JP4240450B2 - Control method of injection molding machine - Google Patents

Control method of injection molding machine Download PDF

Info

Publication number
JP4240450B2
JP4240450B2 JP2002326443A JP2002326443A JP4240450B2 JP 4240450 B2 JP4240450 B2 JP 4240450B2 JP 2002326443 A JP2002326443 A JP 2002326443A JP 2002326443 A JP2002326443 A JP 2002326443A JP 4240450 B2 JP4240450 B2 JP 4240450B2
Authority
JP
Japan
Prior art keywords
screw
control
speed
molding machine
completion position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002326443A
Other languages
Japanese (ja)
Other versions
JP2004160707A (en
Inventor
英明 白井
明典 高田
Original Assignee
株式会社名機製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社名機製作所 filed Critical 株式会社名機製作所
Priority to JP2002326443A priority Critical patent/JP4240450B2/en
Publication of JP2004160707A publication Critical patent/JP2004160707A/en
Application granted granted Critical
Publication of JP4240450B2 publication Critical patent/JP4240450B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、射出成形機の制御方法特には可塑化行程の制御方法に関するものである。
【0002】
【従来の技術】
従来の射出成形機の計量制御方法としては、スクリュを回転して成形材料を溶融・混練し、溶融樹脂を背圧に抗してスクリュの先端部に供給し、スクリュが後退して設定計量完了位置を越えた時にスクリュ回転を停止させるものがある(例えば、特許文献1および特許文献2参照。)。
【0003】
【特許文献1】
特公平4−43775号公報(特許請求の範囲1、第4図)
【特許文献2】
特公平6−73883号公報(特許請求の範囲1、第4図)
【0004】
しかしながら、この制御方法によれば、スクリュが設定計量完了位置を越えたときに急にスクリュ回転を停止させるので衝撃が大きく、スクリュ背圧が残留することもあって、実際にスクリュが停止するのは設定計量完了位置を行き過ぎた位置となる。また、この行き過ぎた量は、停止する前のスクリュ回転速度、スクリュ背圧値、溶融樹脂の粘度などの条件に影響されて変化するため、溶融樹脂が精密に計量できず、その溶融樹脂を金型に射出充填したときに成形品の精度が低下するのである。
【0005】
また、設定計量完了位置より僅か手前に設定された位置を越えた時にスクリュ回転を減速させて微速にし、設定計量完了位置を越えた時にスクリュ回転を停止させるものがある(例えば、特許文献3。)。
【0006】
【特許文献3】
特公平4−6535号公報(特許請求の範囲1、第3−4図)
【0007】
この制御方法においては、スクリュ回転の減速開始点とスクリュ回転の微速の設定が、スクリュ回転速度、スクリュ背圧値、溶融樹脂の粘度などの条件によって影響されるため、最適な設定をすることは困難である。最適な設定が行われないときには、スクリュ回転が減速された位置からスクリュが後退せず、計量行程の時間がばらついたり計量が終了しないなどの不具合があった。
【0008】
この問題を解決するため、射出成形機の計量工程において、スクリュ位置とスクリュ速度と停止減速時間から停止予測位置を演算し、該停止予測位置と設定計量完了位置とを比較し、停止予測位置が設定計量完了位置を越えた場合は、背圧制御を停止制御に切換えてスクリュ速度を前記停止減速時間で減速し、同時に回転制御を減速制御に切換えてスクリュ回転を前記停止減速時間で減速し、設定計量完了位置で停止させるものがある(特許文献4)。
【0009】
【特許文献4】
特開平8−276473(特許請求の範囲1、第3図)
【0010】
しかしながら、この方法によれば、可塑化状況によっては不安定となる現在スクリュ速度を停止予測位置の基準としているので、停止予測位置が変動して溶融樹脂の計量が変化するという問題がある。
【0011】
【発明が解決しようとする課題】
本発明は、上記のような従来技術における問題を解決するために提案されたものであり、実質的な可塑化を計量完了位置の所定距離手前の切換位置で終了させ、切換位置から計量完了位置までにスクリュ回転を時定数に基づいて滑らかに停止させるとともに、スクリュを計量完了位置に位置決めさせることにより、可塑化の諸条件に対応可能でありかつ高精度な計量完了位置を得ることのできる射出成形機の制御方法を提供することを目的とする。
【0012】
【課題を解決するための手段】
請求項1の発明は、樹脂材料を可塑化溶融した溶融樹脂を金型へ射出する射出装置と該射出装置を制御する制御装置を備えた射出成形機の制御方法において、前記樹脂材料を可塑化溶融する可塑化行程中、前記制御装置は、スクリュが可塑化開始から計量完了位置の所定距離手前の切換位置に達するまで前記スクリュの回転速度を制御し、前記スクリュが前記切換位置に到達したときから前記スクリュの回転を所定の時定数をもって停止に至るまで減速制御するとともに、前記スクリュを前記切換位置から前記計量完了位置までの所定距離の間、所定速度後退速度制御しつつクローズドループで位置決め制御するに際し、前記時定数は前記位置決め制御が前記計量完了位置で終了するとき前記減速制御される前記スクリュの回転速度を零にしないような時定数に設定される射出成形機の制御方法に係る。
【001
【発明の実施の形態】
図面に基づいて本発明の実施の形態を詳細に説明する。図1は、本発明を実施する射出成形機の要部概要を示す部分断面図である。図2は、スクリュの位置に対するスクリュ回転速度の変化を示すグラフである。図3は、本発明の制御方式を示す流れ図である。
【001
射出成形機1は、射出装置2と、射出装置2から射出される溶融樹脂7を充填する金型3を接離または圧締する型締装置(図示せず。)と、射出装置2および型締装置を制御する制御装置4とからなる。
【001
射出装置2は、ハウジング9に取付けられ金型3に当接・押圧する加熱筒5と、加熱筒5の中心内孔に回転往復動自在に嵌挿したスクリュ6と、スクリュ6の延長軸を回転自在に保持しボールナット14を固着する可動盤10と、可動盤10の反加熱筒側に取付けられスクリュ6を回転駆動するスクリュ回転用サーボモータ12と、ハウジングの両端部に回転自在に取付けられボールナット14と螺合するボールネジ13と、ハウジングの加熱筒5取付け側両端部に固着されボールネジ13を駆動してスクリュ6を前後進させる射出用サーボモータ11とからなる。
【001
制御装置4は、射出成形機1における型締装置と射出装置2のシーケンス制御や、射出用サーボモータ11、スクリュ回転用サーボモータ12等のアクチュエータの速度制御、力制御、または位置決め制御や、加熱筒5を加熱するバンドヒータ等の温度制御等を実行する。この制御装置4はマイクロプロセッサに基づいた公知の構成を有し、液晶の表示器からなる表示部、表示部の表面に設けたタッチパネルからなる設定部、RAM・ROMからなり設定値や制御プログラムを格納する記憶部、エンコーダ15等の各種センサからの信号を入力する入力部およびアクチュエータへ信号を出力する出力部を含む。エンコーダ15は、射出用サーボモータ11の回転軸に接続され射出用サーボモータ11の回転角度を検出するので、スクリュ6の位置が検出可能であるが、可動盤10に別途取付けた位置センサによってスクリュ6の位置を検出してもよい。
【001
射出装置2における可塑化行程について説明する。ハウジング9の上面から貫通孔を通じて加熱筒5内へ供給される樹脂材料は、スクリュ6の外周に刻設された螺子状のフライトによりスクリュ6の回転に伴って前方へ移送される。加熱筒5内を移送される樹脂材料は、ヒータで温調された加熱筒5の熱量で可塑化・溶融されかつスクリュ6で混練されつつスクリュ6の前方の加熱筒5内孔に溶融樹脂7として蓄積される。
【0019
加熱筒5は金型3に当接・押圧され、金型3のキャビティ8には前の成形サイクルで射出され冷却しつつある溶融樹脂7が充填されているので、スクリュ6の前方に蓄積される可塑化中の溶融樹脂7の圧力は上昇し、スクリュ背圧となってスクリュ6を後方に押すスクリュ背圧力が発生する。スクリュ背圧力は射出用サーボモータ11により所定の値に制御される。この制御行程でスクリュ6は、図2に示すように、回転しながら後退移動することになり、成形品であるキャビティ8の容積に相当する溶融樹脂7が蓄積される計量完了位置P2まで後退して停止する。このようにして計量された溶融樹脂7は、金型3が開いてキャビティ8内の成形品が取出された後における次の成形サイクルで、射出用サーボモータ11によるスクリュ6の前進移動でキャビティ8に射出され射出行程が実行される。
【002
次に、図2および図3に基づいて本発明の制御方法を詳細に説明する。制御装置4は射出行程の後、可塑化行程を開始する(S1)。スクリュ6は所定の設定値に基づいて速度制御されるスクリュ回転用サーボモータ12により回転駆動され、射出行程の終了時における溶融樹脂7の押残し位置であるクッション位置P0から後退し始める(S2)。制御装置4は、スクリュ6の位置が計量完了位置P2の所定距離B手前の切換位置P1に達したか否かを比較演算し(S3)、P1に達するまでS2でスクリュ6の回転を継続させる。スクリュ6の位置が計量完了位置P2の所定距離B手前の切換位置P1に達したときには、制御装置4は所定の時定数をもってスクリュ回転を停止させる(S4)。
【002
前記所定距離Bは、次式により、予め制御装置4で演算され記憶部に格納される。
B=(r/R)×A
ここで、rはスクリュ回転速度の設定値(rpm)であり、可塑化の条件として成形材料の種類や成形品に応じて設定部で適宜設定入力される。Rは設定可能な最大のスクリュ回転速度の設定値(rpm)であり、射出成形機に固有の値として予め固定的に記憶部に格納されている。Aは係数(mm)であり、最大のスクリュ回転速度の設定値のときスクリュ6が回転停止行程中に後退し停止するまでに要する距離を基準として、時定数とともに設定部で適宜設定入力される。
【002
また、前記時定数はスクリュ6の位置が切換位置P1に達したとき作用し始め、制御装置4はスクリュ回転用サーボモータ12をこの所定の時定数による時間あたりの回転数の変化に従って減速させる。通常使用する時定数の値は、0.05〜0.5秒である。
【002
係数Aと時定数は任意の値に設定可能である。しかしながら、係数Aと時定数を組合わせた結果得られる、切換位置P1から計量完了位置P2に至るスクリュ回転速度の減速制御パターンは極めて多種類になり、設定の自由度は増すが設定が極めて困難となる。そのため、各種樹脂材料やスクリュ背圧設定に対応可能な制御パターンを10種類程度予め用意して記憶部に格納しておき、実際の可塑化条件に応じてそのうちの一を選択し、それにより制御装置4はスクリュ回転の停止に至る減速を制御する。なお、計量完了位置P2においてスクリュ回転速度が零となるような制御パターンを選択すれば、計量完了位置P2で背圧が零となり最も好ましい。また、時定数が係数Aに対して比較的大きい制御パターンを選択すれば、計量完了位置P2においてスクリュ回転速度が零とならず背圧が若干残留したまま可塑化行程が終了する場合があるが、このほうが溶融樹脂の状態が安定することもある。
【002
スクリュ6が切換位置P1に到達したとき、S4の処理とともにS5として、制御装置4はスクリュ6の後退位置の位置決め制御を切換位置P1から計量完了位置P2に至る所定距離Bの間で実施する。この位置決め制御は射出用サーボモータ11のクローズドループ制御により行われる。このときのスクリュ6の後退速度は、スクリュ6が切換位置P1に到達する前の可塑化による後退速度とし、制御装置4は可塑化中に後退速度を記憶部に記憶させておき、その平均値等を設定値にしてスクリュ6の後退速度を制御する。
【002
位置決め制御はスクリュ位置が計量完了位置P2と一致するまで継続され(S6)、スクリュ位置が計量完了位置P2と一致したとき可塑化は終了する(S7)とともに、そのスクリュ位置を維持する。
【002
なお、本発明は以上図示し説明した実施例に限定されるものではなく、発明の趣旨を逸脱しない範囲内において種々の変更を付加して実施することができる。例えば、スクリュ背圧とスクリュの位置決め制御は射出用サーボモータで実行するように記載したが、サーボバルブ等の油圧機器で実行してもよい。また、スクリュ回転用サーボモータもインバータによる誘導電動機や油圧モータに置き換えることも可能である。
【002
【発明の効果】
本発明は、実質的な可塑化を計量完了位置の所定距離手前の切換位置で終了させ、切換位置から計量完了位置までにスクリュ回転を時定数に基づいて滑らかに停止させるとともに、スクリュを計量完了位置に位置決めさせるので、残留するスクリュ背圧やスクリュ回転速度に影響されず高精度な計量完了位置を得ることができ、精度が高く安定した成形品を生産できる。さらに、切換位置から計量完了位置に至る制御を複数のパターンから選択できるので、可塑化の諸条件に容易な設定によって対応可能である。
【図面の簡単な説明】
【図1】 本発明を実施する射出成形機の要部概要を示す部分断面図である。
【図2】 スクリュの位置に対するスクリュ回転速度の変化を示すグラフである。
【図3】 本発明の制御方式を示す流れ図である。
【符号の説明】
1 ……… 射出成形機
2 ……… 射出装置
3 ……… 金型
4 ……… 制御装置
5 ……… 加熱筒
6 ……… スクリュ
7 ……… 溶融樹脂
8 ……… キャビティ
9 ……… ハウジング
10 …… 可動盤
11 …… 射出用サーボモータ
12 …… スクリュ回転用サーボモータ
13 …… ボールネジ
14 …… ボールナット
15 …… エンコーダ
B ……… 所定距離
P0 …… クッション位置
P1 …… 切換位置
P2 …… 計量完了位置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for controlling an injection molding machine, and more particularly to a method for controlling a plasticizing process.
[0002]
[Prior art]
The conventional injection molding machine's metering control method is to rotate the screw to melt and knead the molding material, supply molten resin against the back pressure to the tip of the screw, and the screw moves backward to complete the set measurement. There is one that stops the screw rotation when the position is exceeded (see, for example, Patent Document 1 and Patent Document 2).
[0003]
[Patent Document 1]
Japanese Examined Patent Publication No. 4-43775 (Claims 1 and 4)
[Patent Document 2]
Japanese Patent Publication No. 6-73883 (Claim 1 and FIG. 4)
[0004]
However, according to this control method, when the screw exceeds the set measurement completion position, the screw rotation is suddenly stopped, so the impact is great and the screw back pressure may remain, so the screw actually stops. Is a position that has passed the set weighing completion position. In addition, this excessive amount changes depending on conditions such as the screw rotation speed before the stop, the screw back pressure value, the viscosity of the molten resin, etc., so the molten resin cannot be accurately measured, and the molten resin cannot be measured. When the mold is injected and filled, the accuracy of the molded product decreases.
[0005]
In addition, there is a type in which the screw rotation is decelerated to a fine speed when a position set just before the set measurement completion position is exceeded, and the screw rotation is stopped when the set measurement completion position is exceeded (for example, Patent Document 3). ).
[0006]
[Patent Document 3]
Japanese Examined Patent Publication No. 4-6535 (Claims 1 and 3-4)
[0007]
In this control method, since the setting of the screw rotation deceleration start point and the screw rotation slow speed are affected by conditions such as the screw rotation speed, screw back pressure value, viscosity of the molten resin, etc. Have difficulty. When the optimum setting is not performed, the screw does not move backward from the position where the screw rotation is decelerated, and there is a problem that the time of the measurement process varies and the measurement does not end.
[0008]
In order to solve this problem, in the metering process of the injection molding machine, the predicted stop position is calculated from the screw position, screw speed, and stop deceleration time, and the predicted stop position is compared with the set measurement completion position. If the set weighing completion position is exceeded, the back pressure control is switched to the stop control and the screw speed is decelerated during the stop deceleration time.At the same time, the rotation control is switched to the deceleration control and the screw rotation is decelerated during the stop deceleration time. There is one that stops at the set weighing completion position (Patent Document 4).
[0009]
[Patent Document 4]
JP-A-8-276473 (Claims 1 and 3)
[0010]
However, according to this method, since the current screw speed, which is unstable depending on the plasticization state, is used as the reference for the predicted stop position, there is a problem that the stop predicted position fluctuates and the molten resin metering changes.
[0011]
[Problems to be solved by the invention]
The present invention has been proposed in order to solve the above-described problems in the prior art, and terminates the substantial plasticization at a switching position before a predetermined distance from the weighing completion position, and from the switching position to the weighing completion position. The screw rotation can be stopped smoothly based on the time constant and the screw can be positioned at the measurement completion position, so that it is possible to meet various plasticization conditions and obtain a highly accurate measurement completion position. An object is to provide a method for controlling a molding machine.
[0012]
[Means for Solving the Problems]
According to a first aspect of the present invention, there is provided a control method for an injection molding machine comprising an injection device for injecting a molten resin obtained by plasticizing and melting a resin material into a mold, and a control device for controlling the injection device. During the plasticizing process for melting, the control device controls the rotational speed of the screw until the screw reaches the switching position a predetermined distance before the measurement completion position from the start of plasticization, and when the screw reaches the switching position. The rotation of the screw is controlled with a predetermined time constant until it stops, and the screw is controlled in a closed loop while controlling the reverse speed at a predetermined speed for a predetermined distance from the switching position to the measurement completion position. In positioning control, the time constant is set to zero the rotational speed of the screw that is decelerated when the positioning control ends at the measurement completion position. According to the control method of the injection molding machine is set to a time constant that does not.
[001 4 ]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a partial cross-sectional view showing an outline of a main part of an injection molding machine for implementing the present invention. FIG. 2 is a graph showing changes in screw rotation speed with respect to screw position. FIG. 3 is a flowchart showing the control method of the present invention.
[001 5 ]
The injection molding machine 1 includes an injection device 2, a mold clamping device (not shown) that contacts and separates or presses the mold 3 that is filled with the molten resin 7 injected from the injection device 2, and the injection device 2 and the mold. And a control device 4 for controlling the fastening device.
[001 6 ]
The injection device 2 includes a heating cylinder 5 that is attached to the housing 9 and contacts and presses against the mold 3, a screw 6 that is rotatably inserted into a central inner hole of the heating cylinder 5, and an extension shaft of the screw 6. A movable plate 10 that holds the ball nut 14 in a rotatable manner, a screw rotating servo motor 12 that is attached to the non-heating cylinder side of the movable plate 10 to rotate the screw 6, and is attached to both ends of the housing. The ball screw 13 is screwed to the ball nut 14 and the injection servo motor 11 is fixed to both ends of the housing on the side where the heating cylinder 5 is attached and drives the ball screw 13 to move the screw 6 back and forth.
[001 7 ]
The control device 4 includes sequence control of the mold clamping device and the injection device 2 in the injection molding machine 1, speed control, force control, or positioning control of actuators such as an injection servo motor 11 and a screw rotation servo motor 12, heating, and the like. Temperature control of a band heater or the like for heating the cylinder 5 is executed. This control device 4 has a known configuration based on a microprocessor, and includes a display unit composed of a liquid crystal display, a setting unit composed of a touch panel provided on the surface of the display unit, and a RAM / ROM for setting values and control programs. A storage unit for storing, an input unit for inputting signals from various sensors such as the encoder 15, and an output unit for outputting signals to the actuator are included. The encoder 15 is connected to the rotation shaft of the injection servomotor 11 and detects the rotation angle of the injection servomotor 11, so that the position of the screw 6 can be detected, but the screw is detected by a position sensor separately attached to the movable platen 10. The position of 6 may be detected.
[001 8 ]
The plasticizing process in the injection device 2 will be described. The resin material supplied from the upper surface of the housing 9 into the heating cylinder 5 through the through-hole is transferred forward with the rotation of the screw 6 by a screw-like flight engraved on the outer periphery of the screw 6. The resin material transferred through the heating cylinder 5 is plasticized and melted by the amount of heat of the heating cylinder 5 adjusted by a heater and is kneaded by the screw 6 while being melted into the inner hole of the heating cylinder 5 in the heating cylinder 5. Accumulated as.
[00 19 ]
The heating cylinder 5 is brought into contact with and pressed against the mold 3, and the cavity 8 of the mold 3 is filled with the molten resin 7 injected and cooled in the previous molding cycle, so that it is accumulated in front of the screw 6. The pressure of the molten resin 7 during plasticization rises, and a screw back pressure is generated that pushes the screw 6 backward as a screw back pressure. The screw back pressure is controlled to a predetermined value by the servo motor 11 for injection. In this control process, as shown in FIG. 2, the screw 6 moves backward while rotating, and moves back to the measurement completion position P2 where the molten resin 7 corresponding to the volume of the cavity 8 that is a molded product is accumulated. And stop. The molten resin 7 weighed in this manner is transferred to the cavity 8 by the forward movement of the screw 6 by the injection servo motor 11 in the next molding cycle after the mold 3 is opened and the molded product in the cavity 8 is taken out. The injection process is executed.
[002 0 ]
Next, based on FIG. 2 and FIG. 3, the control method of this invention is demonstrated in detail. The control device 4 starts the plasticizing process after the injection process (S1). The screw 6 is rotationally driven by a screw rotation servomotor 12 whose speed is controlled based on a predetermined set value, and starts to retreat from the cushion position P0, which is a position where the molten resin 7 remains at the end of the injection stroke (S2). . The control device 4 compares and calculates whether or not the position of the screw 6 has reached the switching position P1 that is a predetermined distance B before the measurement completion position P2 (S3), and continues to rotate the screw 6 in S2 until it reaches P1. . When the position of the screw 6 reaches the switching position P1 before the predetermined distance B from the measurement completion position P2, the control device 4 stops the screw rotation with a predetermined time constant (S4).
[002 1 ]
The predetermined distance B is calculated in advance by the control device 4 and stored in the storage unit according to the following equation.
B = (r / R) × A
Here, r is a set value (rpm) of the screw rotation speed, and is appropriately set and input by the setting unit according to the type of the molding material and the molded product as the plasticizing condition. R is a set value (rpm) of the maximum screw rotation speed that can be set, and is fixedly stored in the storage unit in advance as a value unique to the injection molding machine. A is a coefficient (mm), and when the maximum screw rotation speed is set, the setting unit appropriately inputs the time constant together with the time required for the screw 6 to retract and stop during the rotation stop process. .
[002 2 ]
The time constant starts to act when the position of the screw 6 reaches the switching position P1, and the control device 4 decelerates the screw rotating servo motor 12 according to the change in the number of rotations per time according to the predetermined time constant. The value of the time constant normally used is 0.05 to 0.5 seconds.
[002 3 ]
The coefficient A and the time constant can be set to arbitrary values. However, the number of screw speed deceleration control patterns from the switching position P1 to the measurement completion position P2 obtained as a result of the combination of the coefficient A and the time constant is extremely diverse, and although the degree of freedom of setting increases, setting is extremely difficult. It becomes. Therefore, about 10 types of control patterns that can be set for various resin materials and screw back pressure settings are prepared in advance and stored in the storage unit, and one of them is selected according to the actual plasticizing conditions, and control is thereby performed. The device 4 controls the deceleration to stop the screw rotation. If a control pattern is selected so that the screw rotation speed is zero at the measurement completion position P2, the back pressure is most preferably zero at the measurement completion position P2. If a control pattern having a relatively large time constant with respect to the coefficient A is selected, the plasticizing process may be completed while the screw rotation speed does not become zero and the back pressure remains slightly at the measurement completion position P2. This may stabilize the state of the molten resin.
[002 4 ]
When the screw 6 has reached the switching position P1, the control device 4 performs positioning control of the backward position of the screw 6 within a predetermined distance B from the switching position P1 to the measurement completion position P2 as S5 together with the processing of S4. This positioning control is performed by closed loop control of the injection servo motor 11. The retreating speed of the screw 6 at this time is the retreating speed by plasticization before the screw 6 reaches the switching position P1, and the control device 4 stores the retreating speed in the storage unit during the plasticization, and the average value thereof. Etc. are set as values to control the reverse speed of the screw 6.
[002 5 ]
Positioning control is continued until the screw position coincides with the measurement completion position P2 (S6), and when the screw position coincides with the measurement completion position P2, plasticization ends (S7) and the screw position is maintained.
[002 6 ]
The present invention is not limited to the embodiments shown and described above, and can be implemented with various modifications without departing from the spirit of the invention. For example, the screw back pressure and the screw positioning control are described as being executed by the injection servo motor, but may be executed by a hydraulic device such as a servo valve. The screw rotation servomotor can also be replaced with an induction motor or hydraulic motor using an inverter.
[002 7 ]
【The invention's effect】
The present invention ends substantial plasticization at a switching position a predetermined distance before the measurement completion position, smoothly stops the screw rotation from the switching position to the measurement completion position based on the time constant, and completes the screw measurement. Since positioning is performed at a position, a highly accurate measurement completion position can be obtained without being affected by the residual screw back pressure and screw rotation speed, and a highly accurate and stable molded product can be produced. Furthermore, since the control from the switching position to the measurement completion position can be selected from a plurality of patterns, it is possible to cope with various conditions of plasticization by easy setting.
[Brief description of the drawings]
FIG. 1 is a partial cross-sectional view showing an outline of essential parts of an injection molding machine for carrying out the present invention.
FIG. 2 is a graph showing a change in screw rotation speed with respect to a screw position.
FIG. 3 is a flowchart showing a control method of the present invention.
[Explanation of symbols]
1 ……… Injection molding machine 2 ……… Injection device 3 ……… Mold 4 ……… Control device 5 ……… Heating cylinder 6 ……… Screw 7 ……… Molten resin 8 ……… Cavity 9… ... Housing 10 ... Movable platen 11 ... Servo motor for injection 12 ... Servo motor for screw rotation 13 ... Ball screw 14 ... Ball nut 15 ... Encoder B ... ... Predetermined distance P0 ... Cushion position P1 ... Switching Position P2 ... Measurement completion position

Claims (1)

樹脂材料を可塑化溶融した溶融樹脂を金型へ射出する射出装置と該射出装置を制御する制御装置を備えた射出成形機の制御方法において、
前記樹脂材料を可塑化溶融する可塑化行程中、前記制御装置は、スクリュが可塑化開始から計量完了位置の所定距離手前の切換位置に達するまで前記スクリュの回転速度を制御し、前記スクリュが前記切換位置に到達したときから前記スクリュの回転を所定の時定数をもって停止に至るまで減速制御するとともに、前記スクリュを前記切換位置から前記計量完了位置までの所定距離の間、所定速度後退速度制御しつつクローズドループで位置決め制御するに際し、前記時定数は前記位置決め制御が前記計量完了位置で終了するとき前記減速制御される前記スクリュの回転速度を零にしないような時定数に設定されることを特徴とする射出成形機の制御方法。
In a control method of an injection molding machine provided with an injection device for injecting molten resin obtained by plasticizing and melting a resin material into a mold and a control device for controlling the injection device,
During the plasticizing process of plasticizing and melting the resin material, the control device controls the rotational speed of the screw until the screw reaches a switching position before a predetermined distance from the measurement completion position from the start of plasticization, and the screw is controls decelerated when reaching the changeover position to the stop with a time constant rotation of predetermined said screw, for a predetermined distance of the screw from the switching position to the metering completion position, the retracting speed at a predetermined speed When performing positioning control in a closed loop while controlling, the time constant is set to a time constant that does not make the rotation speed of the screw controlled to be decelerated when the positioning control ends at the measurement completion position. A method for controlling an injection molding machine.
JP2002326443A 2002-11-11 2002-11-11 Control method of injection molding machine Expired - Fee Related JP4240450B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002326443A JP4240450B2 (en) 2002-11-11 2002-11-11 Control method of injection molding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002326443A JP4240450B2 (en) 2002-11-11 2002-11-11 Control method of injection molding machine

Publications (2)

Publication Number Publication Date
JP2004160707A JP2004160707A (en) 2004-06-10
JP4240450B2 true JP4240450B2 (en) 2009-03-18

Family

ID=32805354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002326443A Expired - Fee Related JP4240450B2 (en) 2002-11-11 2002-11-11 Control method of injection molding machine

Country Status (1)

Country Link
JP (1) JP4240450B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4504800B2 (en) * 2004-12-20 2010-07-14 東洋機械金属株式会社 Metering control method for injection molding machine and injection molding machine
JP4910505B2 (en) * 2006-06-29 2012-04-04 住友化学株式会社 Manufacturing method of long fiber reinforced resin molding
KR102277106B1 (en) * 2015-11-30 2021-07-14 엘에스엠트론 주식회사 Apparatus and method for controlling injection molding machine

Also Published As

Publication number Publication date
JP2004160707A (en) 2004-06-10

Similar Documents

Publication Publication Date Title
JP3250180B2 (en) Depressurization method in plasticization / metering process of electric injection molding machine
JP4038226B2 (en) Measuring method and control device for injection molding machine
JP5031867B2 (en) Injection molding method and apparatus
JP2011183705A (en) Injection molding machine and injection molding method
EP0328671A1 (en) Nozzle touching mechanism for injection molding machines
JP5839491B2 (en) Injection molding machine
JP3649714B2 (en) Control device for injection molding machine
JP4627250B2 (en) Control method of injection molding machine
JP4829522B2 (en) Control device for injection molding machine
KR100405834B1 (en) Apparatus and method for controlling an injection molding machine capable of reducing variations in weight of molded products
JP2007076328A (en) Molding machine and plasticization condition monitoring method
TWI549802B (en) Injection molding machine
JP4240450B2 (en) Control method of injection molding machine
WO2015104991A1 (en) Moulding machine
JP2004243610A (en) Method for controlling back pressure of screw of electromotive injection molding machine
KR102277106B1 (en) Apparatus and method for controlling injection molding machine
JP2638626B2 (en) Feedback control method for injection molding machine
JP5575509B2 (en) Injection molding machine and injection molding method
JP2627047B2 (en) Injection molding machine molding condition setting method
JP5052246B2 (en) Injection molding machine
JP3232550B2 (en) Control method of mold clamping pressure in injection compression molding
JPH0615190B2 (en) Injection controller
JPS6046008B2 (en) Control method of injection molding machine
JP3563062B2 (en) Zero adjustment method of load cell of electric injection molding machine
JP3737716B2 (en) Injection control method for injection molding machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050805

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060911

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20061025

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20061201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081219

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4240450

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140109

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees