JP6572545B2 - Method for producing coated lithium-nickel composite oxide particles - Google Patents

Method for producing coated lithium-nickel composite oxide particles Download PDF

Info

Publication number
JP6572545B2
JP6572545B2 JP2015017393A JP2015017393A JP6572545B2 JP 6572545 B2 JP6572545 B2 JP 6572545B2 JP 2015017393 A JP2015017393 A JP 2015017393A JP 2015017393 A JP2015017393 A JP 2015017393A JP 6572545 B2 JP6572545 B2 JP 6572545B2
Authority
JP
Japan
Prior art keywords
lithium
composite oxide
oxide particles
nickel composite
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015017393A
Other languages
Japanese (ja)
Other versions
JP2016143527A5 (en
JP2016143527A (en
Inventor
剛秀 本間
剛秀 本間
建作 森
建作 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2015017393A priority Critical patent/JP6572545B2/en
Publication of JP2016143527A publication Critical patent/JP2016143527A/en
Publication of JP2016143527A5 publication Critical patent/JP2016143527A5/ja
Application granted granted Critical
Publication of JP6572545B2 publication Critical patent/JP6572545B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、ニッケル含有量の高いリチウム−ニッケル複合酸化物粒子に関し、大気雰囲気下の安定性を向上させた取り扱いしやすい被覆リチウム−ニッケル複合酸化物粒子の製造方法に関するものである。   The present invention relates to lithium-nickel composite oxide particles having a high nickel content, and relates to a method for producing easy-to-handle coated lithium-nickel composite oxide particles with improved stability in the air atmosphere.

近年、携帯電話、ノートパソコン等の小型電子機器の急速な拡大とともに、充放電可能な電源として、リチウムイオン二次電池の需要が急激に伸びている。リチウムイオン二次電池の正極で充放電に寄与する正極活物質として、リチウム−コバルト酸化物(以下、コバルト系)が広く用いられている。しかしながら、電池設計の最適化によりコバルト系正極の容量は理論容量と同等程度まで改善され、さらなる高容量化は困難になりつつある。   In recent years, with the rapid expansion of small electronic devices such as mobile phones and notebook computers, the demand for lithium ion secondary batteries as a chargeable / dischargeable power source has increased rapidly. Lithium-cobalt oxide (hereinafter referred to as cobalt) is widely used as a positive electrode active material that contributes to charge and discharge in the positive electrode of a lithium ion secondary battery. However, by optimizing the battery design, the capacity of the cobalt-based positive electrode is improved to the same level as the theoretical capacity, and it is becoming difficult to further increase the capacity.

そこで、従来のコバルト系よりも理論容量の高いリチウム−ニッケル酸化物を用いたリチウム−ニッケル複合酸化物粒子の開発が進められている。しかしながら、純粋なリチウム−ニッケル酸化物は、水や二酸化炭素等に対する反応性の高さから安全性、サイクル特性等に問題があり、実用電池として使用することは困難であった。そこで上記問題の改善策として、コバルト、マンガン、鉄等の遷移金属元素又はアルミニウムを添加したリチウム−ニッケル複合酸化物粒子が開発されている。   Therefore, development of lithium-nickel composite oxide particles using lithium-nickel oxide having a theoretical capacity higher than that of conventional cobalt-based materials is in progress. However, pure lithium-nickel oxide has problems in safety, cycle characteristics, etc. due to its high reactivity with water, carbon dioxide and the like, and it has been difficult to use it as a practical battery. Accordingly, lithium-nickel composite oxide particles to which transition metal elements such as cobalt, manganese, iron or the like or aluminum are added have been developed as measures for improving the above problems.

リチウム−ニッケル複合酸化物には、ニッケル、マンガン、コバルトがそれぞれ当モル量添加されてなるいわゆる三元系と呼ばれる遷移金属組成Ni0.33Co0.33Mn0.33で表される複合酸化物粒子(以下、三元系と明記することがある。)といわゆるニッケル系と呼ばれるニッケル含有量が0.75モルを超えるリチウム−ニッケル複合酸化物粒子(以下、ニッケル系と明記することがある。)がある。容量の観点からは三元系と比べ、ニッケル含有量の多いニッケル系に大きな優位性がある。   The lithium-nickel composite oxide is a composite oxide particle represented by a transition metal composition Ni0.33Co0.33Mn0.33 called a so-called ternary system in which equimolar amounts of nickel, manganese, and cobalt are added (hereinafter, referred to as “ternary system”). Ternary system) and so-called nickel-based lithium-nickel composite oxide particles (hereinafter sometimes referred to as nickel-based) having a nickel content exceeding 0.75 mol. From the viewpoint of capacity, the nickel system having a high nickel content has a great advantage over the ternary system.

しかしながら、ニッケル系(NCA)は、水や二酸化炭素等に対する反応性の高さからコバルト系や三元系と比べ環境により敏感であり、空気中の水分や二酸化炭素(CO)をより吸収しやすい特徴がある。水分、二酸化炭素は、粒子表面にそれぞれ水酸化リチウム(LiOH)、炭酸リチウム(LiCO)といった不純物として堆積され、正極製造工程や電池性能に悪影響を与えることが報告されている。 However, nickel (NCA) is more sensitive to the environment than cobalt and ternary because of its high reactivity with water and carbon dioxide, and absorbs moisture and carbon dioxide (CO 2 ) in the air. There are easy features. It has been reported that moisture and carbon dioxide are deposited on the particle surface as impurities such as lithium hydroxide (LiOH) and lithium carbonate (Li 2 CO 3 ), respectively, and adversely affect the positive electrode manufacturing process and battery performance.

ところで、正極の製造工程では、リチウム−ニッケル複合酸化物粒子、導電助剤、バインダーと有機溶媒等を混合した正極合剤スラリーをアルミニウム等の集電体上に塗布・乾燥する工程を経る。一般的に水酸化リチウムは、正極合剤スラリー製造工程において、バインダーと反応してpH及びスラリー粘度を急激に上昇させる、またスラリーをゲル化させる原因となることがある。これらの現象は不良や欠陥、正極製造の歩留まりの低下を引き起こし、製品の品質に差を生じさせることがある。また、充放電時、これら不純物は電解液と反応しガスを発生させることがあり、電池の安定性に問題を生じさせかねない。   By the way, in the manufacturing process of a positive electrode, it passes through the process of apply | coating and drying the positive mix slurry which mixed lithium- nickel composite oxide particle | grains, a conductive support agent, a binder, the organic solvent, etc. on collectors, such as aluminum. In general, lithium hydroxide may react with a binder to rapidly increase pH and slurry viscosity and cause the slurry to gel in the positive electrode mixture slurry manufacturing process. These phenomena can cause defects and defects, and a decrease in the yield of positive electrode manufacturing, resulting in a difference in product quality. In addition, during charging and discharging, these impurities may react with the electrolytic solution to generate gas, which may cause problems in battery stability.

したがって、ニッケル系(NCA)をリチウム−ニッケル複合酸化物粒子として用いる場合、上述した水酸化リチウム(LiOH)等の不純物の発生を防ぐため、その正極製造工程を脱炭酸雰囲気下におけるドライ(低湿度)環境下で行う必要がある。そのため、ニッケル系(NCA)は理論容量が高くリチウムイオン二次電池の材料として有望であるにも関わらず、その製造環境を維持するために高額な設備導入コストが掛かるため、その普及の障壁となっているという問題がある。   Therefore, when nickel-based (NCA) is used as lithium-nickel composite oxide particles, the positive electrode manufacturing process is dry (low humidity) in a decarboxylation atmosphere in order to prevent the generation of impurities such as lithium hydroxide (LiOH). ) It must be done in the environment. Therefore, although nickel-based (NCA) has a high theoretical capacity and is promising as a material for a lithium ion secondary battery, it requires a large equipment introduction cost to maintain its manufacturing environment. There is a problem of becoming.

このような問題を解決するために、リチウム−ニッケル複合酸化物粒子表面上にコーティング剤を用いることにより被覆する方法が提案されている。このようなコーティング剤としては、無機系のコーティング剤と有機系のコーティング剤に大別され、無機系のコーティング剤としてはヒュームドシリカ、酸化チタン、酸化アルミニウム、リン酸アルミニウム、リン酸コバルト、フッ化リチウムなどの材料が、有機系のコーティング剤としては、カルボキシメチルセルロース、フッ素含有ポリマーなどの材料が提案されている。 In order to solve such a problem, a method of coating the surface of the lithium-nickel composite oxide particles by using a coating agent has been proposed. Such coating agents are broadly classified into inorganic coating agents and organic coating agents, and inorganic coating agents include fumed silica, titanium oxide, aluminum oxide, aluminum phosphate, cobalt phosphate, and fluoride. of materials such as lithium, as the coating agent of organic, carboxymethyl cellulose, the material such as a fluorine-containing polymer has been proposed.

例えば、特許文献1では、リチウム−ニッケル複合酸化物粒子表面にフッ化リチウム(LiF)又はフッ素含有ポリマー層を形成する方法、また、特許文献2では、リチウム−ニッケル複合酸化物粒子にフッ素含有ポリマー層を形成し、さらに不純物を中和するためのルイス酸化合物を添加する方法が提案されている。いずれの処理もフッ素系材料を含有するコーティング層によりリチウム−ニッケル複合酸化物粒子を疎水性に改質され、水分の吸着を抑制し、水酸化リチウム(LiOH)等の不純物の堆積を抑制することが可能となる。
しかしながら、コーティングに用いられるフッ素系材料を含有するコーティング層は、電気伝導性を有していない。そのため、不純物の堆積を抑制することができても、コーティング層そのものが絶縁体となってしまうことから、正極抵抗の増加し、電池特性の低下を引き起こす。そのため、リチウム−ニッケル複合酸化物粒子そのものの品質が低下するという問題があった。
For example, Patent Document 1 discloses a method of forming a lithium fluoride (LiF) or fluorine-containing polymer layer on the surface of lithium-nickel composite oxide particles, and Patent Document 2 discloses a fluorine-containing polymer formed on lithium-nickel composite oxide particles. A method of forming a layer and adding a Lewis acid compound for further neutralizing impurities has been proposed. In both treatments, lithium-nickel composite oxide particles are modified to be hydrophobic by a coating layer containing a fluorine-based material, suppressing moisture adsorption and suppressing deposition of impurities such as lithium hydroxide (LiOH). Is possible.
However, the coating layer containing a fluorine-based material used for coating does not have electrical conductivity. Therefore, even if the accumulation of impurities can be suppressed, since the coating layer itself becomes an insulator, the positive electrode resistance is increased and the battery characteristics are deteriorated. Therefore, there has been a problem that the quality of the lithium-nickel composite oxide particles itself is deteriorated.

特許文献3では、リン酸化合物を被着させて加熱することで、電池内部におけるガス発生を抑制することのできる正極活物質の製造方法が提案されている。しかし、特許文献3では、電池内部におけるガス発生を課題としており、ゲル化については十分検討されているとはいえない。そのため、スラリーのゲル化の防止と正極活物質の電気特性維持とを両立し得る被覆リチウム−ニッケル複合酸化物粒子を製造することができる最適条件について十分に検討されているとはいえない。   In patent document 3, the manufacturing method of the positive electrode active material which can suppress gas generation | occurrence | production inside a battery by making a phosphoric acid compound adhere and heat is proposed. However, in Patent Document 3, gas generation inside the battery is an issue, and it cannot be said that gelation has been sufficiently studied. Therefore, it cannot be said that the optimum conditions for producing the coated lithium-nickel composite oxide particles capable of simultaneously preventing the gelation of the slurry and maintaining the electrical characteristics of the positive electrode active material have been sufficiently studied.

特開2013−179063号公報JP 2013-179063 A 特表2011−511402号公報Special table 2011-511402 gazette 特開2010−55777号公報JP 2010-55777 A

本発明は、上記従来技術の問題点に鑑み、大気雰囲気下で取り扱うことができ、且つ電池特性に悪影響がないリチウムイオン伝導体の被膜を得ることのできる、被覆リチウム−ニッケル複合酸化物粒子の製造方法の提供を目的とする。   In view of the above-mentioned problems of the prior art, the present invention provides a coated lithium-nickel composite oxide particle that can be handled in an air atmosphere and that can provide a coating of a lithium ion conductor that does not adversely affect battery characteristics. The purpose is to provide a manufacturing method.

本発明は、上述した従来技術における問題点を解決するために、被覆工程を、より具体的には、リチウム−ニッケル複合酸化物粒子とリン酸化合物の混合条件について鋭意研究を重ね検討をした結果、所定の水蒸気及び二酸化炭素濃度以下の酸素雰囲気下で混合を行うことで、大気中の水分や炭酸ガスにより生じる不純物の生成を抑制でき、不純物に起因するスラリーのゲル化を抑制することを見出した。そのため、材料取り扱い時、輸送時、保管時、電極作製及び電池製造時における大気雰囲気下での取り扱いを可能とする好適な被覆リチウム−ニッケル複合酸化物粒子を製造することのできる製造方法であることを見出し、本発明を完成するに至った。   In order to solve the above-described problems in the prior art, the present invention is a result of repeated studies on the coating process, more specifically, the mixing conditions of lithium-nickel composite oxide particles and phosphoric acid compounds. It has been found that by performing mixing in an oxygen atmosphere with a predetermined water vapor and carbon dioxide concentration or less, generation of impurities caused by moisture and carbon dioxide in the atmosphere can be suppressed, and gelation of the slurry due to impurities can be suppressed. It was. Therefore, it is a production method capable of producing suitable coated lithium-nickel composite oxide particles that can be handled in an air atmosphere during material handling, transportation, storage, electrode production and battery production. As a result, the present invention has been completed.

すなわち第一の発明は、ニッケル塩と、コバルト塩と、添加金属塩と、を含む混合水溶液に、アルカリ溶液を含む水溶液を加えて、共沈物として複合水酸化物を製造する複合水酸化物製造工程と、前記複合水酸化物製造工程により製造された複合水酸化物粒子を加熱して熱処理粒子を得る熱処理工程と、前記熱処理粒子と、リチウム又は/及びリチウム化合物と、を混合し、焼成することでリチウム−ニッケル複合酸化物粒子を得る焼成工程と、前記焼成工程によって得られたリチウム−ニッケル複合酸化物粒子と、リチウム−ニッケル複合酸化物粒子とリン酸化合物の混合物の全量に対して2.0質量%以上5.0質量%以下のリン酸化合物と、を水蒸気が500ppm以下及び二酸化炭素が50ppm以下の酸素雰囲気下で混合し、120℃以上300℃以下の温度で加熱し被覆リチウム−ニッケル複合酸化物粒子を得る被覆工程と、を含む非水電解液二次電池用正極活物質用の被覆リチウム−ニッケル複合酸化物粒子の製造方法である。   That is, the first invention is a composite hydroxide for producing a composite hydroxide as a coprecipitate by adding an aqueous solution containing an alkaline solution to a mixed aqueous solution containing a nickel salt, a cobalt salt, and an additive metal salt. Mixing and baking a manufacturing process, a heat treatment process for heating the composite hydroxide particles manufactured by the composite hydroxide manufacturing process to obtain heat-treated particles, the heat-treated particles and lithium or / and a lithium compound To the total amount of the firing step of obtaining the lithium-nickel composite oxide particles, the lithium-nickel composite oxide particles obtained by the firing step, and the mixture of the lithium-nickel composite oxide particles and the phosphoric acid compound 2.0 mass% or more and 5.0 mass% or less of a phosphoric acid compound is mixed in an oxygen atmosphere where water vapor is 500 ppm or less and carbon dioxide is 50 ppm or less. A method of producing coated lithium-nickel composite oxide particles for a positive electrode active material for a non-aqueous electrolyte secondary battery, comprising a coating step of obtaining coated lithium-nickel composite oxide particles by heating at a temperature of from ℃ to 300 ℃ It is.

本発明の第二は、前記被覆工程における被覆リチウム−ニッケル複合酸化物粒子の被覆膜が非晶質である第一の発明に記載の被覆リチウム−ニッケル複合酸化物粒子の製造方法である。   The second of the present invention is the method for producing coated lithium-nickel composite oxide particles according to the first invention, wherein the coating film of the coated lithium-nickel composite oxide particles in the coating step is amorphous.

本発明の第三は、前記複合水酸化物製造工程における混合水溶液が、さらに錯化剤を含む混合水溶液である第一又は第二の発明に記載の被覆リチウム−ニッケル複合酸化物粒子の製造方法である。   A third aspect of the present invention is the method for producing coated lithium-nickel composite oxide particles according to the first or second aspect, wherein the mixed aqueous solution in the composite hydroxide production step is a mixed aqueous solution further containing a complexing agent. It is.

前記リチウム−ニッケル複合酸化物粒子が下記一般式(1)で表される第一から第三のいずれかの発明に記載の被覆リチウム−ニッケル複合酸化物粒子の製造方法である。
LiNi(1−y−z) ・・・(1)
(式中、xは0.90〜1.20、yは0.01〜0.20、zは0.01〜0.15、1−y−zは0.75を超える値であって、Mは、Co及びMnからなる群より選ばれた少なくとも一種類の元素を示し、NはAl、In、Mg、W、Mo及びSnからなる群より選ばれた少なくとも一種類の元素を示す。)
The lithium-nickel composite oxide particles are a method for producing coated lithium-nickel composite oxide particles according to any one of the first to third inventions represented by the following general formula (1).
Li x Ni (1-y- z) M y N z O 2 ··· (1)
(Wherein x is 0.90 to 1.20, y is 0.01 to 0.20, z is 0.01 to 0.15, 1-yz is a value exceeding 0.75, M represents at least one element selected from the group consisting of Co and Mn, and N represents at least one element selected from the group consisting of Al, In, Mg, W, Mo and Sn.)

本発明の製造方法により製造される被覆リチウム−ニッケル複合酸化物粒子は、良好な電気伝導性及びリチウムイオン伝導性を有し、且つ水分、炭酸ガスの透過を抑制できる膜で被覆された優れた被覆リチウム−ニッケル複合酸化物粒子である。   The coated lithium-nickel composite oxide particles produced by the production method of the present invention have excellent electrical conductivity and lithium ion conductivity, and are excellently coated with a film capable of suppressing moisture and carbon dioxide gas permeation. It is a coated lithium-nickel composite oxide particle.

この被覆リチウム−ニッケル複合酸化物粒子は、これまで炭酸ガス濃度、水分濃度が厳しく管理された正極製造設備に変わり、コバルト系、三元系で用いられてきた製造設備も流用でき、高容量リチウムイオン電池用複合酸化物正極活物質として提供できる。   These coated lithium-nickel composite oxide particles are replaced by positive electrode manufacturing equipment that has been strictly controlled in terms of carbon dioxide gas concentration and water concentration, and can be used for manufacturing equipment that has been used in cobalt and ternary systems. It can be provided as a composite oxide positive electrode active material for an ion battery.

実施例1に係る被覆リチウム−ニッケル複合酸化物粒子の被覆状態を示したTEM写真である。2 is a TEM photograph showing a coated state of coated lithium-nickel composite oxide particles according to Example 1. FIG. 比較例2に係る被覆リチウム−ニッケル複合酸化物粒子の被覆状態を示したTEM写真である。4 is a TEM photograph showing a coated state of coated lithium-nickel composite oxide particles according to Comparative Example 2. FIG.

以下に本発明の被覆リチウム−ニッケル複合酸化物粒子とその製造方法について詳細に説明する。尚、本発明は、以下の詳細な説明によって限定的に解釈されるものではない。本発明において、一次粒子が凝集した二次粒子をリチウム−ニッケル複合酸化物粒子と呼ぶ場合がある。   The coated lithium-nickel composite oxide particles of the present invention and the production method thereof will be described in detail below. In addition, this invention is not limitedly interpreted by the following detailed description. In the present invention, secondary particles in which primary particles are aggregated may be referred to as lithium-nickel composite oxide particles.

[リン酸とリチウムの化合物]
本実施形態の被覆リチウム−ニッケル複合酸化物粒子とは、リン酸とリチウムの化合物の被覆膜によって被覆されたリチウム−ニッケル複合酸化物粒子である。リン酸とリチウムの化合物の被覆膜が被覆されることで、水分、炭酸ガスの透過を抑制することができる。そのため、大気中の水分や炭酸ガスにより生じる不純物の生成を抑制し、正極合剤スラリー製造工程におけるpH及びスラリー粘度の上昇を抑制することができる。
[Compound of phosphoric acid and lithium]
The coated lithium-nickel composite oxide particles of the present embodiment are lithium-nickel composite oxide particles coated with a coating film of a phosphoric acid and lithium compound. By coating the coating film of phosphoric acid and lithium compound, it is possible to suppress the permeation of moisture and carbon dioxide gas. Therefore, the production | generation of the impurity which arises with the water | moisture content and carbon dioxide gas in air | atmosphere can be suppressed, and the raise of pH and slurry viscosity in a positive mix slurry manufacturing process can be suppressed.

リン酸とリチウムの化合物とは、リン酸基(PO)とリチウム(Li)元素とを含む化合物をいう。リン酸とリチウムの化合物としては、リン酸基(PO)とリチウム(Li)元素とを含む化合物であれば特に限定されるものではないが、例えば、リン酸三リチウム(LiPO)、リン酸ニ水素リチウム(LiHPO)、リン酸水素二リチウム(LiHPO)等を挙げることができる。 The compound of phosphoric acid and lithium refers to a compound containing a phosphate group (PO 4 ) and a lithium (Li) element. The compound of phosphoric acid and lithium is not particularly limited as long as it is a compound containing a phosphate group (PO 4 ) and a lithium (Li) element. For example, trilithium phosphate (Li 3 PO 4 ) , Lithium dihydrogen phosphate (LiH 2 PO 4 ), dilithium hydrogen phosphate (Li 2 HPO 4 ), and the like.

また、被覆リチウム−ニッケル複合酸化物粒子のリン酸とリチウムの化合物の被覆膜は非晶質であることが好ましい。被覆膜が非晶質であることで、リチウムイオンの移動を好ましいものとすることができる。そのため、被覆膜による放電容量等の電池特性の低下を防ぐことができる。   Further, the coating film of phosphoric acid and lithium compound of the coated lithium-nickel composite oxide particles is preferably amorphous. When the coating film is amorphous, the movement of lithium ions can be made preferable. Therefore, it is possible to prevent a decrease in battery characteristics such as discharge capacity due to the coating film.

リン酸とリチウムの化合物の被覆膜の膜厚は、20nm以上90nm以下とするのが好ましい。膜厚が20nm未満であると、大気中の水分や炭酸ガスにより生じる不純物生成の抑制が困難となる傾向がある。膜厚が90nm超であると、電池正極活物質として放電容量の低下やクーロン効率が低下し、電池特性が低下する傾向がある。   The film thickness of the phosphoric acid / lithium compound coating film is preferably 20 nm or more and 90 nm or less. When the film thickness is less than 20 nm, it tends to be difficult to suppress the generation of impurities caused by atmospheric moisture or carbon dioxide. When the film thickness exceeds 90 nm, the battery positive electrode active material tends to have a reduced discharge capacity, a reduced coulomb efficiency, and battery characteristics.

また、リン酸とリチウムの化合物の被覆量は、被覆リチウム−ニッケル複合酸化物粒子全量に対して2.0質量%以上5.0質量%以下であることが好ましい。リン酸とリチウムの化合物の被覆量をこのような範囲にすることで、大気中の水分や炭酸ガスにより生じる不純物生成の抑制を妨げることができるとともに、電池正極活物質として放電容量やクーロン効率が低下することがなくなるため、好ましい電池特性を維持することができる。   Moreover, it is preferable that the coating amount of the compound of phosphoric acid and lithium is 2.0 mass% or more and 5.0 mass% or less with respect to the coating lithium-nickel composite oxide particle whole quantity. By setting the coating amount of the phosphoric acid and lithium compound in such a range, it is possible to prevent the generation of impurities caused by moisture and carbon dioxide in the atmosphere, and the discharge capacity and coulomb efficiency as a battery positive electrode active material. Since it does not decrease, preferable battery characteristics can be maintained.

[リチウム−ニッケル複合酸化物粒子]
本発明に用いられるリチウム−ニッケル複合酸化物粒子は、球状粒子であり、その平均粒径は、5〜20μmであることが好ましい。このような範囲とすることで、リチウム−ニッケル複合酸化物粒子として良好な電池性能を有するとともに、且つ良好な電池の繰り返し寿命(サイクル特性)の両立ができるため好ましい。
[Lithium-nickel composite oxide particles]
The lithium-nickel composite oxide particles used in the present invention are spherical particles, and the average particle size is preferably 5 to 20 μm. By setting it as such a range, while having favorable battery performance as lithium-nickel composite oxide particle, and coexistence of the favorable lifetime of a battery (cycle characteristic), it is preferable.

また、ニッケル系リチウム−ニッケル複合酸化物粒子は、下記一般式(1)で表されるものであることが好ましい。   The nickel-based lithium-nickel composite oxide particles are preferably those represented by the following general formula (1).

LiNi(1−y−z)・・・(1)
(式中、xは0.90〜1.20、yは0.01〜0.20、zは0.01〜0.15、1−y−zは0.75を超える値であって、Mは、Co及びMnからなる群より選ばれた少なくとも一種類の元素を示し、NはAl、In、Mg、W、Mo及びSnからなる群より選ばれた少なくとも一種類の元素を示す。)
Li x Ni (1-y- z) M y N z O 2 ··· (1)
(Wherein x is 0.90 to 1.20, y is 0.01 to 0.20, z is 0.01 to 0.15, 1-yz is a value exceeding 0.75, M represents at least one element selected from the group consisting of Co and Mn, and N represents at least one element selected from the group consisting of Al, In, Mg, W, Mo and Sn.)

なお、1−y−zの値(ニッケル含有量)は、容量の観点から、好ましくは0.80を超える値であり、さらに好ましくは0.90を超える値である。   The value of 1-yz (nickel content) is preferably a value exceeding 0.80, more preferably a value exceeding 0.90, from the viewpoint of capacity.

コバルト系(LCO)、三元系(NCM)、ニッケル系(NCA)の電極エネルギー密度(Wh/L)は、それぞれ2160Wh/L(LiCoO2)、2018.6Wh/L(LiNi0.33Co0.33Mn0.33Co0.33O2)、2376Wh/L(LiNi0.8Co0.15Al0.05O2)となる。そのため、当該ニッケル系リチウム−ニッケル複合酸化物粒子をリチウムイオン電池の正極活物質として用いることで、高容量の電池を作製することができる。   The electrode energy densities (Wh / L) of cobalt-based (LCO), ternary (NCM), and nickel-based (NCA) are 2160 Wh / L (LiCoO 2) and 2018.6 Wh / L (LiNi 0.33 Co 0.33 Mn 0.33 Co 0, respectively. .33O2), 2376 Wh / L (LiNi0.8Co0.15Al0.05O2). Therefore, a high-capacity battery can be manufactured by using the nickel-based lithium-nickel composite oxide particles as a positive electrode active material of a lithium ion battery.

[被覆リチウム−ニッケル複合酸化物粒子の製造方法]
被覆リチウム−ニッケル複合酸化物粒子を製造する製造方法について説明する。
[Method for producing coated lithium-nickel composite oxide particles]
A production method for producing the coated lithium-nickel composite oxide particles will be described.

(複合水酸化物粒子製造工程)
複合水酸化物粒子製造工程とは、硫酸ニッケル(II)等のニッケル塩と硫酸コバルト(II)等のコバルト塩と添加金属塩の混合水溶液に、アルカリ溶液を含む水溶液を加えて、共沈物として複合水酸化物粒子を得る工程である。添加金属塩に用いられる添加元素としてはAl、In、Mg、W、Mo及びSnからなる群より選ばれた少なくとも1種の元素を用いることができる。また遷移金属に対するコバルトの濃度及び添加元素の濃度は結晶構造の安定化や安全性の観点から、コバルトの濃度が10原子%以上35原子%以下、添加元素の濃度が0原子%以上35原子%以下とすることが好ましい。
(Composite hydroxide particle production process)
The composite hydroxide particle production process is a coprecipitate obtained by adding an aqueous solution containing an alkaline solution to a mixed aqueous solution of a nickel salt such as nickel sulfate (II), a cobalt salt such as cobalt sulfate (II) and an added metal salt. Is a step of obtaining composite hydroxide particles. As the additive element used in the additive metal salt, at least one element selected from the group consisting of Al, In, Mg, W, Mo, and Sn can be used. In addition, the concentration of cobalt and the concentration of the additive element with respect to the transition metal are 10 atomic% or more and 35 atomic% or less and the concentration of the additive element is 0 atomic% or more and 35 atomic% from the viewpoint of stabilization of crystal structure and safety. The following is preferable.

混合水溶液は、アルカリ溶液を含む水溶液を加えることで、アルカリ性になるようにする。混合水溶液のpH領域は、錯化剤を加えない場合には、pH=10〜11を選択し、且つ混合水溶液の温度を、60℃以上80℃以下の範囲とすることが好ましい。このような範囲とすることで、反応速度を適切な範囲にすることができる。また、Niの溶解度が好ましいものとなり、晶析による粒子の形成を防ぐことができる。pH11を超えた状態で晶析すると細かい粒子を形成し、濾過性も悪くなり、球状粒子が得られなくなる傾向がある。pH10未満にすると水酸化物の生成速度が著しく遅くなり、濾液中にNiが残留し、Niの沈殿量が目的組成からずれて目的の比率の混合水酸化物が得られなくなる傾向がある。また、混合水溶液の温度が60℃未満となると反応速度が十分でなくなる傾向がある。さらに、混合水溶液の温度が80℃を超えると、水の蒸発量が多くなるため、スラリー濃度が高くなり、Niの溶解度が低下する上、濾液中に硫酸ナトリウム等の結晶が発生し、不純物濃度が上昇する等正極材の充放電容量が低下しやすくなる傾向がある。   The mixed aqueous solution is made alkaline by adding an aqueous solution containing an alkaline solution. When the complexing agent is not added, the pH range of the mixed aqueous solution is preferably selected from pH = 10 to 11, and the temperature of the mixed aqueous solution is preferably in the range of 60 ° C. or higher and 80 ° C. or lower. By setting it as such a range, a reaction rate can be made into an appropriate range. Further, the solubility of Ni is preferable, and the formation of particles due to crystallization can be prevented. Crystallization in the state of exceeding pH 11 tends to form fine particles, deteriorate filterability, and make it impossible to obtain spherical particles. If the pH is less than 10, the production rate of hydroxide is remarkably slow, Ni remains in the filtrate, and the amount of precipitation of Ni tends to deviate from the target composition, making it difficult to obtain a target mixed hydroxide. Further, when the temperature of the mixed aqueous solution is less than 60 ° C., the reaction rate tends to be insufficient. Furthermore, if the temperature of the mixed aqueous solution exceeds 80 ° C., the amount of water evaporation increases, so the slurry concentration increases, the solubility of Ni decreases, and crystals such as sodium sulfate are generated in the filtrate, and the impurity concentration For example, the charge / discharge capacity of the positive electrode material tends to decrease.

複合水酸化物作製工程における混合水溶液には、アルカリ溶液を含む水溶液を加えることの他、さらにアンモニア等の錯化剤を加えることが好ましい。アンモニア等の錯化剤を加えることで、Niの溶解度が上昇させることができる。錯化剤を用いた場合には、混合水溶液のpH領域はpH=10〜12.5を選択し、且つ混合水溶液の温度を40℃以上60℃以下の範囲とすることが好ましい。反応槽内において、反応水溶液中の錯化剤濃度は、好ましくは3g/L以上25g/L以下の範囲内で一定値に保持する。錯化剤濃度が3g/L未満であると、金属イオンの溶解度を一定に保持することができないため、形状及び粒径が整った板状の水酸化物一次粒子が形成されず、ゲル状の核が生成しやすいため粒度分布も広がりやすくなる傾向がある。一方、アンモニア濃度が25g/Lを超える濃度では、金属イオンの溶解度が大きくなりすぎ、反応水溶液中に残存する金属イオン量が増えて、組成のずれ等が起きる傾向がある。また、アンモニア濃度が変動すると、金属イオンの溶解度が変動し、均一な水酸化物粒子が形成されないため、一定値に保持することが好ましい。例えば、アンモニア濃度は、上限と下限の幅を5g/L程度として所望の濃度に保持することが好ましい。   In addition to adding an aqueous solution containing an alkaline solution, it is preferable to add a complexing agent such as ammonia to the mixed aqueous solution in the composite hydroxide preparation step. The solubility of Ni can be increased by adding a complexing agent such as ammonia. When a complexing agent is used, it is preferable that pH = 10 to 12.5 is selected for the pH range of the mixed aqueous solution, and the temperature of the mixed aqueous solution is in the range of 40 ° C. or higher and 60 ° C. or lower. In the reaction tank, the concentration of the complexing agent in the aqueous reaction solution is preferably maintained at a constant value within a range of 3 g / L to 25 g / L. When the complexing agent concentration is less than 3 g / L, the solubility of metal ions cannot be kept constant, so that plate-shaped hydroxide primary particles having a uniform shape and particle size are not formed, and gel-like particles are not formed. Since nuclei are easily generated, the particle size distribution tends to be widened. On the other hand, when the ammonia concentration exceeds 25 g / L, the solubility of metal ions becomes too high, the amount of metal ions remaining in the reaction aqueous solution increases, and there is a tendency for compositional deviation and the like to occur. Further, when the ammonia concentration varies, the solubility of metal ions varies, and uniform hydroxide particles are not formed. Therefore, it is preferable to maintain a constant value. For example, the ammonia concentration is preferably maintained at a desired concentration by setting the upper and lower limits to about 5 g / L.

(熱処理工程)
熱処理工程とは、複合水酸化物製造工程において製造された複合水酸化物粒子を加熱して熱処理し、熱処理粒子を得る工程である。熱処理工程により、複合水酸化物粒子に含有されている水分を除去することができる。この熱処理工程を行うことによって、粒子中に焼成工程まで残留している水分を減少させることができる。また、複合水酸化物粒子を複合酸化物粒子に転換することができるので、製造される正極活物質中の金属の原子数やリチウムの原子数の割合がばらつくことを防ぐことができる。なお、正極活物質中の金属の原子数やリチウムの原子数の割合にばらつきが生じない程度に水分が除去できればよいので、必ずしもすべての複合水酸化物粒子を複合酸化物粒子に転換する必要はない。熱処理工程において、複合水酸化物粒子は残留水分が除去される温度まで加熱されればよく、その熱処理温度はとくに限定されないが、105℃以上800℃以下とすることが好ましい。複合水酸化物粒子を105℃以上に加熱すれば残留水分を除去することができる。なお、105℃未満では、残留水分を除去するために長時間を要する傾向にある。800℃を超えると、複合酸化物に転換された粒子が焼結して凝集する傾向にある。熱処理を行う雰囲気は特に制限されるものではなく、簡易的に行える空気気流中において行うことが好ましい。
(Heat treatment process)
The heat treatment step is a step of obtaining heat-treated particles by heating and heat-treating the composite hydroxide particles produced in the composite hydroxide production step. The moisture contained in the composite hydroxide particles can be removed by the heat treatment step. By performing this heat treatment step, moisture remaining in the particles up to the firing step can be reduced. In addition, since the composite hydroxide particles can be converted into composite oxide particles, it is possible to prevent the ratio of the number of metal atoms and the number of lithium atoms in the produced positive electrode active material from being varied. Note that it is only necessary to remove moisture to such an extent that the ratio of the number of metal atoms and the number of lithium atoms in the positive electrode active material does not vary, so it is not necessary to convert all composite hydroxide particles to composite oxide particles. Absent. In the heat treatment step, the composite hydroxide particles may be heated to a temperature at which residual moisture is removed, and the heat treatment temperature is not particularly limited, but is preferably 105 ° C. or higher and 800 ° C. or lower. Residual moisture can be removed by heating the composite hydroxide particles to 105 ° C. or higher. In addition, if it is less than 105 degreeC, it exists in the tendency for a long time to remove a residual water | moisture content. When it exceeds 800 ° C., the particles converted into the composite oxide tend to sinter and aggregate. The atmosphere in which the heat treatment is performed is not particularly limited, and is preferably performed in an air stream that can be easily performed.

(焼成工程)
焼成工程とは、熱処理工程によって得られた熱処理粒子と、リチウム又は/及びリチウム化合物とを混合したリチウム混合物を焼成することでリチウム−ニッケル複合酸化物粒子を得る工程である。熱処理粒子とは、熱処理工程において残留水分を除去された複合水酸化物粒子や、熱処理工程で酸化物に転換された複合酸化物粒子、又はそれらの混合粒子である。リチウム混合物は、リチウム混合物中のリチウム以外の金属の原子数(すなわち、ニッケル、コバルト及び添加金属の原子数の和(Me))と、リチウムの原子数(Li)との比(Li/Me)が、0.90〜1.20が好ましく、より好ましくは0.95〜1.10となるように、混合される。つまり、リチウム混合物におけるLi/Meが、本発明の正極活物質におけるLi/Meと同じになるように混合される。これは、焼成工程前後で、Li/Meは変化しないので、混合するLi/Meが正極活物質におけるLi/Meとなるからである。
(Baking process)
The firing step is a step of obtaining lithium-nickel composite oxide particles by firing a lithium mixture obtained by mixing the heat treated particles obtained in the heat treatment step and lithium or / and a lithium compound. The heat-treated particles are composite hydroxide particles from which residual moisture has been removed in the heat treatment step, composite oxide particles converted into oxides in the heat treatment step, or mixed particles thereof. The lithium mixture is the ratio of the number of atoms of metals other than lithium in the lithium mixture (ie, the sum of the number of atoms of nickel, cobalt and added metal (Me)) to the number of atoms of lithium (Li) (Li / Me). Is preferably 0.90 to 1.20, more preferably 0.95 to 1.10. That is, it mixes so that Li / Me in a lithium mixture may become the same as Li / Me in the positive electrode active material of this invention. This is because Li / Me does not change before and after the firing step, and thus Li / Me to be mixed becomes Li / Me in the positive electrode active material.

リチウム化合物は特に限定されるものではないが、例えば、水酸化リチウム、硝酸リチウム又は炭酸リチウム、もしくはその混合物は入手が容易であるという点で好ましい。とくに、取り扱いの容易さ、品質の安定性を考慮すると、水酸化リチウムを用いることがより好ましい。   The lithium compound is not particularly limited, but for example, lithium hydroxide, lithium nitrate, lithium carbonate, or a mixture thereof is preferable because it is easily available. In particular, lithium hydroxide is more preferably used in consideration of ease of handling and stability of quality.

なお、リチウム混合物は、焼成前に十分混合しておくことが好ましい。焼成前に混合を十分に行うことで、個々の粒子間でLi/Me(添加金属)のばらつきがなくなり、十分な電池特性を得ることができる。   The lithium mixture is preferably mixed well before firing. By sufficiently mixing before firing, there is no variation in Li / Me (added metal) between individual particles, and sufficient battery characteristics can be obtained.

焼成工程は、上記のリチウム混合物を焼成して、リチウム−ニッケル複合酸化物粒子を得る工程である。焼成工程においてリチウム混合物を焼成すると、熱処理粒子に、リチウムを含有する物質中のリチウムが拡散するので、リチウム−ニッケル複合酸化物粒子が形成される。リチウム混合物の焼成は、700℃以上850℃以下で行い、とくに720℃以上820℃以下で行うことが好ましい。焼成温度が700℃未満であると、熱処理粒子中へのリチウムの拡散が十分に行われなくなり、余剰のリチウムや未反応の粒子が残り、結晶構造が十分整わなくなる傾向がある。また、焼成温度が850℃を超えると、熱処理粒子間で激しく焼結が生じるとともに、異常粒成長を生じる傾向がある。すると、焼成後の粒子が粗大となってしまい粒子形態(後述する球状二次粒子の形態)を保持できなくなる可能性があり、正極活物質を形成したときに、比表面積が低下して正極の抵抗が上昇して電池容量が低下する傾向がある。また、焼成時間は、少なくとも3時間以上とすることが好ましく、より好ましくは、6時間以上24時間以下である。   The firing step is a step in which the lithium mixture is fired to obtain lithium-nickel composite oxide particles. When the lithium mixture is fired in the firing step, lithium in the substance containing lithium diffuses into the heat-treated particles, so that lithium-nickel composite oxide particles are formed. Firing of the lithium mixture is performed at 700 ° C. or higher and 850 ° C. or lower, particularly preferably 720 ° C. or higher and 820 ° C. or lower. When the firing temperature is less than 700 ° C., lithium is not sufficiently diffused into the heat-treated particles, surplus lithium and unreacted particles remain, and the crystal structure tends to be insufficiently arranged. On the other hand, when the firing temperature exceeds 850 ° C., intense sintering occurs between the heat treated particles and abnormal grain growth tends to occur. Then, there is a possibility that the particles after firing become coarse and the particle form (form of spherical secondary particles described later) cannot be maintained, and when the positive electrode active material is formed, the specific surface area decreases and the positive electrode There is a tendency that the resistance increases and the battery capacity decreases. The firing time is preferably at least 3 hours or more, more preferably 6 hours or more and 24 hours or less.

また、焼成時の雰囲気は、酸化性雰囲気下とすることが好ましく、とくに、酸素濃度が18容量%以上100容量%以下の雰囲気下とすることがより好ましい。すなわち、焼成は、大気ないしは酸素気流中で行うことが好ましい。これは、酸素濃度が18容量%未満であると、熱処理された粒子に含まれる複合水酸化物粒子を十分に酸化できず、リチウム−ニッケル複合酸化物粒子の結晶性が十分でない状態になる可能性があるからである。とくに電池特性を考慮すると、酸素気流中で行うことが好ましい。   The atmosphere during firing is preferably an oxidizing atmosphere, and more preferably an atmosphere having an oxygen concentration of 18% by volume to 100% by volume. That is, firing is preferably performed in the air or in an oxygen stream. This is because if the oxygen concentration is less than 18% by volume, the composite hydroxide particles contained in the heat-treated particles cannot be sufficiently oxidized, and the crystallinity of the lithium-nickel composite oxide particles may be insufficient. Because there is sex. Considering battery characteristics in particular, it is preferable to carry out in an oxygen stream.

[被覆工程]
被覆工程とは、焼成工程によって得られたリチウム−ニッケル複合酸化物粒子に水蒸気及び二酸化炭素が除かれた雰囲気下でリン酸化合物と混合して表面に反応させ、リン酸とリチウムの化合物の被覆膜を被覆する工程である。焼成工程において得た複合酸化物を水に分散させた場合高いアルカリ性を示す。これは粒子の外表面に存在するリチウムが溶出し、水酸化リチウムを生成するためである。この外表面のリチウムは極めて反応性に富んでいるため、雰囲気中の水蒸気や二酸化炭素と反応するほどである。この水蒸気や二酸化炭素は電池を組み立てたときに電池容器の変形等を引き起こす原因となり、焼成後の複合酸化物は水蒸気が500ppm以下及び二酸化炭素が50ppm以下の酸素雰囲気下で混合する。そのようにして焼成直後の酸化状態が保たれたままの複合酸化物とリン酸化合物とを接触させることによって粒子表面のリチウムとリン酸化合物が速やかに反応し、リン酸とリチウムの化合物が生成する。なお、酸素雰囲気下における酸素の濃度は18容量%以上100容量%以下であることが好ましい。
[Coating process]
In the coating step, the lithium-nickel composite oxide particles obtained in the firing step are mixed with a phosphoric acid compound in an atmosphere from which water vapor and carbon dioxide have been removed, and reacted with the surface. This is a step of covering the covering film. When the composite oxide obtained in the firing step is dispersed in water, high alkalinity is exhibited. This is because lithium present on the outer surface of the particles is eluted to produce lithium hydroxide. Since lithium on the outer surface is extremely reactive, it reacts with water vapor and carbon dioxide in the atmosphere. This water vapor or carbon dioxide causes deformation of the battery container when the battery is assembled, and the fired composite oxide is mixed in an oxygen atmosphere with water vapor of 500 ppm or less and carbon dioxide of 50 ppm or less. In this way, the lithium and phosphate compound on the surface of the particles react quickly by bringing the composite oxide and phosphoric acid compound that remain in the oxidized state immediately after firing into contact, thereby producing a phosphoric acid and lithium compound. To do. Note that the oxygen concentration in the oxygen atmosphere is preferably 18% by volume or more and 100% by volume or less.

リン酸化合物とは、リン酸基を含む構造を有する化合物をいう。複合酸化物とリン酸化合物とを接触させることによって粒子表面のリチウムとリン酸化合物が速やかに反応し、リン酸とリチウムの化合物が生成する。リン酸化合物としては、例えば、リン酸二水素アンモニウム、リン酸水素ニアンモニウム、リン酸リチウム又はこれらの混合物を挙げることができる。   A phosphoric acid compound refers to a compound having a structure containing a phosphate group. By bringing the composite oxide and the phosphoric acid compound into contact with each other, lithium and the phosphoric acid compound on the surface of the particles react quickly to form a phosphoric acid and lithium compound. Examples of the phosphoric acid compound include ammonium dihydrogen phosphate, diammonium hydrogen phosphate, lithium phosphate, and mixtures thereof.

リン酸化合物は、リチウム−ニッケル複合酸化物粒子とリン酸化合物の混合物の全量に対して2.0質量%以上5.0質量%以下混合する。2.0質量%未満であると、リン酸とリチウムの化合物の被覆量が十分ではないため、不純物に起因するスラリーのゲル化を抑制することが困難となる。5.0質量%超であるとリン酸とリチウムの化合物の被覆量が多すぎるため、正極活物質の電気特性に影響を与え電池の初期放電容量が低下する。   The phosphoric acid compound is mixed in an amount of 2.0% by mass or more and 5.0% by mass or less based on the total amount of the mixture of the lithium-nickel composite oxide particles and the phosphoric acid compound. If it is less than 2.0% by mass, the coating amount of the phosphoric acid and lithium compound is not sufficient, and it becomes difficult to suppress the gelation of the slurry due to the impurities. If it exceeds 5.0% by mass, the coating amount of the phosphoric acid and lithium compound is too large, which affects the electrical characteristics of the positive electrode active material and reduces the initial discharge capacity of the battery.

また、リチウム−ニッケル複合酸化物粒子とリン酸化合物の混合物を120℃以上300℃以下の温度で加熱する。このような温度で加熱することで、リン酸化合物に付着、随伴する水分や二酸化炭素を除去することができる。そのため、不純物に起因するスラリーのゲル化を抑制することができる。ただし、400℃以上の高温にさらされた場合その高いエネルギーによって反応が促進されるが、冷却したときに結晶化しやすくなる。結晶化が進むとリチウムの移動性が失われ、電池性能が低下する。また、400℃以上の高温に晒された場合、形成された化合物が過剰な凝集を起こし被覆膜にムラができるため、被覆膜による粒子全体の被覆が不十分となり、露出した複合酸化物粒子表面によるゲル化の抑制が困難である。したがって、リン酸とリチウムの化合物を生成させる温度は120℃以上300℃以下とし、水蒸気が500ppm以下及び二酸化炭素が50ppm以下であって、酸素気流中の雰囲気下であることがもっとも好ましい。   Further, the mixture of the lithium-nickel composite oxide particles and the phosphoric acid compound is heated at a temperature of 120 ° C. or higher and 300 ° C. or lower. By heating at such a temperature, moisture and carbon dioxide adhering to and accompanying the phosphoric acid compound can be removed. Therefore, gelation of the slurry due to impurities can be suppressed. However, when exposed to a high temperature of 400 ° C. or higher, the reaction is accelerated by the high energy, but it becomes easy to crystallize when cooled. As crystallization progresses, the mobility of lithium is lost, and the battery performance decreases. In addition, when exposed to a high temperature of 400 ° C. or higher, the formed compound causes excessive aggregation and unevenness of the coating film, resulting in insufficient coverage of the entire particle by the coating film, and thus the exposed composite oxide It is difficult to suppress gelation by the particle surface. Therefore, it is most preferable that the temperature at which the phosphoric acid / lithium compound is generated be 120 ° C. or more and 300 ° C. or less, the water vapor is 500 ppm or less and the carbon dioxide is 50 ppm or less, and the atmosphere is in an oxygen stream.

以下、本発明の実施例について比較例を挙げて具体的に説明する。但し、本発明は以下実施例によってのみ限定されるものではない。   Examples of the present invention will be specifically described below with reference to comparative examples. However, the present invention is not limited only to the following examples.

(実施例1)
硫酸ニッケルと硫酸コバルトとアルミン酸ナトリウムとを水中に溶解し、さらに十分に撹拌させながら水酸化ナトリウム溶液を加えて、ニッケル(Ni)と、コバルト(Co)と、アルミニウム(Al)とのモル比がNi:Co:Al=81.5:15:3.5となるようにして共沈物として複合水酸化物粒子を得た。生成した共沈物をろ過、水洗し、乾燥させた後、大気中で700℃まで昇温して6時間保持した後、室温まで炉冷することで熱処理を行い、熱処理粒子を得た。
Example 1
Nickel sulfate, cobalt sulfate, and sodium aluminate are dissolved in water, and a sodium hydroxide solution is added with sufficient stirring. The molar ratio of nickel (Ni), cobalt (Co), and aluminum (Al) Ni: Co: Al = 81.5: 15: 3.5 Composite hydroxide particles were obtained as a coprecipitate. The produced coprecipitate was filtered, washed with water, dried, then heated to 700 ° C. in the atmosphere and held for 6 hours, and then heat-treated by furnace cooling to room temperature to obtain heat-treated particles.

この熱処理粒子とリチウム又は/及びリチウム化合物として市販の水酸化リチウム一水和塩を、モル比がLi:(Ni+Co+Al)=103:100となるようにして十分混合して、酸素気流中で500℃まで昇温して500℃で3時間保持した後に、745℃まで昇温して12時間保持した後、室温まで炉内で冷却することで、遷移金属組成Li1.03Ni0.82Co0.15Al0.03で表されるリチウム−ニッケル複合酸化物粒子を得た。 The heat-treated particles and lithium hydroxide / hydrate salt commercially available as lithium or / and a lithium compound are sufficiently mixed so that the molar ratio is Li: (Ni + Co + Al) = 103: 100, and is heated to 500 ° C. in an oxygen stream. The temperature was raised to 500 ° C. and held for 3 hours, then heated to 745 ° C. and held for 12 hours, and then cooled in the furnace to room temperature, so that the transition metal composition Li 1.03 Ni 0.82 Co 0 .15 Lithium-nickel composite oxide particles represented by Al 0.03 were obtained.

このリチウム−ニッケル複合酸化物粒子を外気に触れさせないように取り出し、水蒸気と二酸化炭素が除去された雰囲気下として酸素雰囲気下(酸素が99.9容量%、水蒸気が495ppm、二酸化炭素が30ppm)で粉砕した。そして、粉砕したリチウム−ニッケル複合酸化物粒子25gとリン酸二水素アンモニウム(NHPO)0.6gを十分混合した。この混合物を、酸素気流中、300℃で4時間保持して室温まで冷却した後、炉から取り出して実施例1の被覆リチウム−ニッケル複合酸化物粒子を得た。なお、EDX像により被覆膜について元素分析を行ったところ、リン元素が検出されたことからリン酸とリチウムの化合物が被覆されていることが推認される。 The lithium-nickel composite oxide particles are taken out so as not to be exposed to the outside air, and in an oxygen atmosphere (99.9 vol% oxygen, 495 ppm water vapor, 30 ppm carbon dioxide) as an atmosphere from which water vapor and carbon dioxide have been removed. Crushed. Then, 25 g of the pulverized lithium-nickel composite oxide particles and 0.6 g of ammonium dihydrogen phosphate (NH 4 H 2 PO 4 ) were sufficiently mixed. This mixture was kept in an oxygen stream at 300 ° C. for 4 hours and cooled to room temperature, and then taken out from the furnace to obtain coated lithium-nickel composite oxide particles of Example 1. In addition, when elemental analysis was performed on the coating film by the EDX image, it was presumed that the phosphoric acid and lithium compound was coated because the phosphorus element was detected.

このリン酸とリチウムの化合物が被覆された被覆リチウム−ニッケル複合酸化物粒子を実施例1に係る被覆リチウム−ニッケル複合酸化物粒子として、以下に示した大気安定性試験、ゲル化試験、及び電池特性試験(充放電試験、クーロン効率)を行った。   The coated lithium-nickel composite oxide particles coated with the phosphoric acid and lithium compound were used as the coated lithium-nickel composite oxide particles according to Example 1, and the air stability test, gelation test, and battery described below were used. Characteristic tests (charge / discharge test, coulomb efficiency) were conducted.

(実施例2)
実施例1においてリン酸二水素アンモニウム(NHPO)の量を1.2gとした以外は実施例1と同じにして、実施例2の被覆リチウム−ニッケル複合酸化物粒子を得て、各種評価を行った。
(Example 2)
The coated lithium-nickel composite oxide particles of Example 2 were obtained in the same manner as in Example 1 except that the amount of ammonium dihydrogen phosphate (NH 4 H 2 PO 4 ) was 1.2 g in Example 1. Various evaluations were made.

(実施例3)
実施例2において複合酸化物とリン酸二水素アンモニウムとの混合物を加熱する温度を120℃としたほかはすべて実施例2と同じにして、実施例3とした。
(Example 3)
Be the same as any addition to the temperature for heating the mixture of the composite oxide and ammonium dihydrogen phosphate and 120 ° C. Example 2 In Example 2, it was as in Example 3.

(比較例1)
実施例1においてリン酸二水素アンモニウム(NHPO)を添加混合しないほかはすべて実施例1と同じにして、比較例1のリチウム−ニッケル複合酸化物粒子を得て、各種評価を行った。
(Comparative Example 1)
Except not adding and mixing ammonium dihydrogen phosphate (NH 4 H 2 PO 4 ) in Example 1, everything was the same as Example 1 to obtain lithium-nickel composite oxide particles of Comparative Example 1, and various evaluations were made. went.

(比較例2)
実施例1においてリン酸二水素アンモニウム(NHPO)の量を1.8gとした以外は実施例1と同じにして、比較例2とし、各種評価を行った。
(Comparative Example 2)
Various evaluations were made as Comparative Example 2 except that the amount of ammonium dihydrogen phosphate (NH 4 H 2 PO 4 ) in Example 1 was changed to 1.8 g.

(比較例3)
実施例1において複合酸化物を100g、リン酸二水素アンモニウム(NHPO)の量を0.8gとしたほかはすべて実施例1と同じにして、比較例3とし、各種評価を行った。
(Comparative Example 3)
In Example 1, except that the composite oxide was 100 g and the amount of ammonium dihydrogen phosphate (NH 4 H 2 PO 4 ) was 0.8 g, all were the same as Example 1, and Comparative Example 3 was used. went.

(比較例4)
実施例1において複合酸化物とリン酸二水素アンモニウム(NHPO)との混合物を加熱する温度を700℃としたほかはすべて実施例1と同じにして、比較例4とし、各種評価を行った。
(Comparative Example 4)
In Example 1, except that the temperature at which the mixture of the composite oxide and ammonium dihydrogen phosphate (NH 4 H 2 PO 4 ) was heated was 700 ° C., all was the same as Example 1, and Comparative Example 4 was used. Evaluation was performed.

(比較例5)
実施例1において複合酸化物とリン酸二水素アンモニウムとの混合物を加熱する温度を120℃、雰囲気を大気中(酸素が20容量%、水蒸気が19000ppm、二酸化炭素が400ppm)としたほかはすべて実施例1と同じにして、比較例5とし、各種評価を行った。
(Comparative Example 5)
In Example 1, the temperature of heating the mixture of the composite oxide and ammonium dihydrogen phosphate was 120 ° C., and the atmosphere was in the air (20% by volume of oxygen, 19000 ppm of water vapor, and 400 ppm of carbon dioxide). Various evaluations were made in the same manner as Example 1 as Comparative Example 5.

(比較例6)
実施例1において雰囲気を大気(酸素が20容量%、水蒸気が19000ppm、二酸化炭素が400ppm)としたほかはすべて実施例1と同じにして、比較例6とし、各種評価を行った。
(Comparative Example 6)
Various evaluations were made as Comparative Example 6 except that the atmosphere in the Example 1 was air (20% by volume of oxygen, 19000 ppm of water vapor, and 400 ppm of carbon dioxide).

<ゲル化試験>
正極合剤スラリーの粘度の経時変化の測定を、以下の順序により正極合剤スラリーを作製し、粘度増加及びゲル化の観察を行った。
<Gelification test>
The change in the viscosity of the positive electrode mixture slurry with time was measured by preparing a positive electrode mixture slurry in the following order, and observing the increase in viscosity and gelation.

配合比として、実施例及び比較例に係るリチウム−ニッケル複合酸化物粒子:導電助剤:バインダー:N−メチル−2−ピロリドン(NMP)のそれぞれの質量比が、45:2.5:2.5:50となるように秤量し、さらに1.5質量%の水を添加後、自転・公転ミキサーで撹拌して正極合剤スラリーを得た。得られたスラリーを25℃のインキュベーター内で保管し、経時変化をスパチュラでかき混ぜ粘度増加、ゲル化度合いを、実施例及び比較例についてそれぞれ確認し、完全にゲル化するまで保管を行った。ゲル化までの日数を表1に示す。   As a compounding ratio, the respective mass ratios of lithium-nickel composite oxide particles: conductive aid: binder: N-methyl-2-pyrrolidone (NMP) according to Examples and Comparative Examples are 45: 2.5: 2. It weighed so that it might become 5:50, and also after adding 1.5 mass% water, it stirred with the autorotation and revolution mixer, and obtained the positive mix slurry. The obtained slurry was stored in an incubator at 25 ° C., the change with time was stirred with a spatula, the viscosity increase and the degree of gelation were confirmed for each of the Examples and Comparative Examples, and stored until complete gelation. Table 1 shows the number of days until gelation.

表1より、実施例1及び実施例2に係るスラリーが完全にゲル化するまでに3日を要したのに対し、比較例1、比較例3、比較例5及び比較例6に係るスラリーが完全にゲル化するまでには8時間(1日以内)を要した。このことから、実施例に係るスラリーは、リチウム−ニッケル複合酸化物粒子表面にリン酸とリチウムの化合物が被覆されていることで、水酸化リチウム(LiOH)、炭酸リチウム(LiCO)といった不純物の生成が抑えられ、これら不純物とバインダーと反応することによるスラリーのゲル化及びスラリー粘度の上昇させることを妨げることができることが確認された。一方、リン酸とリチウムの化合物を被覆していない比較例1や、被覆工程においてリン酸化合物であるリン酸二水素アンモニウム(NHPO)を混合物全量に対して2.0質量%未満しか混合していない比較例3や、被覆工程を300℃超の雰囲気下で行っている比較例4や、被覆工程においてリチウム−ニッケル複合酸化物粒子とリン酸化合物であるリン酸二水素アンモニウム(NHPO)との混合を大気雰囲気化(酸素が20容量%、水蒸気が19000ppm、二酸化炭素が400ppm)で行っている比較例5は、ゲル化及びスラリー粘度の上昇が生じたことが確認された。これは、比較例1、3、4、5、6については、水酸化リチウム(LiOH)、炭酸リチウム(LiCO)といった不純物が生成されたものと推定される。 From Table 1, while it took 3 days for the slurry according to Example 1 and Example 2 to completely gel, the slurry according to Comparative Example 1, Comparative Example 3, Comparative Example 5 and Comparative Example 6 It took 8 hours (within 1 day) to completely gel. From this, the slurry according to the example is such that lithium hydroxide (LiOH), lithium carbonate (Li 2 CO 3 ) and the like are obtained by coating the lithium-nickel composite oxide particle surface with a compound of phosphoric acid and lithium. It was confirmed that the generation of impurities can be suppressed, and the gelation of the slurry and the increase in the slurry viscosity due to the reaction between these impurities and the binder can be prevented. On the other hand, Comparative Example 1 in which the phosphoric acid and lithium compound was not coated, and ammonium dihydrogen phosphate (NH 4 H 2 PO 4 ), which is a phosphoric acid compound in the coating step, was 2.0% by mass with respect to the total amount of the mixture. Comparative Example 3 in which only a small amount is mixed, Comparative Example 4 in which the coating process is performed in an atmosphere exceeding 300 ° C., or ammonium dihydrogen phosphate which is a lithium-nickel composite oxide particle and a phosphate compound in the coating process In Comparative Example 5 in which mixing with (NH 4 H 2 PO 4 ) was performed in an air atmosphere (oxygen 20 volume%, water vapor 19000 ppm, carbon dioxide 400 ppm), gelation and increase in slurry viscosity occurred. It was confirmed. This is presumed that impurities such as lithium hydroxide (LiOH) and lithium carbonate (Li 2 CO 3 ) were generated in Comparative Examples 1, 3, 4, 5, and 6.

<電池特性評価>
以下の手順にて、評価用非水電解質二次電池(リチウムイオン二次電池)を作製し、電池特性評価を行った。
<Battery characteristics evaluation>
A nonaqueous electrolyte secondary battery for evaluation (lithium ion secondary battery) was produced by the following procedure, and battery characteristics were evaluated.

[二次電池の製造]
被覆リチウム−ニッケル複合酸化物粒子の電池特性評価は、コイン型電池とラミネート型電池を作製し、コイン型電池で充放電容量測定及びクーロン効率の測定を行った。
[Manufacture of secondary batteries]
The battery characteristics of the coated lithium-nickel composite oxide particles were evaluated by preparing a coin-type battery and a laminate-type battery, and measuring the charge / discharge capacity and the Coulomb efficiency with the coin-type battery.

(a)正極
得られた実施例及び比較例に係る被覆リチウム−ニッケル複合酸化物粒子に、導電助剤としてのアセチレンブラックと、結着剤としてのポリフッ化ビニリデン(PVdF)とをこれらの材料の質量比が85:10:5となるように混合し、N−メチル−2−ピロリドン(NMP)溶液に溶解させ、正極合剤スラリーを作製した。この正極合剤スラリーを、コンマコーターによりアルミ箔に塗布し、100℃で加熱し、乾燥させることにより正極を得た。得られた正極をロールプレス機に通して荷重を加え、正極密度を向上させた正極シートを作製した。この正極シートをコイン型電池評価用に直径がφ9mmとなるように打ち抜き、またラミネートセル型電池用に50mm×30mmとなるように切り出し、それぞれを評価用正極電極として用いた。
(A) Positive electrode The coated lithium-nickel composite oxide particles according to the obtained Examples and Comparative Examples were mixed with acetylene black as a conductive auxiliary agent and polyvinylidene fluoride (PVdF) as a binder. It mixed so that mass ratio might be 85: 10: 5, and it was made to melt | dissolve in N-methyl-2-pyrrolidone (NMP) solution, and produced the positive mix slurry. This positive electrode mixture slurry was applied to an aluminum foil with a comma coater, heated at 100 ° C., and dried to obtain a positive electrode. The obtained positive electrode was passed through a roll press to apply a load, and a positive electrode sheet with an improved positive electrode density was produced. This positive electrode sheet was punched out to have a diameter of 9 mm for coin type battery evaluation, and cut out to be 50 mm × 30 mm for a laminate cell type battery, and each was used as an evaluation positive electrode.

(b)負極
負極活物質としてグラファイトと、結着材としてポリフッ化ビニリデン(PVdF)とを、これらの材料の質量比が92.5:7.5となるように混合し、N−メチル−2−ピロリドン(NMP)溶液に溶解させて、負極合剤ペーストを得た。
(B) Negative electrode Graphite as a negative electrode active material and polyvinylidene fluoride (PVdF) as a binder are mixed so that the mass ratio of these materials is 92.5: 7.5, and N-methyl-2 A negative electrode mixture paste was obtained by dissolving in a pyrrolidone (NMP) solution.

この負極合剤スラリーを、正極と同様に、コンマコーターにより銅箔に塗布し、120℃で加熱し、乾燥させるとことにより負極を得た。得られた負極をロールプレス機に通して荷重を加え、電極密度を向上させた負極シートを作製した。得られた負極シートをコイン型電池用にφ14mmとなるように打ち抜き、またラミネートセル型電池用に54mm×34mmとなるように切り出し、それぞれを評価用負極として用いた。   The negative electrode mixture slurry was applied to a copper foil with a comma coater in the same manner as the positive electrode, heated at 120 ° C., and dried to obtain a negative electrode. The obtained negative electrode was passed through a roll press to apply a load, and a negative electrode sheet with improved electrode density was produced. The obtained negative electrode sheet was punched out so as to have a diameter of 14 mm for a coin type battery, and cut out so as to be 54 mm × 34 mm for a laminated cell type battery, and each was used as a negative electrode for evaluation.

(c)コイン電池及びラミネートセル型電池
作製した評価用電極を真空乾燥機中120℃で12時間乾燥した。そして、この正極を用いて2032型コイン電池とラミネートセル型電池を、露点が−80℃に管理されたアルゴン雰囲気のグローブボックス内で作製した。電解液には、1MのLiPFを支持電解質とするエチレンカーボネート(EC)とジエチルカーボネート(DEC)の3:7(富山薬品工業株式会社製)、セパレーターとしてガラスセパレーターを用いてそれぞれの評価用電池を作製した。
(C) Coin battery and laminate cell type battery The produced electrode for evaluation was dried at 120 ° C. for 12 hours in a vacuum dryer. And using this positive electrode, a 2032 type coin battery and a laminate cell type battery were produced in a glove box in an argon atmosphere in which the dew point was controlled at −80 ° C. For the electrolyte, ethylene carbonate (EC) and diethyl carbonate (DEC) 3: 7 (manufactured by Toyama Pharmaceutical Co., Ltd.) using 1M LiPF 6 as a supporting electrolyte and a glass separator as a separator were used for each evaluation battery. Was made.

<<充放電試験>>
作製したコイン型電池について、組立から24時間程度放置し、開回路電圧OCV(Open Circuit Voltage)が安定した後、25℃の恒温槽内で、0.2Cレートの電流密度でカットオフ電圧4.3Vになるまで充電した。1時間の休止後、カットオフ電圧3.0Vになるまで放電したときの放電容量を測定する充放電試験を行い、初期放電容量(mAh/g)とクーロン効率を求めた。評価結果を表1に示す。
<< Charge / Discharge Test >>
The produced coin-type battery is allowed to stand for about 24 hours after assembly, and after the open circuit voltage OCV (Open Circuit Voltage) is stabilized, the cut-off voltage is set at a current density of 0.2 C in a constant temperature bath at 25 ° C. The battery was charged until it reached 3V. A charge / discharge test was conducted to measure the discharge capacity when discharged until the cut-off voltage reached 3.0 V after a 1-hour rest, and the initial discharge capacity (mAh / g) and Coulomb efficiency were determined. The evaluation results are shown in Table 1.

表1より実施例1に係るコイン型電池の初期放電容量は、197.1mAh/g、クーロン効率は92.7%、実施例2に係るコイン型電池の初期放電容量は、194.8mAh/g、クーロン効率は92.5%であり、良好な電池特定を維持できている。これに対し、リン酸化合物の量が5.0質量%超の比較例2に係るコイン型電池の初期放電容量は、185.6mAh/g、クーロン効率は91.6%となっており、実施例に比べ、初期放電容量等の低下が見られる。これは被覆量が多すぎたため、正極活物質の電気特性に影響を与えたものと考えられる。また、被覆工程における混合を大気雰囲気化(酸素が20容量%、水蒸気が19000ppm、二酸化炭素が400ppm)で行っている比較例5に係るコイン型電池のクーロン効率は91.8%、比較例6に係るコイン型電池のクーロン効率は91%となっており、実施例に比べ、クーロン効率の低下が見られる。これは、被覆工程における混合を水蒸気500ppm超や二酸化炭素50ppm超の大気雰囲気下(酸素が20容量%、水蒸気が19000ppm、二酸化炭素が400ppm)で行ったことから、水酸化リチウム(LiOH)、炭酸リチウム(LiCO)といった不純物が発生し、電池の安定性に問題が生じたものと考えられる。 From Table 1, the initial discharge capacity of the coin-type battery according to Example 1 is 197.1 mAh / g, the coulomb efficiency is 92.7%, and the initial discharge capacity of the coin-type battery according to Example 2 is 194.8 mAh / g. The Coulomb efficiency is 92.5%, and good battery identification can be maintained. On the other hand, the initial discharge capacity of the coin-type battery according to Comparative Example 2 in which the amount of the phosphoric acid compound exceeds 5.0 mass% is 185.6 mAh / g, and the coulomb efficiency is 91.6%. Compared to the example, the initial discharge capacity is decreased. This is considered to have influenced the electrical characteristics of the positive electrode active material because the coating amount was too large. In addition, the Coulomb efficiency of the coin-type battery according to Comparative Example 5 in which the mixing in the coating process is performed in an air atmosphere (oxygen is 20% by volume, water vapor is 19000 ppm, carbon dioxide is 400 ppm) is 91.8%, and Comparative Example 6 The coulomb efficiency of the coin-type battery according to the present invention is 91%, and a decrease in coulomb efficiency is seen compared to the example. This is because the mixing in the coating process was carried out in an air atmosphere of over 500 ppm of water vapor and over 50 ppm of carbon dioxide (20% by volume of oxygen, 19000 ppm of water vapor, and 400 ppm of carbon dioxide), so lithium hydroxide (LiOH), carbonic acid It is considered that impurities such as lithium (Li 2 CO 3 ) are generated, causing a problem in the stability of the battery.

表1に実施例1〜3と比較例1〜3についてリン酸リチウム化合物のTEM観察から求めた粒子表面における厚さを示す。また、図1に、実施例1に係る被覆リチウム−ニッケル複合酸化物粒子の被覆状態を示したTEM写真を示し、図2に、比較例2に係る被覆リチウム−ニッケル複合酸化物粒子の被覆状態を示したTEM写真を示す。図1より、実施例1では粒子外表面に粒子の材質とは異なるものが厚さ約40nmの被覆膜状になっていた。また、被覆膜は、EDX像からリンを含むものであることが確認された。図2より、比較例2では同様にリンを含むものが粒子外表面に約100nmの厚みで覆っている。また、XRD測定においていずれの試料もニッケル酸リチウムに帰属されるピーク以外のピークは見られず、生成した化合物が非晶質であることが確認された。   Table 1 shows the thickness of the particle surface obtained by TEM observation of the lithium phosphate compound in Examples 1 to 3 and Comparative Examples 1 to 3. FIG. 1 shows a TEM photograph showing the coated state of the coated lithium-nickel composite oxide particles according to Example 1, and FIG. 2 shows the coated state of the coated lithium-nickel composite oxide particles according to Comparative Example 2. The TEM photograph which showed was shown. As shown in FIG. 1, in Example 1, the outer surface of the particle different from the material of the particle was in the form of a coating film having a thickness of about 40 nm. Moreover, it was confirmed from the EDX image that the coating film contains phosphorus. As shown in FIG. 2, in Comparative Example 2, the phosphor-containing material similarly covers the outer surface of the particle with a thickness of about 100 nm. Moreover, in the XRD measurement, no peak other than the peak attributed to lithium nickelate was observed in any sample, and it was confirmed that the generated compound was amorphous.

また、実施例及び比較例のリチウム−ニッケル複合酸化物粒子2.5gをイオン交換水50mlに分散させ、水素イオン濃度(pH)を測定した結果を合わせて表1に示す。比較例1はpH12を超える値を示し、粒子外表面にリチウム−ニッケル複合酸化物粒子に起因するリチウムが存在していることが示唆される。一般にリチウムとリン酸はリン酸三リチウムやリン酸一水素二リチウム等のリン酸リチウム化合物を形成するので、複合酸化物粒子表面においてこの反応が起こっていると考えられる。複合酸化物粒子表面のリチウムがリン酸と化合物を形成し安定化されることによって、水に分散させたときのpHの値が小さくなり、ゲル化の原因とされるpHの高さが下げられていることが分かる。   Further, Table 1 shows the results obtained by dispersing 2.5 g of the lithium-nickel composite oxide particles of Examples and Comparative Examples in 50 ml of ion-exchanged water and measuring the hydrogen ion concentration (pH). Comparative Example 1 shows a value exceeding pH 12, suggesting that lithium derived from the lithium-nickel composite oxide particles is present on the outer surface of the particles. In general, lithium and phosphoric acid form a lithium phosphate compound such as trilithium phosphate or dilithium monohydrogen phosphate, and this reaction is considered to occur on the surface of the composite oxide particles. Lithium on the surface of the composite oxide particles stabilizes by forming a compound with phosphoric acid, which reduces the pH value when dispersed in water and lowers the pH that causes gelation. I understand that

Claims (4)

ニッケル塩と、コバルト塩と、添加金属塩と、を含む混合水溶液に、アルカリ溶液を含む水溶液を加えて、共沈物として複合水酸化物を製造する複合水酸化物製造工程と、
前記複合水酸化物製造工程により製造された複合水酸化物粒子を加熱して熱処理粒子を得る熱処理工程と、
前記熱処理粒子と、リチウム又は/及びリチウム化合物と、を混合し、焼成することでリチウム−ニッケル複合酸化物粒子を得る焼成工程と、
前記焼成工程によって得られたリチウム−ニッケル複合酸化物粒子と、リチウム−ニッケル複合酸化物粒子とリン酸化合物の混合物の全量に対して2.0質量%以上5.0質量%以下のリン酸化合物と、を水蒸気が500ppm以下及び二酸化炭素が50ppm以下の酸素雰囲気下で混合し、120℃以上300℃以下の温度で加熱し被覆リチウム−ニッケル複合酸化物粒子を得る被覆工程と、を含む非水電解液二次電池用正極活物質用の被覆リチウム−ニッケル複合酸化物粒子の製造方法。
A composite hydroxide production step of producing a composite hydroxide as a coprecipitate by adding an aqueous solution containing an alkaline solution to a mixed aqueous solution containing a nickel salt, a cobalt salt, and an additive metal salt;
A heat treatment step of heating the composite hydroxide particles produced by the composite hydroxide production step to obtain heat treated particles;
A calcining step of obtaining lithium-nickel composite oxide particles by mixing and calcining the heat treated particles and lithium or / and a lithium compound;
Phosphoric acid compound of 2.0% by mass or more and 5.0% by mass or less with respect to the total amount of the lithium-nickel composite oxide particles obtained by the firing step and the mixture of the lithium-nickel composite oxide particles and the phosphoric acid compound And a coating step of mixing in an oxygen atmosphere with water vapor of 500 ppm or less and carbon dioxide of 50 ppm or less and heating at a temperature of 120 ° C. or more and 300 ° C. or less to obtain coated lithium-nickel composite oxide particles. A method for producing coated lithium-nickel composite oxide particles for a positive electrode active material for an electrolyte secondary battery.
前記被覆工程における被覆リチウム−ニッケル複合酸化物粒子の被覆膜が非晶質である請求項1に記載の被覆リチウム−ニッケル複合酸化物粒子の製造方法。   The method for producing coated lithium-nickel composite oxide particles according to claim 1, wherein the coating film of the coated lithium-nickel composite oxide particles in the coating step is amorphous. 前記複合水酸化物製造工程における混合水溶液が、さらに錯化剤を含む混合水溶液である請求項1又は2に記載の被覆リチウム−ニッケル複合酸化物粒子の製造方法。   The method for producing coated lithium-nickel composite oxide particles according to claim 1 or 2, wherein the mixed aqueous solution in the composite hydroxide production step is a mixed aqueous solution further containing a complexing agent. 前記リチウム−ニッケル複合酸化物粒子が下記一般式(1)で表される請求項1から3のいずれかに記載の被覆リチウム−ニッケル複合酸化物粒子の製造方法。
LiNi(1−y−z) ・・・(1)
(式中、xは0.90〜1.20、yは0.01〜0.20、zは0.01〜0.15、1−y−zは0.75を超える値であって、MはCo、又は、Co及びMnのいずれかを示し、NはAl、In、Mg、W、Mo及びSnからなる群より選ばれた少なくとも一種類の元素を示す。)
The method for producing coated lithium-nickel composite oxide particles according to any one of claims 1 to 3, wherein the lithium-nickel composite oxide particles are represented by the following general formula (1).
Li x Ni (1-y- z) M y N z O 2 ··· (1)
(Wherein x is 0.90 to 1.20, y is 0.01 to 0.20, z is 0.01 to 0.15, 1-yz is a value exceeding 0.75, M represents either Co, or Co and Mn , and N represents at least one element selected from the group consisting of Al, In, Mg, W, Mo, and Sn.)
JP2015017393A 2015-01-30 2015-01-30 Method for producing coated lithium-nickel composite oxide particles Active JP6572545B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015017393A JP6572545B2 (en) 2015-01-30 2015-01-30 Method for producing coated lithium-nickel composite oxide particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015017393A JP6572545B2 (en) 2015-01-30 2015-01-30 Method for producing coated lithium-nickel composite oxide particles

Publications (3)

Publication Number Publication Date
JP2016143527A JP2016143527A (en) 2016-08-08
JP2016143527A5 JP2016143527A5 (en) 2018-03-15
JP6572545B2 true JP6572545B2 (en) 2019-09-11

Family

ID=56570712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015017393A Active JP6572545B2 (en) 2015-01-30 2015-01-30 Method for producing coated lithium-nickel composite oxide particles

Country Status (1)

Country Link
JP (1) JP6572545B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108899540A (en) * 2018-05-25 2018-11-27 佛山市德方纳米科技有限公司 Composite ferric lithium phosphate material and preparation method thereof and lithium ion battery
JP7145394B2 (en) * 2019-01-09 2022-10-03 トヨタ自動車株式会社 Manufacturing method of positive electrode active material composite for lithium ion secondary battery
CN112750994B (en) * 2019-10-31 2023-08-29 深圳市贝特瑞纳米科技有限公司 Positive electrode material, preparation method and application thereof
CN112952046A (en) * 2019-12-10 2021-06-11 广州汽车集团股份有限公司 Preparation method of positive electrode slurry, positive electrode plate, hard-package battery cell, lithium ion battery package and application thereof
KR102144057B1 (en) * 2019-12-24 2020-08-12 주식회사 에스엠랩 A cathode active material, method of preparing the same, and lithium secondary battery comprising a cathode comprising the cathode active material
CN112018378B (en) * 2020-05-26 2023-03-21 宜宾锂宝新材料有限公司 Coating modification method for reducing metal dissolution of high-voltage ternary positive electrode material
KR102461495B1 (en) * 2020-10-28 2022-11-01 (주)포스코케미칼 Preparation method of lithium-nickel composite oxide for secondary battery positive electrode active material
CN116462243B (en) * 2023-06-19 2023-09-26 宜宾光原锂电材料有限公司 Battery, ternary positive electrode material thereof, precursor thereof and preparation method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3539223B2 (en) * 1998-08-07 2004-07-07 松下電器産業株式会社 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the same
JP4061388B2 (en) * 1999-04-21 2008-03-19 Dowaエレクトロニクス株式会社 Cathode active material for non-aqueous secondary battery, method for producing the same, and non-aqueous secondary battery using the same
JP3775552B2 (en) * 1999-05-31 2006-05-17 同和鉱業株式会社 Positive electrode active material and non-aqueous secondary battery
JP4243131B2 (en) * 2003-04-24 2009-03-25 住友金属鉱山株式会社 Positive electrode active material for lithium secondary battery and method for producing the same
JP4923397B2 (en) * 2004-09-06 2012-04-25 日産自動車株式会社 Non-aqueous electrolyte lithium ion secondary battery positive electrode material and method for producing the same
US20090194747A1 (en) * 2008-02-04 2009-08-06 Vale Inco Limited Method for improving environmental stability of cathode materials for lithium batteries
JP2010055777A (en) * 2008-08-26 2010-03-11 Sony Corp Method for manufacturing positive active material and positive active material
JP5922410B2 (en) * 2009-01-06 2016-05-24 エルジー・ケム・リミテッド Cathode active material for lithium secondary battery

Also Published As

Publication number Publication date
JP2016143527A (en) 2016-08-08

Similar Documents

Publication Publication Date Title
US10038190B2 (en) Positive electrode active material for nonaqueous electrolyte secondary batteries and nonaqueous electrolyte secondary battery using positive electrode active material
JP6572545B2 (en) Method for producing coated lithium-nickel composite oxide particles
KR102296131B1 (en) Cathode active material for lithium ion secondary battery, method for preparing the same, and lithium ion secondary battery including the same
US10879562B2 (en) Solid electrolyte, preparation method thereof, and all-solid-state battery employing the same
US9406930B2 (en) Nickel composite hydroxide and production method thereof, cathode active material for non-aqueous electrolyte secondary battery and production method thereof, and nonaqueous electrolyte secondary battery
CN108352526B (en) Positive electrode active material for nonaqueous electrolyte secondary battery, method for producing same, positive electrode composite material paste for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP5684915B2 (en) Anode active material for lithium secondary battery, method for producing the same, and lithium secondary battery including the same
WO2014034430A1 (en) Method for producing positive electrode active material for nonaqueous electrolyte secondary batteries, positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery using same
JP2008226463A (en) Lithium secondary battery, manufacturing method of particle for cathode active material coating, and manufacturing method of lithium secondary battery
JP2009206100A (en) Cathode active material and cathode and lithium battery using this
KR20140084567A (en) Positive active material coated with manganese phosphate for rechargeable lithium battery and process for preparing the same
CN111741928B (en) Metal composite hydroxide and method for producing same, positive electrode active material for nonaqueous electrolyte secondary battery and method for producing same, and nonaqueous electrolyte secondary battery
US20200251732A1 (en) Positive electrode active substance for non-aqueous electrolyte secondary battery and method for producing same, positive electrode mixture paste for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP7245422B2 (en) Metal composite hydroxide and manufacturing method thereof, positive electrode active material for non-aqueous electrolyte secondary battery and manufacturing method thereof, and non-aqueous electrolyte secondary battery
JP7159639B2 (en) Method for producing particles of transition metal composite hydroxide, and method for producing positive electrode active material for lithium ion secondary battery
JP2018060759A (en) Method for manufacturing nickel cobalt manganese-containing composite hydroxide, positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing the same, and nonaqueous electrolyte secondary battery arranged by use of positive electrode active material hereof
US20210111404A1 (en) Cathode active material for lithium ion secondary battery and method for producing same
CN108807928B (en) Synthesis of metal oxide and lithium ion battery
JP7167540B2 (en) Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
Du et al. A three volt lithium ion battery with LiCoPO4 and zero-strain Li4Ti5O12 as insertion material
JP7114876B2 (en) Transition metal composite hydroxide particles and manufacturing method thereof, positive electrode active material for lithium ion secondary battery and manufacturing method thereof, and lithium ion secondary battery
TWI827802B (en) Positive electrode active material for lithium ion secondary batteries, manufacturing method of positive electrode active material for lithium ion secondary batteries, lithium ion secondary batteries
JP7205114B2 (en) Method for producing transition metal composite hydroxide and method for producing positive electrode active material for lithium ion secondary battery
JP7273260B2 (en) Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
KR20200094783A (en) Manganese phosphate coated lithium nickel oxide material

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190716

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190729

R150 Certificate of patent or registration of utility model

Ref document number: 6572545

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150