JP4243131B2 - Positive electrode active material for lithium secondary battery and method for producing the same - Google Patents

Positive electrode active material for lithium secondary battery and method for producing the same Download PDF

Info

Publication number
JP4243131B2
JP4243131B2 JP2003120542A JP2003120542A JP4243131B2 JP 4243131 B2 JP4243131 B2 JP 4243131B2 JP 2003120542 A JP2003120542 A JP 2003120542A JP 2003120542 A JP2003120542 A JP 2003120542A JP 4243131 B2 JP4243131 B2 JP 4243131B2
Authority
JP
Japan
Prior art keywords
lithium
positive electrode
active material
electrode active
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003120542A
Other languages
Japanese (ja)
Other versions
JP2004327246A (en
Inventor
俊輝 前田
浩文 飯坂
覚 鈴木
学 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Denso Corp
Toyota Motor Corp
Original Assignee
Sumitomo Metal Mining Co Ltd
Denso Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd, Denso Corp, Toyota Motor Corp filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2003120542A priority Critical patent/JP4243131B2/en
Publication of JP2004327246A publication Critical patent/JP2004327246A/en
Application granted granted Critical
Publication of JP4243131B2 publication Critical patent/JP4243131B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、リチウム二次電池用正極活物質およびその製造方法に関し、特に、リチウムニッケル複合酸化物の二次粒子表面の状態の改善により、容量および出力特性が向上したリチウム二次電池用正極活物質およびその製造方法に関する。
【0002】
【従来の技術】
リチウム二次電池は、高容量であることから、携帯電話、ビデオカムおよびPDAなどの小型移動機器の電源として搭載され、急激に社会に浸透した。さらに最近では、ハイブリッドカーに代表される自動車への搭載を目指して、研究および開発が進められている。そのような中、用途を広げるために、より高容量で、安全性および出力特性の優れたリチウム二次電池の要求が高まってきている。
【0003】
リチウム二次電池の正極材料の一つであるLiNiO2(ニッケル酸リチウム)は、現在主流のLiCoO2(コバルト酸リチウム)と比較すると、高容量であることや、原料であるNiがCoと比べ安価で安定して入手することが可能であることなどの利点を持ち、次世代正極材料と期待され、活発に研究および開発が続けられている。このようなLiNiO2を自動車用に搭載する場合、容量と出力特性が重視される。
【0004】
特開2000−30693号公報では、[Li]3a[Ni1-x-yCoxAly]3b[O2]6c(ただし、[]の添え字はサイトを表し、x、yは0<x≦0.20、0<y≦0.15なる条件を満たす)で表され、かつ、層状構造を有する六方晶系のリチウムニッケル複合酸化物において、X線回折のリートベルト解析結果から得られた3aサイトのリチウム以外の金属イオン(以下、「非リチウムイオン」という)のサイト占有率が3%以下であることを特徴とし、粒子形状及びX線回折図形の003ピークの半値幅から計算される結晶粒径を制御することで、初期放電容量が高く、かつ、不可逆容量の小さい非水系電解質二次電池が得られる正極活物質が提案されている。
【0005】
出力特性の向上に関して、リチウム複合酸化物の二次粒子表面を覆っているLi2CO3(炭酸リチウム)の影響についての知見は、特開平10−27614号公報にみられる。該公報には、リチウムコバルト複合酸化物において、Li2CO3を主成分とする皮膜が、活物質粒子表面に形成されることによって活物質粒子からの集電が阻害され、高温放置後の分極の増大を助長する原因となることから、安定化ジルコニアボールを用いた粉砕混合方法を採用することと、一旦、粒子表面に形成された皮膜をボールミルなどで粉砕除去することによって調整することと、さらには、焼成時に例えば酸素とアルゴンの混合ガスを吹き込み、炭酸ガスを除去した雰囲気とすることによって、皮膜の生成防止が一層効果的となることとが、記載されている。
【0006】
しかし、これらの方法では、粒子表面に形成されたLi2CO3を主成分とする皮膜を、完全に除去することは難しく、また、粉砕すれば、微細粒子が生成され、電池性能を劣化させるという問題も新たに発生する。
【0007】
また、LiNiO2の二次粒子表面に皮膜として存在しているLi2CO3は、充放電の際にLiが結晶表面と電解液の間で移動するのを妨げ、その結果として、リチウム二次電池の容量と出力が低下するものと考えられる。前記LiCoO2や、一般式Lix(Ni1-yCoy1-zz2のようなリチウムニッケル複合酸化物においても、同様である。
【0008】
二次粒子表面に皮膜としてLi2CO3が生成する要因の一つは、過剰Liの存在によるものと考えられる。
【0009】
過剰Liの存在について、以下に説明をする。
【0010】
一般式Lix(Ni1-yCoy1-zz2のようなリチウムニッケル複合酸化物のLi、Ni、Co、Mの割合は、化学量論比でいうとLi/(Ni+Co+M)=1である。しかし、焼成途中でLiが揮散したり、または、Li2SO4などに代表されるように、リチウムニッケル複合酸化物の微量不純物などと結合して、初期組成からLiが減少するため、焼成前段階ではLiを多少多めに加えている。また、他の理由として、多めにLiを入れた方が、よりLi席占有率の高いリチウムニッケル複合酸化物を得ることが出来るので、Liを過剰に加えて製造している。
【0011】
このように、リチウムニッケル複合酸化物中には過剰にLiが添加されるうえ、当該Liが大気中に存在するCO2と接触することで炭酸化し、二次粒子表面にLi2CO3の皮膜が形成され、結果として、リチウム二次電池の容量および出力特性の低下化または不安定化を招くものと考えられる。このように、リチウムニッケル複合酸化物の表面のLi2CO3は、リチウム二次電池の性能に大きく影響を及ぼす。従って、表面のLi2CO3の量を抑えることが、高性能リチウム二次電池用正極活物質にとって重要となる。
【0012】
【特許文献1】
特開2000−30693号公報
【0013】
【特許文献2】
特開平10−27614号公報
【0014】
【発明が解決しようとする課題】
本発明の目的は、二次粒子表面を覆っているLi2CO3の量を抑え、高容量で出力特性の優れたリチウム二次電池用正極活物質を提供することにある。
【0015】
【課題を解決するための手段】
本発明者らは、一般式、Lix(Ni1-yCoy1-zz2(0.98≦x≦1.10、0.05≦y≦0.4、0.01≦z≦0.2、MはAl、Zn、TiおよびMgからなる群から選ばれる1種以上)で表され、十分に結晶が成長しており、平均粒径5〜15μmの球状二次粒子で、二次粒子表面を覆うLi2CO3を低減したリチウムニッケル複合酸化物が、高容量で出力特性の優れたリチウム二次電池用正極活物質であり、原料となる金属水酸化物と水酸化リチウムを混合し、焼成雰囲気を制御した炉内で焼成することで、このようなリチウム二次電池用正極活物質を得ることができることを見出した。
【0016】
すなわち、本発明のリチウム二次電池用正極活物質は、一般式Lix(Ni1-yCoy1-zz2(0.98≦x≦1.10、0.05≦y≦0.4、0.01≦z≦0.2、MはAl、Zn、TiおよびMgからなる群から選ばれる1種以上)で表されるリチウム二次電池用正極活物質において、リートベルト解析による結晶中LiサイトのLi席占有率が98%以上を有し、平均粒径5〜15μmの球状二次粒子であって、
(1)光電子分光分析法(XPS)の酸素1sスペクトルの測定において、(Li2CO3のピーク強度)/(Lix(Ni1-yCoy1-zz2のピーク強度)が1.5以下であり、
(2)光電子分光分析法(XPS)の炭素1sスペクトルの測定において、(Li2CO3のピーク強度)/(C−C、C−Hのピーク強度)が0.5以下である。
【0017】
本発明のリチウム二次電池用正極活物質の一態様では、一般式Lix(Ni1-yCoy1-zz2(0.98≦x≦1.10、0.05≦y≦0.4、0.01≦z≦0.2、MはAl、Zn、TiおよびMgからなる群から選ばれる1種以上)で表されるリチウム二次電池用正極活物質において、リートベルト解析による結晶中LiサイトのLi席占有率が98%以上を有し、平均粒径5〜15μmの球状二次粒子であって、光電子分光分析法(XPS)の酸素1sスペクトルの測定において、Li2CO3のピーク強度に対して、Lix(Ni1-yCoy1-zz2のピーク強度が同程度か高い。
【0018】
また、本発明のリチウム二次電池用正極活物質の製造方法では、金属水酸化物と水酸化リチウムを混合し、焼成雰囲気を酸素ガスとして、該酸素ガス中の炭酸ガス濃度を50ppm以下として、焼成する。
【0019】
【発明の実施の形態】
本発明によるリチウム二次電池用正極活物質は、一般式Lix(Ni1-yCoy1-zz2(0.98≦x≦1.10、0.05≦y≦0.4、0.01≦z≦0.2、MはAl、Zn、TiおよびMgからなる群から選ばれる1種以上)で表されるリチウムニッケル複合酸化物である。
【0020】
ここで、金属元素Mは、Al、Zn、TiおよびMgからなる群から選ばれた少なくとも1種の金属元素であるが、リチウム金属複合酸化物中に均一に拡散されることにより、リチウム金属複合酸化物の結晶構造を安定化させることができ、リチウム二次電池の熱安定性を高めている。金属元素Mの添加量であるzが、0.01よりも少ないと、結晶構造の安定化は認められず、熱安定性が確保できない。また、0.2を超えて添加すると、結晶構造は安定化するが、活物質であるNi及びCoの量が減り、リチウム二次電池としたときに結果として、初期放電容量の低下が大きくなるため、好ましくない。
【0021】
また、リチウムニッケル複合酸化物中のCoは、サイクル特性の向上に寄与するものであるが、yの値が0.05未満では、十分なサイクル特性を得ることは出来ない。また、yの値が0.4を超えると、活物質であるNiの量が減り、高容量リチウム二次電池用正極活物質として好ましくない。
【0022】
本発明のリチウム金属複合酸化物の平均粒径は、5〜15μmの球状二次粒子である。平均粒径が5μm未満であると、比表面積が増加し、電池にした際、充放電時の反応が急激に起こる可能性もあり、危険である。また、正極材料のタップ密度が低下してしまい、単位質量当たりの放電容量の低下につながり、好ましくない。一方、15μmを超えると、粒子が大きくなりすぎることから、電解液が粒子内部まで到達できない場合や、充放電時、Liが粒子内部をうまく拡散できず、利用率が下がる傾向が現れる。また、正極板作製時に粒子が割れやすくなり、電池密度が上がらないという問題も出てくる。ここで、平均粒径の測定は、レーザー方式粒度分布測定装置(マイクロトラック粒度分布測定装置)を用いて行った。
【0023】
また、化学量論性の検討は、X線回折によるリートベルト解析(例えば、R.A.Young,ed.,“The Rietveld Method”,Oxford University Press(1992).)を用いて行うことができ、指標としては、各イオンのサイト占有率がある。六方晶系の化合物の場合には、3a、3b、6cのサイトがあり、LiNiO2が完全な化学量論組成の場合には、3aサイトはLi、3bサイトはNi、6cサイトはOが、それぞれ100%のサイト占有率を示す。3aサイトのLiイオンのサイト占有率が98%以上であるようなリチウムニッケル複合酸化物は、化学量論性に優れていると言える。
【0024】
二次電池用活物質として考えた場合、Liは脱離および挿入が可能なため、Li欠損が生じても、結晶の完全性は維持できる。従って、現実的には、3aサイトの非リチウムイオンの混入率をもって化学量論性あるいは結晶の完全性を示すのがよい方法であると考えられる。本発明のリチウム金属複合酸化物は、Niの一部をサイクル特性向上や、熱安定性改善のために、CoやAlで置換した活物質に関するものであり、電池の充放電反応は、3aサイトのLiイオンが可逆的に出入りすることで進行する。従って、固相内でのLiイオンの拡散パスとなる3aサイトに他の金属イオンが混入すると、拡散パスが阻害され、これが電池の充放電特性を悪化させる原因となりうる。本発明者等は、粉末X線回折より求めた3aサイトの非リチウムイオンの混入率と不可逆容量とに深い関係があることを見いだしており、X線回折のリートベルト解析結果から得られた3aサイトのLiイオンのサイト占有率が98%以上であることが必要となってくる。
【0025】
また、このような正極活物質において、Liの拡散に関する研究をさらに進めた結果、不可逆容量が活物質粉末の粉体特性と深い関係をもつことを見いだしている。不可逆容量は、Liの拡散と深い関係にあると考えられる。Liの拡散は、大きく分けて固相内での拡散と電解液中での拡散とに分けられ、電解液中での拡散の方が数桁速いと考えられている。正極活物質粉末が、小さな一次粒子が集合して二次粒子を形成している場合、個々の一次粒子をある程度成長させることによって、二次粒子の内部の一次粒子同士の間に細かな隙間を作り出すことができ、それによって、その隙間に電解液が染み込んで、二次粒子内部まで電解液を通じてLiイオンを供給することが可能となる。その結果、二次粒子全体にLiイオンが拡散する速度が速くなり、不可逆容量が低減すると考えられる。従って、リチウムニッケル複合酸化物は、一次粒子の平均粒径が0.1μm以上であり、かつ、該一次粒子が複数集合して二次粒子を形成していることが好ましい形態の一つである。
【0026】
本発明によるリチウム二次電池用正極活物質は、二次粒子表面にある炭素の量を、光電子分光分析法(XPS)のピーク強度比にて規定する。このように規定することは、二次粒子表面にLi2CO3が皮膜として存在していることに基づいている。
【0027】
本発明者等は、XPS等の表面解析手段を用いてリチウム金属複合酸化物の表面に炭酸イオンが存在することを確認し、また、試作したリチウム金属複合酸化物のC付着量と表面の炭酸イオン量とに相関があることを見いだし、さらに、リチウム金属複合酸化物のC付着量と低温出力との間に密接な相関があることを見いだした。さらに、炭酸イオン濃度あるいはC付着量を低下させるだけでは、必ずしも良好な低温出力を得られないことから、リチウム金属複合酸化物の表面に存在する水分量が低温出力に影響することを発見しており、リチウム金属複合酸化物中の水分量と、電極作製時の作業雰囲気湿度の管理が必要であることを見いだした。
【0028】
リチウム金属複合酸化物に関して見れば、リチウム金属複合酸化物の表面の炭酸イオン量を制御することが必要であり、リチウム金属複合酸化物の二次粒子表面を覆うLi2Co3を低減した時に得られるピーク強度比となるように、リチウムニッケル複合酸化物を規定することによって、高密度で出力特性の優れた高特性のリチウム二次電池を得ることができる。
【0029】
高周波燃焼赤外吸収法による測定においても、リチウムニッケル複合酸化物中の炭素濃度を測定することはできるが、得られる測定値が、二次粒子表面に存在している炭素によるものなのか、それとも二次粒子内部に存在している炭素によるものなのかを区別することはできない。これに対して、光電子分光分析法(XPS)による測定では、二次粒子表面のLi2CO3に基づく炭素1sスペクトルと、酸素1sスペクトルのピークを観察することができる。
【0030】
二次粒子表面に皮膜として存在しているLi2CO3は、充放電の際にLiが結晶表面と電解液の間で移動するのを妨げるため、リチウム二次電池の容量と出力とが低下し、リチウム二次電池の性能に大きく影響を及ぼす。従って、二次粒子表面のLi2CO3の量を抑えることが、高性能リチウム二次電池用正極活物質にとって重要となる。
【0031】
二次粒子表面に皮膜としてLi2CO3が生成する要因の一つは、前述のように、過剰Liの存在による。従って、この結果として、リチウム二次電池の容量、出力特性の低下化、不安定化を招くことになる。
【0032】
また、リチウム金属複合酸化物のC付着量と、低温出力に相関が見られる原因としては、以下のような現象が考えられる。リチウム金属複合酸化物の表面に炭酸リチウムが存在すると、電池反応、特に、放電時にリチウム金属複合酸化物の表面のリチウムイオンの出入り口、すなわち、粒子表面に露出したc軸に垂直な断面(Ni層、O層、Li層の層状構造における層断面)を被覆し、リチウムイオンの出入りを阻害する一因となる。これは、初期放電容量、不可逆容量、高温と低温での出力特性などに大きく影響し、特に、低温での出力特性を低下させる原因になると考えられる。
【0033】
XPS等の表面解析手段を用いて従来法で作製したリチウム金属複合酸化物の表面には、炭酸イオンが存在することを確認しており、該炭酸イオンはほとんどが炭酸リチウムの形で存在していると推定される。これは、原料に用いたリチウム塩の内、焼成合成終了後に至ってもニッケル、コバルト、金属元素Mの金属化合物と反応せずに残存した酸化リチウムあるいは水酸化リチウムが、空気中の炭酸ガスと反応したものと考えられる。
【0034】
Li2O+CO2 → Li2CO3 ・・・(1)
Li2O+H2O → 2LiOH ・・・(2)
2LiOH+CO2 → Li2CO3+H2O ・・・(3)
LiNiO2+H2O → xNiOOH+(1−x)LiNiO2+xLiOH ・・・(4)
また、リチウム金属複合酸化物の表面近傍に水分が存在すると、反応式(4)のように、リチウム金属複合酸化物自体が水分と反応し、LiOHを生成し、生成したLiOHは反応式(3)によって炭酸リチウムを生成する。
【0035】
また、反応式(1)と反応式(2)では、反応式(2)の方が速やかに進むため、雰囲気中に炭酸ガスと水分が共存する場合は、表面に存在する酸化リチウムの炭酸化よりも反応式(2)の酸化リチウムの水酸化物への変性が起こりやすく、結果として水分が雰囲気中に存在する場合は、リチウム金属複合酸化物の炭酸化を促進する。
【0036】
そこで、リチウム化合物とニッケル、コバルト、金属元素Mの化合物を混合、焼成して、リチウム金属複合酸化物を合成する非水系電解質二次電池用正極活物質の製造方法において、リチウム金属複合酸化物のC付着量を抑え、かつ、水分率をも抑えるために、一般式Lix(Ni1-yCoy1-zz2(0.98≦x≦1.10、0.05≦y≦0.4、0.01≦z≦0.2、MはAl、Zn、TiおよびMgからなる群から選ばれる1種以上)で表されるリチウム金属複合酸化物となるように、リチウム化合物、例えば、水酸化リチウム等と、ニッケル、コバルト、金属元素Mの化合物、例えば、前記金属元素の水酸化物を混合後、焼成雰囲気を酸素ガスとして、該酸素ガス中の炭酸ガス濃度を50ppm以下として焼成することが必要である。焼成中の酸素ガス中の炭酸ガス濃度が50ppmを超えると、光電子分光分析法(XPS)酸素1sスペクトルの測定において、(Li2CO3のピーク強度)/(Lix(Ni1-yCoy1-zz2のピーク強度)が1.5以下であり、光電子分光分析法(XPS)炭素1sスペクトルの測定において、(Li2CO3のピーク強度)/(C−C、C−Hのピーク強度)が0.5以下とすることができなくなる。
【0037】
ここで、光電子分光分析法(XPS)炭素1sスペクトルの測定において、C−C、C−Hのピークは、二次粒子表面のLi2CO3量に関わらず観測されているピークであり、一度でも大気と接触させた試料には必ず表れるピークである。これは、大気中に微量に存在する有機成分に起因している。従って、C−C、C−Hのピーク強度は焼成条件等の影響とは無関係で一定の値をとる。
【0038】
さらに、合成されたリチウム金属複合酸化物の焼成後の処理、例えば、粉砕、篩別、分級、梱包等の処理を、該リチウム金属複合酸化物が接触する雰囲気が炭酸ガスを含まない雰囲気であり、かつ、絶対水分量を5g/m3以下である雰囲気中で行うことが望ましい。
【0039】
また、上記反応は、リチウム金属複合酸化物の製造だけでなく、電池組立て、密封までの全工程で起こりうるため、正極活物質であるリチウム金属複合酸化物に導電助剤及びペースト溶媒を混練する工程、電極板に塗布する工程、正極板をプレスする工程、正極板を負極板と併せて電池ケースに組み込み、密閉する工程までの全工程で、雰囲気の制御を行うことが望ましい。
【0040】
すなわち、一般式Lix(Ni1-yCoy1-zz2(0.98≦x≦1.10、0.05≦y≦0.4、0.01≦z≦0.2、MはAl、Zn、TiおよびMgからなる群から選ばれる1種以上)で表されるリチウム金属複合酸化物を、正極活物質とする非水系電解質二次電池の製造方法において、該二次電池の組立て工程で、該リチウム金属複合酸化物が接触する作業雰囲気中の絶対水分量を5g/m3以下とすることが望ましい。
【0041】
上記二次電池の製造工程の雰囲気を制御することによって、光電子分光分析法(XPS)酸素1sスペクトルの測定において、(Li2CO3のピーク強度)/(Lix(Ni1-yCoy1-zz2のピーク強度)が1.5以下であり、光電子分光分析法(XPS)炭素1sスペクトルの測定において、(Li2CO3のピーク強度)/(C−C、C−Hのピーク強度)が0.5以下とすることができるのである。
【0042】
このようにして得られたリチウム金属複合酸化物の二次粒子表面のLi2CO3量に関しては、光電子分光分析法(XPS)で測定を行い、酸素1sスペクトルの(Li2CO3のピーク強度)/(LiNiO2のピーク強度)の強度比が1.5以下であり、且つ、炭素1sスペクトルの(Li2CO3のピーク強度)/(C−C、C−Hのピーク強度)の強度比が0.5以下であるリチウムニッケル複合酸化物を、リチウム二次電池用正極活物質として用いることにより、良好な出力特性が得られる。この2つの強度比のいずれかが範囲を逸脱していることは、二次粒子表面を覆うLi2CO3皮膜が増加していることを示している。この結果、リチウム二次電池の容量の低下や、出力特性の低下および不安定化を招くことになる。
【0043】
さらには、得られたリチウム金属複合酸化物の二次粒子表面の、光電子分光分析法(XPS)酸素1sスペクトルの測定において、Li2CO3のピーク強度に対して、Lix(Ni1-yCoy1-zz2のピーク強度が同程度か、高いことがより好ましい。前記条件を満たすことで合成されたリチウム金属複合酸化物のC付着量がより低下したことがわかり、結果として、初期放電容量、不可逆容量、高温と低温での出力特性などを向上させ、特に、低温での出力特性を向上させることができる。
【0044】
【実施例】
以下に、図面を参照して、本発明の実施例を説明するが、本発明の範囲をこれらの実施例に限定するものではない。
【0045】
(実施例1)
Ni/Coのモル比が、0.84/0.16になるように調合したニッケル、コバルト硫酸水溶液に、アンモニア水溶液を少量ずつ滴下しながらpH=11〜13、温度40〜50℃の範囲で反応させることで、Ni0.84Co0.16(OH)2で表される球状二次粒子(平均粒径14.5μm)を得た。
【0046】
得られた二次粒子と水とを混合してスラリー状にした後、NaAlO2(住友化学(株)製)を、モル比でAl/(Ni+Co+Al)=0.03になるように添加した後、硫酸を用いてpH=9.5に中和した。得られた球状二次粒子の組成は(Ni0.84Co0.160.97Al0.03(OH)2であった。
【0047】
この球状二次粒子と水酸化リチウムを、モル比でLi/(Ni+Co+Al)=1.05になるように調合し、ハイスピードミキサー(深江工業(株)製)に投入し、バインダーとして水を8.4質量%の割合で入れて、混合造粒した。
【0048】
得られた造粒物を用いて、炉内を酸素雰囲気として、二酸化炭素量を50ppm未満となるように吹き込み量を制御し、700〜800℃で焼成し、得られた焼成物を窒素雰囲気下でピンミル粉砕し、25μm超音波振動篩にて篩別し篩上粉を除去した。さらに、風力分級機にて得られた篩下粉から1μm以下の部分を除去し、150℃で24時間の真空乾燥を行った。
【0049】
得られたリチウムニッケル複合酸化物をX線回折で分析したところ、六方晶系の層状構造を有する所望の正極活物質であることを確認した。X線回折のリートベルト解析による結晶中のLiサイトのLi席占有率を算出したところ、98.3%であった。また、組成は、Li1.04(Ni0.84Co0.160.97Al0.032で、平均粒径は9.3μmであった。
【0050】
得られた焼成物を、光電子分光分析(VG Scientific社、ESCALAB220i-XL、ターゲットAl、10kV、15MA)で分析した。
【0051】
分析結果を、図1に示す。
【0052】
酸素1sスペクトルの532eV付近にLi2CO3に起因するピーク、および529eV付近にLix(Ni1-yCoy1-zz2に起因するピークが観察された。このときの(Li2CO3のピーク強度)/(Lix(Ni1-yCoy1-zz2のピーク強度)の強度比は1050/1300で、1.5未満であった。
【0053】
また、炭素1sスペクトルでは289eV付近にLi2CO3のものと思われるC−O、C=O結合に起因するピークと、および284eV付近にC−C、C−H結合に起因するピークが観察された。このときの(Li2CO3のピーク強度)/(C−C、C−Hのピーク強度)の強度比は600/1320で、0.5未満であった。
【0054】
以上の結果より、二次粒子表面のLi2CO3の量が抑えられていることがわかり、二次粒子表面にLi2CO3の皮膜が形成されていないと判断された。
【0055】
得られた焼成物を正極活物質に用いて、以下のような方法にてコイン型電池を作製し、電池特性を測定した。
【0056】
活物質粉末87質量%に、アセチレンブラック5質量%およびPVDF(ポリ沸化ビニリデン)8質量%を混合し、NMP(n−メチルピロリドン)を加え、ペースト化した。これを、20μm厚のアルミニウム箔に、乾燥後の活物質質量が0.05g/cm2になるように塗布し、120℃で真空乾燥を行い、直径1cmの円板状に打ち抜いて、正極とした。
【0057】
負極としてLi金属を、電解液には1MのLiClO4を支持塩とするエチレンカーボネート(EC)とジエチルカーボネート(DEC)の等量混合溶液を用いた。露点が−80℃に管理されたAr雰囲気のグローブボックス中で、2032型のコイン電池とした。
【0058】
充放電測定は、作製した電池を24時間程度、放置し、OCVが安定した後で行う。正極に対する電流密度:0.5mA/cm2、カットオフ電圧:4.3−3.0Vとした。
【0059】
容量維持率は、以上の条件で24サイクル繰り返した。
【0060】
室温IV抵抗および室温出力は、前述の方法で作成したコイン電池を、室温で3.7VまでCCCV充電し、電流密度を変えながら10秒放電、5分休止、10秒充電、5分休止、を繰り返した。電位が3.0Vまで下がったときの電流値から、室温IV抵抗(=電位/電流)と室温出力(=電位×電流)を求めた。
【0061】
低温IV抵抗および低温出力は、前記の方法で作成したコイン電池を、室温で3.62VまでCCCV充電し、−30℃の恒温槽に入れ、電流密度を変えながら10秒放電、5分休止、10秒充電、5分休止、を繰り返した。電位が3.0Vまで下がったときの電流値から、低温IV抵抗(=電位/電流)と低温出力(=電位×電流)を求めた。
【0062】
表1に、実施例1の電池の初期容量、容量維持率、室温IV抵抗と室温出力および低温IV抵抗と低温出力を示す。これらの結果から、出力特性が優れていることがわかる。
【0063】
(実施例2)
Ni/Coのモル比が0.84/0.16、Mg/(Ni+Co+Mg)比が0.02になるように調整したニッケル、コバルト、マグネシウム硫酸水溶液に、アンモニア水を少量ずつ添加しながら、pH=11〜13、温度40〜50℃の範囲で反応させることで、(Ni0.84Co0.160.98Mg0.02(OH)2で表される球状二次粒子(平均粒径13.7μm)を得た。この球状二次粒子と水酸化リチウムを、モル比でLi/(Ni+Co+Mg)=1.05となるように調整し、ハイスピードミキサー(深江工業(株)製)に投入し、バインダーとして水を8.4質量%の割合で入れて、混合造粒した。得られた造粒物を実施例1と同じ条件で焼成して、リチウムニッケル複合酸化物を得た。
【0064】
得られたリチウムニッケル複合酸化物をX線回折で分析したところ、六方晶系の層状構造を有する所望の正極活物質であることを確認した。X線回折のリートベルト解析による結晶中LiサイトのLi席占有率を算出したところ、98.02%であった。また、組成は、Li1.04(Ni0.84Co0.160.98Mg0.022で、平均粒径は10.2μmであった。
【0065】
得られた焼成物を、光電子分光分析(VG Scientific社、ESCALAB220i-XL、ターゲットAl、10kV、15MA)で分析した。
【0066】
光電子分光分析法(XPS)酸素1sスペクトルの測定において、(Li2CO3のピーク強度)/(Lix(Ni1-yCoy1-zz2のピーク強度)の強度比は1250/1300で、1.5未満であり、光電子分光分析法(XPS)炭素1sスペクトルの測定においては、(Li2CO3のピーク強度)/(C−C、C−Hのピーク強度)の強度比は620/1300で、0.5未満となった。
【0067】
表1に、実施例2の電池の初期容量、容量維持率、室内IV抵抗と室温出力および低温IV抵抗と低温出力を示す。これらの結果から、出力特性が優れていることがわかる。
【0068】
【表1】

Figure 0004243131
【0069】
(比較例1)
実施例1と同様にして造粒物を得た。
【0070】
得られた造粒物を用いて、炉内を酸素雰囲気として、二酸化炭素量を300ppm未満となるように吹き込み量を制御し、700〜800℃で焼成し、得られた焼成物をピンミル解砕機にて解砕した。
【0071】
得られた焼成物の組成はLi1.04(Ni0.84Co0.160.97Al0.032であり、平均粒径は9.5μmであった。
【0072】
得られた焼成物を、光電子分光分析(VG Scientific社、ESCALAB220i-XL、ターゲットAl、10kV、15MA)で分析した。
【0073】
分析結果を、図1に示す。
【0074】
酸素1sスペクトルの532eV付近にLi2CO3、529eV付近にLix(Ni1-yCoy1-zz2に起因するピークが観察された。このときの(Li2CO3のピーク強度)/(Lix(Ni1-yCoy1-zz2のピーク強度)の強度比は1650/960で、1.5を超えていた。
【0075】
また、炭素1sスペクトルでは289eV付近にLi2CO3、284eV付近にC−C、C−H結合に起因するピークが観察された。このときの(Li2CO3のピーク強度)/(C−C、C−Hのピーク強度)の強度比は1030/1580で、0.5を超えていた。
【0076】
表1に、比較例1の電池の初期容量、容量維持率、室温IV抵抗と室温出力および低温IV抵抗と低温出力を示す。
【0077】
以上の結果より、比較例1の二次粒子表面のLi2CO3の量は抑えられておらず、二次粒子表面にLi2CO3の皮膜が形成されていることがわかる。
【0078】
(比較例2)
風力分級機にて得られた篩下粉から1μm以下の部分を除去した後、真空乾燥を行わなかった以外は、実施例1と同じにして、リチウムニッケル複合酸化物を得た。
【0079】
得られたリチウムニッケル複合酸化物を、X線回折で分析したところ、六方晶系の層状構造を有する所望の正極活物質であることを確認した。X線回折のリートベルト解析による結晶中LiサイトのLi席占有率を算出したところ、98.11%であった。また、組成は、Li1.04(Ni0.84Co0.160.97Al0.032であり、平均粒径は9.4μmであった。
【0080】
得られた焼成物を、光電子分光分析(VG Scientific社、ESCALAB220i-XL、ターゲットAl、10kV、15MA)で分析した。
【0081】
光電子分光分析法(XPS)酸素1sスペクトルの測定において、(Li2CO3のピーク強度)/(Lix(Ni1-yCoy1-zz2のピーク強度)の強度比は2060/1290で、1.5以上であり、光電子分光分析法(XPS)炭素1sスペクトルの測定においては、(Li2CO3のピーク強度)/(C−C、C−Hのピーク強度)の強度比は1340/1610で、0.5以上となった。
【0082】
表1に、比較例2の電池の初期容量、容量維持率、室内IV抵抗と室温出力および低温IV抵抗と低温出力を示す。以上の結果より、比較例2の二次粒子表面のLi2CO3の量は抑えられておらず、二次粒子表面にLi2CO3の皮膜が形成されていることがわかる。
【0083】
【発明の効果】
本発明のリチウム二次電池用正極活物質により、二次粒子表面を覆っているLi2CO3の量を抑え、高容量で高出力のリチウム二次電池を提供することができた。
【図面の簡単な説明】
【図1】 光電子分光分析で測定した酸素1sスペクトルと炭素1sスペクトルを示すグラフである。[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to a positive electrode active material for a lithium secondary battery and a method for producing the same, and in particular, the positive electrode active material for a lithium secondary battery having improved capacity and output characteristics by improving the state of the secondary particle surface of the lithium nickel composite oxide. The present invention relates to a substance and a manufacturing method thereof.
[0002]
[Prior art]
Since lithium secondary batteries have a high capacity, they have been installed as power sources for small mobile devices such as mobile phones, video cams, and PDAs, and have rapidly penetrated society. More recently, research and development have been progressing with the aim of mounting on automobiles represented by hybrid cars. Under such circumstances, in order to expand applications, there is an increasing demand for a lithium secondary battery having a higher capacity, excellent safety and output characteristics.
[0003]
LiNiO, one of the positive electrode materials for lithium secondary batteries 2 (Lithium nickelate) is the current mainstream LiCoO 2 Compared with (Cobalt Lithate), it has advantages such as high capacity and the fact that Ni as a raw material is cheaper and more stable than Co, and is expected to be a next-generation cathode material. Active research and development continues. Such LiNiO 2 When mounting for automobiles, capacity and output characteristics are important.
[0004]
In Japanese Patent Laid-Open No. 2000-30663, [Li] 3a [Ni 1-xy Co x Al y ] 3b [O 2 ] 6c (However, the subscript of [] represents a site, x and y satisfy the conditions of 0 <x ≦ 0.20 and 0 <y ≦ 0.15), and has a layered structure. In the lithium-nickel composite oxide, the site occupancy of metal ions other than lithium (hereinafter referred to as “non-lithium ions”) at 3a site obtained from the Rietveld analysis result of X-ray diffraction is 3% or less. A non-aqueous electrolyte secondary battery having a high initial discharge capacity and a small irreversible capacity can be obtained by controlling the grain size calculated from the half-width of the 003 peak of the particle shape and X-ray diffraction pattern. A positive electrode active material has been proposed.
[0005]
Regarding the improvement of output characteristics, Li covering the secondary particle surface of the lithium composite oxide 2 CO Three Knowledge about the influence of (lithium carbonate) can be found in JP-A-10-27614. In this publication, in lithium cobalt composite oxide, Li 2 CO Three Since the film containing the main component as a main component is formed on the surface of the active material particles, current collection from the active material particles is hindered, and the increase in polarization after standing at high temperature is promoted. Adopting the used pulverization and mixing method, adjusting the film formed on the particle surface by pulverizing and removing it with a ball mill, etc. It is described that the formation of a film becomes more effective by making the atmosphere from which gas is removed.
[0006]
However, in these methods, Li formed on the particle surface 2 CO Three It is difficult to completely remove the film mainly composed of, and if it is pulverized, fine particles are generated, and the problem of deteriorating battery performance is newly generated.
[0007]
LiNiO 2 Existing as a film on the secondary particle surface of Li 2 CO Three Is believed to prevent Li from moving between the crystal surface and the electrolyte during charging and discharging, and as a result, the capacity and output of the lithium secondary battery are reduced. LiCoO 2 Or the general formula Li x (Ni 1-y Co y ) 1-z M z O 2 The same applies to the lithium nickel composite oxide.
[0008]
Li as a coating on the secondary particle surface 2 CO Three One of the factors that generate is considered to be due to the presence of excess Li.
[0009]
The presence of excess Li will be described below.
[0010]
General formula Li x (Ni 1-y Co y ) 1-z M z O 2 The ratio of Li, Ni, Co, and M in the lithium nickel composite oxide is Li / (Ni + Co + M) = 1 in terms of stoichiometric ratio. However, Li volatilizes during firing, or Li 2 SO Four As represented by the above, Li is reduced from the initial composition by combining with a small amount of impurities of the lithium nickel composite oxide, and therefore Li is added in a slightly larger amount before firing. Further, as another reason, a lithium nickel composite oxide having a higher Li seat occupancy can be obtained by adding more Li, and therefore, Li is excessively produced.
[0011]
Thus, in addition to excessive addition of Li to the lithium nickel composite oxide, the Li is present in the atmosphere. 2 Carbonates by contact with Li and on the secondary particle surface Li 2 CO Three As a result, it is considered that the capacity and output characteristics of the lithium secondary battery are lowered or unstable. Thus, Li on the surface of the lithium nickel composite oxide 2 CO Three Greatly affects the performance of the lithium secondary battery. Therefore, the surface Li 2 CO Three It is important for the positive electrode active material for a high-performance lithium secondary battery to suppress the amount of the above.
[0012]
[Patent Document 1]
JP 2000-30893 A
[0013]
[Patent Document 2]
JP-A-10-27614
[0014]
[Problems to be solved by the invention]
The purpose of the present invention is to cover the secondary particle surface with Li 2 CO Three An object of the present invention is to provide a positive electrode active material for a lithium secondary battery having a high capacity and excellent output characteristics.
[0015]
[Means for Solving the Problems]
We have the general formula Li x (Ni 1-y Co y ) 1-z M z O 2 (0.98 ≦ x ≦ 1.10, 0.05 ≦ y ≦ 0.4, 0.01 ≦ z ≦ 0.2, M is one or more selected from the group consisting of Al, Zn, Ti and Mg) The crystal is sufficiently grown, and the secondary particle surface is covered with spherical secondary particles having an average particle diameter of 5 to 15 μm. 2 CO Three Is a positive electrode active material for lithium secondary batteries with high capacity and excellent output characteristics, and a furnace in which the firing atmosphere is controlled by mixing metal hydroxide and lithium hydroxide as raw materials It was found that such a positive electrode active material for a lithium secondary battery can be obtained by firing in the inside.
[0016]
That is, the positive electrode active material for a lithium secondary battery of the present invention has the general formula Li x (Ni 1-y Co y ) 1-z M z O 2 (0.98 ≦ x ≦ 1.10, 0.05 ≦ y ≦ 0.4, 0.01 ≦ z ≦ 0.2, M is one or more selected from the group consisting of Al, Zn, Ti and Mg) In the positive electrode active material for a lithium secondary battery represented by:
(1) In measurement of oxygen 1s spectrum of photoelectron spectroscopy (XPS), (Li 2 CO Three Peak intensity) / (Li x (Ni 1-y Co y ) 1-z M z O 2 The peak intensity) is 1.5 or less,
(2) In measurement of carbon 1s spectrum of photoelectron spectroscopy (XPS), (Li 2 CO Three Of (peak intensity) / (peak intensity of C—C, C—H) is 0.5 or less.
[0017]
In one embodiment of the positive electrode active material for a lithium secondary battery of the present invention, the general formula Li x (Ni 1-y Co y ) 1-z M z O 2 (0.98 ≦ x ≦ 1.10, 0.05 ≦ y ≦ 0.4, 0.01 ≦ z ≦ 0.2, M is one or more selected from the group consisting of Al, Zn, Ti and Mg) In the positive electrode active material for a lithium secondary battery represented by: In measurement of oxygen 1s spectrum of photoelectron spectroscopy (XPS), Li 2 CO Three For the peak intensity of Li x (Ni 1-y Co y ) 1-z M z O 2 The peak intensity is the same or higher.
[0018]
Further, in the method for producing a positive electrode active material for a lithium secondary battery of the present invention, a metal hydroxide and lithium hydroxide are mixed, the firing atmosphere is oxygen gas, and the carbon dioxide gas concentration in the oxygen gas is 50 ppm or less. Bake.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
The positive electrode active material for a lithium secondary battery according to the present invention has a general formula Li x (Ni 1-y Co y ) 1-z M z O 2 (0.98 ≦ x ≦ 1.10, 0.05 ≦ y ≦ 0.4, 0.01 ≦ z ≦ 0.2, M is one or more selected from the group consisting of Al, Zn, Ti and Mg) Lithium nickel composite oxide represented by
[0020]
Here, the metal element M is at least one metal element selected from the group consisting of Al, Zn, Ti, and Mg. However, when the metal element M is uniformly diffused in the lithium metal composite oxide, the lithium metal composite The crystal structure of the oxide can be stabilized, and the thermal stability of the lithium secondary battery is enhanced. If z, which is the addition amount of the metal element M, is less than 0.01, stabilization of the crystal structure is not recognized, and thermal stability cannot be ensured. Moreover, when added over 0.2, the crystal structure is stabilized, but the amounts of Ni and Co as active materials are reduced, and as a result, when the lithium secondary battery is formed, the initial discharge capacity is greatly reduced. Therefore, it is not preferable.
[0021]
Co in the lithium nickel composite oxide contributes to the improvement of the cycle characteristics. However, if the value of y is less than 0.05, sufficient cycle characteristics cannot be obtained. On the other hand, if the value of y exceeds 0.4, the amount of Ni as an active material decreases, which is not preferable as a positive electrode active material for a high capacity lithium secondary battery.
[0022]
The average particle size of the lithium metal composite oxide of the present invention is a spherical secondary particle of 5 to 15 μm. When the average particle size is less than 5 μm, the specific surface area increases, and when a battery is formed, a reaction at the time of charge / discharge may occur rapidly, which is dangerous. Moreover, the tap density of the positive electrode material is lowered, leading to a reduction in discharge capacity per unit mass, which is not preferable. On the other hand, if the thickness exceeds 15 μm, the particles become too large, so that the electrolyte cannot reach the inside of the particles, or during charge / discharge, Li cannot diffuse well inside the particles, and the utilization rate tends to decrease. In addition, there is a problem that the particles are easily broken during the production of the positive electrode plate, and the battery density does not increase. Here, the average particle size was measured using a laser-type particle size distribution measuring device (Microtrack particle size distribution measuring device).
[0023]
The stoichiometry can be examined using Rietveld analysis by X-ray diffraction (eg, Rayoung, ed., “The Rietveld Method”, Oxford University Press (1992)). , There is a site occupancy for each ion. In the case of a hexagonal compound, there are 3a, 3b, and 6c sites, and LiNiO 2 In the case of a perfect stoichiometric composition, the 3a site is Li, the 3b site is Ni, and the 6c site is O, each showing a site occupancy of 100%. It can be said that the lithium nickel composite oxide in which the site occupancy of the Li ions at the 3a site is 98% or more is excellent in stoichiometry.
[0024]
When considered as an active material for a secondary battery, since Li can be desorbed and inserted, the integrity of the crystal can be maintained even if Li deficiency occurs. Therefore, in practice, it is considered to be a good method to show the stoichiometry or the crystal perfection with the mixing rate of non-lithium ions at the 3a site. The lithium metal composite oxide of the present invention relates to an active material in which a part of Ni is substituted with Co or Al in order to improve cycle characteristics and thermal stability. It proceeds by reversibly entering and exiting Li ions. Therefore, when other metal ions are mixed into the 3a site, which is the Li ion diffusion path in the solid phase, the diffusion path is inhibited, which may cause deterioration of the charge / discharge characteristics of the battery. The present inventors have found that there is a deep relationship between the mixing rate of non-lithium ions at the 3a site determined by powder X-ray diffraction and the irreversible capacity, and 3a obtained from the result of Rietveld analysis of X-ray diffraction. It is necessary that the site occupancy of the Li ions at the site is 98% or more.
[0025]
Further, as a result of further research on the diffusion of Li in such a positive electrode active material, it has been found that the irreversible capacity has a deep relationship with the powder characteristics of the active material powder. The irreversible capacity is considered to be deeply related to the diffusion of Li. Li diffusion is roughly divided into diffusion in the solid phase and diffusion in the electrolyte, and it is considered that diffusion in the electrolyte is several orders of magnitude faster. In the case where the positive electrode active material powder is formed by agglomeration of small primary particles to form secondary particles, a fine gap is formed between the primary particles inside the secondary particles by growing each primary particle to some extent. Thus, the electrolyte solution can penetrate into the gap, and Li ions can be supplied to the inside of the secondary particles through the electrolyte solution. As a result, it is considered that the speed at which Li ions diffuse throughout the secondary particles is increased, and the irreversible capacity is reduced. Therefore, in the lithium nickel composite oxide, it is one of preferable embodiments that the average particle diameter of primary particles is 0.1 μm or more and that a plurality of primary particles are aggregated to form secondary particles. .
[0026]
In the positive electrode active material for a lithium secondary battery according to the present invention, the amount of carbon on the surface of the secondary particles is defined by the peak intensity ratio of photoelectron spectroscopy (XPS). This definition means that the secondary particle surface has Li 2 CO Three Is based on the existence of a film.
[0027]
The present inventors confirmed the presence of carbonate ions on the surface of the lithium metal composite oxide by using a surface analysis means such as XPS, and the amount of C deposited on the prototype lithium metal composite oxide and carbon dioxide on the surface. It was found that there is a correlation with the amount of ions, and further, there was a close correlation between the amount of C deposited on the lithium metal composite oxide and the low temperature output. Furthermore, it is not always possible to obtain a good low-temperature output simply by reducing the carbonate ion concentration or the amount of C deposited. Therefore, it was discovered that the amount of water present on the surface of the lithium metal composite oxide affects the low-temperature output. They found that it was necessary to control the moisture content in the lithium metal composite oxide and the working atmosphere humidity during electrode fabrication.
[0028]
In terms of the lithium metal composite oxide, it is necessary to control the amount of carbonate ions on the surface of the lithium metal composite oxide, and Li covering the secondary particle surface of the lithium metal composite oxide. 2 Co Three By defining the lithium-nickel composite oxide so as to have a peak intensity ratio obtained when the amount is reduced, a high-performance lithium secondary battery having high density and excellent output characteristics can be obtained.
[0029]
Even in the measurement by the high frequency combustion infrared absorption method, the carbon concentration in the lithium nickel composite oxide can be measured, but whether the measured value is due to the carbon existing on the surface of the secondary particles, or It cannot be distinguished whether it is due to the carbon present in the secondary particles. On the other hand, in measurement by photoelectron spectroscopy (XPS), Li on the secondary particle surface 2 CO Three The peaks of the carbon 1s spectrum and the oxygen 1s spectrum based on can be observed.
[0030]
Li existing as a film on the secondary particle surface 2 CO Three Hinders Li from moving between the crystal surface and the electrolyte during charge and discharge, thus reducing the capacity and output of the lithium secondary battery, which greatly affects the performance of the lithium secondary battery. Therefore, the secondary particle surface Li 2 CO Three It is important for the positive electrode active material for a high-performance lithium secondary battery to suppress the amount of the above.
[0031]
Li as a coating on the secondary particle surface 2 CO Three One of the factors that generate is due to the presence of excess Li as described above. Therefore, as a result, the capacity and output characteristics of the lithium secondary battery are lowered and unstable.
[0032]
Moreover, the following phenomena can be considered as a cause of the correlation between the C adhesion amount of the lithium metal composite oxide and the low temperature output. When lithium carbonate is present on the surface of the lithium metal composite oxide, the battery reaction, in particular, the lithium ion entrance / exit on the surface of the lithium metal composite oxide during discharge, that is, the cross section perpendicular to the c-axis exposed on the particle surface (Ni layer) , O layer, and Li layer layer cross section in the layered structure), which contributes to obstructing the entry and exit of lithium ions. This greatly affects the initial discharge capacity, the irreversible capacity, the output characteristics at high and low temperatures, and is considered to cause a decrease in output characteristics at low temperatures.
[0033]
It has been confirmed that carbonate ions are present on the surface of the lithium metal composite oxide prepared by a conventional method using surface analysis means such as XPS, and most of the carbonate ions are present in the form of lithium carbonate. It is estimated that This is because, among the lithium salts used as raw materials, lithium oxide or lithium hydroxide remaining without reacting with the metal compound of nickel, cobalt, and metal element M reacts with carbon dioxide in the air even after the completion of the firing synthesis. It is thought that.
[0034]
Li 2 O + CO 2 → Li 2 CO Three ... (1)
Li 2 O + H 2 O → 2LiOH (2)
2LiOH + CO 2 → Li 2 CO Three + H 2 O (3)
LiNiO 2 + H 2 O → xNiOOH + (1-x) LiNiO 2 + XLiOH (4)
Further, when water is present in the vicinity of the surface of the lithium metal composite oxide, the lithium metal composite oxide itself reacts with water to generate LiOH, as shown in the reaction formula (4). ) To produce lithium carbonate.
[0035]
Further, in the reaction formula (1) and the reaction formula (2), the reaction formula (2) proceeds more rapidly. Therefore, when carbon dioxide gas and moisture coexist in the atmosphere, the carbonation of lithium oxide existing on the surface In the reaction formula (2), the lithium oxide is more easily modified into a hydroxide. As a result, when water is present in the atmosphere, the carbonation of the lithium metal composite oxide is promoted.
[0036]
Therefore, in a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery in which a lithium compound and a compound of nickel, cobalt, and metal element M are mixed and fired to synthesize a lithium metal composite oxide, In order to reduce the amount of C deposited and the moisture content, the general formula Li x (Ni 1-y Co y ) 1-z M z O 2 (0.98 ≦ x ≦ 1.10, 0.05 ≦ y ≦ 0.4, 0.01 ≦ z ≦ 0.2, M is one or more selected from the group consisting of Al, Zn, Ti and Mg) After mixing a lithium compound, such as lithium hydroxide, and a compound of nickel, cobalt, and metal element M, such as a hydroxide of the metal element, so as to be a lithium metal composite oxide represented by It is necessary to calcinate with oxygen gas as the carbon dioxide concentration in the oxygen gas at 50 ppm or less. When the concentration of carbon dioxide in the oxygen gas during firing exceeds 50 ppm, in the measurement of the photoelectron spectroscopy (XPS) oxygen 1s spectrum, (Li 2 CO Three Peak intensity) / (Li x (Ni 1-y Co y ) 1-z M z O 2 In the measurement of the photoelectron spectroscopy (XPS) carbon 1s spectrum, (Li 2 CO Three The peak intensity) / (peak intensity of C—C, C—H) cannot be 0.5 or less.
[0037]
Here, in the measurement of the photoelectron spectroscopy (XPS) carbon 1s spectrum, the peaks of C—C and C—H indicate Li on the surface of the secondary particles. 2 CO Three It is a peak that is observed regardless of the amount, and is always a peak that appears in samples once in contact with the atmosphere. This is due to the organic components present in minute amounts in the atmosphere. Accordingly, the peak intensities of C—C and C—H are constant regardless of the influence of the firing conditions and the like.
[0038]
Furthermore, after the firing of the synthesized lithium metal composite oxide, for example, grinding, sieving, classification, packaging, etc., the atmosphere in which the lithium metal composite oxide contacts is an atmosphere that does not contain carbon dioxide gas. And an absolute water content of 5 g / m Three It is desirable to perform in the following atmosphere.
[0039]
In addition, since the above reaction can occur not only in the production of the lithium metal composite oxide but also in all steps from battery assembly to sealing, a conductive additive and paste solvent are kneaded into the lithium metal composite oxide that is the positive electrode active material. It is desirable to control the atmosphere in all steps from the step, the step of applying to the electrode plate, the step of pressing the positive plate, the step of incorporating the positive plate into the battery case together with the negative plate, and the step of sealing.
[0040]
That is, the general formula Li x (Ni 1-y Co y ) 1-z M z O 2 (0.98 ≦ x ≦ 1.10, 0.05 ≦ y ≦ 0.4, 0.01 ≦ z ≦ 0.2, M is one or more selected from the group consisting of Al, Zn, Ti and Mg) In a method for producing a non-aqueous electrolyte secondary battery using a lithium metal composite oxide represented by formula (1) as a positive electrode active material, in the assembly process of the secondary battery, an absolute atmosphere in a working atmosphere where the lithium metal composite oxide contacts Water content 5g / m Three The following is desirable.
[0041]
In the measurement of the photoelectron spectroscopy (XPS) oxygen 1s spectrum by controlling the atmosphere of the manufacturing process of the secondary battery, (Li 2 CO Three Peak intensity) / (Li x (Ni 1-y Co y ) 1-z M z O 2 In the measurement of the photoelectron spectroscopy (XPS) carbon 1s spectrum, (Li 2 CO Three The peak intensity) / (peak intensity of C—C, C—H) can be 0.5 or less.
[0042]
Li secondary surface of the lithium metal composite oxide obtained in this way 2 CO Three The amount is measured by photoelectron spectroscopy (XPS) and (Li) of the oxygen 1s spectrum is measured. 2 CO Three Peak intensity) / (LiNiO 2 The intensity ratio of the peak intensity is 1.5 or less, and (Li) of the carbon 1s spectrum 2 CO Three Of lithium nickel composite oxide having an intensity ratio of (peak intensity of) / (peak intensity of C—C, C—H) of 0.5 or less as a positive electrode active material for a lithium secondary battery. Characteristics are obtained. The fact that one of these two intensity ratios is out of range indicates that Li covering the secondary particle surface 2 CO Three It shows that the film is increasing. As a result, the capacity of the lithium secondary battery is reduced, and the output characteristics are lowered and unstable.
[0043]
Furthermore, in the measurement of the secondary particle surface of the obtained lithium metal composite oxide, photoelectron spectroscopy (XPS) oxygen 1s spectrum, Li 2 CO Three For the peak intensity of Li x (Ni 1-y Co y ) 1-z M z O 2 It is more preferable that the peak intensities are the same or higher. It can be seen that the amount of C deposition of the lithium metal composite oxide synthesized by satisfying the above conditions was further reduced, and as a result, improved initial discharge capacity, irreversible capacity, output characteristics at high and low temperatures, Output characteristics at low temperatures can be improved.
[0044]
【Example】
Examples of the present invention will be described below with reference to the drawings, but the scope of the present invention is not limited to these examples.
[0045]
(Example 1)
While adding ammonia aqueous solution little by little to nickel and cobalt sulfuric acid aqueous solution prepared so that the molar ratio of Ni / Co is 0.84 / 0.16, the pH is 11 to 13 and the temperature is in the range of 40 to 50 ° C. By reacting, Ni 0.84 Co 0.16 (OH) 2 Secondary particles (average particle diameter: 14.5 μm) represented by
[0046]
After the obtained secondary particles and water were mixed to form a slurry, NaAlO 2 (Sumitomo Chemical Co., Ltd.) was added at a molar ratio of Al / (Ni + Co + Al) = 0.03, and then neutralized to pH = 9.5 using sulfuric acid. The composition of the obtained spherical secondary particles is (Ni 0.84 Co 0.16 ) 0.97 Al 0.03 (OH) 2 Met.
[0047]
The spherical secondary particles and lithium hydroxide were mixed so that the molar ratio was Li / (Ni + Co + Al) = 1.05, and charged into a high speed mixer (manufactured by Fukae Kogyo Co., Ltd.). The mixture was granulated at a ratio of 4% by mass.
[0048]
Using the obtained granulated material, the inside of the furnace was set to an oxygen atmosphere, the amount of carbon dioxide was controlled to be less than 50 ppm, and the calcined product was fired at 700 to 800 ° C. under a nitrogen atmosphere. And then milled with a 25 μm ultrasonic vibration sieve to remove the powder on the sieve. Further, a portion of 1 μm or less was removed from the sieving powder obtained with an air classifier, and vacuum drying was performed at 150 ° C. for 24 hours.
[0049]
When the obtained lithium nickel composite oxide was analyzed by X-ray diffraction, it was confirmed to be a desired positive electrode active material having a hexagonal layered structure. When the Li site occupancy of the Li site in the crystal was calculated by Rietveld analysis of X-ray diffraction, it was 98.3%. The composition is Li 1.04 (Ni 0.84 Co 0.16 ) 0.97 Al 0.03 O 2 The average particle size was 9.3 μm.
[0050]
The obtained baked product was analyzed by photoelectron spectroscopy (VG Scientific, ESCALAB220i-XL, target Al, 10 kV, 15 MA).
[0051]
The analysis results are shown in FIG.
[0052]
Li near 532eV in the oxygen 1s spectrum 2 CO Three In the vicinity of 529 eV x (Ni 1-y Co y ) 1-z M z O 2 A peak attributed to was observed. (Li 2 CO Three Peak intensity) / (Li x (Ni 1-y Co y ) 1-z M z O 2 Intensity ratio of 1050/1300 was less than 1.5.
[0053]
In the carbon 1s spectrum, Li is around 289 eV. 2 CO Three Peaks attributed to C—O and C═O bonds, and peaks attributed to C—C and C—H bonds were observed in the vicinity of 284 eV. (Li 2 CO Three Intensity ratio) / (peak intensity of C—C, C—H) was 600/1320, less than 0.5.
[0054]
From the above results, the secondary particle surface Li 2 CO Three It can be seen that the amount of Li is suppressed, and the secondary particle surface has Li 2 CO Three It was determined that no film was formed.
[0055]
Using the obtained fired product as the positive electrode active material, a coin-type battery was produced by the following method, and the battery characteristics were measured.
[0056]
To 87% by mass of the active material powder, 5% by mass of acetylene black and 8% by mass of PVDF (polyvinylidene fluoride) were mixed, and NMP (n-methylpyrrolidone) was added to form a paste. This was applied to an aluminum foil having a thickness of 20 μm, and the active material mass after drying was 0.05 g / cm. 2 Then, it was vacuum-dried at 120 ° C. and punched out into a disk shape having a diameter of 1 cm to obtain a positive electrode.
[0057]
Li metal as the negative electrode and 1M LiClO as the electrolyte Four An equivalent mixed solution of ethylene carbonate (EC) and diethyl carbonate (DEC) was used as a supporting salt. A 2032 type coin battery was formed in a glove box in an Ar atmosphere with a dew point controlled at −80 ° C.
[0058]
The charge / discharge measurement is performed after the manufactured battery is left for about 24 hours and the OCV is stabilized. Current density for the positive electrode: 0.5 mA / cm 2 Cut-off voltage: 4.3-3.0V.
[0059]
The capacity retention rate was repeated 24 cycles under the above conditions.
[0060]
The room temperature IV resistance and the room temperature output were obtained by charging the coin battery prepared by the above method to 3.7 V at room temperature up to 3.7 V, discharging for 10 seconds while changing the current density, resting for 5 minutes, charging for 10 seconds, and resting for 5 minutes. Repeated. Room temperature IV resistance (= potential / current) and room temperature output (= potential × current) were determined from the current value when the potential dropped to 3.0V.
[0061]
The low temperature IV resistance and low temperature output were obtained by charging the coin battery prepared by the above method to CCCV to 3.62 V at room temperature, placing it in a thermostatic bath at −30 ° C., discharging for 10 seconds while changing the current density, and resting for 5 minutes. 10 seconds of charging and 5 minutes of rest were repeated. The low temperature IV resistance (= potential / current) and the low temperature output (= potential × current) were determined from the current value when the potential dropped to 3.0V.
[0062]
Table 1 shows the initial capacity, capacity retention rate, room temperature IV resistance and room temperature output, and low temperature IV resistance and low temperature output of the battery of Example 1. From these results, it can be seen that the output characteristics are excellent.
[0063]
(Example 2)
While adding ammonia water little by little to nickel, cobalt and magnesium sulfate aqueous solutions adjusted so that the molar ratio of Ni / Co is 0.84 / 0.16 and the Mg / (Ni + Co + Mg) ratio is 0.02, = 11-13, by reacting in a temperature range of 40-50 ° C., (Ni 0.84 Co 0.16 ) 0.98 Mg 0.02 (OH) 2 Secondary particles (average particle diameter 13.7 μm) represented by The spherical secondary particles and lithium hydroxide were adjusted so that the molar ratio was Li / (Ni + Co + Mg) = 1.05, and charged into a high-speed mixer (manufactured by Fukae Kogyo Co., Ltd.). The mixture was granulated at a ratio of 4% by mass. The obtained granulated product was fired under the same conditions as in Example 1 to obtain a lithium nickel composite oxide.
[0064]
When the obtained lithium nickel composite oxide was analyzed by X-ray diffraction, it was confirmed to be a desired positive electrode active material having a hexagonal layered structure. When the Li site occupancy of the Li site in the crystal was calculated by Rietveld analysis of X-ray diffraction, it was 98.02%. The composition is Li 1.04 (Ni 0.84 Co 0.16 ) 0.98 Mg 0.02 O 2 The average particle size was 10.2 μm.
[0065]
The obtained baked product was analyzed by photoelectron spectroscopy (VG Scientific, ESCALAB220i-XL, target Al, 10 kV, 15 MA).
[0066]
In measurement of photoelectron spectroscopy (XPS) oxygen 1s spectrum, (Li 2 CO Three Peak intensity) / (Li x (Ni 1-y Co y ) 1-z M z O 2 Intensity ratio of 1250/1300, which is less than 1.5. In the measurement of photoelectron spectroscopy (XPS) carbon 1s spectrum, (Li 2 CO Three Intensity ratio) / (peak intensity of C—C, C—H) was 620/1300, which was less than 0.5.
[0067]
Table 1 shows the initial capacity, capacity retention ratio, indoor IV resistance and room temperature output, and low temperature IV resistance and low temperature output of the battery of Example 2. From these results, it can be seen that the output characteristics are excellent.
[0068]
[Table 1]
Figure 0004243131
[0069]
(Comparative Example 1)
A granulated product was obtained in the same manner as in Example 1.
[0070]
Using the obtained granulated product, the inside of the furnace was set to an oxygen atmosphere, the amount of carbon dioxide was controlled so as to be less than 300 ppm, and the calcined product obtained was calcined at 700 to 800 ° C. It was crushed at.
[0071]
The composition of the fired product obtained was Li 1.04 (Ni 0.84 Co 0.16 ) 0.97 Al 0.03 O 2 The average particle size was 9.5 μm.
[0072]
The obtained baked product was analyzed by photoelectron spectroscopy (VG Scientific, ESCALAB220i-XL, target Al, 10 kV, 15 MA).
[0073]
The analysis results are shown in FIG.
[0074]
Li near 532eV in the oxygen 1s spectrum 2 CO Three Around 529 eV x (Ni 1-y Co y ) 1-z M z O 2 A peak attributed to was observed. (Li 2 CO Three Peak intensity) / (Li x (Ni 1-y Co y ) 1-z M z O 2 Intensity ratio) was 1650/960, exceeding 1.5.
[0075]
In the carbon 1s spectrum, Li is around 289 eV. 2 CO Three A peak attributed to C—C and C—H bonds was observed around 284 eV. (Li 2 CO Three Intensity ratio) / (peak intensity of C—C, C—H) was 1030/1580, exceeding 0.5.
[0076]
Table 1 shows the initial capacity, capacity retention, room temperature IV resistance and room temperature output, and low temperature IV resistance and low temperature output of the battery of Comparative Example 1.
[0077]
From the above results, the Li of the secondary particle surface of Comparative Example 1 2 CO Three The amount of Li is not suppressed, and the secondary particle surface has Li 2 CO Three It can be seen that the film is formed.
[0078]
(Comparative Example 2)
A lithium nickel composite oxide was obtained in the same manner as in Example 1 except that a portion of 1 μm or less was removed from the sieving powder obtained with an air classifier and vacuum drying was not performed.
[0079]
When the obtained lithium nickel composite oxide was analyzed by X-ray diffraction, it was confirmed to be a desired positive electrode active material having a hexagonal layered structure. When the Li site occupancy of the Li site in the crystal was calculated by Rietveld analysis of X-ray diffraction, it was 98.11%. The composition is Li 1.04 (Ni 0.84 Co 0.16 ) 0.97 Al 0.03 O 2 The average particle size was 9.4 μm.
[0080]
The obtained baked product was analyzed by photoelectron spectroscopy (VG Scientific, ESCALAB220i-XL, target Al, 10 kV, 15 MA).
[0081]
In measurement of photoelectron spectroscopy (XPS) oxygen 1s spectrum, (Li 2 CO Three Peak intensity) / (Li x (Ni 1-y Co y ) 1-z M z O 2 The intensity ratio of (peak intensity of) is 2060/1290, which is 1.5 or more. In the measurement of the photoelectron spectroscopy (XPS) carbon 1s spectrum, 2 CO Three Intensity ratio) / (peak intensity of C—C, C—H) was 1340/1610, which was 0.5 or more.
[0082]
Table 1 shows the initial capacity, capacity retention rate, indoor IV resistance and room temperature output, and low temperature IV resistance and low temperature output of the battery of Comparative Example 2. From the above results, the Li of the secondary particle surface of Comparative Example 2 2 CO Three The amount of Li is not suppressed, and the secondary particle surface has Li 2 CO Three It can be seen that the film is formed.
[0083]
【The invention's effect】
Li covering the secondary particle surface with the positive electrode active material for lithium secondary battery of the present invention 2 CO Three Therefore, a lithium secondary battery with high capacity and high output could be provided.
[Brief description of the drawings]
FIG. 1 is a graph showing an oxygen 1s spectrum and a carbon 1s spectrum measured by photoelectron spectroscopy.

Claims (3)

一般式Lix(Ni1-yCoy1-zz2(0.98≦x≦1.10、0.05≦y≦0.4、0.01≦z≦0.2、MはAl、Zn、TiおよびMgからなる群から選ばれる1種以上)で表されるリチウム二次電池用正極活物質の製造方法において、金属水酸化物と水酸化リチウムを混合し、炭酸ガス濃度が50ppm以下である酸素雰囲気中で焼成することによりリチウム金属複合酸化物を得て、該リチウム金属複合酸化物の粉砕、篩別、および分級処理を、炭酸ガスを含まず、かつ、絶対水分量が5g/m 3 以下である雰囲気中で行い、前記分級処理の後に、前記リチウム金属複合酸化物を真空乾燥することを特徴とするリチウム二次電池用正極活物質の製造方法。Formula Li x (Ni 1-y Co y) 1-z M z O 2 (0.98 ≦ x ≦ 1.10,0.05 ≦ y ≦ 0.4,0.01 ≦ z ≦ 0.2, M is a method for producing a positive electrode active material for a lithium secondary battery represented by at least one selected from the group consisting of Al, Zn, Ti and Mg), wherein a metal hydroxide and lithium hydroxide are mixed and carbon dioxide gas Lithium metal composite oxide is obtained by firing in an oxygen atmosphere having a concentration of 50 ppm or less, and the lithium metal composite oxide is pulverized, sieved, and classified, without carbon dioxide gas, and with absolute moisture A method for producing a positive electrode active material for a lithium secondary battery , wherein the method is performed in an atmosphere having an amount of 5 g / m 3 or less, and the lithium metal composite oxide is vacuum-dried after the classification treatment . 請求項1に記載の製造方法で得られ、一般式Lix(Ni1-yCoy1-zz2(0.98≦x≦1.10、0.05≦y≦0.4、0.01≦z≦0.2、MはAl、Zn、TiおよびMgからなる群から選ばれる1種以上)で表されるリチウム二次電池用正極活物質であって
リートベルト解析による結晶中LiサイトのLi席占有率が98%以上を有し、平均粒径5〜15μmの球状二次粒子であって、
(1)光電子分光分析法(XPS)の酸素1sスペクトルの測定において、(Li2CO3のピーク強度)/(Lix(Ni1-yCoy1-zz2のピーク強度)が1.5以下であり、
(2)光電子分光分析法(XPS)の炭素1sスペクトルの測定において、(Li2CO3のピーク強度)/(C−C、C−Hのピーク強度)が0.5以下であることを特徴とするリチウム二次電池用正極活物質。
A general formula Li x (Ni 1-y Co y ) 1-z M z O 2 (0.98 ≦ x ≦ 1.10, 0.05 ≦ y ≦ 0. 4,0.01 ≦ z ≦ 0.2, M is Al, Zn, a positive electrode active substance for lithium secondary battery represented by the selected one or more elements) from the group consisting of Ti and Mg,
Li-site occupancy of the Li site in the crystal by Rietveld analysis is 98% or more, and is a spherical secondary particle having an average particle size of 5 to 15 μm,
(1) In measurement of the oxygen 1s spectrum of photoelectron spectroscopy (XPS), (peak intensity of Li 2 CO 3 ) / (peak intensity of Li x (Ni 1−y Co y ) 1−z M z O 2 ) Is 1.5 or less,
(2) In the measurement of carbon 1s spectrum by photoelectron spectroscopy (XPS), (peak intensity of Li 2 CO 3 ) / (peak intensity of C—C, C—H) is 0.5 or less. A positive electrode active material for a lithium secondary battery.
前記光電子分光分析法(XPS)の酸素1sスペクトルの測定において、Li2CO3のピーク強度に対して、Lix(Ni1-yCoy1-zz2のピーク強度が同程度か高いことを特徴とする、請求項2に記載のリチウム二次電池用正極活物質。 In the measurement of the oxygen 1s spectrum of the photoelectron spectroscopy (XPS), the peak intensity of Li x (Ni 1 -y Co y ) 1 -z M z O 2 is comparable to the peak intensity of Li 2 CO 3. The positive electrode active material for a lithium secondary battery according to claim 2, wherein the positive electrode active material is high.
JP2003120542A 2003-04-24 2003-04-24 Positive electrode active material for lithium secondary battery and method for producing the same Expired - Lifetime JP4243131B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003120542A JP4243131B2 (en) 2003-04-24 2003-04-24 Positive electrode active material for lithium secondary battery and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003120542A JP4243131B2 (en) 2003-04-24 2003-04-24 Positive electrode active material for lithium secondary battery and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004327246A JP2004327246A (en) 2004-11-18
JP4243131B2 true JP4243131B2 (en) 2009-03-25

Family

ID=33499419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003120542A Expired - Lifetime JP4243131B2 (en) 2003-04-24 2003-04-24 Positive electrode active material for lithium secondary battery and method for producing the same

Country Status (1)

Country Link
JP (1) JP4243131B2 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1890826A (en) * 2003-10-07 2007-01-03 株式会社杰士汤浅 Nonaqueous electrolyte secondary battery
JP4540041B2 (en) * 2004-03-08 2010-09-08 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
JP4811007B2 (en) * 2005-12-10 2011-11-09 堺化学工業株式会社 Positive electrode active material for lithium secondary battery and lithium secondary battery
JP4996117B2 (en) * 2006-03-23 2012-08-08 住友金属鉱山株式会社 Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP4762174B2 (en) * 2007-03-02 2011-08-31 住友金属鉱山株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP5109423B2 (en) * 2007-03-19 2012-12-26 住友金属鉱山株式会社 Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP5023912B2 (en) * 2007-09-19 2012-09-12 トヨタ自動車株式会社 Method for producing positive electrode active material
JP5353125B2 (en) * 2008-08-28 2013-11-27 住友金属鉱山株式会社 Method for producing lithium nickel composite oxide
EP2368851B1 (en) * 2008-12-04 2018-05-16 Toda Kogyo Corp. Powder of lithium complex compound particles, method for producing the same, and nonaqueous electrolyte secondary cell
JP5569034B2 (en) * 2010-02-26 2014-08-13 住友金属鉱山株式会社 Lithium hydroxide for producing lithium nickel composite oxide, method for producing the same, and method for producing lithium nickel composite oxide using the lithium hydroxide
CN106463699B (en) * 2014-05-09 2019-08-27 株式会社半导体能源研究所 Lithium ion secondary battery and electronic device
JP6888297B2 (en) 2014-07-31 2021-06-16 住友金属鉱山株式会社 Positive electrode active material for non-aqueous electrolyte secondary batteries and its manufacturing method
JP6572545B2 (en) * 2015-01-30 2019-09-11 住友金属鉱山株式会社 Method for producing coated lithium-nickel composite oxide particles
JP6674315B2 (en) * 2016-05-02 2020-04-01 住友化学株式会社 Method for producing lithium-containing composite oxide
JP6826447B2 (en) * 2016-10-14 2021-02-03 Basf戸田バッテリーマテリアルズ合同会社 Method for reducing the amount of residual lithium in the positive electrode active material particles
JP6988402B2 (en) * 2017-11-21 2022-01-05 日立金属株式会社 Manufacturing method and heat treatment equipment for positive electrode active material for lithium ion secondary batteries
JP6426820B1 (en) 2017-11-30 2018-11-21 住友化学株式会社 Lithium-containing transition metal composite oxide, positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, lithium secondary battery, and method for producing lithium-containing transition metal composite oxide
JP7148685B1 (en) * 2021-08-03 2022-10-05 住友化学株式会社 Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery

Also Published As

Publication number Publication date
JP2004327246A (en) 2004-11-18

Similar Documents

Publication Publication Date Title
JP4243131B2 (en) Positive electrode active material for lithium secondary battery and method for producing the same
JP4427314B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and method for producing the same, non-aqueous electrolyte secondary battery using the same, and method for producing the same
EP2779285B1 (en) Active substance for nonaqueous electrolyte secondary cell, method for producing active substance, electrode for nonaqueous electrolyte secondary cell, and nonaqueous electrolyte secondary cell
KR101679996B1 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and production method for same, precursor for positive electrode active material, and non-aqueous electrolyte secondary battery using positive electrode active material
JP4807467B1 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
EP2621002B1 (en) Active material for lithium secondary battery, electrode for lithium secondary battery, and lithium secondary battery
US7332248B2 (en) Active material for positive electrode for non-aqueous electrolyte secondary battery and method of manufacturing the same
JP5879761B2 (en) Lithium composite compound particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
EP3486980B1 (en) Positive active material for lithium secondary battery, method for producing same, and lithium secondary battery
US9601752B2 (en) Positive active material for lithium secondary battery, precursor of positive active material, electrode for lithium secondary battery and lithium secondary battery
EP2680348B1 (en) Positive active material for lithium secondary battery, method for production thereof, electrode for lithium secondary battery and lithium secondary battery
EP4023605A1 (en) Positive electrode active material for lithium ion secondary batteries, and lithium ion secondary battery
EP3793010A1 (en) Positive electrode active material for nonaqueous electrolyte secondary battery, positive electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, method of manufacturing nonaqueous electrolyte secondary battery, and method of use of nonaqueous electrolyte secondary battery
JP2004273451A (en) Positive electrode activator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP7225684B2 (en) Lithium-nickel-containing composite oxide and method for producing the same, and positive electrode active material for lithium-ion secondary battery using the lithium-nickel-containing composite oxide as a base material and method for producing the same
JP2020087822A (en) Lithium nickel-containing composite oxide and manufacturing method thereof, and positive electrode active material for lithium ion secondary battery, which is arranged by use of the lithium nickel-containing composite oxide as base material, and manufacturing method thereof
EP3978439A1 (en) Positive electrode active material precursor for lithium-ion secondary battery, positive electrode active material for lithium-ion secondary battery, method for producing positive electrode active material precursor for lithium-ion secondary battery, method for producing positive electrode active material for lithium-ion secondary battery, lithium-ion secondary battery
JP2020087823A (en) Lithium nickel-containing composite oxide, positive electrode active material for lithium ion secondary battery, which is arranged by use of the lithium nickel-containing composite oxide as base material, and manufacturing method thereof
JP7188025B2 (en) Lithium-nickel-containing composite oxide, positive electrode active material for lithium-ion secondary battery using the lithium-nickel-containing composite oxide as a base material, and method for producing the same
KR20100079535A (en) Cathode active material for lithium secondary batteries
JP7308586B2 (en) Positive electrode active material for non-aqueous electrolyte secondary batteries
JP2004051471A (en) Cobalt oxide particle powder and its producing method, positive electrode active material for nonaqueous electrolyte secondary battery and its producing method, and nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080812

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081010

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081226

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4243131

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term