第2部材でサンドイッチした構造とし、2つの第1部材と第2部材の間の箇所の接合面にそれぞれ0.8g(厚さ40μm)の中間材を挿入して、直流通電加熱法により、接合温度を変化させて、種々の接合体を作製した。このとき、処理雰囲気は真空雰囲気または窒素雰囲気とし、第2部材間に印加する圧力は7MPaとし、接合処理時間は5分とした。 The joining form of the first member and the second member is a structure in which the first member is sandwiched by the second member, and 0.8 g (thickness of 40 μm) is provided on the joining surface at the location between the two first members and the second member. ) Were inserted, and the joining temperature was changed by a direct current heating method to produce various joined bodies. At this time, the treatment atmosphere was a vacuum atmosphere or a nitrogen atmosphere, the pressure applied between the second members was 7 MPa, and the joining treatment time was 5 minutes.
得られた接合体の変形度を接合前後での長さの変化割合(%)により求めた。同様にして、第1部材のみの変形度も測定した。また、得られた接合体の引張強度を、得られた接合体から引張試験の試験片(10mm×10mm×約65mm)を切り出し、その引張強度を“JIS Z2241”に基づいて、引張速度2mm/分で測定することにより求めた。 The degree of deformation of the obtained joined body was determined from the change ratio (%) of the length before and after joining. Similarly, the degree of deformation of only the first member was also measured. Further, a tensile test specimen (10 mm × 10 mm × about 65 mm) was cut out from the obtained joined body to obtain a tensile strength of the obtained joined body, and the tensile strength was determined based on “JIS Z2241” at a tensile speed of 2 mm / Determined by measuring in minutes.
さらに比較のために第1部材と第2部材の間に中間材を挿入せずに、同等条件で接合処理し、得られた接合体について変形度を測定し、接合体から引張試験片の切り出し、その引張強度を求めた。 Further, for comparison, the intermediate member is not inserted between the first member and the second member, and the joining process is performed under the same conditions, the degree of deformation of the obtained joined body is measured, and the tensile test piece is cut out from the joined body. The tensile strength was determined.
図3に処理雰囲気を真空雰囲気とした場合の接合体の接合温度と引張強度との関係を示す。なお、図3には、比較のために、第2部材(AC4C)単体を同温度で同時間処理したものの引張強度を併記している。 FIG. 3 shows the relationship between the bonding temperature of the bonded body and the tensile strength when the processing atmosphere is a vacuum atmosphere. For comparison, FIG. 3 also shows the tensile strength of the second member (AC4C) alone treated at the same temperature for the same time.
中間材を用いない場合には、500℃以下では第1部材と第2部材は接合しなかった。中間材を用いることにより、これらを500℃で接合させることができるようになっていることがわかる。また、525℃および550℃での結果に示されるように、中間材を用いることにより、接合体の引張強度が向上することが確認された。 When the intermediate material was not used, the first member and the second member were not joined at 500 ° C. or lower. It turns out that these can be joined at 500 degreeC by using an intermediate material. Further, as shown in the results at 525 ° C. and 550 ° C., it was confirmed that the tensile strength of the joined body was improved by using the intermediate material.
中間材を用いて525℃で接合処理して得られた接合体では、引張試験の結果、第1部材と第2部材の接合面で破断した。これに対し、550℃で接合処理して得られた接合体では、引張試験の結果、第1部材の中間部分で破断した。これは、接合温度が高く、また加圧によって、第1部材であるAl基複合材料が接合処理時に劣化したことによるものと考えられた。 As a result of the tensile test, the joined body obtained by performing the joining treatment at 525 ° C. using the intermediate material was broken at the joining surface of the first member and the second member. On the other hand, the joined body obtained by the joining treatment at 550 ° C. was broken at the intermediate portion of the first member as a result of the tensile test. This was considered to be because the bonding temperature was high and the Al-based composite material as the first member deteriorated during the bonding process due to pressurization.
この550℃で接合処理して得られた接合体の引張強度は、第1部材の本来の引張強度(材料特性)よりも極めて低い値である。このため同条件にて作製した接合体の破断面を観察したところ、第1部材の厚み方向にクラックが発生していることが確認された。さらにこのクラック部分を走査型電子顕微鏡(SEM)による観察しエネルギー分散型X線分析装置(EDX)により組成分析を行ったところ、接合界面に2024合金に含まれるCuがこのクラックの近傍に偏析し、かつ、第1部材と第2部材との界面に近いほどCu濃度が高くなっていることが確認された。このことから、Cuの第1部材への拡散が第1部材の低融点化を引き起こし、接合処理時の加圧によってクラックが発生し、伸展したものと考えられた。 The tensile strength of the joined body obtained by the joining treatment at 550 ° C. is extremely lower than the original tensile strength (material characteristics) of the first member. For this reason, when the fracture surface of the joined body produced on the same conditions was observed, it was confirmed that the crack has generate | occur | produced in the thickness direction of the 1st member. Furthermore, when this crack portion was observed with a scanning electron microscope (SEM) and composition analysis was performed with an energy dispersive X-ray analyzer (EDX), Cu contained in the 2024 alloy was segregated near the crack at the joint interface. And it was confirmed that Cu concentration became high, so that it was near the interface of the 1st member and the 2nd member. From this, it was considered that the diffusion of Cu into the first member caused the first member to have a low melting point, cracks were generated by the pressurization during the bonding process, and extended.
この結果からは、接合圧力を低下させることが望ましいと考えられる。また、中間材としては、接合対象であるAl基複合材料へ拡散してAl基複合材料を低融点化させることのない元素からなるMg含有Al合金を用いることが、より好ましいと考えられる。 From this result, it is considered desirable to reduce the bonding pressure. Further, as the intermediate material, it is considered more preferable to use an Mg-containing Al alloy made of an element that does not diffuse into the Al-based composite material to be joined and lower the melting point of the Al-based composite material.
図4に接合体の接合温度と変形度との関係を示す。中間材を用いずに接合を行ったものと比較して、中間材を挿入することによる接合体の変形は生じていないと判断することができる。 FIG. 4 shows the relationship between the joining temperature and the degree of deformation of the joined body. It can be determined that deformation of the joined body due to the insertion of the intermediate material does not occur as compared with the case where the joining is performed without using the intermediate material.
また、図5に第1部材(Al基複合材料)のみの変形度を、接合温度との関係で示す。これについても、中間材を用いた場合と用いない場合とでは実質的な差はなく、図5に示される差は測定誤差の範囲内と判断できる。 FIG. 5 shows the degree of deformation of only the first member (Al-based composite material) in relation to the bonding temperature. Also in this case, there is no substantial difference between the case where the intermediate material is used and the case where the intermediate material is not used, and it can be determined that the difference shown in FIG.
図6に処理雰囲気を窒素ガス雰囲気とした場合の接合体の接合温度と引張強度との関係を示す。なお図6には、比較のために、第2部材(AC4C)単体を同温度で同時間処理したものの引張強度を併記している。この図6に示されるように、接合処理を窒素ガス雰囲気において行った場合にも、中間材を用いることによって、引張強度が向上していることが確認された。中間材を用いて525℃で処理して得た接合体と中間材を用いずに550℃で処理して得た接合体とは同等の引張強度を示しており、中間材を用いることにより、第1部材と第2部材を低温で強く接合することができることがわかる。 FIG. 6 shows the relationship between the bonding temperature and the tensile strength of the bonded body when the processing atmosphere is a nitrogen gas atmosphere. For comparison, FIG. 6 also shows the tensile strength of the second member (AC4C) alone processed at the same temperature for the same time. As shown in FIG. 6, it was confirmed that the tensile strength was improved by using the intermediate material even when the joining process was performed in a nitrogen gas atmosphere. The joined body obtained by processing at 525 ° C. using the intermediate material and the joined body obtained by processing at 550 ° C. without using the intermediate material show equivalent tensile strength, and by using the intermediate material, It can be seen that the first member and the second member can be strongly bonded at a low temperature.
10…接合体、12…第1部材(Al基複合材料)、14…第2部材(Al基複合材料またはAl合金)、16…中間層、18…中間材。
DESCRIPTION OF
Claims (4)
前記第1部材と前記第2部材との間に、中間材として0.2〜3質量%のマグネシウムを含有するアルミニウムまたはアルミニウム合金を介在させて、
前記第1部材と前記第2部材に所定の圧力を印加し、かつ、前記第1部材と前記第2部材の接合部をマグネシウムの拡散温度に加熱することを特徴とするアルミニウム基複合材料の接合方法。 A method of joining a first member made of an aluminum matrix composite material and a second member made of an aluminum matrix composite material or an aluminum alloy,
Between the first member and the second member, an aluminum or aluminum alloy containing 0.2 to 3 mass% magnesium as an intermediate material is interposed,
A predetermined pressure is applied to the first member and the second member, and a bonding portion between the first member and the second member is heated to a diffusion temperature of magnesium. Method.
中間層を介して前記第1部材と接合されたアルミニウム基複合材料またはアルミニウム合金からなる第2部材とを具備し、
前記中間層は0.2〜3質量%のマグネシウムを含有するアルミニウムまたはアルミニウム合金からなることを特徴とするアルミニウム基複合材料接合体。 A first member made of an aluminum-based composite material;
A second member made of an aluminum-based composite material or an aluminum alloy joined to the first member via an intermediate layer;
The said intermediate | middle layer consists of aluminum or aluminum alloy containing 0.2-3 mass% magnesium, The aluminum group composite material joined body characterized by the above-mentioned.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006074686A JP2007245219A (en) | 2006-03-17 | 2006-03-17 | Joining method of aluminum radical composite material and joined body of aluminum radical composite material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006074686A JP2007245219A (en) | 2006-03-17 | 2006-03-17 | Joining method of aluminum radical composite material and joined body of aluminum radical composite material |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007245219A true JP2007245219A (en) | 2007-09-27 |
Family
ID=38590047
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006074686A Pending JP2007245219A (en) | 2006-03-17 | 2006-03-17 | Joining method of aluminum radical composite material and joined body of aluminum radical composite material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007245219A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010094683A (en) * | 2008-10-14 | 2010-04-30 | Panasonic Corp | Diffusion bonding method of aluminum alloy |
WO2013157455A1 (en) * | 2012-04-16 | 2013-10-24 | 住友軽金属工業株式会社 | Method for manufacturing aluminum clad material, and aluminum clad material |
JP2015033716A (en) * | 2013-08-09 | 2015-02-19 | 株式会社Uacj | Method of manufacturing aluminum alloy brazing sheet, and aluminum alloy brazing sheet obtained by the manufacturing method |
WO2018198898A1 (en) * | 2017-04-25 | 2018-11-01 | 日立オートモティブシステムズ株式会社 | Piston |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63220987A (en) * | 1987-03-06 | 1988-09-14 | Natl Res Inst For Metals | Diffused joining method for aluminum to alumina ceramics |
JPH03243287A (en) * | 1990-02-21 | 1991-10-30 | Kobe Steel Ltd | Method for joining al-base composite material to al material |
-
2006
- 2006-03-17 JP JP2006074686A patent/JP2007245219A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63220987A (en) * | 1987-03-06 | 1988-09-14 | Natl Res Inst For Metals | Diffused joining method for aluminum to alumina ceramics |
JPH03243287A (en) * | 1990-02-21 | 1991-10-30 | Kobe Steel Ltd | Method for joining al-base composite material to al material |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010094683A (en) * | 2008-10-14 | 2010-04-30 | Panasonic Corp | Diffusion bonding method of aluminum alloy |
WO2013157455A1 (en) * | 2012-04-16 | 2013-10-24 | 住友軽金属工業株式会社 | Method for manufacturing aluminum clad material, and aluminum clad material |
JP2013220435A (en) * | 2012-04-16 | 2013-10-28 | Sumitomo Light Metal Ind Ltd | Method for manufacturing aluminum clad material and aluminum clad material |
JP2015033716A (en) * | 2013-08-09 | 2015-02-19 | 株式会社Uacj | Method of manufacturing aluminum alloy brazing sheet, and aluminum alloy brazing sheet obtained by the manufacturing method |
WO2018198898A1 (en) * | 2017-04-25 | 2018-11-01 | 日立オートモティブシステムズ株式会社 | Piston |
JP2018184852A (en) * | 2017-04-25 | 2018-11-22 | 日立オートモティブシステムズ株式会社 | piston |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Shirzadi et al. | Joining ceramics to metals using metallic foam | |
TWI633637B (en) | Exothermic plate and manufacturing method thereof, and semiconductor package and semiconductor module having the same | |
Wang et al. | Microstructure and XRD analysis in the interface zone of Mg/Al diffusion bonding | |
JPH0249267B2 (en) | ||
Smorygo et al. | Evolution of the interlayer microstructure and the fracture modes of the zirconia/Cu–Ag–Ti filler/Ti active brazing joints | |
JP2003170280A (en) | Method for connecting different kinds of metallic materials | |
Wang et al. | Formation of intermetallic compounds in Mg–Ag–Al joints during diffusion bonding | |
JP3364402B2 (en) | Al metal joint | |
JP2007245219A (en) | Joining method of aluminum radical composite material and joined body of aluminum radical composite material | |
US7468493B2 (en) | Method of connecting aluminum alloy die cast member | |
WO2010110476A1 (en) | Joint material and method of joining | |
JP5877276B2 (en) | Bonding structure and electronic member bonding structure | |
Yan et al. | Vibration assisted brazing of SiCp/A356 composites: microstructure and mechanical behaviour | |
JP2004188452A (en) | Composite member and its manufacturing method | |
JP5236535B2 (en) | Joining material for Al alloy-ceramic composite material and method for producing the same | |
Maj et al. | Shear strength of reactive resistance welded Ti6Al4V parts with the use of Ni (V)/Al multilayers | |
JP4131809B2 (en) | Metal-ceramic composite material joined body and method for producing the same | |
JP6769169B2 (en) | Method for manufacturing a bonded body of a ceramic substrate and an aluminum-impregnated silicon carbide porous body | |
JPH07256445A (en) | Lining method for copper alloy | |
JPH05201777A (en) | Ceramic-metal joined body | |
Cooke et al. | Diffusion brazing of Al6061/15 vol. Pct Al 2 O 3 p using a Cu-Sn interlayer | |
TWI355680B (en) | ||
JP2007319896A (en) | Method for joining aluminum-based members | |
JP2024055631A (en) | Production method of metal joint | |
Hua et al. | Half-transient liquid phase diffusion welding: an approach for diffusion welding of SiC p/A356 with Cu interlayer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20081212 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100514 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110830 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111027 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20111124 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20111129 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20111125 |