JPH1045481A - Ceramics metal joined body - Google Patents

Ceramics metal joined body

Info

Publication number
JPH1045481A
JPH1045481A JP21793096A JP21793096A JPH1045481A JP H1045481 A JPH1045481 A JP H1045481A JP 21793096 A JP21793096 A JP 21793096A JP 21793096 A JP21793096 A JP 21793096A JP H1045481 A JPH1045481 A JP H1045481A
Authority
JP
Japan
Prior art keywords
layer
metal
joined
ceramic
based layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21793096A
Other languages
Japanese (ja)
Inventor
Hiroki Fujimoto
広樹 藤本
Masaya Ito
正也 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP21793096A priority Critical patent/JPH1045481A/en
Publication of JPH1045481A publication Critical patent/JPH1045481A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the joined body in which a metallic joining layer for joining a ceramic body to be joined and a metallic body to be joined to each other, consists of a material that has appropriate deformability and is hardly subjected to hardening due to eutectic formation and the like in it and accordingly, which has an excellent stress relaxing effect. SOLUTION: This joined body 1 is formed by joining a ceramic body to be joined 2 and a metallic body to be joined 6 to each other through a metallic joining layer 7. At this time, the metallic joining layer 7 comprises an Ag based layer 3 that is formed on the side of the ceramic body to be joined 2 and contains >=80wt.% Ag, and an Ni based layer 4 that is formed on the opposite side to the ceramic body 2 through the Ag based layer 3 and consists essentially of Ni. Since the Ag based layer 3 contg. >=80wt.% Ag has sufficient deformability and yet, any eutectic and the like is hardly formed in the layer 3 at the time of solidifying it, the Ag based layer 3 also functions as a stress relaxing layer, together with the Ni based layer 4. That is, since both of the layers 3 and 4 show their respective stress relaxing effects, stress fracture of the ceramic body 2 can be prevented from occurring even when the deference in linear expansion coefficient between the ceramic body to be joined 2 and the metallic body to be joined 6 is considerably large.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、セラミックスと金
属の接合体に関する。
The present invention relates to a joined body of ceramic and metal.

【0002】[0002]

【従来の技術】セラミックスは、その高温強度、耐摩耗
性、電気絶縁性等の優れた特性を活かし、自動車用部品
をはじめ様々な産業分野に適用される。しかし、材料の
脆さに起因する信頼性の問題や、難加工材であるため加
工コストが高くつくなどの点から、従来よりセラミック
スは、金属材料と接合により組み合わせて用いられるこ
とが多い。ここで、そのようなセラミックスと金属の接
合技術としては、焼きばめ、圧入、ろう付け、固相拡散
接合などが用いられているが、接合部の機械加工等前処
理の簡便さからろう付けによる接合が特に有用である。
ろう材としては、例えばAgをベースとするもの、例え
ばAg−Cu−Ti系等のろう材が広く用いられてい
る。
2. Description of the Related Art Ceramics are applied to various industrial fields such as automobile parts by making use of their excellent properties such as high-temperature strength, wear resistance and electric insulation. However, ceramics have conventionally been often used in combination with metal materials from the viewpoints of reliability problems due to the brittleness of the material and high processing costs due to the difficulty in processing the material. Here, as such a joining technique of ceramics and metal, shrink fit, press fitting, brazing, solid phase diffusion bonding, etc. are used, but brazing is performed due to simplicity of pre-processing such as machining of the joint. Is particularly useful.
As the brazing material, for example, a brazing material based on Ag, for example, an Ag-Cu-Ti-based brazing material is widely used.

【0003】[0003]

【発明が解決しようとする課題】ところで、セラミック
スと金属とをろう付けにより接合する場合、両者の線膨
張係数の差が問題になることが多く、該差が大きいと接
合後の冷却時に大きな引張応力が発生してセラミックス
部分が破壊されることがある。そこで、ろう材層を比較
的柔らかい材質で構成しておけば、該ろう材層が塑性変
形することにより上記応力をある程度緩和することがで
きる。ここで、前述のAg系ろう材においては、Agは
比較的柔らかいが、加熱・接合処理時に生ずる液相の流
動性を高めるために比較的多量のCuが添加されてお
り、Agの含有量は多くとも70重量%程度までに留め
られている。この場合、Ag含有量が少ない上に、Ag
−Cu系の固溶体あるいは共晶が形成されてろう材層が
硬化するので前述の応力緩和効果はあまり期待できな
い。そこで、ろう材層とは別にCu等の軟質金属を主体
とする中間層を介挿して、該中間層の塑性変形により応
力を緩和することも考えられるが、セラミックスと金属
の線膨張係数の差が相当大きい場合には十分な緩衝効果
が得られない問題がある。
When a ceramic and a metal are joined by brazing, a difference in the coefficient of linear expansion between the two often becomes a problem. If the difference is large, a large tensile force is applied during cooling after joining. The ceramic part may be destroyed due to stress. Therefore, if the brazing material layer is made of a relatively soft material, the stress can be reduced to some extent by plastically deforming the brazing material layer. Here, in the above-mentioned Ag-based brazing material, Ag is relatively soft, but a relatively large amount of Cu is added in order to enhance the fluidity of the liquid phase generated during the heating / joining treatment. It is limited to at most about 70% by weight. In this case, the Ag content is low and the Ag content is low.
Since the Cu-based solid solution or eutectic is formed and the brazing material layer is hardened, the above-mentioned stress relaxation effect cannot be expected so much. Therefore, it is conceivable to interpose an intermediate layer mainly composed of a soft metal such as Cu separately from the brazing material layer to relieve the stress by plastic deformation of the intermediate layer. Is too large, there is a problem that a sufficient buffer effect cannot be obtained.

【0004】本発明の課題は、セラミックス系被接合体
と金属系被接合体とを互いに接合する金属系接合層が、
適度な変形能を有して共晶生成等による硬化を起こしに
くい材質で構成され、ひいては応力緩和効果に優れたセ
ラミックスと金属の接合体を提供することにある。
[0004] An object of the present invention is to provide a metal-based bonding layer for bonding a ceramic-based bonded body and a metal-based bonded body to each other,
An object of the present invention is to provide a bonded body of ceramics and metal which is made of a material having an appropriate deformability and hardly causing hardening due to eutectic formation and the like, and which is excellent in stress relaxation effect.

【0005】[0005]

【課題を解決するための手段及び作用・効果】上述の課
題を解決するために本発明の接合体は、セラミックス系
被接合体と金属系被接合体とが金属系接合層を介して互
いに接合されるとともに、その金属系接合層が、セラミ
ックス系被接合体の側に形成されてAgを80重量%以
上含有するAg系層と、Niを主成分とし、Ag系層を
挟んでセラミックス系被接合体とは反対側に形成された
Ni系層とを含むことを特徴とする。
Means for Solving the Problems and Actions / Effects In order to solve the above-mentioned problems, a bonded body of the present invention is formed by bonding a ceramic-based bonded body and a metal-based bonded body to each other via a metal-based bonding layer. In addition, the metal-based bonding layer is formed on the ceramic-based bonded body side and includes an Ag-based layer containing 80% by weight or more of Ag and a ceramic-based coating that is mainly composed of Ni and sandwiches the Ag-based layer. And a Ni-based layer formed on the side opposite to the joined body.

【0006】上記構成においては、例えばAg系層がろ
う材層として機能する場合、これがAgを80重量%以
上含んで変形能に富み、しかも凝固時に共晶等も生じに
くいので応力緩和層としても機能しうるものとなる。ま
た、Ni系層は従来の接合体と同様に応力緩衝層として
機能する。このように、両層がいずれも応力緩和効果を
示すこととなるので、その相乗作用により、例えばセラ
ミックス系被接合体と金属系被接合体との間の線膨張係
数の差が相当大きい場合でもセラミツクスの応力破壊を
防ぐことができ、ひいては高強度で健全な接合体を得る
ことができる。なお、Ag系層中のAgの含有量が80
重量%以下になると応力緩和効果が十分に得られなくな
るので、上記Agの含有量は80重量%以上、望ましく
は90重量%以上の範囲で調整される。
In the above structure, for example, when the Ag-based layer functions as a brazing filler metal layer, it contains 80% by weight or more of Ag and has a high deformability, and since a eutectic or the like is hardly generated at the time of solidification, it can be used as a stress relaxation layer. It will work. Further, the Ni-based layer functions as a stress buffer layer as in the case of the conventional bonded body. As described above, since both layers exhibit a stress relaxation effect, the synergistic action of the two layers enables, for example, even when the difference in the coefficient of linear expansion between the ceramic-based article and the metal-based article is considerably large. It is possible to prevent stress fracture of the ceramics, and to obtain a high-strength and sound bonded body. The Ag content in the Ag-based layer was 80%.
When the content is less than 10% by weight, a sufficient stress relaxation effect cannot be obtained. Therefore, the content of Ag is adjusted within a range of 80% by weight or more, preferably 90% by weight or more.

【0007】図1(a)は、そのような接合体の例を概
念的に表したものである。すなわち、接合体(1)にお
いては、金属系接合層(7)がAg系層(3)及びNi
系層(4)とを含み、セラミックス系被接合体(2)、
Ag系層(3)、Ni系層(4)及び金属系被接合体
(6)がこの順序で互いに隣接するように接合・一体化
されている。なお、金属系接合層は、Ni系層と金属系
被接合体との間に形成された別のAg系層を含むものと
することもできる。このように構成することで、セラミ
ックス系被接合体と金属系被接合体との接合強度をさら
に高めることができる。この別のAg系層もAg含有量
が80重量%以上、望ましくは90重量%以上の範囲で
調整される。その例を図1(b)に概念的に示してい
る。すなわち、該接合体(1)においては、金属系接合
層(7)がAg系層(3)、Ni系層(4)及び別のA
g系層(5)とを含み、セラミックス系被接合体
(2)、Ag系層(3)、Ni系層(4)、Ag系層
(5)及び金属系被接合体(6)がこの順序で互いに隣
接するように接合・一体化されている。
FIG. 1A conceptually shows an example of such a joined body. That is, in the bonded body (1), the metal-based bonding layer (7) is composed of the Ag-based layer (3) and Ni.
And a ceramic-based article (2),
The Ag-based layer (3), the Ni-based layer (4), and the metal-based article (6) are joined and integrated so as to be adjacent to each other in this order. Note that the metal-based bonding layer may include another Ag-based layer formed between the Ni-based layer and the metal-based bonded object. With this configuration, the bonding strength between the ceramic-based workpiece and the metal-based workpiece can be further increased. This other Ag-based layer is also adjusted to have an Ag content of 80% by weight or more, preferably 90% by weight or more. An example is conceptually shown in FIG. That is, in the bonded body (1), the metal-based bonding layer (7) includes the Ag-based layer (3), the Ni-based layer (4), and another A-based layer (4).
g-based layer (5), and the ceramic-based article (2), the Ag-based layer (3), the Ni-based layer (4), the Ag-based layer (5), and the metal-based article (6) They are joined and integrated so as to be adjacent to each other in order.

【0008】次に、Ag系層は、実質的にその全体をA
gで構成してもよいが、Ag以外の成分を適宜含有させ
ることができ、例えば活性金属成分としてTi,Zr,
Hfの1種又は2種以上を合計で10重量%以下の範囲
で含有させることができる。これら活性金属成分は、セ
ラミックスとの化学的結合層を形成することによりその
接合性を高める働きをなす。なお、活性金属の含有量が
10重量%を超えるとセラミックス被接合体との界面反
応生成物の量が増大して接合強度が低下するため、活性
金属の含有量は10重量%以下、望ましくは5重量%以
下の範囲で調整するのがよい。
Next, the Ag-based layer is substantially entirely formed of A
g, but components other than Ag can be included as appropriate. For example, Ti, Zr,
One or more kinds of Hf can be contained in a range of 10% by weight or less in total. These active metal components serve to enhance the bondability by forming a chemical bonding layer with the ceramic. If the content of the active metal exceeds 10% by weight, the amount of the interface reaction product with the ceramic joined body increases and the bonding strength decreases. Therefore, the content of the active metal is 10% by weight or less, desirably. It is preferable to adjust the amount within a range of 5% by weight or less.

【0009】Ag系層には、上記活性金属成分以外に、
Ni、Pd等の金属成分を含有させることもできる。例
えば、Niを添加することでろう材層の耐熱性を向上さ
せる効果が達成できる。また、Pdはろう材層の耐熱性
を向上させる他、Ag系層が金属系被接合体の側にも形
成される場合は、該金属系被接合体粒界へのAg成分の
浸透を抑さえ、その脆化を防止ないし抑制する効果も有
する。なお、上述のような金属成分を含有させる場合
は、活性金属成分を除いたそれら金属成分の合計含有量
を5重量%以下とする。なお、Ag系層においては、A
gと固溶体あるいは共晶を形成してこれを硬化させるC
uはなるべく添加しないことが望ましく、例えばその添
加量は1重量%以下とするのがよい。
In the Ag-based layer, in addition to the active metal component,
Metal components such as Ni and Pd can be contained. For example, the effect of improving the heat resistance of the brazing material layer can be achieved by adding Ni. Further, Pd improves the heat resistance of the brazing filler metal layer and, when the Ag-based layer is also formed on the metal-based bonded body side, suppresses the penetration of the Ag component into the metal-based bonded body grain boundary. Even this has the effect of preventing or suppressing the embrittlement. When the above metal components are contained, the total content of those metal components excluding the active metal component is set to 5% by weight or less. In the Ag-based layer, A
g to form a solid solution or eutectic and harden it
It is desirable not to add u as much as possible, for example, the addition amount is preferably 1% by weight or less.

【0010】次に、Ni系層は、Ni成分の含有量を8
0重量%以上とすることが望ましい。Ni含有量が80
重量%未満になると、Ni以外の含有成分がAg系層内
に拡散して、Ag系層による応力緩和効果が損なわれる
場合がある。この場合、Niの含有量はさらに望ましく
は90重量%とするのがよい。なお、Ni系層において
も、Ag系層中のAgと反応して固溶体あるいは共晶を
形成するCuはなるべく添加しないことが望ましく、例
えばその添加量は1重量%以下とするのがよい。
Next, the Ni-based layer has a Ni component content of 8%.
It is desirably 0% by weight or more. Ni content is 80
When the content is less than% by weight, the components other than Ni diffuse into the Ag-based layer, and the stress relaxation effect of the Ag-based layer may be impaired. In this case, the Ni content is more desirably 90% by weight. Also in the Ni-based layer, it is desirable that Cu that reacts with Ag in the Ag-based layer to form a solid solution or a eutectic is not added as much as possible. For example, the addition amount is preferably 1% by weight or less.

【0011】セラミックス系被接合体は、例えばSi3
4、SiC、TiC、Al23、MgO、ZrO2、T
iO2等を主体に構成することができる。また、金属系
被接合体は、Ni、Fe、Nb、Ti、Zr、Mo、M
n、W、Pt、Pd、Ta及びそれらを主成分とする合
金により構成することができる。ここで、金属系接合層
を上述のように構成する本発明の接合体は、セラミック
ス系被接合体と金属系被接合体とを、その室温から50
0℃までの温度範囲における線膨張係数の差が5×10
-6/℃以上、特に7×10-6/℃以上となる材質を選定
した場合に、その応力緩和効果をより有効に引き出すこ
とができる。換言すれば、従来の構成では線膨張係数の
差に基づく応力を緩和しきれなかった上述のような被接
合体の組合せにおいても、本発明の構成によれば十分な
接合強度を確保できるのである。具体例としては、Al
23とクロムモリブデン鋼、ステンレス鋼等の鉄系材料
との組合せ、あるいはSi34とクロムモリブデン鋼、
ステンレス鋼等の鉄系材料との組合せなどを例示でき
る。
[0011] The ceramic-based article is, for example, Si 3
N 4 , SiC, TiC, Al 2 O 3 , MgO, ZrO 2 , T
It can be mainly composed of iO 2 or the like. Further, the metal-based bonded object is made of Ni, Fe, Nb, Ti, Zr, Mo, M
It can be composed of n, W, Pt, Pd, Ta and an alloy containing them as main components. Here, the joined body of the present invention, in which the metal-based joining layer is configured as described above, is configured such that the ceramic-based joined body and the metal-based joined body are separated from the room temperature by 50%.
5 × 10 difference in linear expansion coefficient in the temperature range up to 0 ° C.
When a material having a temperature of −6 / ° C. or more, particularly 7 × 10 −6 / ° C. or more, is selected, the effect of relaxing the stress can be more effectively obtained. In other words, even in the above-described combination of the objects to be welded, in which the stress based on the difference in linear expansion coefficient cannot be alleviated in the conventional configuration, the configuration of the present invention can secure a sufficient bonding strength. . As a specific example, Al
Combination of 2 O 3 with iron-based materials such as chromium molybdenum steel, stainless steel, or Si 3 N 4 and chromium molybdenum steel,
Examples include combinations with iron-based materials such as stainless steel.

【0012】本発明の接合体は、例えば図2に示すよう
に、セラミックス系被接合体となるべきセラミック部材
(12)と、同じく金属系被接合体となるべき金属部材
(16)との間に、Ag系層を構成することとなるAg
系金属板(あるいは箔:13,15)及びNi系層を構
成することとなるNi系金属板(あるいは箔:14)を
挟み込んで互いに接触させ、これに所定の雰囲気で加熱
する等の接合処理を施して一体化することにより製造す
ることができる。具体的には、接合処理中にAg系金属
板を一旦溶融させ、そのときに生ずる液相を介して接合
を行ういわゆるろう接処理のほか、液相を生じない固相
拡散処理、あるいはホットプレスや摩擦圧接等の方法を
採用することもできる。
As shown in FIG. 2, for example, the joined body of the present invention is formed between a ceramic member (12) to be a ceramic-based joined body and a metal member (16) also to be a metal-based joined body. Ag that constitutes the Ag-based layer
A bonding process such as sandwiching a Ni-based metal plate (or foil: 13 or 15) and a Ni-based metal plate (or foil: 14) that constitutes a Ni-based layer and bringing them into contact with each other and heating them in a predetermined atmosphere. And can be manufactured by integrating them. Specifically, in addition to the so-called brazing process in which the Ag-based metal plate is once melted during the joining process and joining is performed through the liquid phase generated at that time, a solid phase diffusion process that does not generate a liquid phase, or hot pressing Or a method such as friction welding.

【0013】なお、Ag系層が活性金属成分あるいはそ
の他の合金成分を含有する場合、上記Ag系金属板は、
該Ag系層に対応する組成の合金からなる単一の板材と
して構成することができる。一方、そのような単一板材
に代えて、例えばAg板と、合金成分の単体金属板との
積層体を使用し、加熱時に溶融ないし拡散によりそれら
を融合・均質化してAg系層とする方法も可能である。
また、セラミック部材(あるいは金属部材)の表面に対
し、高融点金属法や蒸着法により活性金属成分あるいは
その他の合金成分のメタライジング層を形成し、これに
Ag板を積層して加熱することにより、メタライジング
層の成分を拡散させてAg系層を形成する構成としても
よい。一方、金属部材の表面には、Ag系金属板(ろう
材)の溶融に基づく液相との濡れ性を改善するために、
必要に応じてニッケルメッキ等を施すこともできる。
When the Ag-based layer contains an active metal component or another alloy component, the Ag-based metal plate is
It can be configured as a single plate made of an alloy having a composition corresponding to the Ag-based layer. On the other hand, in place of such a single plate material, for example, a method of using a laminate of an Ag plate and a single metal plate of an alloy component and fusing and homogenizing them by heating or melting to form an Ag-based layer upon heating. Is also possible.
Further, a metallizing layer of an active metal component or another alloy component is formed on the surface of a ceramic member (or a metal member) by a refractory metal method or a vapor deposition method, and an Ag plate is laminated thereon and heated. Alternatively, the composition of the metallizing layer may be diffused to form an Ag-based layer. On the other hand, on the surface of the metal member, in order to improve the wettability with the liquid phase based on the melting of the Ag-based metal plate (brazing material),
If necessary, nickel plating or the like can be applied.

【0014】ここで、加熱等の接合処理を行った場合の
必然的な結果として、セラミックス系被接合体、Ag系
層、Ni系層、(別のAg系層)、及び金属系接合体の
各隣接境界(あるいは接合界面)付近には、成分の拡散
ないし反応により拡散層あるいは反応層が形成されるこ
とがある。これに対応して、Ag系層中のAg濃度及び
Ni系層中のNi濃度は、その隣接境界に近づくにつれ
上記拡散ないし反応の影響を受けて変化することがあ
る。そこで、本発明の接合体において範囲を規定してい
るAg系層中のAg濃度及びNi系層中のNi濃度は、
いずれも各層中において上述のような拡散ないし反応の
影響を受けていない部分(いわゆるバルク部分)の平均
濃度を意味するものとする。なお、これら成分の濃度
は、公知の方法、例えば電子プローブ・マイクロ・アナ
ライザ(EPMA)、X線マイクロ・アナライザ(XM
A)、エネルギー分散型X線分析(EDX)、波長分散
分光法(WDS)、オージェ電子分光法(AES)等に
より特定することができる。
[0014] Here, as a necessary result of performing a bonding process such as heating, a ceramic-based bonded body, an Ag-based layer, a Ni-based layer, (another Ag-based layer), and a metal-based bonded body are required. A diffusion layer or a reaction layer may be formed in the vicinity of each adjacent boundary (or bonding interface) due to diffusion or reaction of components. Correspondingly, the Ag concentration in the Ag-based layer and the Ni concentration in the Ni-based layer may change under the influence of the diffusion or reaction as approaching the adjacent boundary. Therefore, the Ag concentration in the Ag-based layer and the Ni concentration in the Ni-based layer defining the range in the joined body of the present invention are as follows:
In any case, it means the average concentration of a portion (so-called bulk portion) which is not affected by the above-mentioned diffusion or reaction in each layer. The concentrations of these components can be determined by known methods such as an electron probe microanalyzer (EPMA) and an X-ray microanalyzer (XM
A), energy dispersive X-ray analysis (EDX), wavelength dispersion spectroscopy (WDS), Auger electron spectroscopy (AES), and the like.

【0015】[0015]

【実施例】以下本発明の実施例を説明する。すなわち、
図2(b)に示す位置関係で、各種セラミック部材12
(直径10mm、長さ50mm)、Ag系金属板としてのA
g系ろう材板13及び15(直径10mm、厚さ0.05
mm)、Ni系金属板14(直径10 mm、厚さ0.5m
m)、及び各種金属部材16(直径10mm、長さ50m
m)とを重ね合わせ、図示しない治具を用いてこれらを
固定した。なお、各金属部材16の接合面側には、Ag
系ろうとの濡れ性改善のため、厚さ3μmの電解ニッケ
ルメッキを施した。そして、上述の治具に固定された試
料を所定の温度に加熱してろう付けを行い、図1(b)
に示す接合体1を得た。
Embodiments of the present invention will be described below. That is,
In the positional relationship shown in FIG.
(Diameter 10mm, length 50mm), A as Ag-based metal plate
g-based brazing plates 13 and 15 (diameter 10 mm, thickness 0.05
mm), Ni-based metal plate 14 (diameter 10 mm, thickness 0.5 m)
m) and various metal members 16 (diameter 10 mm, length 50 m)
m) were overlaid, and they were fixed using a jig (not shown). In addition, the joining surface side of each metal member 16 has Ag
In order to improve the wettability with the solder, electrolytic nickel plating having a thickness of 3 μm was applied. Then, the sample fixed to the jig is heated to a predetermined temperature and brazed, and FIG.
The joined body 1 shown in FIG.

【0016】なお、図2において、セラミック部材12
の材質としては、Si34(線膨張係数:α=2.4×
10-6/℃)、A123(α=7.1×10-6/℃)、
Zr02(α=10.6×10-6/℃)の3種類を用い
た。また、金属部材16の材質としては、ステンレス鋼
(SUS316,α=14.5×10-6/℃),クロム
モリブデン鋼(SCM430,α=13.7×10-6
℃〕の2種類を用いた。一方、Ag系ろう材板13,1
5の材質としては、Ag−4重量%Ti合金(その他の
含有元素:合計0.5重量%以下)、Ag−4重量%P
d−3重量%Ti合金(その他含有元素:合計0.5重
量%以下)の2種類を用いた。さらにNi系金属板14
の材質としては、純Ni(純度99.9%以上)、Ni
−4重量Mo合金(その他含有元素:合計0.5%以
下)、及びNi−2重量%Mo−2重量%A1合金(そ
の他含有元素:合計0.8%以下)の3種類を用いた。
It should be noted that in FIG.
Is made of Si 3 N 4 (linear expansion coefficient: α = 2.4 ×
10 -6 / ℃), A1 2 0 3 (α = 7.1 × 10 -6 / ℃),
Three types of ZrO 2 (α = 10.6 × 10 −6 / ° C.) were used. The material of the metal member 16 is stainless steel (SUS316, α = 14.5 × 10 −6 / ° C.), chromium molybdenum steel (SCM430, α = 13.7 × 10 −6 / ° C).
° C]. On the other hand, Ag-based brazing material plates 13 and 1
As the material of No. 5, Ag-4 wt% Ti alloy (other contained elements: total 0.5 wt% or less), Ag-4 wt% P
Two kinds of d-3% by weight Ti alloy (other contained elements: 0.5% by weight or less in total) were used. Further, a Ni-based metal plate 14
Of pure Ni (purity of 99.9% or more), Ni
-4 wt% Mo alloy (other content elements: 0.5% or less in total) and Ni-2 wt% Mo-2 wt% A1 alloy (other content elements: 0.8% or less in total) were used.

【0017】接合体1(図1)を形成するために採用し
た上記セラミック部材12及び金属部材16の組合せ
を、その線膨張係数αの差とともに表1に示す。そし
て、接合体1は、セラミック部材12及び金属部材16
のすべての組合せについて、表2に示す各組合せ(a〜
b、w〜z)によるAg系ろう材板13,15及びNi
系金属板14を用いて作製した。なお、表2において、
※を付したものは本発明の範囲外(比較例)であること
を示す。なお、組合せdについてはNi系金属板14に
代えてCu板を用いた。また、組合せeについてはNi
系金属板14を省略した(いずれも比較例)。
Table 1 shows the combinations of the ceramic member 12 and the metal member 16 employed to form the joined body 1 (FIG. 1), together with the difference in their linear expansion coefficients α. The joined body 1 includes the ceramic member 12 and the metal member 16.
Of all combinations shown in Table 2 (a to
b, w to z) Ag-based brazing plates 13, 15 and Ni
It was manufactured using the base metal plate 14. In Table 2,
The ones marked with * indicate that they are outside the scope of the present invention (comparative examples). For the combination d, a Cu plate was used instead of the Ni-based metal plate 14. For the combination e, Ni
The system metal plate 14 was omitted (all were comparative examples).

【0018】こうして得られた接合体から幅4 mm、厚さ
3 mmの角柱状の抗折試験片を切り出し、JISR160
1(セラミックスの曲げ強度試験方法)に記載された方
法に基づいて、室温にて各試験片の4点曲げ強度を測定
した。結果を表1に示す。なお、各試料とも試験片の個
数はn=4で行った。また、曲げ試験終了後に試験片の
破断面を走査電子顕微鏡により観察した。さらに、試験
片を接合面に対して垂直に切断し、X線マイクロアナラ
イザ(XMA)を用いてAg系層3及び5中のAg濃度
及びNi系層4中のNi濃度を分析した。結果を表2に
示す。なお、測定は一つの試料に対し5ケ所ずつを行
い、その平均値を採用した。
From the joint obtained in this way, a width of 4 mm and a thickness of 4 mm
A 3 mm prismatic bending test specimen was cut out and subjected to JISR160.
Based on the method described in 1 (Test Method for Bending Strength of Ceramics), the four-point bending strength of each test piece was measured at room temperature. Table 1 shows the results. In each sample, the number of test pieces was n = 4. After the completion of the bending test, the fracture surface of the test piece was observed with a scanning electron microscope. Further, the test piece was cut perpendicular to the bonding surface, and the Ag concentration in the Ag-based layers 3 and 5 and the Ni concentration in the Ni-based layer 4 were analyzed using an X-ray microanalyzer (XMA). Table 2 shows the results. In addition, the measurement was performed at five locations for one sample, and the average value was adopted.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【表2】 [Table 2]

【0021】表1からも明らかなように、本発明の実施
例に係る試験片(a〜c、w、f〜h、x〜z)につい
ては、いずれも170MPa以上の高強度を示してお
り、特に線膨張係数αの差が5×10-6/℃以上のセラ
ミック部材12及び金属部材16の組合せにおいては、
実施例の試験片は比較例の試験片(d、e、i〜k)に
比べて高い強度を示していることがわかる。そして、A
gを90重量%以上含有するAg系ろう材板13を使用
した試験片a〜c及びf〜hは特に良好な強度を示し、
とりわけαの差が7×10-6/℃以上の組合せにおける
強度が高くなっていることがわかる。なお図3及び図4
は、Ag系ろう材板13,15及びNi系金属板14
(図2)の各組合せについて、それらを用いて作製した
接合体1の曲げ強度を、αの差との関係で示したグラフ
である。
As is clear from Table 1, the test pieces (ac, w, fh, xz) according to the examples of the present invention all have high strength of 170 MPa or more. In particular, in a combination of the ceramic member 12 and the metal member 16 in which the difference in linear expansion coefficient α is 5 × 10 −6 / ° C. or more,
It can be seen that the test piece of the example shows higher strength than the test pieces (d, e, i to k) of the comparative example. And A
The test pieces a to c and f to h using the Ag-based brazing plate 13 containing 90% by weight or more of g show particularly good strength,
In particular, it can be seen that the strength is increased in combinations where the difference in α is 7 × 10 −6 / ° C. or more. 3 and 4
Are Ag-based brazing plates 13 and 15 and Ni-based metal plates 14
FIG. 4 is a graph showing the bending strength of the joined body 1 produced using each of the combinations shown in FIG. 2 in relation to the difference in α.

【0022】そして、その破断面観察から、比較例の試
験片については、αの差が5×10-6/℃以上となる組
合せにおいてセラミックス系被接合体の部分に応力破壊
によるキレ、カケなどが確認され、破断がそれらを起点
に拡大・進行していることがわかった。一方、実施例の
試験片については、そのようなキレ、カケ等は観察され
なかった。これらのことから、αの差が5×10-6/℃
以上では、比較例の接合体においては、金属系接合層で
の応力緩和が不十分となってセラミックス系被接合体2
に破壊の起点となるキレやカケ等の欠陥が発生し、結果
として強度が低下してしまうのに対し、実施例の接合体
ではAg系層とNi系層の両方が応力緩衝層として働く
ため、αの差が大きくなっても応力が十分に緩和され、
高い接合強度が達成されるものと考えられる。
From the observation of the fracture surface, it was found that the test piece of the comparative example had cracks, chips, etc. due to stress rupture at the portion of the ceramic-based article in a combination where the difference of α was 5 × 10 −6 / ° C. or more. Was confirmed, and it was found that the rupture was expanding and proceeding from the starting point. On the other hand, with respect to the test pieces of the examples, such sharpness and chipping were not observed. From these, the difference of α is 5 × 10 −6 / ° C.
As described above, in the bonded body of the comparative example, the stress relaxation in the metal-based bonding layer is insufficient and the ceramic-based bonded body 2
Defects such as nicks and chips, which are the starting points of destruction, occur, and as a result, the strength is reduced. On the other hand, in the joined body of the embodiment, both the Ag-based layer and the Ni-based layer act as stress buffer layers. Even if the difference of α becomes large, the stress is sufficiently relaxed,
It is believed that high bonding strength is achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のセラミックスと金属の接合体の模式
図。
FIG. 1 is a schematic view of a joined body of a ceramic and a metal according to the present invention.

【図2】図1の接合体を作製するための、セラミックス
部材、Ag系ろう材板、Ni系金属板及び金属部材の配
置を示す図。
FIG. 2 is a diagram showing an arrangement of a ceramic member, an Ag-based brazing material plate, a Ni-based metal plate, and a metal member for producing the joined body of FIG.

【図3】実施例の試験結果を示すグラフ。FIG. 3 is a graph showing test results of an example.

【図4】実施例の試験結果を示す別のグラフ。FIG. 4 is another graph showing test results of the example.

【符号の説明】[Explanation of symbols]

1 接合体 2 セラミックス系被接合体 3 Ag系層 5 別のAg系層 4 Ni系層 6 金属系被接合体 7 金属系接合層 REFERENCE SIGNS LIST 1 bonded body 2 ceramic-based bonded body 3 Ag-based layer 5 another Ag-based layer 4 Ni-based layer 6 metal-based bonded body 7 metal-based bonded layer

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B23K 20/12 B23K 20/12 G Continued on the front page (51) Int.Cl. 6 Identification number Office reference number FI Technical display location B23K 20/12 B23K 20/12 G

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 セラミックス系被接合体と金属系被接合
体とが金属系接合層を介して互いに接合されるととも
に、その金属系接合層が、前記セラミックス系被接合体
の側に形成されてAgを80重量%以上含有するAg系
層と、Niを主成分とし、前記Ag系層を挟んで前記セ
ラミックス系被接合体とは反対側に形成されたNi系層
とを含むことを特徴とするセラミックスと金属の接合
体。
1. A ceramic joint body and a metal joint body are joined to each other via a metal joint layer, and the metal joint layer is formed on the ceramic joint body side. An Ag-based layer containing 80% by weight or more of Ag and a Ni-based layer containing Ni as a main component and formed on the opposite side of the ceramic-based joined body with the Ag-based layer interposed therebetween. Ceramic-metal joint.
【請求項2】 セラミックス系被接合体と金属系被接合
体とが金属系接合層を介して互いに接合されるととも
に、その金属系接合層が、前記セラミックス系被接合体
の側に形成されてAgを90重量%以上含有するAg系
層と、Niを主成分とし、前記Ag系層を挟んで前記セ
ラミックス系被接合体とは反対側に形成されたNi系層
とを含むことを特徴とするセラミックスと金属の接合
体。
2. A ceramic jointed body and a metal jointed body are joined to each other via a metal jointed layer, and the metal jointed layer is formed on the ceramic jointed body side. An Ag-based layer containing 90% by weight or more of Ag and a Ni-based layer containing Ni as a main component and formed on the opposite side of the ceramic-based joined body with the Ag-based layer interposed therebetween. Ceramic-metal joint.
【請求項3】 前記金属系接合層は、前記Ni系層と前
記金属系被接合体との間に形成されてAgを80重量%
以上含有する別のAg系層を含む請求項1又は2に記載
の接合体。
3. The metal-based bonding layer is formed between the Ni-based layer and the metal-based workpiece, and contains 80% by weight of Ag.
The joined body according to claim 1, further comprising another Ag-based layer contained above.
【請求項4】 前記セラミックス系被接合体と前記金属
系被接合体とは、その室温から500℃までの温度範囲
における線膨張係数の差が5×10-6/℃以上となる材
質によりそれぞれ構成されている請求項1ないし3のい
ずれかに記載の接合体。
4. The ceramic-based article and the metal-based article are each made of a material having a difference in linear expansion coefficient in a temperature range from room temperature to 500 ° C. of 5 × 10 −6 / ° C. or more. The joined body according to any one of claims 1 to 3, which is constituted.
【請求項5】 前記セラミックス系被接合体と前記金属
系被接合体とは、その室温から500℃までの温度範囲
における線膨張係数の差が7×10-6/℃以上となる材
質によりそれぞれ構成されている請求項1ないし3のい
ずれかに記載の接合体。
5. The ceramic-based joined body and the metal-based joined body are each made of a material having a difference in linear expansion coefficient in a temperature range from room temperature to 500 ° C. of 7 × 10 −6 / ° C. or more. The joined body according to any one of claims 1 to 3, which is constituted.
JP21793096A 1996-07-30 1996-07-30 Ceramics metal joined body Pending JPH1045481A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21793096A JPH1045481A (en) 1996-07-30 1996-07-30 Ceramics metal joined body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21793096A JPH1045481A (en) 1996-07-30 1996-07-30 Ceramics metal joined body

Publications (1)

Publication Number Publication Date
JPH1045481A true JPH1045481A (en) 1998-02-17

Family

ID=16711954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21793096A Pending JPH1045481A (en) 1996-07-30 1996-07-30 Ceramics metal joined body

Country Status (1)

Country Link
JP (1) JPH1045481A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030047720A (en) * 2001-12-10 2003-06-18 미쓰비시덴키 가부시키가이샤 Optical fiber holder, optical fiber grating forming apparatus, optical fiber grating forming method, and optical fiber grating

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030047720A (en) * 2001-12-10 2003-06-18 미쓰비시덴키 가부시키가이샤 Optical fiber holder, optical fiber grating forming apparatus, optical fiber grating forming method, and optical fiber grating

Similar Documents

Publication Publication Date Title
US7776454B2 (en) Ti brazing strips or foils
KR100734794B1 (en) Method for making a joint between copper and stainless steel
US3444613A (en) Method of joining carbide to steel
JPS6341970B2 (en)
Ceccone et al. An evaluation of the partial transient liquid phase bonding of Si3N4 using Au coated Ni 22Cr foils
JPH0624855A (en) Metal-ceramic joined body, metal-ceramic composite structure using the body and its production
JPH0777989B2 (en) Method for manufacturing ceramic-metal bonded body
US20060131359A1 (en) Titanium braze foil
Zheng et al. Partial transient liquid-phase bonding of Si3N4 with Ti/Cu/Ni multi-interlayers
JPH1045481A (en) Ceramics metal joined body
US20180169796A1 (en) Brazing processes and brazed products
JPH07232284A (en) Joining of titanium alloy and iron base metal using intermediate member
CN115335187B (en) Composite material
GB2252930A (en) Braze bonding of oxidation-resistant foils
JP7192165B1 (en) Composite material
JP2007245219A (en) Joining method of aluminum radical composite material and joined body of aluminum radical composite material
Brochu et al. PTLPB of Si3N4 to FA-129 using nickel as a core interlayer
JP3504716B2 (en) Ceramic bonded body with stress buffer metal layer
CN211688841U (en) Joint structure for connecting ceramic and metal
JP2506330B2 (en) Method for producing composite material composed of metal and ceramics
US20150258627A1 (en) Layer composite
JP3365575B2 (en) Joint of ceramic and metal
JP4754372B2 (en) Manufacturing method of dissimilar material joined body
JPH09248633A (en) Composite punch for fine perforation and its manufacture
JP3176015B2 (en) Joint of ceramic and metal