JP4244080B2 - Rapid setting sprayed cement concrete and spraying method using the same - Google Patents
Rapid setting sprayed cement concrete and spraying method using the same Download PDFInfo
- Publication number
- JP4244080B2 JP4244080B2 JP28510498A JP28510498A JP4244080B2 JP 4244080 B2 JP4244080 B2 JP 4244080B2 JP 28510498 A JP28510498 A JP 28510498A JP 28510498 A JP28510498 A JP 28510498A JP 4244080 B2 JP4244080 B2 JP 4244080B2
- Authority
- JP
- Japan
- Prior art keywords
- parts
- weight
- cement
- concrete
- cement concrete
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/02—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2103/00—Function or property of ingredients for mortars, concrete or artificial stone
- C04B2103/10—Accelerators; Activators
- C04B2103/12—Set accelerators
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/00034—Physico-chemical characteristics of the mixtures
- C04B2111/00146—Sprayable or pumpable mixtures
- C04B2111/00155—Sprayable, i.e. concrete-like, materials able to be shaped by spraying instead of by casting, e.g. gunite
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、例えば、道路、鉄道、及び導水路等のトンネルにおいて露出した地山面へ吹付ける吹付材料の吹付工法に関する。
【0002】
なお、本発明では、モルタルやコンクリートを総称してセメントコンクリートという。
【0003】
【従来の技術】
従来、トンネル掘削等露出した地山の崩落を防止するために急結材をセメントコンクリートに混合した急結性セメントコンクリートの吹付工法が行われている(特公昭60−4149号公報)。
【0004】
この工法は、通常、掘削工事現場に設置した、セメント、骨材、及び水の計量混合プラントで吹付セメントコンクリートを作り、それをアジテータ車で運搬し、コンクリートポンプで圧送し、途中に設けた合流管で、他方から圧送した急結材と混合し、急結性吹付セメントコンクリートとして地山面に所定の厚みになるまで吹付ける工法である。
【0005】
【発明が解決しようとする課題】
しかしながら、この工法では、〔(跳ね返った急結性セメントコンクリートの量)/(急結性セメントコンクリート全体の吹付量)×100(%)〕で示されるリバウンド(跳ね返り)率が15〜30重量%と大きいという課題があった。特に繊維自身の繊維リバウンド率は50重量%程度と著しく大きいという課題があった。繊維は高価であり、リバウンド率が大きいと経済的に好ましくない等の課題があった。
【0006】
そこで、繊維リバウンド率のより小さい工法が求められていたが、現状では未だ充分に満足できる吹付材料がなく、その改良が強く望まれるようになった。
【0007】
本発明者は、急結性吹付セメントコンクリートを高強度化する際の課題を種々検討した結果、ある特定の吹付材料を使用して吹付けを行うことにより前記課題が解決できる知見を得て本発明を完成するに至った。
【0008】
本発明は、セメントと、セメント100重量部に対して0.05〜5重量部のポリカルボン酸系高性能減水剤と、セメント100重量部に対して100〜300重量部の最大寸法が2.5〜7.5mmである骨材と、セメント、ポリカルボン酸系高性能減水剤、骨材、及び鋼繊維を含有してなる吹付セメントコンクリート100容量部中1.0〜1.2容量部の長さが0.5〜30mmである鋼繊維とからなる吹付セメントコンクリートに、非晶質のカルシウムアルミネート、II型無水石膏、及びアルミン酸ナトリウムを含有してなる急結材を、セメント100重量部に対して0.5〜20重量部混合してなる鋼繊維補強急結性吹付セメントコンクリートであり、該鋼繊維補強急結性吹付セメントコンクリートを用いた鋼繊維のリバウンド率を低減する吹付け工法である。
【0009】
【発明の実施の形態】
以下、本発明を詳細に説明する。
【0010】
本発明で使用するセメントとしては、通常用いられる、普通・早強・超早強等の各種ポルトランドセメント、これらのポルトランドセメントに高炉スラグ、フライアッシュ、又はシリカを混合した各種混合セメント、3CaO・SiO2 や11CaO・7Al2O3・CaF2を主成分とする超速硬セメント、及び市販の微粒子セメント等が挙げられる。又、各種ポルトランドセメントや各種混合セメントを微粉末化して使用してもよい。
【0011】
本発明で使用する急結材は、カルシウムアルミネート類、セッコウ、及びアルミン酸塩を含有するものである。
【0012】
本発明で使用するカルシウムアルミネート類とは、カルシアを含む原料と、アルミナを含む原料とを混合して、キルンでの焼成や、電気炉での溶融等の熱処理をして得られる、CaOとAl2O3 とを主たる成分とし、水和活性を有する物質の総称であり、CaO及び/又はAl2O3の一部が、アルカリ金属酸化物、アルカリ土類金属酸化物、酸化ケイ素、酸化チタン、酸化鉄、アルカリ金属ハロゲン化物、アルカリ金属土類ハロゲン化物、アルカリ金属硫酸塩、及びアルカリ土類金属硫酸塩等と置換した化合物、あるいは、CaOとAl2O3とを主成分とするものに、これらが少量固溶した物質である。鉱物形態としては、結晶質、非晶質いずれであってもよい。
【0013】
カルシウムアルミネート類の中では、反応活性の点で、非晶質のカルシウムアルミネートが好ましく、12CaO・7Al2O3(C12A7)組成に対応する熱処理物を急冷した非晶質のカルシウムアルミネートがより好ましい。
【0014】
本発明で使用する石膏は、市販のいずれの石膏も使用できるが、II型無水石膏や天然石膏が好ましい。
【0015】
石膏の粒度は、ブレーン値で3000cm2/g以上が好ましく、4000〜7000cm2/gがより好ましい。3000cm2/g未満だと初期強度発現性が低下するおそれがある。
【0016】
石膏の使用量は、カルシウムアルミネート100重量部に対して、20〜250重量部が好ましく、75〜150重量部がより好ましい。20重量部未満だと効果がなく、250重量部を越えると凝結時間が長くなり、初期凝結性状が悪くなる。
【0017】
本発明で使用するアルミン酸アルカリ塩とは、初期凝結を促すものであり、アルミン酸リチウム、アルミン酸ナトリウム、及びアルミン酸カリウム等が挙げられ、これらの1種又は2種以上が使用できる。
【0018】
アルミン酸塩の使用量は、カルシウムアルミネート100重量部に対して、2〜30重量部が好ましく、5〜20重量部がより好ましい。2重量部未満だと効果はなく、30重量部を越えると長期強度発現性を阻害し、凝結時間が長くなり、初期凝結性状が悪くなる。
【0019】
急結材の使用量は、セメント100重量部に対して、0.5〜20重量部が好ましく、5〜15重量部がより好ましい。0.5重量部未満だと初期凝結せず、初期強度発現性が小さいおそれがあり、20重量部を越えると長期強度発現性が小さいおそれがある。
【0020】
本発明で使用する繊維は、無機質や有機質いずれも使用でき、急結性吹付セメントコンクリートの耐衝撃性や弾性を向上するという効果を有する。
【0021】
繊維の長さは、圧送性や混合性の点で、100mm以下が好ましく、0.5mm〜60mmがより好ましい。100mmを越えると圧送中に急結性吹付セメントコンクリートが閉塞するおそれがある。
【0022】
無機質の繊維としては、ガラス繊維、炭素繊維、ロックウール、石綿、セラミック繊維、及び金属繊維等が挙げられ、有機質の繊維としては、ビニロン繊維、ポリエチレン繊維、ポリプロピレン繊維、ポリアクリル繊維、セルロース繊維、ポリビニルアルコール繊維、ポリアミド繊維、パルプ、麻、木毛、及び木片等が挙げられ、これらの一種又は二種以上が使用できる。これらの中では経済性がよく、効果が大きい点で、金属繊維が好ましく、鋼繊維が好ましい。
【0023】
繊維の使用量は、吹付セメントコンクリート100容量部中、0.1〜1.5容量部が好ましく、0.3〜1.2容量部がより好ましい。0.1容量部未満だと繊維を添加した効果がないおそれがあり、1.5容量部を越えると吹付作業性、経済性、及び圧送性が悪くなるおそれがある。
【0024】
本発明では、さらに、減水剤を使用できる。
【0025】
減水剤とは吹付セメントコンクリートの流動性を改善するために使用するものをいい、液状のものや粉状のものいずれも使用できる。
【0026】
減水剤としては、ポリオール誘導体、リグニンスルホン酸塩やその誘導体、及び高性能減水剤等が挙げられる。これらの一種又は二種以上を使用できる。これらの中では、強度発現性の点で、高性能減水剤が好ましい。
【0027】
高性能減水剤により、吹付厚、急結材の添加量、粉塵の発生量、及びリバウンド率が低減し、急結性が向上するという効果を有する。
【0028】
高性能減水剤としては、ナフタレンスルホン酸塩、メラミンスルホン酸塩、及びアルキルアリルスルホン酸塩のホルマリン縮合物、並びに、ポリカルボン酸系高分子化合物等が挙げられ、これらの一種又は二種以上を使用できる。これらは、液状又は粉状いずれも使用できる。
【0029】
減水剤の使用量は、セメント100重量部に対して、0.05〜5重量部が好ましく、0.1〜3重量部がより好ましい。0.05重量部未満だと効果がないおそれがあり、5重量部を越えると吹付セメントコンクリートの粘性が強すぎ、作業性が低下するおそれがある。
【0030】
本発明で使用する骨材は吹付セメントコンクリートに添加するものであり、吸水率が低くて、骨材強度が高いものが好ましい。骨材としては、川砂、山砂、石灰砂、人工骨材、及び珪砂等が挙げられる。
【0031】
骨材の最大寸法は7.5mm以下であり、2.5〜6mmが好ましい。7.5mmを越えると繊維リバウンド率が大きくなり、好ましくない。2.5mm未満だと単位水量や減水剤の使用量が多くなり、吹付セメントコンクリートの圧送時に閉塞を起こすおそれがある。
【0032】
骨材の使用量は、セメント100重量部に対して50〜400重量部が好ましく、100〜300重量部がより好ましい。50重量部未満だと急結性吹付セメントコンクリートの粘性が増加して圧送が困難になり、圧送時に閉塞を起こすおそれがあり、400重量部を越えるとリバウンド率が大きく、強度発現性が小さいおそれがある。
【0033】
本発明の急結性吹付セメントコンクリートは、セメント、減水剤、繊維、及び骨材を含有する吹付セメントコンクリートに急結材を混合して得られたものである。
【0034】
本発明の繊維の混合方法は、急結性吹付セメントコンクリートに繊維を混合していれば特に限定されるものではなく、例えば、吹付セメントコンクリート側や急結材側へ繊維を添加する方法や、吹付セメントコンクリートや急結材と別個に繊維を添加する方法が挙げられ、これらを併用してもよい。
【0035】
又、凝結遅延剤、凝結促進剤、及び超微粉等の混和材の添加方法にも特に制限はなく、吹付セメントコンクリートに添加する方法や、急結材と共に混合管により添加する方法が挙げられる。
【0036】
本発明の吹付工法では、乾式吹付法や湿式吹付法いずれも使用できる。乾式吹付工法としては、セメント、骨材、及び急結材を混合し、空気圧送し、途中で、例えばY字管の一方から水を添加して、湿潤状態で吹付ける方法や、セメント、骨材とを混合して空気圧送し、途中で急結材、水の順に添加し、湿潤状態で吹付ける方法等が挙げられる。湿式吹付工法としては、セメント、骨材、及び水を添加して混練し、空気圧送し、途中で、例えばY字管の一方から急結材を添加して吹付ける方法等が挙げられる。
【0037】
本発明の吹付工法においては、従来使用の吹付設備等が使用できる。通常、吹付圧力は3〜5kg/cm2、吹付速度は4〜20m3/hである。
【0038】
本発明の吹付設備は吹付が十分に行われれば、特に限定されるものではなく、例えば、吹付セメントコンクリートの圧送にはアリバー社製の「アリバー280」等が、急結材の圧送にはちよだ製作所製の急結材圧送装置「ナトムクリート」等が使用できる。
【0039】
【実施例】
以下、実施例を説明する。
【0040】
(実験例1)
W/C=45%とし、セメント100重量部に対して1.0重量部の減水剤、セメント100重量部に対して表1に示す骨材250重量部、及び吹付コンクリート100容量部中1.0容量部の繊維を混練して吹付コンクリートとし、コンクリート圧送機「アリバ−280」を用いて圧送した。圧送途中に設けたY字管の一方より、急結材を急結材添加機「デンカナトムクリート」により、セメント100重量部に対して10重量部圧送して吹付コンクリートと合流混合し、急結性吹付コンクリートとした。この急結性吹付コンクリートを4m3/hの条件で吹付け、を用いて吹付コンクリートとし、リバウンド率と圧送性を測定した。結果を表1に示す。
【0041】
(使用材料)
セメント:普通ポルトランドセメント、ブレーン値3420cm2/g、比重3.16、市販品
減水剤:ポリカルボン酸系高性能減水剤、市販品
骨材A:新潟県姫川産砕石をふるいで分けたもの、最大寸法10mm、比重2.61
骨材B:新潟県姫川産砕石をふるいで分けたもの、最大寸法7.5mm、比重2.61
骨材C:新潟県姫川産砕石をふるいで分けたもの、最大寸法6mm、比重2.61
骨材D:新潟県姫川産砕石をふるいで分けたもの、最大寸法5mm、比重2.61
骨材E:新潟県姫川産砕石をふるいで分けたもの、最大寸法2.5mm、比重2.61
繊維:鋼繊維、維長30mm、比重7.8、市販品
急結材:カルシウムアルミネート/石膏/アルミン酸塩=100/100/14(((重量比)からなる混合物。但し、カルシウムアルミネートは12CaO・7Al2O3組成に対応するもので、非晶質、ブレーン値6050cm2/gのものを使用し、石膏はII型無水石膏、ブレーン値6050cm2/gのものを使用し、アルミン酸塩はアルミン酸ナトリウムを使用した。
【0042】
(測定方法)
最大寸法:重量で少なくとも90%が通るふるいのうち、最小寸法のふるいの呼び寸法で示される骨材の寸法で示した。
コンクリートリバウンド率:急結性吹付コンクリートを1分間0.1m3の側壁に吹付けた時の、(跳ね返り落下した急結性吹付コンクリートの量)/(吹付に使用した急結性吹付コンクリート全体の量)×100(重量%)で示した。
繊維リバウンド率:繊維のリバウンド率を示した。急結性吹付コンクリートを1分間0.1m3の側壁に吹付けた時の、(跳ね返り落下した繊維の量)/(吹付に使用した急結性吹付コンクリート中の繊維の量)×100(重量%)で示した。なお、跳ね返り落下した繊維の量は、跳ね返った急結性吹付コンクリートから繊維を磁石により吸引、収集し、繊維に付着したセメントを洗い流し、乾燥した後に測定した。
圧送性:急結性吹付コンクリートの圧送状況を観察した。Y字管や配管が詰まらない場合を○、詰まり気味の場合を△、Y字管や配管や詰まって吹付できない場合を×とした。
【0043】
【表1】
【0044】
(実験例2)
W/C=45%とし、セメント100重量部に対して1.0重量部の減水剤、セメント100重量部に対して表2に示す重量部の骨材D、及び吹付コンクリート100容量部中1.0容量部の繊維を混練して吹付コンクリートとし、急結材をセメント100重量部に対して10重量部圧送して急結性吹付コンクリートとしたこと以外は、実施例1と同様に行い、リバウンド率と圧縮強度を測定した。結果を表2に示す。
【0045】
(測定方法)
圧縮強度:急結性吹付コンクリートを、幅25cm×長さ25cmのプルアウト型枠と幅50cm×長さ50cm×厚さ20cmの型枠に吹付けた。材齢3時間の圧縮強度はプルアウト型枠の供試体を使用して測定した。プルアウト型枠表面からピンを急結性吹付コンクリートで被覆し、型枠の裏側よりピンを引き抜き、そのときの引き抜き強度を求めた。(圧縮強度)=(引き抜き強度)×4/(供試体表面積)から圧縮強度を算出した。材齢3日以降の圧縮強度は幅50cm×長さ50cm×厚さ20cmの型枠から採取した直径5cm×長さ10cmの供試体供試体を20トン耐圧機で測定した。
【0046】
【表2】
【0047】
(実験例3)
W/C=45%とし、セメント100重量部に対して1.0重量部の減水剤、セメント100重量部に対して骨材D250重量部、及び吹付コンクリート100容量部中1.0容量部の繊維を混練して吹付コンクリートとし、急結材をセメント100重量部に対して表3に示す重量部圧送して急結性吹付コンクリートとしたこと以外は、実施例1と同様に行い、圧縮強度を測定した。結果を表3に示す。
【0048】
【表3】
【0049】
(実験例4)
W/C=45%とし、セメント100重量部に対して1.0重量部の減水剤、セメント100重量部に対して骨材D250重量部、及び吹付コンクリート100容量部中表4に示す容量部の繊維を混練して吹付コンクリートとし、急結材をセメント100重量部に対して10重量部圧送して急結性吹付コンクリートとしたこと以外は、実施例1と同様に行い、28日曲げ強度と圧送性を測定した。結果を表4に示す。
【0050】
(測定方法)
28日曲げ強度:土木学会基準「鋼繊維補強コンクリートの曲げ試験方法(JSCE−G 552−19983)」に準じて28日後の曲げ強度を測定。
【0051】
【表4】
【0052】
【発明の効果】
本発明の吹付材料を使用することで、初期及び長期の強度発現性にも優れ、かつ、大幅にセメントコンクリートや繊維のリバウンド率を低減することができる。従って、吹付け施工コストの削減や施工時間の短縮も実現できる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a spraying method for spraying material that is sprayed onto a ground surface exposed in a tunnel such as a road, a railway, and a water conduit.
[0002]
In the present invention, mortar and concrete are collectively referred to as cement concrete.
[0003]
[Prior art]
Conventionally, in order to prevent the collapse of exposed ground such as tunnel excavation, a rapid setting cement concrete spraying method in which a quick setting material is mixed with cement concrete has been performed (Japanese Patent Publication No. 60-4149).
[0004]
In this method, spray cement concrete is usually made at a cement, aggregate, and water metering and mixing plant installed at the excavation site, transported by an agitator car, pumped by a concrete pump, and joined in the middle. It is a construction method in which a pipe is mixed with a quick setting material pumped from the other side and sprayed to the ground surface as a quick setting spray cement concrete until a predetermined thickness is reached.
[0005]
[Problems to be solved by the invention]
However, in this construction method, the rebound rate shown by [(amount of rapid setting cement concrete bounced) / (amount of spraying of the entire quick setting cement concrete) × 100 (%)] is 15 to 30% by weight. There was a big problem. In particular, there was a problem that the fiber rebound rate of the fiber itself was remarkably large at about 50 wt%. Fibers are expensive and there are problems such as economically unfavorable rebound rate.
[0006]
Therefore, a construction method having a smaller fiber rebound rate has been demanded, but there is no spray material that can be sufficiently satisfied at present, and the improvement has been strongly desired.
[0007]
As a result of studying various problems in increasing the strength of the quick setting sprayed cement concrete, the present inventor has obtained knowledge that the problem can be solved by spraying using a specific spray material. The invention has been completed.
[0008]
The present invention has a cement, 0.05 to 5 parts by weight of a polycarboxylic acid high-performance water reducing agent with respect to 100 parts by weight of cement, and a maximum dimension of 100 to 300 parts by weight with respect to 100 parts by weight of cement. 1.0 to 1.2 parts by volume in 100 parts by volume of sprayed cement concrete comprising 5 to 7.5 mm of aggregate, cement, polycarboxylic acid-based high-performance water reducing agent, aggregate, and steel fiber A quick-setting material comprising amorphous calcium aluminate, type II anhydrous gypsum, and sodium aluminate is added to spray cement concrete made of steel fibers having a length of 0.5 to 30 mm , and 100 weight of cement. Steel fiber reinforced quick setting sprayed cement concrete mixed with 0.5 to 20 parts by weight with respect to part, and steel fiber rebound using the steel fiber reinforced quick setting sprayed cement concrete A spraying method to reduce.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
[0010]
As the cement used in the present invention, various commonly used Portland cements such as normal, early strength, and super early strength, various mixed cements obtained by mixing these Portland cements with blast furnace slag, fly ash, or silica, 3CaO · SiO 2 and 11CaO · 7Al 2 O 3 · CaF 2 as a main component, a super fast hard cement, a commercially available fine particle cement, and the like. Further, various Portland cements and various mixed cements may be used after being finely powdered.
[0011]
The quick setting material used in the present invention contains calcium aluminate, gypsum, and aluminate.
[0012]
Calcium aluminates used in the present invention are obtained by mixing a raw material containing calcia and a raw material containing alumina, and obtained by heat treatment such as firing in a kiln or melting in an electric furnace. Al 2 O 3 is a general term for substances having hydration activity, and CaO and / or a part of Al 2 O 3 is an alkali metal oxide, alkaline earth metal oxide, silicon oxide, oxidation Compounds substituted with titanium, iron oxide, alkali metal halides, alkali metal earth halides, alkali metal sulfates, alkaline earth metal sulfates, or the like, or mainly containing CaO and Al 2 O 3 In addition, these are substances in which a small amount is dissolved. The mineral form may be either crystalline or amorphous.
[0013]
Among the calcium aluminates, amorphous calcium aluminate is preferable from the viewpoint of reaction activity, and amorphous calcium obtained by quenching the heat-treated product corresponding to the 12CaO · 7Al 2 O 3 (C 12 A 7 ) composition. More preferred is aluminate.
[0014]
As the gypsum used in the present invention, any commercially available gypsum can be used, but type II anhydrous gypsum and natural gypsum are preferable.
[0015]
The particle size of the gypsum, preferably 3000 cm 2 / g or more in Blaine value, 4000~7000cm 2 / g is more preferable. If it is less than 3000 cm 2 / g, the initial strength development may be reduced.
[0016]
The amount of gypsum used is preferably 20 to 250 parts by weight and more preferably 75 to 150 parts by weight with respect to 100 parts by weight of calcium aluminate. If it is less than 20 parts by weight, there is no effect, and if it exceeds 250 parts by weight, the setting time becomes long and the initial setting property is deteriorated.
[0017]
The alkali aluminate used in the present invention promotes initial setting, and includes lithium aluminate, sodium aluminate, potassium aluminate and the like, and one or more of these can be used.
[0018]
The amount of aluminate used is preferably 2 to 30 parts by weight and more preferably 5 to 20 parts by weight with respect to 100 parts by weight of calcium aluminate. If it is less than 2 parts by weight, there is no effect, and if it exceeds 30 parts by weight, the long-term strength development is inhibited, the setting time becomes long, and the initial setting property is deteriorated.
[0019]
The amount of the quick setting material used is preferably 0.5 to 20 parts by weight, more preferably 5 to 15 parts by weight with respect to 100 parts by weight of cement . If the amount is less than 0.5 part by weight, the initial setting may not occur and the initial strength development may be small. If the amount exceeds 20 parts by weight, the long-term strength development may be small.
[0020]
The fiber used in the present invention can be either inorganic or organic, and has the effect of improving the impact resistance and elasticity of the quick setting sprayed cement concrete.
[0021]
The length of the fiber is preferably 100 mm or less, and more preferably 0.5 mm to 60 mm in terms of pumpability and mixing properties. If it exceeds 100 mm, the rapid setting sprayed concrete may be blocked during feeding.
[0022]
Examples of inorganic fibers include glass fibers, carbon fibers, rock wool, asbestos, ceramic fibers, and metal fibers. Organic fibers include vinylon fibers, polyethylene fibers, polypropylene fibers, polyacrylic fibers, cellulose fibers, Examples thereof include polyvinyl alcohol fiber, polyamide fiber, pulp, hemp, wood wool, and wood chip, and one or more of these can be used. Among these, metal fiber is preferable and steel fiber is preferable because it is economical and has a large effect.
[0023]
The amount of fiber used is preferably 0.1 to 1.5 parts by volume, more preferably 0.3 to 1.2 parts by volume, in 100 parts by volume of sprayed cement concrete. If it is less than 0.1 part by volume, there is a possibility that the effect of adding fibers may not be obtained, and if it exceeds 1.5 parts by volume, spraying workability, economy, and pumpability may be deteriorated.
[0024]
In the present invention, a water reducing agent can be further used.
[0025]
A water reducing agent means what is used in order to improve the fluidity | liquidity of spray cement concrete, and both a liquid thing and a powder form can be used.
[0026]
Examples of water reducing agents include polyol derivatives, lignin sulfonates and derivatives thereof, and high performance water reducing agents. One or two or more of these can be used. Among these, a high-performance water reducing agent is preferable in terms of strength development.
[0027]
The high-performance water reducing agent has an effect that the spraying thickness, the added amount of the quick setting material, the generation amount of dust, and the rebound rate are reduced, and the quick setting property is improved.
[0028]
Examples of high-performance water reducing agents include naphthalene sulfonate, melamine sulfonate, and formalin condensates of alkyl allyl sulfonate, and polycarboxylic acid polymer compounds. Can be used. These can be used in liquid or powder form.
[0029]
0.05-5 weight part is preferable with respect to 100 weight part of cement, and, as for the usage-amount of a water reducing agent, 0.1-3 weight part is more preferable. If the amount is less than 0.05 parts by weight, the effect may not be obtained. If the amount exceeds 5 parts by weight, the viscosity of the sprayed cement concrete is too strong, and the workability may be deteriorated.
[0030]
The aggregate used in the present invention is added to sprayed cement concrete, and preferably has low water absorption and high aggregate strength. Examples of the aggregate include river sand, mountain sand, lime sand, artificial aggregate, and quartz sand.
[0031]
The maximum size of the aggregate is 7.5 mm or less, preferably 2.5 to 6 mm. If it exceeds 7.5 mm, the fiber rebound rate increases, which is not preferable. If it is less than 2.5 mm, the amount of unit water and the amount of water reducing agent used increase, and there is a risk of clogging when sprayed cement concrete is pumped.
[0032]
The amount of aggregate used is preferably 50 to 400 parts by weight and more preferably 100 to 300 parts by weight with respect to 100 parts by weight of cement. If it is less than 50 parts by weight, the viscosity of the quick setting sprayed cement concrete will increase, making it difficult to pump, and clogging may occur at the time of pumping. If it exceeds 400 parts by weight, the rebound rate will be large and the strength development may be low. There is.
[0033]
The quick setting spray cement concrete of the present invention is obtained by mixing the quick setting material with the spray cement concrete containing cement, water reducing agent , fiber, and aggregate.
[0034]
The fiber mixing method of the present invention is not particularly limited as long as fibers are mixed in the quick setting sprayed cement concrete, for example, a method of adding fibers to the spray cement concrete side or the quick setting material side, A method of adding fibers separately from the sprayed cement concrete and the quick setting material may be mentioned, and these may be used in combination.
[0035]
Moreover, there is no restriction | limiting in particular also in the addition method of admixtures, such as a setting retarder, a setting accelerator, and an ultrafine powder, The method of adding to spray cement concrete and the method of adding with a quick setting material with a mixing pipe | tube are mentioned.
[0036]
In the spraying method of the present invention, either a dry spraying method or a wet spraying method can be used. As a dry-type spraying method, cement, aggregate, and quick setting material are mixed, pneumatically fed, and water is added from one side of the Y-tube, for example, and sprayed in a wet state. Examples include a method in which the material is mixed and pneumatically fed, added in the order of quick setting material and water, and sprayed in a wet state. Examples of the wet spraying method include a method in which cement, aggregate, and water are added and kneaded, pneumatically fed, and a quick setting material is added and sprayed from one of the Y-shaped pipes on the way.
[0037]
In the spraying method of the present invention, conventionally used spraying equipment can be used. Usually, the spray pressure is 3 to 5 kg / cm 2 , and the spray speed is 4 to 20 m 3 / h.
[0038]
The spraying equipment of the present invention is not particularly limited as long as the spraying is sufficiently performed. For example, “Aliver 280” manufactured by Arriver Co., Ltd. is suitable for pumping sprayed cement concrete, and is suitable for pumping quick setting materials. A quick-feeding material pressure feeding device “Natom Cleat” manufactured by Seisakusho can be used.
[0039]
【Example】
Examples will be described below.
[0040]
(Experimental example 1)
W / C = 45%, 1.0 part by weight of water reducing agent with respect to 100 parts by weight of cement, 250 parts by weight of aggregate shown in Table 1 with respect to 100 parts by weight of cement, and 100 parts by volume of shotcrete. 0 volume part of the fiber was kneaded to form sprayed concrete, and was pumped using a concrete pumping machine “ARIVA-280”. From one of the Y-tubes provided in the middle of the pumping, 10 parts by weight of the quick setting material is fed to 100 parts by weight of cement with the quick setting material addition machine “Denkatom Cleat”, and mixed and mixed with the shotcrete. It was made of property sprayed concrete. This rapidly setting sprayed concrete was sprayed under the condition of 4 m 3 / h to form sprayed concrete, and the rebound rate and pumpability were measured. The results are shown in Table 1.
[0041]
(Materials used)
Cement: Ordinary Portland cement, Blaine value 3420 cm 2 / g, specific gravity 3.16, commercial water reducing agent: polycarboxylic acid-based high-performance water reducing agent, commercial product aggregate A: crushed stone from Himekawa, Niigata Prefecture, Maximum dimension 10mm, specific gravity 2.61
Aggregate B: A crushed stone from Himekawa, Niigata Prefecture, sieved, maximum size 7.5mm, specific gravity 2.61
Aggregate C: A crushed stone from Himekawa, Niigata, sieved, maximum size 6mm, specific gravity 2.61
Aggregate D: A crushed stone from Himekawa, Niigata Prefecture, sieved, maximum size 5mm, specific gravity 2.61
Aggregate E: A crushed stone from Himekawa, Niigata Prefecture, sieved, maximum size 2.5mm, specific gravity 2.61
Fiber: Steel fiber, fiber length 30 mm, specific gravity 7.8, commercial quick setting material: calcium aluminate / gypsum / aluminate = 100/100/14 (mixture consisting of ((weight ratio). However, calcium aluminate Corresponds to the composition of 12CaO · 7Al 2 O 3 and is amorphous and has a brane value of 6050 cm 2 / g. The gypsum is II type anhydrous gypsum and has a brane value of 6050 cm 2 / g. As the acid salt, sodium aluminate was used.
[0042]
(Measuring method)
Maximum dimension: Of the sieves through which at least 90% by weight passes, the dimension of the aggregate indicated by the nominal dimension of the smallest sieve is shown.
Concrete rebound rate: when the quick-setting property Shotcrete was sprayed on the side wall of one minute 0.1 m 3, (a quick-setting property Shotcrete was rebounding dropped amount) / (the total quick-setting property Shotcrete used to spray Amount) × 100 (% by weight).
Fiber rebound rate: Indicates the fiber rebound rate. When blowing quick-setting property Shotcrete on the side wall of one minute 0.1 m 3, (bounce amount of dropped fibers) / (the amount of fibers quick-setting property spray concrete used for spraying) × 100 (wt %). The amount of fibers bounced and dropped was measured after the fibers were attracted and collected from the bounced quick setting sprayed concrete with a magnet, the cement adhering to the fibers was washed away and dried.
Pumpability: The pumping condition of quick setting sprayed concrete was observed. The case where the Y-shaped tube or pipe was not clogged was marked as ◯, the case where it was clogged was marked as Δ, and the case where the Y-shaped tube or pipe was clogged and could not be sprayed was marked as x.
[0043]
[Table 1]
[0044]
(Experimental example 2)
W / C = 45%, 1.0 part by weight of water reducing agent for 100 parts by weight of cement, 1 part by weight of aggregate D shown in Table 2 for 100 parts by weight of cement, and 100 parts by volume of shotcrete Except for kneading 0.0 part by volume of fiber to make spray concrete, and 10 parts by weight of quick setting material to 100 parts by weight of cement to make quick setting spray concrete, the same as in Example 1, Rebound rate and compressive strength were measured. The results are shown in Table 2.
[0045]
(Measuring method)
Compressive strength: Rapid setting sprayed concrete was sprayed onto a 25 cm wide x 25 cm long pullout mold and a 50 cm wide x 50 cm long x 20 cm thick formwork. The compressive strength at the age of 3 hours was measured using a specimen of a pull-out mold. The pin was covered with quick setting sprayed concrete from the surface of the pull-out formwork, the pin was pulled out from the back side of the formwork, and the pullout strength at that time was determined. The compressive strength was calculated from (compressive strength) = (pull-out strength) × 4 / (surface area of specimen). The compressive strength after 3 days of age was measured with a 20-ton pressure machine for a specimen having a diameter of 5 cm and a length of 10 cm taken from a mold having a width of 50 cm, a length of 50 cm and a thickness of 20 cm.
[0046]
[Table 2]
[0047]
(Experimental example 3)
W / C = 45%, 1.0 part by weight of water reducing agent for 100 parts by weight of cement, 250 parts by weight of aggregate D for 100 parts by weight of cement, and 1.0 part by volume of 100 parts by volume of shotcrete The compressive strength was obtained in the same manner as in Example 1 except that the fiber was kneaded to obtain sprayed concrete, and the quick setting material was pumped by weight part shown in Table 3 to 100 parts by weight of cement to obtain quick setting sprayed concrete. Was measured. The results are shown in Table 3.
[0048]
[Table 3]
[0049]
(Experimental example 4)
W / C = 45%, 1.0 part by weight of water reducing agent for 100 parts by weight of cement, 250 parts by weight of aggregate D for 100 parts by weight of cement, and capacity parts shown in Table 4 in 100 parts by volume of shotcrete This was done in the same manner as in Example 1 except that 10 parts by weight of the quick-setting material was pumped to 100 parts by weight of cement to form quick-setting sprayed concrete, and the 28-day bending strength was obtained. The pumpability was measured. The results are shown in Table 4.
[0050]
(Measuring method)
28-day bending strength: The bending strength after 28 days was measured according to the Japan Society of Civil Engineers standard "bending test method of steel fiber reinforced concrete (JSCE-G 552-19983)".
[0051]
[Table 4]
[0052]
【The invention's effect】
By using the spray material of the present invention, the initial and long-term strength development is excellent, and the rebound rate of cement concrete and fibers can be greatly reduced. Therefore, it is possible to reduce the spraying construction cost and the construction time.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28510498A JP4244080B2 (en) | 1998-10-07 | 1998-10-07 | Rapid setting sprayed cement concrete and spraying method using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28510498A JP4244080B2 (en) | 1998-10-07 | 1998-10-07 | Rapid setting sprayed cement concrete and spraying method using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000109353A JP2000109353A (en) | 2000-04-18 |
JP4244080B2 true JP4244080B2 (en) | 2009-03-25 |
Family
ID=17687185
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28510498A Expired - Lifetime JP4244080B2 (en) | 1998-10-07 | 1998-10-07 | Rapid setting sprayed cement concrete and spraying method using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4244080B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE112021004822T5 (en) | 2020-09-15 | 2023-06-29 | Kordsa Teknik Tekstil A.S. | MICROFIBRE SHOTCONCRETE MIX |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100464184B1 (en) * | 2000-09-08 | 2004-12-31 | 삼성물산 주식회사 | Cement Mineral Based Set Accelerator for Shotcrete and the manufacturing method thereof |
KR100656744B1 (en) * | 2000-11-04 | 2006-12-12 | 주식회사 인트켐 | Cementitious accelerating admixtures |
JP3949075B2 (en) * | 2003-04-11 | 2007-07-25 | 電気化学工業株式会社 | Spraying method |
JP2007063103A (en) * | 2005-09-02 | 2007-03-15 | Kajima Corp | Quick hardening type high toughness fiber-reinforced ceramic material and method of formulating the same |
KR101113138B1 (en) * | 2008-10-09 | 2012-03-14 | 지에스건설 주식회사 | Early Strength Type Concrete Composition |
JP6177598B2 (en) * | 2013-06-20 | 2017-08-09 | 太平洋マテリアル株式会社 | Manufacturing method of fiber-filled fast concrete |
JP6271249B2 (en) * | 2013-12-28 | 2018-01-31 | 太平洋マテリアル株式会社 | Spraying mortar |
-
1998
- 1998-10-07 JP JP28510498A patent/JP4244080B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE112021004822T5 (en) | 2020-09-15 | 2023-06-29 | Kordsa Teknik Tekstil A.S. | MICROFIBRE SHOTCONCRETE MIX |
Also Published As
Publication number | Publication date |
---|---|
JP2000109353A (en) | 2000-04-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2012121763A (en) | Quick setting agent for spraying and sprayed concrete using the same, and spraying method | |
JP4020448B2 (en) | Spraying method | |
JP3534586B2 (en) | Quick setting material and quick setting sprayed cement concrete | |
JP3979696B2 (en) | Quick setting sprayed concrete | |
JP4244080B2 (en) | Rapid setting sprayed cement concrete and spraying method using the same | |
JP3503915B2 (en) | Spraying material and spraying method using it | |
JP3412794B2 (en) | Spraying material and spraying method using it | |
JP4657428B2 (en) | Quick setting agent, spraying material and spraying method using the same | |
JP4476422B2 (en) | Spraying method | |
JP3483105B2 (en) | Quick setting material, spraying material, and spraying method | |
JP4253377B2 (en) | Spraying method | |
JP3547326B2 (en) | Quick setting material and quick setting sprayed cement concrete | |
JP2002226247A (en) | Blasting material and blasting process using the same | |
JP4253375B2 (en) | Coated fine aggregate, cement composition, and method for producing cement composition | |
JP4059604B2 (en) | Quick setting slurry, spraying material and spraying method using the same | |
JP4321889B2 (en) | Spraying method | |
JP4916607B2 (en) | Spraying method | |
JP4248455B2 (en) | Spraying method | |
JP4493780B2 (en) | Quick setting agent, quick setting agent slurry, spray material and spraying method using the same | |
JP4493782B2 (en) | Quick setting agent, quick setting agent slurry, spray material and spraying method using the same | |
JP4592839B2 (en) | Spray material and spray method | |
JP4683702B2 (en) | Sprayed cement concrete, quick setting sprayed cement concrete and spraying method using the same | |
JP4689072B2 (en) | Cement concrete, quick setting cement concrete, and preparation method | |
JP4841714B2 (en) | Spray material and spray method using the same | |
JP2001019526A (en) | Spraying material and spraying method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050509 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080611 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080617 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080708 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081007 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081010 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20081224 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20081225 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120116 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120116 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130116 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130116 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140116 Year of fee payment: 5 |
|
EXPY | Cancellation because of completion of term |