JP4482654B2 - Heat resistant material for high energy density equipment - Google Patents

Heat resistant material for high energy density equipment Download PDF

Info

Publication number
JP4482654B2
JP4482654B2 JP2004230524A JP2004230524A JP4482654B2 JP 4482654 B2 JP4482654 B2 JP 4482654B2 JP 2004230524 A JP2004230524 A JP 2004230524A JP 2004230524 A JP2004230524 A JP 2004230524A JP 4482654 B2 JP4482654 B2 JP 4482654B2
Authority
JP
Japan
Prior art keywords
heat
high energy
energy density
tungsten
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004230524A
Other languages
Japanese (ja)
Other versions
JP2006043751A5 (en
JP2006043751A (en
Inventor
重彦 高岡
真人 秋場
和義 佐藤
哲 鈴木
幸一郎 江里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ALMT Corp
Original Assignee
ALMT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ALMT Corp filed Critical ALMT Corp
Priority to JP2004230524A priority Critical patent/JP4482654B2/en
Publication of JP2006043751A publication Critical patent/JP2006043751A/en
Publication of JP2006043751A5 publication Critical patent/JP2006043751A5/ja
Application granted granted Critical
Publication of JP4482654B2 publication Critical patent/JP4482654B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Description

本発明は、高エネルギー密度利用X線源や発電機器などの高温高負荷で使用される電極等の耐熱部材に関する。   The present invention relates to a heat-resistant member such as an electrode used at a high temperature and high load such as an X-ray source utilizing high energy density and a power generation device.

近年、大パワー固定X線陽極、MHD(Magneto−Hydro−Dynamics;電磁流体力学)発電、核融合炉等の高エネルギー密度のビーム利用機器の電極等の部材に、その過酷な放電負荷や熱負荷に耐える材料が要求されている。これに対し、高融点で耐熱性が高く、放電消耗の少ないタングステン(W)およびW合金の使用が望まれているが、その難加工性、高比重や機械的脆さ、あるいは組立て時の部材間の接合の難しさが問題となる。そのため、そのような高エネルギー密度利用機器用耐熱部材として、他材質基材、特にその加工性や熱伝導性に優れた銅(Cu)およびCu合金製基材との接合体の開発が進められている。さらに、CuおよびCu合金よりも高温で使用できるNi合金やステンレス製基材との接合体の開発が望まれている。   In recent years, the severe discharge load and heat load on members such as electrodes of high energy density beam utilization equipment such as high power fixed X-ray anode, MHD (Magneto-Hydro-Dynamics) power generation, fusion reactor, etc. The material which can endure is required. On the other hand, the use of tungsten (W) and W alloy with high melting point, high heat resistance and low discharge consumption is desired, but its difficult workability, high specific gravity and mechanical brittleness, or a member during assembly Difficult to join between the two becomes a problem. Therefore, as such a heat-resistant member for high energy density utilization equipment, development of a joined body with another material base material, particularly a base material made of copper (Cu) and Cu alloy having excellent workability and thermal conductivity is advanced. ing. Furthermore, development of a joined body with a Ni alloy or a stainless steel base material that can be used at a higher temperature than Cu and Cu alloy is desired.

例えば、工業用非破壊検査に使用されるX線透過装置は、検査対象の高精細化観察の要求からX線源である固定X線陽極は、高出力化あるいは高電流密度化が要求されている。それに伴い、入力電子線の高入力化ならびに電子線の小径化が進み、陽極の熱負荷あるいは熱負荷密度が大きくなっている。そのため、従来のろう接接合では、界面温度がろう材融点を超え、ろう材の溶融によるボイドの発生、またそのボイドによる熱伝導の低下から、さらなる温度の上昇によるろう材の溶融範囲拡大となり、最終的に使用不可能となる恐れが強まっている。   For example, X-ray transmission devices used for industrial non-destructive inspection require high output or high current density for fixed X-ray anodes that are X-ray sources due to the demand for high-definition observation of inspection objects. Yes. Along with this, higher input electron beams and smaller electron beam diameters have progressed, and the thermal load or thermal load density of the anode has increased. Therefore, in the conventional brazing joint, the interface temperature exceeds the melting point of the brazing material, the generation of voids due to the melting of the brazing material, and the decrease in heat conduction due to the voids, the melting range of the brazing material will be expanded due to further increase in temperature, There is a growing risk of eventually becoming unusable.

また、MHD発電機は、石炭などの化石燃料の導電性ガスを高磁界中に流し、熱エネルギーを電力に直接変換する発電機である。このMHD発電機においては発電機内壁の電極部材には大きな熱負荷とともに、電気的負荷も発生する。すなわち電気的負荷とは電極に電流が流れる際、雰囲気が導電性ガスであるため、電流の流出入時アークが発生し電極を損傷させることである。   The MHD generator is a generator that directly converts thermal energy into electric power by flowing a conductive gas of fossil fuel such as coal in a high magnetic field. In this MHD generator, the electrode member on the inner wall of the generator generates an electrical load as well as a large heat load. That is, the electrical load means that when an electric current flows through the electrode, the atmosphere is a conductive gas, so that an arc is generated when the electric current flows in and out and the electrode is damaged.

また、核融合炉のプラズマ対向材料においても、大きな熱負荷を受けるとともに、高エネルギーの荷電粒子ビームによるエロージョン、すなわち大量の粒子負荷を受けることにより生じるスパッタリング損耗が核融合反応の継続的発生に大きな影響を与えることが問題視されている。   Also, the plasma facing material of a fusion reactor is subject to a large heat load, and erosion due to a high energy charged particle beam, that is, the sputtering wear caused by receiving a large amount of particle load, is significant for the continuous generation of the fusion reaction. It is regarded as a problem to influence.

上記の大きな熱負荷やアーク放電損耗およびエロージョンに対し、高融点で耐アーク性、耐エロージョン性に優れ、損耗の少ないWと熱伝導率が高く水冷効果の大きいCuおよびCu合金を接合体として用いることにより、W単体の電極部に比べ熱負荷を軽減でき長寿命化が期待できる。   Cu and Cu alloys with high melting point, excellent arc resistance and erosion resistance, high wear resistance, high heat conductivity and water cooling effect against the above large heat load and arc discharge wear and erosion. As a result, it is possible to reduce the thermal load compared to the electrode unit of W alone and to expect a longer life.

これらの接合体では、接合部にボイド等の空間が存在すると熱伝導性が低下するのみならず、熱の集中(ヒートスポット)が生じ局部溶融等による剥離の恐れがある。そのため、熱伝導が低下しない密着性の良好な接合体が必要となる。また、高熱負荷下において変形・脱落が起きない十分な接合強度が必要である。   In these joined bodies, when there is a void or the like in the joined portion, not only the thermal conductivity is lowered, but heat concentration (heat spot) is generated and there is a risk of peeling due to local melting or the like. Therefore, a bonded body with good adhesion that does not decrease thermal conductivity is required. Further, it is necessary to have a sufficient bonding strength that does not cause deformation or dropout under a high heat load.

WとCuは相互に固溶・拡散が起こらないため、ただ単に接触させ加熱しただけでは接合の難しい異種材料接合の代表である。   Since W and Cu do not dissolve or diffuse with each other, they are representatives of dissimilar material bonding that is difficult to bond simply by contacting and heating.

通常、異種材料の接合に使用される接合方法としては、アーク、TIG、レーザー、電子ビーム等を用いた融接接合(溶接)、ろう接接合、摩擦圧接法、鋳ぐるみ法などがある。   Usually, as a joining method used for joining different kinds of materials, there are fusion welding (welding) using an arc, TIG, laser, electron beam or the like, brazing welding, a friction welding method, a casting method, and the like.

融接は一般に「溶接」と称され、溶接しようとする部位同士を加熱し、溶加材とを融合させて溶融金属を作り、これを凝固させ接合する方法であり、鉄系金属を中心に広く構造物等の接合に使用されている。   Fusion welding is generally referred to as “welding” and is a method in which the parts to be welded are heated and fused with a filler metal to create a molten metal, which is solidified and joined. Widely used for joining structures.

しかし、融接法では母材を溶融する必要があるため、母材の融点以上の温度に加熱することが必須である。また、母材の溶融、凝固を伴うため組織変化、すなわち再結晶およびその粗大化が避けえないため残留応力変形および組織変化により融接継手部近傍の脆化、強度低下等の特性変化が生じる。そのため、溶融、凝固にともなう結晶粒粗大化による材料の脆化が顕著なことから、耐熱材料であるWに対して適用が困難である。   However, since it is necessary to melt the base material in the fusion welding method, it is essential to heat to a temperature higher than the melting point of the base material. In addition, structural changes due to melting and solidification of the base metal, that is, recrystallization and coarsening thereof are unavoidable. Therefore, residual stress deformation and structural changes cause changes in properties such as embrittlement near the welded joint and reduced strength. . Therefore, the material becomes brittle due to the coarsening of crystal grains accompanying melting and solidification, so that it is difficult to apply to W which is a heat resistant material.

ろう接は、ろう付けとも称され、母材を溶融することなく、溶加材と呼ばれる母材よりも低い融点をもつ金属を溶融し、その毛細管現象および母材金属との反応を利用し接合面の隙間に行き渡らせて接合を行う方法である。そのため、母材の溶融、凝固にともなう結晶粒粗大化や脆化が生じないほか、施工温度が低いため熱応力を抑えることができるとともに、母材の組織変化が無い等の利点がある。さらに、ろう接は難溶融性金属のように、母材溶融に対して高エネルギーが必要な場合、あるいは凝固時に割れが生しやすい材料や異種材料の接合にも適している。   Brazing is also called brazing, and without melting the base material, it melts a metal having a melting point lower than that of the base material called filler metal, and joins it by utilizing its capillary phenomenon and reaction with the base metal. This is a method of joining by spreading over the gaps between the surfaces. Therefore, there is an advantage that the crystal grain coarsening and embrittlement accompanying the melting and solidification of the base material do not occur, the thermal stress can be suppressed because the construction temperature is low, and there is no structural change of the base material. Furthermore, brazing is suitable for joining materials such as hardly fusible metals that require high energy for melting the base material, or materials that are prone to cracking during solidification or dissimilar materials.

しかしながら、ろう接は接合強度が融接法に比し低いだけでなく、ばらつきが大きいため信頼性が低いことが問題である。また、ボイド等のヒートスポットが生じやすく熱伝導性が低下する可能性が高い欠点がある。しかも、使用ろう材の融点により使用温度が制限される。   However, brazing not only has a bonding strength lower than that of the fusion welding method, but also has a problem that reliability is low due to large variation. In addition, there is a drawback that heat spots such as voids are likely to occur, and the thermal conductivity is likely to decrease. In addition, the operating temperature is limited by the melting point of the brazing material used.

その他に、直接WとCuの板同士を接合する方法として、特許文献1においてHIP接合が提案されている。HIP(Hot Isostatic Press;熱間等静圧圧縮成形)による接合の場合、装置が大掛かりでコスト的に不利である。かつ圧力の均一伝達のため、接合材全体を覆うカプセル内に真空密封する必要があり、形状的な制約が大きい。また、3次元方向からの圧力がかかるためこの点からも形状的な制約が大きい。しかも、電極体等ではW電極がCu冷却部より突き出た形状の要求も多く、HIP接合では対応不能である。さらにカプセルは一般に加工性、変形性の必要から軟鋼製とするが、高温になるとW中に鉄分の拡散を生じW部が脆化する恐れがある。 In addition, as a method for directly joining W and Cu plates, HIP joining is proposed in Patent Document 1. In the case of joining by HIP (Hot Isostatic Press), the apparatus is large and disadvantageous in terms of cost. In addition, for uniform transmission of pressure, it is necessary to vacuum seal in a capsule covering the entire bonding material, and there is a great limitation in shape. Moreover, since pressure from a three-dimensional direction is applied, the shape restriction is also great from this point. However also many shapes requests the W electrodes protruding from Cu cooling unit in the electrode body or the like, the HIP bonding is impossible correspond. Furthermore, capsules are generally made of mild steel because of the need for workability and deformability. However, when the temperature becomes high, iron may diffuse in W and the W portion may become brittle.

WとCuの接合法として、摩擦圧接接合法も提案されている。例えば、特許文献2において、インサート材を用いたW基金属材とCu基金属材の摩擦圧接方法にする接合法が提案されている。この方法においては、インサート材の使用によりWとCuの間に熱伝導係数がCuより低いニオブ(Nb)等の中間層の存在で熱伝導性が低下することが問題となる。一般に円形断面材の接合に用いられる方法であり、一部接合する一方の素材を角断面とした例もある。いずれにせよ丸棒状素材が必要である等の形状的制約もある。さらに、接合する部材同士の回転中心が一致している必要があり、ひとつの基材に多数本の電極を設置する電極体には適用できない。 A friction welding method has also been proposed as a method for joining W and Cu. For example, in Patent Document 2, the bonding method has been proposed about the W group friction welding method for a metal material and the Cu-based metal material using the insert metal. In this method, the use of an insert material causes a problem that the thermal conductivity is lowered due to the presence of an intermediate layer such as niobium (Nb) having a lower thermal conductivity coefficient than Cu between W and Cu. This method is generally used for joining circular cross-section materials, and there is an example in which one of the materials to be joined is a square cross section. In any case, there is a shape restriction such as the need for a round bar material. Furthermore, the rotation centers of the members to be joined need to coincide with each other, and cannot be applied to an electrode body in which a large number of electrodes are installed on one base material.

鋳ぐるみ法は、しばしばWとCuの接合に用いられている。すなわち、鋳型内に高融点のW基材をセットし、低融点のCuを溶かした溶湯を流し込み凝固させW基材を固定する方法である。この場合、ガスの巻き込みや凝固の際の引け巣の制御が難しいため、ボイド等のヒートスポットが生じやすく熱伝導性が低下する可能性が高い欠点がある。また、Cu基材部は、鋳造体となるため、一般の塑性加工を施されたCu素材から加工された基材よりも機械的性質が劣る。   The cast-in method is often used for joining W and Cu. That is, this is a method in which a W base material having a high melting point is set in a mold, and a molten metal in which low melting point Cu is melted is poured and solidified to fix the W base material. In this case, since it is difficult to control the shrinkage nest at the time of gas entrainment or solidification, there is a defect that heat spots such as voids are likely to occur and the thermal conductivity is likely to be lowered. Further, since the Cu base portion becomes a cast body, the mechanical properties are inferior to those of a base material processed from a Cu material subjected to general plastic processing.

さらに、少なくともW基材接合面の周囲の一部にもCuが回り込む必要があり、一面同士の接合は不可能であり、適用できる接合体の形状が制限される。   Furthermore, it is necessary for Cu to wrap around at least a part of the periphery of the W base material joining surface, so that joining of the one surface is impossible, and the shape of the joined body that can be applied is limited.

他に積層法として、PVDおよびCVD成膜法がある。   Other lamination methods include PVD and CVD film formation methods.

しかしながら、電極体等ではW電極がCu冷却部より突き出た形状の要求も多い。また、平面形状の電極体においても寿命や冷却能力の負荷軽減から厚肉化の要求が高まっている。比較的厚膜成膜が可能な溶射法においても、1mm程度が限界で、その密着強度や信頼性の低さ、さらにポアの存在が避けられない、突出形状品の製作は不可能、等の欠点がある。   However, there are many demands for a shape in which the W electrode protrudes from the Cu cooling part in the electrode body or the like. In addition, there is an increasing demand for thicker electrode bodies having a planar shape because of reduced life and cooling capacity. Even in the thermal spraying method capable of forming a relatively thick film, the limit is about 1 mm, the adhesion strength and the reliability are low, the presence of pores is unavoidable, and the production of protruding products is impossible. There are drawbacks.

以上のように、WとCuの接合に対して熱伝導性を低下させない良好な密着性および実用十分な強度が得られ、かつ適用形状に制限を受けない接合法の開発が求められている。   As described above, there has been a demand for the development of a bonding method that can provide good adhesion and practically sufficient strength that do not lower the thermal conductivity with respect to the bonding of W and Cu, and that is not limited by the application shape.

それに対し、本発明者らはWとCuを直接固相接合するため、W部材の一部にテーパー部を形成させCu基材に圧入加工した複合体を開発した(特許文献3、参照)。その特許文献3に開示された接合体は、上記要求に応えるものであったが、WとCuは相互に固溶・相互拡散しない組合わせのため、Cuの流動、塑性変形の反力および熱膨張差から発生する締め付け力等の機械的接触により密着性を得ている。そのためWとCuの界面部にはミクロ組織レベルでの未接触部の存在は否定できず、熱伝導性の低下の問題点が考えられた。   On the other hand, the present inventors have developed a composite in which a tapered portion is formed on a part of a W member and press-fitted into a Cu base material in order to directly solid-phase bond W and Cu (see Patent Document 3). The joined body disclosed in Patent Document 3 meets the above requirements. However, because W and Cu are not a solid solution / interdiffusion of each other, the flow of Cu, the reaction force of plastic deformation and heat Adhesion is obtained by mechanical contact such as tightening force generated from the difference in expansion. Therefore, the existence of a non-contact portion at the microstructure level cannot be denied at the interface portion between W and Cu, and the problem of a decrease in thermal conductivity was considered.

一般に、WとCuの接合体の製作には、ろう接や鋳ぐるみ法が用いられるが、ボイド等の欠陥による熱伝導性の低下やヒートスポットの発生、および熱膨張係数の差が大きな問題となり、この問題をなくすことができれば、WとCuの組合せ以外の熱膨張係数の差が大きい異種材料接合体にも適用可能である。例えば、Cu以外でも、大きな熱膨張係数を持つニッケル(Ni)およびNi合金、ステンレス合金等がCuよりも高温に耐えられるヒートシンクやバッキングプレートとして使用できる。   In general, brazing and cast-in methods are used to manufacture W and Cu joints, but there are significant problems such as a decrease in thermal conductivity due to voids and other defects, generation of heat spots, and differences in thermal expansion coefficients. If this problem can be eliminated, the present invention can be applied to a dissimilar material joined body having a large difference in thermal expansion coefficient other than the combination of W and Cu. For example, other than Cu, nickel (Ni), a Ni alloy, a stainless alloy, or the like having a large thermal expansion coefficient can be used as a heat sink or backing plate that can withstand higher temperatures than Cu.

ここで、熱膨張係数は、非特許文献1によれば、20〜500℃においてW:4.6、Cu18.3、Ni15.2、18−8ステンレス18.4(×10−6/K)である。 Here, according to the nonpatent literature 1, a thermal expansion coefficient is W: 4.6, Cu18.3, Ni15.2, 18-8 stainless steel 18.4 (* 10 < -6 > / K) in 20-500 degreeC. It is.

特許文献3に開示された接合体は、その要求に応じえるものであったが、前記のようにWとCuの界面部にはミクロレベルでの未接触部の存在は否定できず、この点を改善し熱的な抵抗を減少させることが必要とされる。   Although the joined body disclosed in Patent Document 3 can meet the demand, as described above, the existence of a non-contact portion at the micro level cannot be denied at the interface portion between W and Cu. There is a need to improve the thermal resistance.

特開平11−190787号公報JP-A-11-190787 特開平8−323485号公報JP-A-8-323485 特開2001−293576号公報JP 2001-293576 A 金属データブック(日本金属学会編、改訂3版)Metal Data Book (Edited by the Japan Institute of Metals, 3rd edition) 「ハイパーリフラクトリーメタルとしての傾斜機能材料の進歩」、金属‘97−2月号第117頁〜第124頁“Progress of Functionally Gradient Materials as Hyperrefractive Metals”, Metals '97 -February, pages 117-124

本発明の技術的課題は、更なる熱伝導性の向上による冷却能の負荷軽減を目指し、従来の接合体をさらに改善し、WとCuやNiのように熱膨張係数の差が大きい異種材料において密着性に優れた、且つ熱伝導性を向上させた接合体等の高エネルギー密度利用機器用耐熱部材とその製造方法とを提供することにある。   The technical problem of the present invention is to further reduce the cooling capacity by further improving the thermal conductivity, further improving the conventional joined body, and dissimilar materials having a large difference in thermal expansion coefficient such as W and Cu or Ni Is to provide a heat-resistant member for high energy density utilization equipment such as a joined body having excellent adhesion and improved thermal conductivity, and a method for producing the same.

本発明は、上述の事情を鑑みてなされたものであり、WとCuのように熱膨張係数の差が大きい異種材料の接合において熱伝導性の良好な接合体からなる耐高エネルギー密度利用機器用耐熱部材を得るために、特許文献3に開示された接合体における問題点、すなわちWとCuの界面部のミクロレベルでの未接触部の存在の解消を図ったものである。   The present invention has been made in view of the above-mentioned circumstances, and uses a high energy density resistant device comprising a joined body having good thermal conductivity in joining different materials having a large difference in thermal expansion coefficient such as W and Cu. In order to obtain a heat-resistant member for use, the problem in the joined body disclosed in Patent Document 3, that is, the elimination of the non-contact portion at the micro level of the interface portion between W and Cu is solved.

本発明者らは、その具体的手段として、Wと基材、例えば、Cuの界面部に両者と反応する中間層を形成し、Wと中間層、中間層と基材のそれぞれに相互拡散を生じさせ金属組織結合層を生成させ界面部のミクロレベル密着性を向上させる方法を見出し本発明をなすに至ったものである。   As a specific means, the present inventors formed an intermediate layer that reacts with W and the base material, for example, Cu at the interface part, and diffused each of W and the intermediate layer, and the intermediate layer and the base material. The inventors have found a method for producing a metallographic bond layer and improving the adhesion at the micro level of the interface, and have made the present invention.

本発明によれば、先端部にテーパー部を備えたタングステン部材を有し、前記テーパー部に施され前記テーパー部の側面から前記テーパー部内側方向に形成された溝を有し、前記溝を含むテーパー部に形成された中間層が設けられ、前記タングステン部材を前記タングステン部材よりも熱膨張係数の大きい基材に前記基材の軟化点以上の温度で、前記タングステン部材を軸方向に圧入接合することで、前記中間層は、前記タングステン部材及び前記基材との間に形成された金属的結合を有するとともに前記基材が当該溝内部まで食い込んでいることを特徴とする高エネルギー密度利用機器用耐熱部材が得られる。 According to the present invention, it has a tungsten member having a tapered portion at a tip portion, has a groove formed on the tapered portion and formed inward from the side surface of the tapered portion, and includes the groove. an intermediate layer formed tapered portion is provided, wherein the tungsten member at a temperature above the softening point before Kimotozai large substrate coefficient of thermal expansion than the tungsten member, press-bonding the tungsten member in the axial direction Thus, the intermediate layer has a metallic bond formed between the tungsten member and the base material, and the base material bites into the groove. A heat resistant member is obtained.

また、本発明によれば、前記高エネルギー密度利用機器用耐熱部材において、前記タングステン部材ならびに前記基材間の界面の一部に前記中間層として前記金属的結合を有することを特徴とする高エネルギー密度利用機器用耐熱部材が得られる。 Further, according to the present invention is characterized by having the high energy density utilizing equipment heat member odor Te, the metal binding as the intermediate layer in a part of the interface between the pre-Symbol tungsten member and said base A heat-resistant member for equipment using high energy density is obtained.

また、本発明によれば、前記高エネルギー密度利用機器用耐熱部材において、前記金属的結合は、前記タングステン部材の前記溝加工によって形成された溝内を含む前記先端部の全面に渡って形成されていることを特徴とする高エネルギー密度利用機器用耐熱部材が得られる。 According to the present invention, in the heat-resistant member for high energy density utilization equipment, the metallic bond is formed over the entire surface of the tip including the inside of the groove formed by the groove processing of the tungsten member. Thus, a heat-resistant member for high energy density utilization equipment can be obtained.

また、本発明によれば、前記いずれか一つの高エネルギー密度利用機器用耐熱部材において、前記金属的結合は、タングステン−ニッケル又はニッケル−銅から形成されていることを特徴とする高エネルギー密度利用機器用耐熱部材が得られる。 Further, according to the present invention, the in any one of the high energy density utilizing heat member equipment, the metallic binding is tungsten - nickel or nickel - high energy density, characterized in that it is formed of copper A heat-resistant member for use equipment is obtained.

また、本発明によれば、前記いずれか一つの高エネルギー密度利用機器用耐熱部材において、前記金属的結合は、前記タングステン部材の前記基材への圧入接合時に、前記タングステン部材と前記基材との間に設けられたニッケルおよび銅の2層またはニッケル単独層を加熱することによって形成されていることを特徴とする高エネルギー密度利用機器用耐熱部材が得られる。 Further, according to the present invention, in any one of the heat resistant members for high energy density utilization equipment, the metallic bond is obtained by press-bonding the tungsten member to the substrate, and the tungsten member and the substrate. The heat-resistant member for high energy density utilization equipment characterized by being formed by heating two layers of nickel and copper or a single nickel layer provided between the two .

また、本発明によれば、前記高エネルギー密度利用機器用耐熱部材において、前記金属的結合は、厚さ0.5μm以上3μm以下のニッケル被覆層を前記圧入接合時に加熱することによって得られたものであることを特徴とする高エネルギー密度利用機器用耐熱部材が得られる。 Further, according to the present invention, in the heat-resistant member for high energy density utilization equipment, the metallic bond is obtained by heating a nickel coating layer having a thickness of 0.5 μm or more and 3 μm or less during the press-fitting. Thus, a heat-resistant member for high energy density utilization equipment can be obtained.

また、本発明によれば、前記いずれか一つの高エネルギー密度利用機器用耐熱部材において、1体の基材に前記タングステン部材が1本又は2本以上圧入接合されていることを特徴とする高エネルギー密度利用機器用耐熱部材が得られる。   Further, according to the present invention, in any one of the heat resistant members for high energy density utilization equipment, one or more tungsten members are press-fitted and joined to one base material. A heat-resistant member for energy density utilization equipment is obtained.

また、本発明によれば、前記高エネルギー密度利用機器用耐熱部材において、入力熱エネルギー5MW/mにおいて加熱と冷却を各15秒サイクルで3000回、および入力熱エネルギー10MW/mにおいて加熱と冷却時間を各15秒で1000回の熱サイクル試験に耐え、接合部の熱伝達性能の劣化がないことを特徴とする高エネルギー密度利用機器用耐熱部材が得られる。 Further, according to the present invention, in the heat-resistant member for high energy density utilization equipment, heating and cooling are performed 3000 times in each 15-second cycle at an input thermal energy of 5 MW / m 2 and heating at an input thermal energy of 10 MW / m 2 . A heat-resistant member for a high energy density utilization device is obtained, which withstands 1000 heat cycle tests with a cooling time of 15 seconds each and does not deteriorate the heat transfer performance of the joint.

また、本発明によれば、タングステン部材とタングステンより熱膨張係数の大きい基材とを有する高エネルギー密度利用機器用耐熱部材を製造する方法において、前記タングステン部材の先端部にテーパー部を備え、前記テーパー部に、前記テーパー部の側面から前記テーパー部内側方向に溝加工を施す工程と、前記タングステン部材の一部に、当該タングステン部材ならびに前記基材との金属的結合を生成するための中間層を形成する工程と、前記基材の軟化点以上の温度で、前記タングステン部材を前記基材に軸方向に圧入接合し、前記タングステン部材と前記基材との間に前記中間層として前記金属的結合を形成する工程とを有することを特徴とする高エネルギー密度利用機器用耐熱部材の製造方法が得られる。 Further, according to the present invention, a process for preparing heat-resistant member for a high energy density utilizing apparatus having a large base of thermal expansion coefficient than tungsten member and tungsten, comprising a tapered portion at the tip of the tungsten member, wherein A step of grooving the tapered portion from the side surface of the tapered portion toward the inside of the tapered portion, and an intermediate layer for generating a metallic bond with the tungsten member and the base material in a part of the tungsten member The tungsten member is press-fitted in the axial direction to the base material at a temperature equal to or higher than the softening point of the base material, and the metallic layer serves as the intermediate layer between the tungsten member and the base material. A method for producing a heat-resistant member for a high energy density utilization device.

また、本発明によれば、前記高エネルギー密度利用機器用耐熱部材の製造方法において、前記溝加工によって形成された溝内を含む前記先端部の全面に渡って前記タングステン部材ならびに前記基材との前記金属的結合を生成することを特徴とする高エネルギー密度利用機器用耐熱部材の製造方法が得られる。 Further, according to the present invention, in the manufacturing method of the high energy density utilizing equipment heat-resistant member, and the tungsten member and the substrate over the entire surface of the tip portion including the groove formed by the grooving The manufacturing method of the heat-resistant member for high energy density utilization apparatuses characterized by producing | generating the said metallic bond is obtained.

また、本発明によれば、前記高エネルギー密度利用機器用耐熱部材の製造方法において、前記中間層に前記タングステン部材および前記基材の両方に前記金属的結合を夫々生じさせるニッケルおよび銅の2層またはニッケル単独層を用いることを特徴とする高エネルギー密度利用機器用耐熱部材の製造方法が得られる。 Further, according to the present invention, the high energy density in the manufacturing method of the utilizing device for heat-resistant member, prior Symbol intermediate layer on the tungsten member and nickel and copper to produce respectively the metal binding to both of the substrate 2 The manufacturing method of the heat-resistant member for high energy density utilization apparatuses characterized by using a layer or a nickel single layer is obtained.

また、本発明によれば、前記高エネルギー密度利用機器用耐熱部材の製造方法において、前記中間層に、厚さ0.5μm以上3μm以下のニッケルめっきを用いることを特徴とする高エネルギー密度利用機器用耐熱部材の製造方法が得られる。 According to the present invention, in the method for producing a heat-resistant member for high energy density utilization equipment, nickel plating having a thickness of 0.5 μm or more and 3 μm or less is used for the intermediate layer. A heat-resistant member manufacturing method is obtained.

また、本発明によれば、前記いずれか一つの高エネルギー密度利用機器用耐熱部材の製造方法において、1体の基材に前記タングステン部材を1本または2本以上圧入接合することを特徴とする高エネルギー密度利用機器用耐熱部材の製造方法が得られる。   According to the present invention, in any one of the methods for producing a heat-resistant member for high energy density equipment, one or two or more tungsten members are press-fitted and joined to one base material. The manufacturing method of the heat-resistant member for high energy density utilization apparatuses is obtained.

本発明をさらに、具体的に、基材にCuを使用する場合について説明すると、予め所定の径、深さの穴を開けたCu基材に対し、W部材の一部を圧入加工し接合体を得るが、W部材のCu基材に接する部分に中間層としてNiおよびCuを挿入し、WとNi中間層、Ni中間層とCu中間層、Cu中間層とCu基材間に相互拡散を生じさせ、Cu基材とW部材間の熱的抵抗の低減、すなわち接合体の熱伝導性を向上させることにより冷却性を向上させ耐熱性を持った接合体を得ることができる構成である。   The present invention will be described more specifically in the case where Cu is used as a base material. A part of a W member is press-fitted into a Cu base material in which a hole having a predetermined diameter and depth is previously formed, and a joined body. However, Ni and Cu are inserted as intermediate layers in the part of the W member that is in contact with the Cu base material, and interdiffusion between the W and Ni intermediate layers, the Ni intermediate layer and the Cu intermediate layer, and the Cu intermediate layer and the Cu base material is performed. This is a configuration that can improve the cooling performance and reduce the thermal resistance between the Cu base and the W member, that is, improve the thermal conductivity of the joined body, thereby obtaining a joined body having heat resistance.

さらには、本発明では、W部材のテーパー部に構加工を施し、その溝内部にまでCu基材を充填させることにより、熱伝導性を保ちつつ引き抜き強度を向上させた接合体を得ることができる構成である。すなわち引張強度は溝内に充填されたCu基材のせん断破壊に到る強度となる。   Furthermore, in the present invention, it is possible to obtain a joined body having improved pulling strength while maintaining thermal conductivity by performing composition processing on the tapered portion of the W member and filling the inside of the groove with a Cu base material. It is a possible configuration. That is, the tensile strength is the strength that leads to the shear fracture of the Cu base material filled in the groove.

ここで、中間層はめっき、PVDあるいはCVDのような被覆法で形成することが望ましいが、形状や寸法によっては箔や箔を絞り加工等で成形したものでも形成可能であり、また箔を挾み込むだけでも形成可能な場合もある。   Here, the intermediate layer is preferably formed by a coating method such as plating, PVD, or CVD. However, depending on the shape and dimensions, the foil or foil formed by drawing or the like can be formed. In some cases, it can be formed simply by swallowing.

本発明によれば、WとCuやNiのように熱膨張係数の差が大きい異種材料において接合部で熱伝導性に有害な欠陥のない密着性に優れ、実用十分な接合強度を有する接合体等の高エネルギー密度利用機器用耐熱部材とその製造方法とを提供することができる。   According to the present invention, in a dissimilar material having a large difference in thermal expansion coefficient such as W and Cu or Ni, a bonded body having excellent adhesion without defects that are harmful to thermal conductivity at the bonded portion and having practically sufficient bonding strength It is possible to provide a heat-resistant member for a high energy density utilization device such as a manufacturing method thereof.

以下、本発明について更に詳細に説明する。   Hereinafter, the present invention will be described in more detail.

本発明を更に具体的に説明すると、本発明では、WとCuやNiのように熱膨張係数の差が大きい異種材料において熱的密着性、すなわち熱伝導性を向上させ、より耐熱性に優れた高エネルギー密度利用機器用耐熱部材としての接合体を発明したものである。   The present invention will be described in more detail. In the present invention, the thermal adhesion in a dissimilar material having a large difference in thermal expansion coefficient such as W and Cu or Ni is improved, that is, the thermal conductivity is improved, and the heat resistance is further improved. Invented as a heat-resistant member for high energy density utilization equipment.

すなわち、Cu基材20、25とW部材10の接合部にボイドなどの欠陥やヒートスポットの発生による熱伝導性の低下がなくかつ実用十分な引張強度を持つ接合体を得る方法である。なぜなら、高エネルギー密度のビーム利用機器の電極等の耐熱部材に使用する接合体では接合部にボイド等の空間が存在すると熱伝導性が低下するのみならず、熱の集中部(ヒートスポット)となり基材の局部溶融等による剥離や、さらに溶融の進行による全面破損の恐れがある。そのため、熱伝導性の低下の無い密着性の良好な接合体が必要となる。またいずれも外部からの機械的な力がかから無いため必要以上に大きな接合強度は要求されていないが、高温で使用される際に分離しない接合強度は必要であるからである。   That is, this is a method for obtaining a joined body having a practically sufficient tensile strength without causing a decrease in thermal conductivity due to the occurrence of defects such as voids or heat spots at the joint between the Cu base members 20 and 25 and the W member 10. This is because, in a joined body used for a heat-resistant member such as an electrode of a high energy density beam application device, if there is a void or the like in the joined portion, not only the thermal conductivity is lowered but also a heat concentrated portion (heat spot). There is a risk of peeling due to local melting or the like of the base material, and further damage to the entire surface due to the progress of melting. For this reason, a bonded body with good adhesion without a decrease in thermal conductivity is required. In addition, since no external mechanical force is applied, a bonding strength greater than necessary is not required, but a bonding strength that does not separate when used at a high temperature is necessary.

具体的に、本発明の高エネルギー密度利用機器用耐熱部材をなす接合体のW部材とCu基材について説明する。   Specifically, the W member and Cu base material of the joined body constituting the heat-resistant member for high energy density utilization equipment of the present invention will be described.

図1は本発明の第1の実施の形態による接合体を示す断面図である。図2は図1のW丸棒の接合部を主に示す断面図である。   FIG. 1 is a sectional view showing a joined body according to a first embodiment of the present invention. FIG. 2 is a cross-sectional view mainly showing a joint portion of the W round bar of FIG.

図1を参照すると、第1の実施の形態による接合体101は、穴21を備えたCu基材20に、先端部2に周方向に設けられた溝4を備えた溝付きW丸棒10のこの先端部2を圧入した構成である。   Referring to FIG. 1, a joined body 101 according to the first embodiment includes a grooved W round bar 10 provided with a groove 4 provided in a circumferential direction on a tip portion 2 on a Cu base material 20 provided with a hole 21. This tip portion 2 is press-fitted.

図2を参照すると、W部材としての溝付きW丸棒10は、先端部2と、基部7とを備えている。先端部2は円錐台形状であり、先端の第1のテーパー部3と、基部側の第2のテーパー部5と、第1及び第2のテーパー部間3、5間に、周方向に設けられた断面半円形状の溝4とを備えている。第2のテーパー部5と基部7との間にはリング形状の端面6が設けられている。   Referring to FIG. 2, a grooved W round bar 10 as a W member includes a distal end portion 2 and a base portion 7. The distal end portion 2 has a truncated cone shape, and is provided in the circumferential direction between the first tapered portion 3 at the distal end, the second tapered portion 5 on the base side, and between the first and second tapered portions 3, 5. And a groove 4 having a semicircular cross section. A ring-shaped end surface 6 is provided between the second tapered portion 5 and the base portion 7.

また、先端部2の全面に渡って少なくとも1層からなる金属めっき層1が設けられている。   A metal plating layer 1 composed of at least one layer is provided over the entire surface of the tip 2.

図3(a)及び(b)は本発明の第2の実施の形態による接合体を示す図で(a)は側面図、(b)は正面図である。図4は図3(a)及び(b)の接合体の断面図である。   3A and 3B are views showing a joined body according to the second embodiment of the present invention, in which FIG. 3A is a side view and FIG. 3B is a front view. FIG. 4 is a cross-sectional view of the joined body of FIGS. 3 (a) and 3 (b).

図3(a)及び(b)、図4を参照すると、第2の実施の形態による接合体102は、一端に複数に整列した穴26を備えたCu基材25に、図2に示したものと同様の形状の周方向に設けられた溝11を備えた溝付きW丸棒10のこの先端部2を圧入した構成である。   Referring to FIGS. 3 (a), 3 (b), and 4, the bonded body 102 according to the second embodiment is shown in FIG. 2 on a Cu base 25 having a plurality of holes 26 arranged at one end. It is the structure which press-fitted this front-end | tip part 2 of the W round bar 10 with a groove | channel provided with the groove | channel 11 provided in the circumferential direction of the shape similar to the thing.

図1及び図2を参照しながら、本発明を更に具体的に説明する。W部材であるW丸棒10の一端に溝加工による周方向の溝4を施した第1及び第2のテーパー部3、5を形成させ、かつCu基材20に接する部分にNi被覆およびCu被覆を設け、予め機械加工により円筒状の穴21を施したCu基材にCu基材の軟化点以上の温度で圧入し接合体101を得た。その結果、良好な熱伝導性をもつ接合体101が得られた。なお、Ni被覆およびCu被覆はめっき層1で形成することが最も簡単である。以下金属めっき層1を中間層として使用した場合について説明する。   The present invention will be described more specifically with reference to FIGS. First and second tapered portions 3 and 5 having circumferential grooves 4 formed by grooving are formed on one end of a W round bar 10 that is a W member, and a portion that contacts the Cu base 20 is coated with Ni and Cu. A bonded body 101 was obtained by providing a coating and press-fitting the Cu base material, which was previously provided with a cylindrical hole 21 by machining, at a temperature equal to or higher than the softening point of the Cu base material. As a result, a bonded body 101 having good thermal conductivity was obtained. The Ni coating and the Cu coating are easiest to form with the plating layer 1. Hereinafter, the case where the metal plating layer 1 is used as an intermediate layer will be described.

なお、Wに直接Cuをめっきしない理由は、WとCuめっき間で拡散が生じないため密着性が悪く、実用的にはNiめっきを下地めっきとして施すことが望ましいからである。   The reason why Cu is not directly plated on W is that, since no diffusion occurs between W and Cu plating, adhesion is poor, and it is practically desirable to apply Ni plating as a base plating.

Niめっきは、Wに対し拡散性、密着性が良く、直接はんだ付けが不可能なWに、はんだ濡れ性を付与するためしばしばW部材の表面改質処理に使用される。さらに、Niめっき上にCuめっきを施し、めっき焼付け処理により、Niめっき層とCuめっき層間にNi−Cuの全率固溶体層を生じ、さらにCu表面にまでNi拡散したCuリッチ層が得られる。Cu基材と同材質であるCuめっきを施すことにより、圧入作業中の短時間の加熱・冷却時間の間においても圧着効果と相まってCu基材と同材質であるCuめっき間に良好な密着性が得られるとともにCuめっき表面まで拡散してきたNiにより、Ni−Cuの反応層を生じより密着性が高まる。 Ni plating has good diffusibility and adhesion to W, and is often used for surface modification treatment of W members to impart solder wettability to W which cannot be directly soldered. Moreover, subjected to Cu plated on the Ni plating, the plating baking process, resulting a complete solid solution layer of Ni-Cu to Ni plating layer and the Cu plating layers, Cu-rich layer further Ni is diffused to the surface of Cu is obtained . By applying Cu plating, which is the same material as the Cu base material, good adhesion between the Cu base material and the Cu material, which is the same material, combined with the pressure-bonding effect even during a short heating / cooling time during the press-fitting operation. Ni is diffused to the surface of the Cu plating, and a Ni—Cu reaction layer is formed, resulting in higher adhesion.

予備実験にて、Niめっきを1.5μmの厚さでめっきした後、Cuめっきをそれぞれ3、5、7、10μmを施した試験片を作製し、800℃のアニール処理およびその後の圧入温度である900℃での熱処理を実施した後、中央断面にて切断し観察試験片とした。観察試験片の圧入接合界面の拡散状況をX線マイクロアナライザーの線分析にて確認した結果、いずれもNiと相互拡散層が確認されるとともに、Cuめっき表面にまでNiが拡散していた。その結果、Cuめっき厚さは10μmと厚めっきでも効果があることが確認できた。しかしながらメッキ厚の増加は費用増大につながるため、本発明では5μmで評価した。   In a preliminary experiment, after Ni plating was plated to a thickness of 1.5 μm, specimens were prepared by applying Cu plating to 3, 5, 7, and 10 μm, respectively, and annealed at 800 ° C. and the subsequent press-fitting temperature. After carrying out a certain heat treatment at 900 ° C., the specimen was cut at the central section to obtain an observation test piece. As a result of confirming the diffusion state of the press-fit joint interface of the observation test piece by the line analysis of the X-ray microanalyzer, both Ni and the interdiffusion layer were confirmed, and Ni was diffused to the Cu plating surface. As a result, it was confirmed that the Cu plating thickness was 10 μm, and that even thick plating was effective. However, since an increase in plating thickness leads to an increase in cost, the present invention was evaluated at 5 μm.

さらに、Niめっき層の厚さを、0.1、0.5、1.0、3.0および5μmに変化させ、その上にCuめっき5μmを施した試験片を作製し、800℃のアニール処理および900℃での圧入を実施した後、中央断面にて切断し観察試験片とした。その後X線マイクロアナライザーの線分析にて、界面の拡散状況を確認した結果を、それぞれ図5から図9に示す。   Furthermore, the thickness of the Ni plating layer was changed to 0.1, 0.5, 1.0, 3.0, and 5 μm, and a test piece with Cu plating of 5 μm formed thereon was produced, and annealed at 800 ° C. After carrying out the treatment and press-fitting at 900 ° C., the specimen was cut at the central section to obtain an observation test piece. The results of confirming the interface diffusion state by X-ray microanalyzer line analysis are shown in FIGS. 5 to 9, respectively.

いずれにおいても、WとNi、NiとCuの間にそれぞれ相互拡散層が確認された。しかしながら、図5のNiめっきが0.1μmの場合、Niめっき厚が薄いためWとNiの界面部にCuが到達しW/Cuの界面が生じている。WとCuは密着性が悪いためWとCuが直接接することは望ましくない。よって、Niめっき厚は0.5μm以上あることが必要である。また図9に示すようにNiめっき厚が5μmの場合、W層とCu層の間にNi単独層が認められた。NiはWおよびCuよりも熱伝導率低いため、Ni単独層の存在は好ましくないと考えられるため、Niめっき層は3μm以下が好ましい。すなわち図6から図8に示すように、WとNi、NiとCuの間にそれぞれ相互拡散が生じており、かつW/Cu界面やNi単独層存在しない界面を得ることが好ましい。 In both cases, interdiffusion layers were observed between W and Ni and between Ni and Cu, respectively. However, when the Ni plating in FIG. 5 is 0.1 μm, since the Ni plating thickness is thin, Cu reaches the interface between W and Ni, and the W / Cu interface is generated. Since W and Cu have poor adhesion, it is not desirable that W and Cu be in direct contact. Therefore, the Ni plating thickness needs to be 0.5 μm or more. As shown in FIG. 9, when the Ni plating thickness was 5 μm, a single Ni layer was observed between the W layer and the Cu layer. Since Ni has a lower thermal conductivity than W and Cu, it is considered that the presence of Ni single layer is not preferred, Ni plating layer is preferably 3μm or less. That is, as shown in FIG. 8. FIG 6, W and Ni, respectively between the Ni and Cu have occurred interdiffusion, and it is preferable that W / Cu interface and Ni single layer to obtain an interface that does not exist.

なお、WとCuめっき間で拡散が生じないため密着性が悪く、実用的には、Niめっきを下地めっきとして施すことが望ましいと記載したが、近年の薄膜成膜技術の進歩で、例えば、スパッタリングでWにCuを直接成膜することも可能となっている。その場合、充分な密着強度が得られれば、本用途に適用できることは、容易に想像できることである。   In addition, since the diffusion between W and Cu plating does not occur, the adhesion is poor, and it has been described that it is practically desirable to apply Ni plating as a base plating. It is also possible to directly form Cu on W by sputtering. In that case, if sufficient adhesion strength is obtained, it can be easily imagined that it can be applied to this application.

しかしながら、実用上は、第1及び第2のテーパー部付き円錐台形状の先端部の側面(周面)および周面に施された溝の内部まで確実に成膜する必要性から、成膜基材を回転させる等の製造上の課題が生じコスト高や生産性の阻害の要因になることが考えられる。そのため必要に応じ中間層形成方法は、比較選択すればよく、めっきに限られることは無い。   However, in practical use, the film formation base is required because it is necessary to reliably form the side surfaces (peripheral surfaces) of the first and second truncated cone-shaped tip portions and the inside of the grooves formed on the peripheral surfaces. It is considered that manufacturing problems such as rotation of the material occur and become a factor of high cost and productivity. Therefore, if necessary, the intermediate layer forming method may be selected by comparison and is not limited to plating.

また、本発明において、基材材質の一例としてCuについて述べたが、無酸素銅などの純Cuである必要はなく、より高温負荷下で使用されることが予想されるCu合金やNiおよびその合金あるいはステンレス鋼等の高合金鋼などWよりも熱膨張係数が大きく、かつある程度の剛性を有する金属および合金なども適応できる。その場合、基材材質に合わせ拡散反応を生じる中間層材質を選択すればよい。好ましくは基材と同一材質とすべきであるが、合金系の基材の場合その主元素であれば使用できる。前記にCuおよびCu合金の中間層としてNiおよびCuの例を示したが、例えばNiおよびNi合金基材やステンレス鋼基材の場合、中間層はNiのみでも同様な効果が得られる。   In the present invention, Cu has been described as an example of the material of the base material. However, it is not necessary to be pure Cu such as oxygen-free copper, and Cu alloy or Ni which is expected to be used under a higher temperature load and its Metals and alloys having a thermal expansion coefficient larger than W and having a certain degree of rigidity, such as alloys or high alloy steels such as stainless steel, can also be applied. In that case, an intermediate layer material that causes a diffusion reaction may be selected in accordance with the base material. Preferably, it should be made of the same material as the base material, but in the case of an alloy base material, any main element can be used. Although the example of Ni and Cu was shown as an intermediate | middle layer of Cu and Cu alloy above, for example, in the case of a Ni and Ni alloy base material or a stainless steel base material, the same effect is acquired even if an intermediate | middle layer is only Ni.

W部材10の先端部の長さである溝4を含む第1及び第2のテーパー部3、5の寸法、形状はW必要長さあるいは、Cu基材20の接合部面積や形状により決定すればよいが、Cu基材20、の接合用の穴21とW丸棒10中心のセンター合せを容易にするため、W太棒のテーパー先端径、即ち、第1のテーパー部3の先端径は、Cu基材20の穴21の径よりも若干細い径とする事が好ましい。また、Cu基材20の接合用の穴21の周辺に塑性変形を生じさせるため第2のテーパー部の付け根部の径はCu基材20の穴径よりも太径とする必要がある。   The dimensions and shape of the first and second taper portions 3 and 5 including the groove 4 which is the length of the tip portion of the W member 10 are determined by the W required length or the joint area and shape of the Cu base 20. However, in order to facilitate centering of the hole 21 for joining the Cu base material 20 and the center of the W round bar 10, the taper tip diameter of the W thick bar, that is, the tip diameter of the first taper portion 3 is The diameter is preferably slightly smaller than the diameter of the hole 21 of the Cu base 20. Further, in order to cause plastic deformation around the bonding hole 21 of the Cu base material 20, the diameter of the base portion of the second tapered portion needs to be larger than the hole diameter of the Cu base material 20.

第2のテーパー部5の太径側と素材丸棒の外径が同径である必要はない。第2のテーパー部5の太径側の径は素材丸棒の外径より小径でもよい。なお、W部材10の形状は丸棒である必要はなく角棒状でもよい。   The outer diameter of the large diameter side of the 2nd taper part 5 and a raw material round bar does not need to be the same diameter. The diameter on the large diameter side of the second tapered portion 5 may be smaller than the outer diameter of the material round bar. The shape of the W member 10 need not be a round bar but may be a square bar.

また、第1及び第2のテーパー部3、5側面に溝4を施しても良い。溝4形状は、例えば半円、U字溝あるいはV字溝等が使用できる。圧入時Cuが流動あるいは塑性変形により溝4に食い込み、あるいは圧入後の冷却時の熱収縮による締め付け等により接合強度を向上させる効果が期待できる。   Moreover, you may give the groove | channel 4 to the 1st and 2nd taper parts 3 and 5 side surface. As the shape of the groove 4, for example, a semicircle, a U-shaped groove or a V-shaped groove can be used. The effect of improving the joint strength can be expected by, for example, Cu biting into the groove 4 due to flow or plastic deformation during press fitting, or by tightening due to thermal contraction during cooling after press fitting.

図1はその接合体の模式的に示している。   FIG. 1 schematically shows the joined body.

溝4の寸法、数量は第1及び第2のテーパー部3、5の大きさにより任意に決定すればよい。   What is necessary is just to determine arbitrarily the dimension and quantity of the groove | channel 4 by the magnitude | size of the 1st and 2nd taper parts 3 and 5. FIG.

しかしながら、溝4の寸法および数量が大きすぎる場合、Cu基材20の塑性変形量や熱収縮量に比し溝4の体積が大きすぎることが生じ溝4内部へのCuの食い込み量が減少し溝4内を満たすことが出来ず、空間として残ることが考えられるため注意が必要である。   However, when the size and quantity of the groove 4 are too large, the volume of the groove 4 is too large compared to the amount of plastic deformation and heat shrinkage of the Cu base 20, and the amount of Cu biting into the groove 4 is reduced. Care must be taken because the groove 4 cannot be filled and remains as a space.

溝4加工を施す場合、溝4内部まで中間層を形成させる必要があるため、中間層は、めっき、PVDあるいはCVDのような被覆を施す方が容易であるが、形状や寸法によっては箔や箔を絞り加工等で成形したものでも形成可能であり、また箔を挟み込むだけでも形成可能な場合もある。   When the groove 4 is processed, it is necessary to form an intermediate layer up to the inside of the groove 4. Therefore, the intermediate layer can be easily coated by plating, PVD, CVD, etc. A foil formed by drawing or the like can be formed, and in some cases, the foil can be formed only by sandwiching the foil.

穴21の深さは基材20の周辺部及び穴底部に塑性変形を生じさせるためテーパー長さと同じもしくは短くする必要がある。   The depth of the hole 21 needs to be the same as or shorter than the taper length in order to cause plastic deformation at the peripheral part of the base material 20 and the bottom part of the hole.

また、一体の基材20に多数本の電極を設置することも可能である。   It is also possible to install a large number of electrodes on the integrated base material 20.

図3及び図4は、多数本のW部材を1つの基材に圧入接合した場合の外観を摸式的に示している図である。   3 and 4 are diagrams schematically showing an external appearance when a large number of W members are press-fitted and joined to one base material.

圧入温度は圧入荷重とトレードオフの関係にあり、可能であればより高温圧入の方が圧入荷重を小さくすることが出来、小さな荷重能力のホットプレス機で製作可能となる、あるいは同能力で多数個を同時に製作することが可能になるなどの点から有利となるが、高温にすることにより融点以下の温度でも真空圧力下での蒸気圧との関係で基材の蒸発等の損傷などが考えられる場合もあり、荷重との関係から任意に決定すればよい。もちろん基材25の融点以下に抑えることは当然である。また、低温過ぎる場合は大きな圧入荷重が必要となり、基材25あるいはW部材10そのものの損傷やCu部がW部材を抱え込み締めつける効果が低下するため、基材20の軟化点以上が望ましい。   The press-fit temperature is in a trade-off relationship with the press-fit load. If possible, the press-fit load can be reduced by hot press-fitting if possible, and it can be manufactured with a hot press machine with a small load capacity, or many with the same capacity. Although it is advantageous from the point that it is possible to manufacture individual pieces at the same time, by raising the temperature, damage such as evaporation of the base material is considered in relation to the vapor pressure under vacuum pressure even at temperatures below the melting point. May be determined arbitrarily from the relationship with the load. Of course, it is natural to keep it below the melting point of the substrate 25. In addition, when the temperature is too low, a large press-fitting load is required, and damage to the base material 25 or the W member 10 itself or an effect that the Cu part holds and tightens the W member is reduced.

以上、良好な熱的密着性ならびに引張強度を改善するための要件を纏めると、次の(イ)から(ハ)の通りである。   The requirements for improving good thermal adhesion and tensile strength are summarized as follows (a) to (c).

(イ)めっき層によりWとNi中間層、Ni中間層とCu中間層、Cu中間層とCu基材間に相互拡散を生じさせ、Cu基材20、25とW部材10間のミクロレベルでの未接触部の発生を防ぎ熱的密着性を向上させる。 (I) The plating layer causes mutual diffusion between the W and Ni intermediate layer, the Ni intermediate layer and the Cu intermediate layer, the Cu intermediate layer and the Cu base material, and at the micro level between the Cu base materials 20 and 25 and the W member 10. This prevents the occurrence of non-contact parts and improves thermal adhesion.

(ロ)圧入後の冷却時の熱収縮が生じた際、熱膨張係数の差からCu基材20、25の穴21、26部の収縮が穴21、26内部に圧入されたWの収縮量より大きいため、第1及び第2のテーパー部3、5及び溝4を備えた先端部2全体においてCu部がW部を抱え込み締めつけ効果を発揮する。 (B) When thermal shrinkage occurs during cooling after press-fitting, the shrinkage of the holes 21 and 26 of the Cu base materials 20 and 25 due to the difference in thermal expansion coefficient is the amount of shrinkage of W that is press-fitted into the holes 21 and 26. Since it is larger, the Cu portion holds the W portion in the entire tip portion 2 including the first and second tapered portions 3 and 5 and the groove 4 and exerts an effect of tightening.

(ハ)基材20、25の軟化点以上の温度で圧入することにより、Cu基材20、25がW部材表面に沿って先端部2のテーパー部間の溝4内部まで流動、塑性変形を生じる。 (C) By press-fitting at a temperature equal to or higher than the softening point of the base materials 20 and 25, the Cu base materials 20 and 25 flow along the surface of the W member to the inside of the groove 4 between the tapered portions of the tip portion 2 and undergo plastic deformation. Arise.

これらにより、接合部にボイドなどの欠陥による熱伝導性の低下やヒートスポットの発生がなくかつ実用十分な強度を持つ接合体を得ることが出来、過酷な放電負荷や熱負荷にさらされる高エネルギー密度のビーム利用機器の電極等の耐熱部材として使用することが出来る。   As a result, it is possible to obtain a bonded body that does not have a decrease in thermal conductivity due to defects such as voids or the occurrence of heat spots in the joint, and that has sufficient strength for practical use, and is exposed to severe discharge loads and heat loads. It can be used as a heat-resistant member such as an electrode of a device utilizing a high density beam.

以下に本発明の具体例について説明する。   Specific examples of the present invention will be described below.

(例1)
全長15mm、直径6mmのW丸棒の一端に先端径φ3.5mm、テーパー呼び110、長さ5mmのテーパー加工を施し、さらにテーパー先端から2.5mmの位置に深さ0.3mm、幅0.3mmの半円溝加工を施し、第1及び第2のテーパー部3、5と、その間に溝11とを形成した。このテーパーおよび溝付きW丸棒テーパー部ならびにCu基材に接する端部6にNiめっきを1.5μm、Cuめっきを5μm施した。それぞれのめっき後に800℃でアニール処理を実施し、WとNiおよびNiとCuの拡散層を生じさせ、めっき層の密着性を確保した。一方、30×30×30mm立方体形状の無酸素銅基材の一面に、深さ4mm、直径3.7mmの穴加工をX、Y方向とも側面より3mmの位置から、それれ6mmピッチで5×5個所すなわち計25個所施した。この基材25に前記のテーパー付きW丸棒を25本同時に圧入した。圧入温度は900℃、圧入荷重は12.5Ton(500Kg/1本)、真空雰囲気で行なった。その外観は、図3(a)の側面図、図3(b)の正面図、及び図4の断面模式図に示されている。また、図2はめっき加工後のテーパー付きW丸棒の外観図を示している。
(Example 1)
Overall length 15 mm, one end to the tip diameter of the W rod of diameter 6 mm .phi.3.5 mm, taper referred 1:10 subjected to tapering of the length 5 mm, further depth 0.3mm from the taper end to the position of 2.5 mm, a width A semicircular groove processing of 0.3 mm was performed to form the first and second tapered portions 3 and 5 and the groove 11 therebetween. The taper and grooved W round bar taper portion and the end portion 6 in contact with the Cu base were plated with Ni plating at 1.5 μm and Cu plating at 5 μm. Annealing treatment was performed at 800 ° C. after each plating to produce a diffusion layer of W and Ni and Ni and Cu , thereby ensuring adhesion of the plating layer. On the other hand, on one surface of the oxygen-free copper substrate 30 × 30 × 30 mm cubic shape, depth 4 mm, the drilling diameter 3.7 mm X, from the position of 3mm from the side with the Y direction, with their respective 6mm pitch 5 X 5 places, that is, 25 places in total. Twenty-five W round bars with taper were simultaneously press-fitted into the substrate 25. The press-in temperature was 900 ° C., the press-in load was 12.5 Ton (500 Kg / piece), and it was performed in a vacuum atmosphere. The appearance is shown in the side view of FIG. 3A, the front view of FIG. 3B, and the schematic cross-sectional view of FIG. FIG. 2 shows an external view of a tapered W round bar after plating.

この接合体102の高温での熱伝導状態を調べるため、無酸素銅基材25の側面中央部を貫く冷却用銅パイプを設置し、電子ビーム加熱による加熱試験を実施した。入力熱エネルギーは、例えばMHD発電器電極では、上記非特許文献2に記載されているように、0.5〜3MW/mの熱流束に耐える必要があるため、より過酷な5MW/m、および10MW/mの2条件にて評価した。この入力エネルギーで接合体の温度状態が定常状態になるまでの時間を測定したところ、いずれも約15秒であった。そのときのW部材10の平均表面温度は、5MW/mで1380℃、10MW/mで2200℃であった。 In order to investigate the heat conduction state of the bonded body 102 at a high temperature, a cooling copper pipe penetrating the center of the side surface of the oxygen-free copper base material 25 was installed, and a heating test by electron beam heating was performed. Input thermal energy, for example in the MHD power generator electrodes, as described in Non-Patent Document 2, since it is necessary to withstand the heat flux 0.5~3MW / m 2, more severe 5 MW / m 2 And 10 MW / m 2 . When the time required for the temperature state of the joined body to reach a steady state with this input energy was measured, all were about 15 seconds. The average surface temperature of the W element 10 at that time, 1380 ° C. at 5 MW / m 2, was 2200 ° C. at 10 MW / m 2.

また比較例として、上記と同様溝加工を施したテーパー付きW丸棒をめっき無しでCu基材に圧入加工した試験体を作製し、上記と同条件で電子ビーム加熱による加熱試験を実施した。その際のW部の平均表面温度は、5MW/mで1450℃、10MW/mで約2700℃であった。 In addition, as a comparative example, a test body was manufactured by press-fitting a tapered W round bar, which was grooved in the same manner as described above, into a Cu base without plating, and a heating test by electron beam heating was performed under the same conditions as described above. The average surface temperature of the W portion of that time, 1450 ° C. at 5 MW / m 2, was about 2700 ° C. at 10 MW / m 2.

すなわちNiめっきおよびCuめっきを施すことにより5MW/mで70℃、10MW/mで約500°Cの冷却能が向上したことになる。 That 70 ° C. at 5 MW / m 2 by performing Ni plating and Cu plating, so that the cooling capacity of about 500 ° C at 10 MW / m 2 is improved.

さらに、同様に製作しためっき付き試験体で熱サイクル試験を実施した。入力エネルギー5MW/m、10MW/mともに加熱時間および冷却時間はそれぞれ15秒とした。 Furthermore, a thermal cycle test was carried out on the test specimen with plating produced in the same manner. The input time of 5 MW / m 2 and 10 MW / m 2 were set to 15 seconds for the heating time and the cooling time, respectively.

この条件で5MW/mにおいて3000サイクル、10MW/mで1000サイクルの熱サイクル試験をそれぞれ行なったが、いずれの試験体においてもW部材の抜け、浮き等の接合強度低下や無酸素銅基材の溶けの欠陥は認められなかった。 3000 cycles at 5 MW / m 2 in this condition, 10 MW / m 2 at but 1000 cycles of the thermal cycle test was conducted respectively, omission of W element in any of the specimens, the bonding strength decreases or anoxic copper base of the float, etc. There were no defects in melting of the material.

また、いずれの熱サイクル試験中、W部材の表面温度に大きな変化は認められなかった。これは接合部の熱伝達性能の劣化が、無かったことを示す。また、得られた接合部のEPMAによる線分析結果から、WとNi中間層、Ni中間層とCu中間層、Cu中間層とCu基材間に相互拡散が生じていることが確認できた。このためCu基材25とW部材10間の熱伝導性がめっき無しの状態に較べ向上し冷却能が向上した理由と考えられる。   Further, during any of the thermal cycle tests, no significant change was observed in the surface temperature of the W member. This indicates that there was no deterioration in the heat transfer performance of the joint. Moreover, from the line analysis result by EPMA of the obtained joining part, it has confirmed that interdiffusion had arisen between W and Ni intermediate | middle layer, Ni intermediate | middle layer and Cu intermediate | middle layer, and Cu intermediate | middle layer and Cu base material. For this reason, it is considered that the thermal conductivity between the Cu base member 25 and the W member 10 is improved as compared with the state without plating and the cooling ability is improved.

(例2)
密着強度を確認するため、全長40mm、直径6mmのW丸棒の一端に上記例1と同様先端径φ3.5mm、テーパー呼び110、長さ5mmのテーパー加工を施し、さらにテーパー先端から2.5mmの位置に深さ0.3mm、幅0.3mmの半円溝加工を施し、第1及び第2のテーパー部3、5と、その間に溝4とを形成した。このテーパーおよび溝付きW丸棒の第1及び第2のテーパー部及び溝4を備えた先端部2ならびにCu基材20に接する端面6にNiめっきを1.5μm、Cuめっきを5μmを施した。なお、それぞれのめっき後に、800℃でアニール処理を実施し、めっきの密着性を確保した。これは、圧入作業までの取り扱いを容易にする為である。その後、本W丸棒のテーパー部を深さ4mm、直径3.7mmの穴加工を施したφ20mm×長さ40mm無酸素銅基材に圧入温度900℃、圧入荷重500Kg、真空雰囲気の条件で圧入した。
(Example 2)
To confirm the adhesion strength, total length 40 mm, similar to the tip diameter as the Example 1 at one end of the W rod of diameter 6 mm .phi.3.5 mm, taper referred 1:10 subjected to tapering of the length 5 mm, 2 from further taper end A semicircular groove processing having a depth of 0.3 mm and a width of 0.3 mm was performed at a position of 0.5 mm, and the first and second tapered portions 3 and 5 and the groove 4 were formed therebetween. Ni plating 1.5 μm and Cu plating 5 μm were applied to the first and second taper portions of the tapered and grooved W round bar and the end portion 2 provided with the groove 4 and the end face 6 in contact with the Cu substrate 20. . In addition, after each plating, the annealing process was implemented at 800 degreeC and the adhesiveness of plating was ensured. This is to facilitate handling up to the press-fitting operation. After that, the taper part of this W round bar is press-fitted into an oxygen-free copper base material with a depth of 4 mm and a diameter of 3.7 mm, φ20 mm x length 40 mm under a press-fitting temperature of 900 ° C., a press-fitting load of 500 kg, and a vacuum atmosphere. did.

図2はめっきを施した溝付きテーパー加工後のW丸棒の形状を示す。図1は得られた接合体断面模式図を示している。溝4内部にも無酸素銅部材の一部が食い込み良好な接合部を持つことが確認された。   FIG. 2 shows the shape of a round W bar after plating with a grooved taper. FIG. 1 is a schematic cross-sectional view of the obtained bonded body. It was confirmed that a part of the oxygen-free copper member bites into the groove 4 and has a good joint.

さらに、得られた接合体で、引張試験を実施した。その結果を下表1に各条件10本の平均値で示す。試験温度はW部材とCu基材の界面近傍の温度は、実施例1の条件において、5MW/mで約300℃、10MW/mで500℃であったため、常温、300℃、および500℃の温度とした。なお、引張速度は、1mm/secで行った。

Figure 0004482654
Further, a tensile test was performed on the obtained joined body. The results are shown in Table 1 below as average values for 10 conditions. Temperature in the vicinity of the interface test temperature W member and Cu substrate, under the conditions of Example 1, about 300 ° C. at 5 MW / m 2, because it was 500 ° C. at 10 MW / m 2, room temperature, 300 ° C., and 500 The temperature was set to ° C. The tensile speed was 1 mm / sec.
Figure 0004482654

なお、本発明のようなテーパー部で接合強度が評価される場合、接合面積をどの部分で評価する、一般的な指標がないため、ここでは引抜き荷重で示した。いずれも第1及び第2のテーパー部3、5間に施した溝4内部に食い込んだCu部のせん断破壊により、破断に到っていた。 In the case where bonding strength tapered portion as in the present invention is evaluated, or to evaluate the bonding cross section in which part, because there is no general indication, shown by the pull-out load here. In either case, the fracture was caused by the shear fracture of the Cu portion that digged into the groove 4 formed between the first and second tapered portions 3 and 5.

比較として下記表2に、特許文献3に開示された接合体の引張試験結果も示す。この場合、圧入温度が最高600℃で、テーパー部に溝および中間層も無いため、同じ500℃での高温引張試験結果では、57.2kgと本発明の134kgの約43%の接合強度しか得られていない。

Figure 0004482654
For comparison, Table 2 below also shows the tensile test results of the joined body disclosed in Patent Document 3. In this case, since the press-in temperature is 600 ° C. at maximum and there is no groove or intermediate layer in the taper portion, the same high-temperature tensile test result at 500 ° C. provides only a joint strength of 57.2 kg and about 43% of 134 kg of the present invention. It is not done.
Figure 0004482654

この結果より、本発明の接合体は、従来の特許文献3に開示の接合体よりも熱伝導性、接合強度とも優れていることが確認できた。なお、電極等として使用する場合、機械的な外力は一般に電極部にかかることはなく、上記表1に示す引き抜き荷重は充分実用に耐える接合強度である。   From this result, it was confirmed that the joined body of the present invention was superior in both thermal conductivity and joining strength to the joined body disclosed in Patent Document 3 of the related art. When used as an electrode or the like, a mechanical external force is generally not applied to the electrode portion, and the pull-out load shown in Table 1 is a bonding strength that can withstand practical use.

本発明に係る高エネルギー密度利用機器用耐熱部材としての接合体は、高エネルギー密度利用X線源や発電機器などの高温高負荷で使用される電極等の耐熱部材に適用される。   The joined body as a heat-resistant member for a high energy density utilization device according to the present invention is applied to a heat-resistant member such as an electrode used at a high temperature and high load such as a high energy density utilization X-ray source or a power generation device.

本発明の第1の実施の形態による接合体を示す断面図である。It is sectional drawing which shows the conjugate | zygote by the 1st Embodiment of this invention. 図1のW丸棒の接合部を主に示す断面図である。It is sectional drawing which mainly shows the junction part of W round bar of FIG. (a)及び(b)は本発明の第2の実施の形態による接合体を示す図、(a)は側面図、(b)は正面図である。(A) And (b) is a figure which shows the conjugate | zygote by the 2nd Embodiment of this invention, (a) is a side view, (b) is a front view. 図3(a)及び(b)の接合体の断面図である。It is sectional drawing of the joined body of Fig.3 (a) and (b). 本発明のNiめっき層の厚が0.1μmの試験片のX線マイクロアナライザーの線分析による界面の拡散状況の確認結果を示す図である。It is a figure which shows the confirmation result of the diffusion state of the interface by the line analysis of the X-ray microanalyzer of the test piece whose thickness of the Ni plating layer of this invention is 0.1 micrometer. 本発明のNiめっき層の厚が0.5μmの試験片のX線マイクロアナライザーの線分析による界面の拡散状況の確認結果を示す図である。It is a figure which shows the confirmation result of the diffusion state of the interface by the line analysis of the X-ray microanalyzer of the test piece whose thickness of the Ni plating layer of this invention is 0.5 micrometer. 本発明のNiめっき層の厚が1.0μmの試験片のX線マイクロアナライザーの線分析による界面の拡散状況の確認結果を示す図である。It is a figure which shows the confirmation result of the diffusion state of the interface by the line analysis of the X-ray microanalyzer of the test piece whose thickness of the Ni plating layer of this invention is 1.0 micrometer. 本発明のNiめっき層の厚が3.0μmの試験片のX線マイクロアナライザーの線分析による界面の拡散状況の確認結果を示す図である。It is a figure which shows the confirmation result of the diffusion state of the interface by the line analysis of the X-ray microanalyzer of the test piece whose thickness of the Ni plating layer of this invention is 3.0 micrometers. 本発明のNiめっき層の厚が5μmの試験片のX線マイクロアナライザーの線分析による界面の拡散状況の確認結果を示す図である。It is a figure which shows the confirmation result of the diffusion state of the interface by the line analysis of the X-ray microanalyzer of the test piece whose thickness of the Ni plating layer of this invention is 5 micrometers.

符号の説明Explanation of symbols

1 金属めっき層
2 先端部
3 第1のテーパー部
4、11 溝
5 第2のテーパー部
6 端面
7 基部
10 W部材(溝付きW丸棒)
20、25 Cu基材
21、26 穴
101、102 接合体
DESCRIPTION OF SYMBOLS 1 Metal plating layer 2 Tip part 3 1st taper part 4,11 Groove 5 2nd taper part 6 End surface 7 Base 10 W member (W round bar with a groove)
20, 25 Cu base material 21, 26 hole 101, 102 joined body

Claims (13)

先端部にテーパー部を備えたタングステン部材を有し、前記テーパー部に施され前記テーパー部の側面から前記テーパー部内側方向に形成された溝を有し、前記溝を含むテーパー部に形成された中間層が設けられ、前記タングステン部材を前記タングステン部材よりも熱膨張係数の大きい基材に前記基材の軟化点以上の温度で、前記タングステン部材を軸方向に圧入接合することで、前記中間層は、前記タングステン部材及び前記基材との間に形成された金属的結合を有するとともに前記基材が当該溝内部まで食い込んでいることを特徴とする高エネルギー密度利用機器用耐熱部材。 It has a tungsten member having a tapered portion at a tip portion, and has a groove formed on the tapered portion from the side surface of the tapered portion toward the inside of the tapered portion, and is formed in the tapered portion including the groove. intermediate layer is provided, at a temperature above the softening point before Kimotozai the tungsten member to a large base of thermal expansion coefficient than the tungsten member, by press-fitting joining the tungsten member in the axial direction, the intermediate The layer has a metallic bond formed between the tungsten member and the base material, and the base material bites into the inside of the groove. 請求項1に記載の高エネルギー密度利用機器用耐熱部材において、前記タングステン部材ならびに前記基材間の界面の一部に前記中間層として前記金属的結合を有することを特徴とする高エネルギー密度利用機器用耐熱部材。   The heat-resistant member for a high energy density utilization device according to claim 1, wherein the metallic member is provided as the intermediate layer at a part of an interface between the tungsten member and the base material. Heat resistant material. 請求項1に記載の高エネルギー密度利用機器用耐熱部材において、前記金属的結合は、前記タングステン部材の前記溝加工によって形成された溝内を含む前記先端部の全面に渡って形成されていることを特徴とする高エネルギー密度利用機器用耐熱部材。   2. The heat-resistant member for high energy density utilization equipment according to claim 1, wherein the metallic bond is formed over the entire surface of the tip including the inside of the groove formed by the groove processing of the tungsten member. A heat-resistant member for equipment using high energy density. 請求項1から3の内のいずれか一つに記載の高エネルギー密度利用機器用耐熱部材において、前記金属的結合は、タングステン−ニッケル又はニッケル−銅から形成されていることを特徴とする高エネルギー密度利用機器用耐熱部材。   The heat-resistant member for high energy density utilization equipment according to any one of claims 1 to 3, wherein the metallic bond is formed of tungsten-nickel or nickel-copper. Heat-resistant material for equipment using density. 請求項1から4の内のいずれか一つに記載の高エネルギー密度利用機器用耐熱部材において、前記金属的結合は、前記タングステン部材の前記基材への圧入接合時に、前記タングステン部材と前記基材との間に設けられたニッケルおよび銅の2層またはニッケル単独層を加熱することによって形成されていることを特徴とする高エネルギー密度利用機器用耐熱部材。   5. The heat-resistant member for a high energy density utilization device according to claim 1, wherein the metallic bonding is performed when the tungsten member and the base are joined during press-fitting of the tungsten member to the base material. A heat-resistant member for high energy density utilization equipment, which is formed by heating two layers of nickel and copper or a single nickel layer provided between the two. 請求項5に記載の高エネルギー密度利用機器用耐熱部材において、前記金属的結合は、厚さ0.5μm以上3μm以下のニッケル被覆層を前記圧入接合時に加熱することによって得られたものであることを特徴とする高エネルギー密度利用機器用耐熱部材。   The heat-resistant member for a high energy density utilization device according to claim 5, wherein the metallic bond is obtained by heating a nickel coating layer having a thickness of not less than 0.5 µm and not more than 3 µm during the press-fitting. A heat-resistant member for equipment using high energy density. 請求項1から6の内のいずれか一つに記載の高エネルギー密度利用機器用耐熱部材において、1体の基材に前記タングステン部材が1本又は2本以上圧入接合されていることを特徴とする高エネルギー密度利用機器用耐熱部材。   The heat-resistant member for a high energy density utilization device according to any one of claims 1 to 6, wherein one or two or more tungsten members are press-fitted and joined to one base material. Heat resistant member for high energy density equipment. 請求項1から7の内のいずれか一つに記載の高エネルギー密度利用機器用耐熱部材において、入力熱エネルギー5MW/mにおいて加熱と冷却を各15秒サイクルで3000回、および入力熱エネルギー10MW/mにおいて加熱と冷却時間を各15秒で1000回の熱サイクル試験に耐え、前記タングステン部材と前記基材との間に接合部の熱伝達性能の劣化がないことを特徴とする高エネルギー密度利用機器用耐熱部材。 The heat-resistant member for a high energy density utilization device according to any one of claims 1 to 7, wherein heating and cooling are performed 3000 times in each 15-second cycle at an input thermal energy of 5 MW / m 2 and an input thermal energy of 10 MW. / M 2 with a heat and cooling time of 15 seconds each, withstanding 1000 heat cycle tests, and no heat transfer performance deterioration of the joint between the tungsten member and the substrate Heat-resistant material for equipment using density. タングステン部材とタングステンより熱膨張係数の大きい基材とを有する高エネルギー密度利用機器用耐熱部材を製造する方法において、
前記タングステン部材の先端部にテーパー部を備え、前記テーパー部に、前記テーパー部の側面から前記テーパー部内側方向に溝加工を施す工程と、
前記タングステン部材の一部に、当該タングステン部材ならびに前記基材との金属的結合を生成するための中間層を形成する工程と、
前記基材の軟化点以上の温度で、前記タングステン部材を前記基材に軸方向に圧入接合し、前記タングステン部材と前記基材との間に前記中間層として前記金属的結合を形成する工程と
を有することを特徴とする高エネルギー密度利用機器用耐熱部材の製造方法。
In a method of manufacturing a heat-resistant member for high energy density utilization equipment having a tungsten member and a base material having a larger thermal expansion coefficient than tungsten,
A step of providing a taper portion at a tip portion of the tungsten member, and forming a groove in the taper portion from a side surface of the taper portion toward the inside of the taper portion ;
Forming an intermediate layer for generating a metallic bond with the tungsten member and the substrate on a part of the tungsten member;
Forming the metallic bond as the intermediate layer between the tungsten member and the base material by press-fitting the tungsten member to the base material in an axial direction at a temperature equal to or higher than the softening point of the base material; The manufacturing method of the heat-resistant member for high energy density utilization apparatuses characterized by having.
請求項9に記載の高エネルギー密度利用機器用耐熱部材の製造方法において、前記溝加工によって形成された溝内を含む前記先端部の全面に渡って前記タングステン部材ならびに前記基材との前記金属的結合を生成することを特徴とする高エネルギー密度利用機器用耐熱部材の製造方法。   10. The method for manufacturing a heat-resistant member for a high energy density utilization device according to claim 9, wherein the tungsten member and the base material are metalized over the entire surface of the tip including the inside of the groove formed by the groove processing. The manufacturing method of the heat-resistant member for high energy density utilization apparatuses characterized by producing | generating a coupling | bonding. 請求項9に記載の高エネルギー密度利用機器用耐熱部材の製造方法において、前記中間層に前記タングステン部材および前記基材の両方に前記金属的結合を夫々生じさせるニッケルおよび銅の2層またはニッケル単独層を用いることを特徴とする高エネルギー密度利用機器用耐熱部材の製造方法。   The method for manufacturing a heat-resistant member for a high energy density utilization device according to claim 9, wherein two layers of nickel and copper, or nickel alone, cause the intermediate layer to form the metallic bond in both the tungsten member and the base material, respectively. A method for producing a heat-resistant member for high energy density utilization equipment, comprising using a layer. 請求項11に記載の高エネルギー密度利用機器用耐熱部材の製造方法において、前記中間層に、厚さ0.5μm以上3μm以下のニッケルめっきを用いることを特徴とする高エネルギー密度利用機器用耐熱部材の製造方法。   The heat-resistant member for high energy density utilization equipment according to claim 11, wherein the intermediate layer is made of nickel plating having a thickness of 0.5 µm to 3 µm. Manufacturing method. 請求項9から12の内のいずれか一つに記載の高エネルギー密度利用機器用耐熱部材の製造方法において、1体の基材に前記タングステン部材を1本または2本以上圧入接合することを特徴とする高エネルギー密度利用機器用耐熱部材の製造方法。   In the manufacturing method of the heat-resistant member for high energy density utilization apparatuses as described in any one of Claim 9 to 12, the said tungsten member is press-fitted and joined to one base material, It is characterized by the above-mentioned. The manufacturing method of the heat-resistant member for high energy density utilization apparatuses made into.
JP2004230524A 2004-08-06 2004-08-06 Heat resistant material for high energy density equipment Expired - Fee Related JP4482654B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004230524A JP4482654B2 (en) 2004-08-06 2004-08-06 Heat resistant material for high energy density equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004230524A JP4482654B2 (en) 2004-08-06 2004-08-06 Heat resistant material for high energy density equipment

Publications (3)

Publication Number Publication Date
JP2006043751A JP2006043751A (en) 2006-02-16
JP2006043751A5 JP2006043751A5 (en) 2006-12-07
JP4482654B2 true JP4482654B2 (en) 2010-06-16

Family

ID=36022903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004230524A Expired - Fee Related JP4482654B2 (en) 2004-08-06 2004-08-06 Heat resistant material for high energy density equipment

Country Status (1)

Country Link
JP (1) JP4482654B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010009276A1 (en) * 2010-02-25 2011-08-25 Dürr Dental AG, 74321 X-ray tube and system for producing X-ray images for dental or orthodontic diagnostics
US20110209769A1 (en) * 2010-03-01 2011-09-01 Chun Richard K Thermally operated valve

Also Published As

Publication number Publication date
JP2006043751A (en) 2006-02-16

Similar Documents

Publication Publication Date Title
JP5302539B2 (en) Monoblock cooling device components
JP6003108B2 (en) Joining method and joining part manufacturing method
KR100734794B1 (en) Method for making a joint between copper and stainless steel
JP5283396B2 (en) High heat load device manufacturing method for metallurgically joining carbon material and copper alloy material
US20110132973A1 (en) Method of manufacturing high-heat-load equipment by metallurgically joining carbon material with copper-alloy material
CN110364673A (en) Cell substrate and its manufacturing method with local welding tie point
JP4350753B2 (en) Heat sink member and manufacturing method thereof
JP2012049185A (en) Ceramic member and method for producing the same
JP4482654B2 (en) Heat resistant material for high energy density equipment
FI110270B (en) Method of making the electrode and the electrode
JP5892306B2 (en) Joining method and joining parts
JP2013170090A (en) Method of bonding ceramics and metal and bonded structure of ceramics and metal
JP3864202B2 (en) Joining electrodes and materials for high energy density resistant equipment
JP6563581B1 (en) Dissimilar metal joint for divertor
US8957327B2 (en) Feed-through assembly
KR20060054838A (en) Titanium clad copper bus-bars and manufacturing process thereof
JPH044984A (en) Electrode for resistance welding and its manufacture
JP6887184B1 (en) Laminated body and manufacturing method of laminated body
US20240165921A1 (en) Joining structure and manufacturing method for same
EP2216795B1 (en) Electrical contact, method for assembly by welding a contact pad to a metal support in order to make said contact
JP6298247B2 (en) Resistance welding electrode
JP4522677B2 (en) Al-Cu bonded structure and manufacturing method thereof
JP3797637B2 (en) Composite
JP3822108B2 (en) Composite pipe for brazing and heat exchange composite pipe
JPS59147774A (en) Joining method of sintered hard alloy and steel

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060228

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060925

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100222

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees