JP4235986B2 - Inert cathode for selective oxygen reduction and its preparation - Google Patents

Inert cathode for selective oxygen reduction and its preparation Download PDF

Info

Publication number
JP4235986B2
JP4235986B2 JP51883598A JP51883598A JP4235986B2 JP 4235986 B2 JP4235986 B2 JP 4235986B2 JP 51883598 A JP51883598 A JP 51883598A JP 51883598 A JP51883598 A JP 51883598A JP 4235986 B2 JP4235986 B2 JP 4235986B2
Authority
JP
Japan
Prior art keywords
boiling point
cathode
negative electrode
cluster
chalcogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP51883598A
Other languages
Japanese (ja)
Other versions
JP2001502467A (en
Inventor
アロンゾ―ヴァンテ ニコラス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Helmholtz Zentrum Berlin fuer Materialien und Energie GmbH
Original Assignee
Helmholtz Zentrum Berlin fuer Materialien und Energie GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Helmholtz Zentrum Berlin fuer Materialien und Energie GmbH filed Critical Helmholtz Zentrum Berlin fuer Materialien und Energie GmbH
Publication of JP2001502467A publication Critical patent/JP2001502467A/en
Application granted granted Critical
Publication of JP4235986B2 publication Critical patent/JP4235986B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • C25B11/031Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M2004/8678Inert electrodes with catalytic activity, e.g. for fuel cells characterised by the polarity
    • H01M2004/8689Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)

Description

本発明は、少なくとも1種の遷移金属及びカルコゲンからの半導性クラスターをベースとする選択的に作用する触媒物質製の薄い表面被覆を有する、メタノール−燃料電池中での多電子移動による電気化学的エネルギー変換のための、酸性媒体中の選択的酸素還元用不活性陰極及びその製法に関する。
放射なしの燃料電池技術を用いて、熱生産を介する迂回なしに電流を有効かつ環境認容性に得ることができる。燃料電池は、連続的に燃料−酸化反応の化学的エネルギー変化を電気エネルギーに変換する電気化学的電池である。この際、多電子トランスファーがこのエネルギー変換のための物理的基本を成す。陽極で、燃料分子が電子放出下に酸化され、陰極で電子の吸収下に酸化剤の還元が行われる。陽極及び陰極で形成されたイオンは、電解液中の閉電流回路で電極の方に移動して、そこで一緒になって水及び二酸化炭素を生じる。この場合に、電解質酸の使用は、汚染性炭酸塩形成に対して自然の保護を形成する。
技術水準
高いエネルギー密度を有する無害な燃料としての単純メタノールの使用は、80〜120℃の低い温度範囲内での燃料電池の作動を可能とする。しかしながら、この際に起こるメタノール−クロスオーバーは問題がある。陰極用に従来最も頻繁に使用された触媒物質は、白金であり、これは、メタノールに比べても広い触媒反応可能性を有するが、白金電極の有毒化の危険をも有する。従って、かつ白金の場合の高い材料コストの故に、新しい選択的に作用する触媒物質が強く望まれている。ここで、カルコゲン原子のマトリックス中に包埋されている遷移金属の半導性のクラスター化合物に行き当たった。このいわゆる”シェブレル相構造”を有するクラスター化合物は、選択的作用を示し、即ち、これはメタノールを酸化も還元もせず、酸素のみを還元する。これにより、メタノールを陰極から遠ざけるための高価で、信頼性の低い膜の使用が省略できる。
DE 3624054A1は、燃料電池中で酸素を還元して水にするための触媒作用を有する半導性モリブデンクラスターカルコゲニドからの不活性電極を記載している。この混合クラスタ−物質は、多結晶質であり、粉砕された粉末状態で、電極上の層厚を限定する1μm〜5μmの間の粒径を有し、従って溶剤との混合の後に粗分散性の物質系が存在する。しかしながら、少ない液体量の施与及び引き続く溶剤の蒸発の後の電極表面上のクラスター分布は均一ではなく、このことはこの電極の選択的及び触媒作用的特性を悪化させることがありうる。
DE 3802236A1からは、如何にして、反応すべき物質(金属カルボニル、カルコゲン含有化合物及び不活性有機溶剤)の混合物から熱の作用下に粉末又は薄層又は膜を製造することができ、燃料電池中の触媒作用を有する不活性電極を得るために使用できるかを知ることができる。この金属カルコゲニドも、多結晶質であり、溶剤中で粗分散性系をもたらす。これは、μm−範囲の直径を有する凝集されたクラスターを有し、これは、その大きさに基づき−ここに開示の、いずれにせよ高い物質使用量での噴霧熱分解析出の方法にもかかわらず−電極上の表面被覆中での均一な分布をもたらさず、場所的に異なる触媒作用及び選択作用を限定することがありうる。この際に、被覆の層厚は、クラスターの大きさにより下方に限定される。
このような触媒物質の製造はコストがかかり、1100℃付近の高温範囲でのみ可能である。従って、類似の特性を有する物質を製造するために、他の方法が求められた。
本発明の出発点である技術水準は、前記の一般的詳述に基づき、O.Solorza-Feria等の論文”Novel Low-Temperature Synthesis of Semiconducting Transition Metal Chalcogenide Electrocatalyst for Multielectron Charge Transfer:Molecular Oxygen Reduction.,“Electrochimica Acta,Vol.39,No.11/12(1994),pp.1647-1653から構成される。この論文から、式:
(Ru1−xMOSeO(0.02<x<0.04、1<y<3、z≒2y)の半導性クラスター物質が、金属カルボニルRu(CO12)及びMo(CO)及びセレンの混合物から、溶剤としてのキシレン中での湿式化学−有機低温合成により得ることができることが判る。生じた混合クラスターは、2種の遷移金属及び1種のカルコゲンをベースとしている。これらは、不活性陰極の表面被覆のために、粉末又は薄層(<0.5μm)の形で提供することができる。この出現形でのクラスター物質は、白金と匹敵する酸性媒体中での酸素還元に関する電気触媒作用活性を有し、選択的に反応する。しかしながら、この際に、この特性は、被覆中の個々のクラスターの充填密度により限定され、この充填密度は、凝集されたクラスターを有する粉末としての又は狭い隣接クラスターを有する薄層としての出現形により限定され、このクラスターのその作用に逆方向の妨害をもたらしうる。
従って、本発明の基礎となっている問題は、酸性メタノール溶液中の酸素還元の選択性及び触媒反応を公知の出現形の物質に比べて更に改善する作用をする、選択的に作用する触媒物質からなるこのような表面被覆を有する不活性陰極を提供することである。
この目的は、本発明により、薄い表面被覆が、コロイド分散性の均一分布での個々のクラスターから有効陰極表面積1cm当たりng−範囲の低い物質使用量により得られる被覆度を有することにより達成される。
個々のクラスターのこのような分布により、これは、逆に妨害することなしに、その完全な触媒作用及び選択的活性を発揮することができる。個々のクラスターのこの活性化は、高い作用密度を生ぜしめる。この場合に、触媒反応可能性は、なお前記の出現形での物質のそれを越える。本発明のコロイド分散性の、即ち、均一な出現像でのnm−範囲(例えば3〜4nm)の粒径を有する個々のクラスターの非常に微細に分布された配置は、陰極を触媒毒及びこれに伴う活性の低下に対して有効に保護する。高価な膜は不必要である。酸素還元時のこの改善された選択性及びそれに伴う長時間安定性と一緒になって、例えば6〜7nmのみの層厚が必要であるその薄い表面被覆を有する本発明の陰極は、従って、粉末又は薄層でのより厚い被覆に比べて利点を有する。更に、陰極表面の僅かな被覆度をもたらす個々のクラスターの広空間分布により、必要な物質使用量も相応して僅かであり、ng−範囲(例えば3.1ng)である。更に、この触媒物質は、非常に熱安定であるので、熱処理を実施することができる。
後の実施に先立ち、この位置で既に、本発明による陰極の前記の有利な特性は、それ自体、簡単に合成できるコロイド溶液としての触媒物質の出現形により可能になることが認められる。従って、電気触媒活性のための特別誂え生成物を提供することができる。
半導性遷移金属、殊にモリブデン(Mo)、タングステン(W)、ルチウム(Ru)、オスミウム(Os)、コバルト(Co)、ロジウム(Rh)及びイリジウム(Ir)並びにカルコゲン 硫黄(S)、セレン(Se)、殊に赤色セレン及びテルル(Te)がコロイド分散性クラスター分布を有する触媒物質の基礎となっている。これらの元素から、それぞれ、酸素(O)の関与下に二元クラスター及び三元混合クラスターを得ることができる。
本発明による不活性陰極の1態様によれば、遷移金属がルテニウム(Ru)であり、カルコゲンが硫黄(S)又はセレン(Se)であり、このクラスターが、0.5〜2の範囲内のルテニウム(Ru)対カルコゲン(S、Se)のモル比(x)を有する際に、有利である。このようなクラスターは、電解質酸に対して特別な抵抗を有し、合成時に、硫黄及び赤色セレンの場合には8環−構造により、特別に製造好適な特性を提供する。
もう一つの本発明の態様によれば、遷移金属としてのルテニウム(Ru)及びカルコゲンとしてのセレン(Se)を有するクラスターが化学量論的な形(Ru)Se(この際、nは1.5〜2、殊に1.7である)で存在する場合に特に好適である。触媒物質としてのこの化学量論的構造を有するクラスターは、高い触媒活性及び選択活性の要求を特別に優れて満足する。
本発明による陰極は、触媒的及び選択的に高活性の物質からなる薄い表面被覆により、化学的侵害に対して有効に保護されて、白金又は類似貴金属又は化合物を用いるる高価な陰極構造を必要としない。従って、この発明の遂行により、陰極が多孔性で導電性の支持体を有することができる。この多孔性は、この反応のための高い陰極比表面積に作用する。この支持体は、殊にカーボンブラック−又はノーリット−型−炭素からの適切な価格の基質であってよく、これは、燃料電池中のガス拡散電極中での使用のために特に好適である。ガス拡散電極は、1つの疎水性層及び1つの親水性層及びこの間の反応性固体層を有して3相に構成されている。慣用の基質、例えばガラス化された炭素−又はインジウム−錫−酸化物(ITO)−基質の使用が同様に可能である。
アルカリ性電解質を有する燃料電池では、アルカリ溶液中で炭酸塩を生じさせる二酸化炭素による電解質の不純化が起こり得る。これにより、この電解質の導電性及び電極の寿命が低下する。従って、燃料電池を、酸性媒体を用いて、殊に本発明の1態様により、液状電解質として最も屡々使用される硫酸を用いて構成することが最も好適である。燐酸の使用も同様に可能であるが、これは高温(300℃)でのみ導電性である。
直接メタノール−燃料電池は、大気圧又は過圧時に、かつ80〜100℃の操作温度で作動する。エネルギーの多いメタノールは、水素取得のために、リフォーマーターを介する迂回なしに直接分解される。従って、この発明のもう一つの態様では、このメタノール−燃料電池を直接燃料電池として構成する場合が好適である。
選択的酸素還元のための前記の不活性陰極を製造する方法は、本発明により、nm−範囲の薄い表面被覆を得るために、陰極の多孔性支持体を、コロイド溶液の形の触媒物質中に浸漬させ、引き続き室温で乾燥させ、その後、200〜300℃、殊に208℃の温度で熱処理することを特徴とする。このようなプロセスは、装置及び経費の点で多大のコストを要せずに実施可能であり、既に1回の処置で、最良の結果が得られる。コロイド状触媒物質中への浸漬により、陰極表面は一様に液状表面被覆を備える。殊に乾燥プロセスの促進のために真空中でも行われるこの被覆の乾燥の後に、このコロイドの固体成分は、コロイド分散性で均一な分布で支持体上に固定されている。なお存在する不純物は、次いで、熱処理工程で、この触媒物質を害することなしに、簡単に蒸発させることができる。
この場合に、発明のもう一つの態様によれば、コロイド溶液を、クラスターが、長鎖状安定剤の適当な量の添加下に、コロイド分散性の均一な分布で有機溶剤中に浮遊するように構成するのが有利であり、この際、安定剤の沸点(Tss)は溶剤の沸点(Tsl)よりも上である。このようなコロイド溶液を用いて、必要なクラスター物質を特別誂眺えで提供することができる。溶剤は、支持体物質である。長鎖状安定剤は、クラスターへの積層によりそれが集塊して粉末になることを阻止する。その使用量は、溶剤中のクラスター起源に依存して、個々の成分のモル比を介して確かめることができる。この変換反応は、溶剤の沸点(Tsl)では、殆ど使用成分に無関係に起こる。溶剤の沸点(Tsl)よりも上である安定剤の沸点(Tss)の状態は、安定剤及びクラスターの微細分布に影響することなしに、溶剤の除去可能性を保証する。安定剤は熱処理工程で初めて除去されるので、陰極表面上にはなおコロイド分散性で均一に分布されたクラスターのみが存在し、堅固な被覆を形成する。
コロイド溶液の製造は、この発明の遂行時に、特に簡単かつ経済的に有利に溶剤の沸点(Tsl)の範囲内で、湿式化学−有機合成により行うことができる。この製造法は、粉末形又は薄層形の公知触媒物質の製造法と同様に行なわれる。これは、溶剤中に1種以上の金属カルボニルを1種のカルコゲンと一緒に入れることに基づく。本発明では、なおこれに安定剤を加える。
金属カルボニルM(複数の金属カルボニルの組み合わせとしても)の多様性は、範囲が広く、殊に、
・M(CO)(M=Mo、W)
・M(CO)12(M=Ru、Os)
・M(CO)12(M=Co、Rh、Ir)
・M(CO)16(M=Co、Rh、Ir)
を含有する。
カルコゲンの多様性は、X=Se、Te、Sを包含する。ここで、8−環−カルコゲン、例えば赤色セレン及び硫黄が、その純度により、合成のための特に良好な特性を惹起する。
有機溶剤としては、
・トルエン CCH Tsl=111℃
・キシレン C(CHsl=139℃/140℃
・メシチレン C(CHsl=165℃
が好適である。
長鎖状安定剤の多様性は、同様に範囲が広い。殊に、

Figure 0004235986
が好適である。
本発明によれば、溶剤が140℃の沸点(Tsl)を有するキシレンであり、安定剤が185℃の沸点(Tss)を有する1−オクタデカンチオールである場合が特に有利である。遷移金属としてのルテニウム(Ru)及びカルコゲンとしてのセレン(Se)を有するクラスターが化学量論的な形(Ru)Se(ここで、nは1.5〜2、殊に1.7である)で存在する、本発明による不活性陰極の前記の更なる実施形及び208℃の温度と関連して、優れた触媒的及び選択的特性を有する最適な陰極を得るために、全ての成分が加えられる。この際、そのコロイド分散性の分布に基づき、有効電極表面積1cm当たり触媒物質約3.1ngのみが必要となり、これは極めてコスト的に有利である。
次に、この触媒物質の合成を簡単に説明する:
還流冷却器を備えたフラスコ中で、溶剤キシレン(100ml)を、成分と反応するはずの酸素を除去するためにアルゴンで10分間フラッシングする。次いで、キシレン中に、紛状セレン(18mg;22.8μM)を140℃まで加熱することにより溶解させ、この溶液を再び室温まで冷却させる。これに半導性の遷移金属カルボニルであるトリルテニウムドデカ−カルボニル(Ru(CO)12;72.9mg;11.4μM)及び安定剤である1−オクタデカンチオール(220mg;76.9μM)を加える。この際、安定剤の量は、モル比6.75の際にカルボニル量の約3倍である。140℃のキシレン−沸点(Tsl)までの約20時間にわたる加熱の後に、クラスター形成が進行する。この反応の間にコロイドを常に撹拌し、還流冷却により冷却させる。
公知技術水準で公知であるようなクラスター形成の間の粉末又は薄層の沈着のための基質の供給は、このコロイドの製造の際には不必要である。収率は100%、即ち、装入された物質の全てが反応される。例えば粉末形成時に公知であるようなフラスコ内面の沈着によるロスは生じない。
形成されたクラスターは、3nm〜4nmの寸法を有する。ガラス化された炭素基質(Glassy Carbon GC)上の6nm〜7nmの薄い層上で測定されるルーサーフォード・後方散乱法(RBS)による化学量論的組成は、本発明の特に有利な実施形中に記載されているようなRu1.7Seを生じる。
図面中に、0.5M硫酸中の、ガラス化された炭素製の熱処理された複数の同じ電極板(これらは、それぞれ触媒作用物質Ru1.7Seのコロイド溶液5μlからの薄い層で被覆されている)の電気化学的酸素還元電流の負の経過を、電極電位(NHE−標準水素電極、標準電極)と関連させて示す。ここで、曲線に沿った垂直線は、数回行った測定の僅かな誤差幅を表している。この経過は、メタノール1Mの添加の後には不変のまま残り、このことは、本発明による不活性陰極の高い選択性を示唆している。活性範囲は、この曲線の下部直線部分にあり、メタノールの使用時には白金のそれよりも良好であり、このことは、コロイド分散性コロイドから誘導された均一表面被覆を有する本発明による陰極の良好な触媒特性を立証している。The present invention relates to electrochemistry by multi-electron transfer in a methanol-fuel cell having a thin surface coating of a selectively working catalytic material based on semiconducting clusters from at least one transition metal and chalcogen. TECHNICAL FIELD The present invention relates to an inert cathode for selective oxygen reduction in an acidic medium and a method for producing the same for efficient energy conversion.
Using radiation-free fuel cell technology, current can be obtained effectively and environmentally acceptable without bypassing through heat production. A fuel cell is an electrochemical cell that continuously converts the chemical energy change of a fuel-oxidation reaction into electrical energy. In this case, multi-electron transfer forms the physical basis for this energy conversion. At the anode, the fuel molecules are oxidized under electron emission, and the oxidant is reduced at the cathode under electron absorption. Ions formed at the anode and cathode move toward the electrodes in a closed current circuit in the electrolyte, where they together produce water and carbon dioxide. In this case, the use of electrolyte acids forms a natural protection against fouling carbonate formation.
The use of simple methanol as a harmless fuel having a high energy density in the state of the art allows the fuel cell to operate within a low temperature range of 80-120 ° C. However, the methanol-crossover that occurs at this time is problematic. The catalyst material most frequently used in the past for the cathode is platinum, which has a wider catalytic reaction potential than methanol, but also has the risk of poisoning the platinum electrode. Thus, and because of the high material costs in the case of platinum, new selectively acting catalytic materials are highly desirable. Here, we encountered a semiconducting cluster compound of a transition metal embedded in a matrix of chalcogen atoms. The cluster compound having this so-called “chevrel phase structure” exhibits a selective action, ie it does not oxidize or reduce methanol, but only oxygen. This eliminates the use of expensive and unreliable membranes for keeping methanol away from the cathode.
DE 3624054A1 describes an inert electrode from a semiconductive molybdenum cluster chalcogenide that has a catalytic action to reduce oxygen to water in a fuel cell. This mixed cluster material is polycrystalline, has a particle size between 1 μm and 5 μm, which limits the layer thickness on the electrode in a pulverized powder state, and thus is coarsely dispersible after mixing with a solvent. There is a material system. However, the cluster distribution on the electrode surface after application of a small amount of liquid and subsequent evaporation of the solvent is not uniform, which can exacerbate the selective and catalytic properties of the electrode.
From DE 3802236A1, it is possible to produce a powder or thin layer or membrane under the action of heat from a mixture of substances to be reacted (metal carbonyl, chalcogen-containing compound and inert organic solvent), in a fuel cell. It can be known whether it can be used to obtain an inert electrode having a catalytic action of This metal chalcogenide is also polycrystalline and provides a coarse dispersive system in the solvent. This has an agglomerated cluster with a diameter in the μm-range, which is based on its size-in the method of spray pyrolysis deposition disclosed here anyway, at any high material usage. Regardless-it does not result in a uniform distribution in the surface coating on the electrode and may limit the different catalytic and selective effects locally. At this time, the layer thickness of the coating is limited downward depending on the size of the cluster.
The production of such a catalytic material is costly and is possible only in the high temperature range around 1100 ° C. Therefore, other methods were sought to produce materials with similar properties.
The technical level that is the starting point of the present invention is based on the above-mentioned general details, the paper by O. Solorza-Feria et al. “Electrochimica Acta, Vol.39, No.11 / 12 (1994), pp.1647-1653. From this paper, the formula:
The semiconductive cluster material of (Ru 1-x MO x ) y SeO z (0.02 <x <0.04, 1 <y <3, z≈2y) is a metal carbonyl Ru 3 (CO 12 ) and Mo From the mixture of (CO) 6 and selenium it can be seen that it can be obtained by wet chemical-organic low temperature synthesis in xylene as solvent. The resulting mixed cluster is based on two transition metals and one chalcogen. These can be provided in the form of powders or thin layers (<0.5 μm) for the surface coating of the inert cathode. The cluster material in this emerging form has electrocatalytic activity for oxygen reduction in an acidic medium comparable to platinum and reacts selectively. In this case, however, this property is limited by the packing density of the individual clusters in the coating, which is due to the appearance as a powder with agglomerated clusters or as a thin layer with narrow adjacent clusters. Limited and may result in reverse interference with that action of this cluster.
Therefore, the problem underlying the present invention is that the selective acting catalytic material acts to further improve the selectivity and catalytic reaction of oxygen reduction in acidic methanol solutions compared to known emerging materials. And providing an inert cathode having such a surface coating.
This object is achieved according to the invention by having a thin surface coating having a coverage obtained from individual clusters in a uniform distribution of colloidal dispersibility with a low material usage in the ng-range per cm 2 of effective cathode surface area. The
This distribution of individual clusters allows it to exert its full catalysis and selective activity without interfering with it. This activation of the individual clusters results in a high working density. In this case, the possibility of catalysis still exceeds that of the material in the aforementioned appearance. The very finely distributed arrangement of individual clusters having a particle size of the colloidally dispersible, i.e. uniform, development, nm-range (e.g. 3-4 nm) makes the cathode a catalyst poison and this. Effectively protect against reduced activity associated with Expensive membranes are unnecessary. Combined with this improved selectivity during oxygen reduction and the long-term stability associated therewith, the cathode of the present invention with its thin surface coating, for example, which requires a layer thickness of only 6-7 nm, is therefore a powder. Or it has advantages over a thicker coating with a thin layer. Furthermore, due to the wide spatial distribution of the individual clusters resulting in a slight coverage of the cathode surface, the required material usage is correspondingly small and in the ng-range (eg 3.1 ng). Furthermore, the catalytic material is very heat stable and can be heat treated.
Already in this position, prior to subsequent implementations, it is recognized that the above-mentioned advantageous properties of the cathode according to the invention are made possible by the appearance of the catalytic material as a colloidal solution which can itself be easily synthesized. Thus, special tailored products for electrocatalytic activity can be provided.
Semiconducting transition metals, in particular molybdenum (Mo), tungsten (W), ruthenium (Ru), osmium (Os), cobalt (Co), rhodium (Rh) and iridium (Ir) and chalcogen sulfur (S), selenium (Se), in particular red selenium and tellurium (Te), are the basis for catalytic materials having a colloidally dispersible cluster distribution. From these elements, a binary cluster and a ternary mixed cluster can be obtained in the presence of oxygen (O), respectively.
According to one embodiment of the inert cathode according to the present invention, the transition metal is ruthenium (Ru), the chalcogen is sulfur (S) or selenium (Se), and the cluster is in the range of 0.5-2. It is advantageous in having a molar ratio (x) of ruthenium (Ru) to chalcogen (S, Se). Such clusters have special resistance to electrolyte acids and provide specially suitable properties during synthesis due to the 8-ring structure in the case of sulfur and red selenium during synthesis.
According to another embodiment of the present invention, a cluster having ruthenium (Ru) as a transition metal and selenium (Se) as a chalcogen is in a stoichiometric form (Ru) n Se (where n is 1. 5 to 2, in particular 1.7). Clusters having this stoichiometric structure as catalytic material meet the requirements of high catalytic activity and selective activity particularly well.
The cathode according to the invention requires an expensive cathode structure using platinum or similar precious metals or compounds, effectively protected against chemical infringement by a thin surface coating of catalytically and selectively highly active materials. And not. Therefore, by carrying out the present invention, the cathode can have a porous and conductive support. This porosity affects the high cathode specific surface area for this reaction. This support may be a suitable cost substrate, in particular from carbon black- or norit-type-carbon, which is particularly suitable for use in gas diffusion electrodes in fuel cells. The gas diffusion electrode has one hydrophobic layer, one hydrophilic layer, and a reactive solid layer therebetween, and is configured in three phases. The use of conventional substrates such as vitrified carbon- or indium-tin-oxide (ITO) substrates is likewise possible.
In a fuel cell having an alkaline electrolyte, the electrolyte may be impure due to carbon dioxide that produces carbonate in an alkaline solution. Thereby, the electroconductivity of this electrolyte and the lifetime of an electrode fall. Therefore, it is most preferred that the fuel cell be constructed using an acidic medium, particularly sulfuric acid, which is most often used as a liquid electrolyte, according to one embodiment of the present invention. The use of phosphoric acid is possible as well, but it is conductive only at high temperatures (300 ° C.).
Direct methanol-fuel cells operate at atmospheric or overpressure and at operating temperatures of 80-100 ° C. Energetic methanol is broken down directly for hydrogen acquisition without bypassing through the reformer. Therefore, in another embodiment of the present invention, it is preferable that the methanol-fuel cell is configured as a direct fuel cell.
According to the present invention, a method for producing the above-described inert cathode for selective oxygen reduction is achieved by placing the porous support of the cathode in a catalytic material in the form of a colloidal solution in order to obtain a thin surface coating in the nm-range. And subsequently dried at room temperature, and thereafter heat-treated at a temperature of 200 to 300 ° C., particularly 208 ° C. Such a process can be carried out without significant costs in terms of equipment and expense, and the best results are already obtained with a single procedure. By immersion in the colloidal catalyst material, the cathode surface is uniformly provided with a liquid surface coating. The colloidal solid component is fixed on the support in a colloidally dispersible and uniform distribution, especially after drying of the coating, which is carried out in vacuum to accelerate the drying process. The impurities present can then be easily evaporated in the heat treatment step without harming the catalyst material.
In this case, according to another aspect of the invention, the colloidal solution is prepared so that the clusters float in the organic solvent in a uniform distribution of colloidal dispersion with the addition of an appropriate amount of long chain stabilizer. In this case, the boiling point (T ss ) of the stabilizer is higher than the boiling point (T sl ) of the solvent. Using such a colloidal solution, the necessary cluster material can be provided with a special view. The solvent is a support material. Long chain stabilizers prevent it from agglomerating into a powder by lamination to the cluster. The amount used can be ascertained via the molar ratio of the individual components, depending on the cluster origin in the solvent. This conversion reaction takes place almost independently of the components used at the boiling point of the solvent (T sl ). The state of the stabilizer boiling point (T ss ) above the solvent boiling point (T sl ) ensures solvent removability without affecting the fine distribution of stabilizers and clusters. Since the stabilizer is removed for the first time in the heat treatment step, only the colloidally dispersible and uniformly distributed clusters are still present on the cathode surface, forming a firm coating.
The production of the colloidal solution can be carried out by wet chemical-organic synthesis, particularly easily and economically advantageously, within the range of the boiling point of the solvent (T sl ) when carrying out the invention. This production method is performed in the same manner as the production method of a known catalyst material in a powder form or a thin layer form. This is based on placing one or more metal carbonyls in a solvent together with one chalcogen. In the present invention, a stabilizer is still added thereto.
The diversity of metal carbonyl M (even as a combination of metal carbonyls) is wide, in particular,
・ M (CO) 6 (M = Mo, W)
M 3 (CO) 12 (M = Ru, Os)
M 4 (CO) 12 (M = Co, Rh, Ir)
M 6 (CO) 16 (M = Co, Rh, Ir)
Containing.
Chalcogen diversity includes X = Se, Te, S. Here, 8-ring-chalcogens, such as red selenium and sulfur, provoke particularly good properties for synthesis, depending on their purity.
As an organic solvent,
Toluene C 6 H 5 CH 3 Tsl = 111 ° C.
・ Xylene C 6 H 4 (CH 3 ) 2 T sl = 139 ° C./140° C.
-Mesitylene C 6 H 3 (CH 3 ) 3 T sl = 165 ° C
Is preferred.
The diversity of long chain stabilizers is similarly wide. In particular,
Figure 0004235986
Is preferred.
According to the invention, it is particularly advantageous if the solvent is xylene having a boiling point (T sl ) of 140 ° C. and the stabilizer is 1-octadecanethiol having a boiling point (T ss ) of 185 ° C. Clusters with ruthenium (Ru) as transition metal and selenium (Se) as chalcogen are in stoichiometric form (Ru) n Se, where n is 1.5-2, in particular 1.7. In order to obtain an optimum cathode with excellent catalytic and selective properties, in conjunction with the aforementioned further embodiment of the inert cathode according to the invention and a temperature of 208 ° C. Added. At this time, based on the distribution of the colloidal dispersibility, only about 3.1 ng of the catalyst material per 1 cm 2 of the effective electrode surface area is necessary, which is extremely advantageous in terms of cost.
The synthesis of this catalytic material is now briefly described:
In a flask equipped with a reflux condenser, the solvent xylene (100 ml) is flushed with argon for 10 minutes to remove any oxygen that should react with the components. The powdered selenium (18 mg; 22.8 μM) is then dissolved in xylene by heating to 140 ° C. and the solution is again cooled to room temperature. To this is added the semiconductive transition metal carbonyl triruthenium dodeca-carbonyl (Ru 3 (CO) 12 ; 72.9 mg; 11.4 μM) and the stabilizer 1-octadecanethiol (220 mg; 76.9 μM). . In this case, the amount of the stabilizer is about 3 times the amount of carbonyl when the molar ratio is 6.75. Cluster formation proceeds after about 20 hours of heating to 140 ° C. xylene-boiling point (Tsl). The colloid is constantly stirred during this reaction and cooled by reflux cooling.
The provision of a substrate for the deposition of powders or thin layers during cluster formation as is known in the state of the art is unnecessary in the production of this colloid. The yield is 100%, ie all of the charged material is reacted. For example, there is no loss due to deposition on the inner surface of the flask as is known during powder formation.
The formed cluster has a dimension of 3 nm to 4 nm. The stoichiometric composition by Rutherford backscattering (RBS) measured on a thin layer of 6 nm to 7 nm on a glassy carbon substrate is a particularly advantageous embodiment of the invention. Yields Ru 1.7 Se as described in.
In the figure, several identical heat-treated electrode plates made of vitrified carbon in 0.5 M sulfuric acid, each coated with a thin layer from 5 μl of colloidal solution of catalytic agent Ru 1.7 Se The negative course of the electrochemical oxygen reduction current is shown in relation to the electrode potential (NHE-standard hydrogen electrode, standard electrode). Here, the vertical line along the curve represents a slight error width of the measurement performed several times. This process remains unchanged after the addition of 1M of methanol, suggesting a high selectivity of the inert cathode according to the invention. The active range is in the lower linear part of this curve, which is better than that of platinum when using methanol, which is a good indication for the cathode according to the invention having a uniform surface coating derived from colloidal dispersible colloids. Proven catalytic properties.

Claims (8)

メタノール−燃料電池のための、少なくとも1種の遷移金属及び1種のカルコゲンからの半導性クラスターをベースとする表面触媒被覆を有する陰極において、
前記表面被覆は、
(1)有効陰極表面積1cm 当たりng−範囲の被覆度を有し、
(2)陰極の多孔性支持体を前記触媒物質のコロイド溶液中に浸漬させ、室温で乾燥させ、その後、200〜300℃、殊に208℃の温度で熱処理することにより得られ、
(3)前記コロイド溶液が、有機溶剤の沸点(T sl )よりも沸点(T ss )が上である長鎖状安定剤の添加下に、有機溶剤の沸点(T sl )の範囲内で湿式化学−有機的に合成され、これによりクラスターが溶剤中にコロイド分散性の均一分布で浮遊する、その際、長鎖状安定剤は、1−ノナンチオール、1−ドデカンチオール、1−オクタデカンチオール、2,4−tert−ブチルフェノール、2,6−ジ−sec−ブチルフェノール又は2,6−ジ−tert−ブチルフェノールから選択されている、および
(4)前記安定剤の使用量は、個々のクラスター成分のモル比で決められる、ことを特徴とする、陰極。
Methanol - for fuel cells, in negative poles that have a surface catalytic coating you based semiconductive cluster from at least one transition metal and one chalcogen,
The surface coating is
(1) having a coverage in the ng-range per cm 2 of effective cathode surface area ;
(2) It is obtained by immersing the porous support of the cathode in the colloidal solution of the catalyst substance, drying at room temperature, and then heat-treating at a temperature of 200 to 300 ° C, particularly 208 ° C.
(3) The colloidal solution is wet within the range of the boiling point (T sl ) of the organic solvent with the addition of a long-chain stabilizer whose boiling point (T ss ) is higher than the boiling point (T sl ) of the organic solvent. Chemically-organically synthesized, whereby the clusters float in a uniform distribution of colloidal dispersion in the solvent, in which case the long chain stabilizer is 1-nonanethiol, 1-dodecanethiol, 1-octadecanethiol, Selected from 2,4-tert-butylphenol, 2,6-di-sec-butylphenol or 2,6-di-tert-butylphenol, and
(4) the amount of the stabilizer is determined by the molar ratio of the individual cluster component, characterized in that, Yin pole.
遷移金属は、ルテニウム(Ru)であり、カルコゲンは硫黄(S)又はセレン(Se)であり、クラスターは、0.5〜2の範囲内のカルコゲン(S、Se)に対するルテニウム(Ru)のモル比(x)を有する、請求項1に記載の陰極。The transition metal is ruthenium (Ru), the chalcogen is sulfur (S) or selenium (Se), and the cluster is the mole of ruthenium (Ru) relative to chalcogen (S, Se) in the range of 0.5-2. having a ratio (x), negative electrode of claim 1. 遷移金属としてのルテニウム(Ru)及びカルコゲンとしてのセレン(Se)を有するクラスターは、化学量論的な形(Ru)Se(ここで、nは1.5〜2、殊に1.7である)で存在する、請求項1又は2に記載の陰極。Clusters with ruthenium (Ru) as transition metal and selenium (Se) as chalcogen are in the stoichiometric form (Ru) n Se (where n is 1.5-2, in particular 1.7). present in some), negative electrode according to claim 1 or 2. 陰極は多孔性で導電性の支持体を有する、請求項1から3のいずれか1項に記載の陰極。The cathode has a conductive support with a porous, anion pole according to any one of claims 1 to 3. その中の酸性媒体が電解液としての硫酸により得られる、メタノール−燃料電池中で使用される、請求項1から4のいずれか1項に記載の陰極。Acidic medium therein is obtained by sulfuric acid as an electrolyte solution, methanol - used in the fuel cell, negative electrode according to any one of claims 1 4. 直接燃料電池として実施されるメタノール−燃料電池中で使用される、請求項1から5のいずれか1項に記載の陰極。Methanol is implemented as a direct fuel cell - are used in fuel cells, negative electrode as claimed in any one of claims 1-5. メタノール−燃料電池のための、少なくとも1種の遷移金属及び1種のカルコゲンからの半導性クラスターをベースとする表面触媒被覆を有する陰極を製造する方法において、
(1)前記陰極の多孔性支持体を前記触媒物質のコロイド溶液中に浸漬させ、
その際、(a)前記コロイド溶液が、有機溶剤の沸点(T sl )よりも沸点(T ss )が上である長鎖状安定剤の添加下に、有機溶剤の沸点(T sl )の範囲内で湿式化学−有機的に合成され、これによりクラスターが溶剤中にコロイド分散性の均一分布で浮遊する、その際、長鎖状安定剤は、1−ノナンチオール、1−ドデカンチオール、1−オクタデカンチオール、2,4−tert−ブチルフェノール、2,6−ジ−sec−ブチルフェノール又は2,6−ジ−tert−ブチルフェノールから選択されている、
(b)前記安定剤の使用量が、個々のクラスター成分のモル比で決められる、および
(2)室温で乾燥させ、その後、
(3)200〜300℃、殊に208℃の温度で熱処理すること、
を特徴とする、陰を製造する方法。
Methanol - for a fuel cell, a method for producing a negative electrode that have a surface catalytic coating you based semiconductive cluster from at least one transition metal and one chalcogen,
(1) immersing the porous support of the cathode in a colloidal solution of the catalytic material;
In that case, (a ) the range of the boiling point (T sl ) of the organic solvent with the addition of a long chain stabilizer whose boiling point (T ss ) is higher than the boiling point (T sl ) of the organic solvent. In which the clusters float in a uniform distribution of colloidal dispersion in the solvent, in which case the long-chain stabilizers are 1-nonanethiol, 1-dodecanethiol, 1- Selected from octadecanethiol, 2,4-tert-butylphenol, 2,6-di-sec-butylphenol or 2,6-di-tert-butylphenol,
(B) the amount of stabilizer used is determined by the molar ratio of the individual cluster components; and
(2) Dry at room temperature, then
(3) heat-treating at a temperature of 200 to 300 ° C., particularly 208 ° C.,
And wherein, how to produce a negative electrode.
溶剤は140℃の沸点(Tsl)を有するキシレンであり、安定剤は、185℃の沸点(Tss)を有する1−オクタデカンチオールである、請求項7に記載の陰極の製法。Solvents are xylene having a 140 ° C. boiling point (T sl), stabilizer, has a 185 ° C. and the boiling point (T ss) 1-octadecanethiol, preparation of negative electrode according to claim 7.
JP51883598A 1996-10-17 1997-10-16 Inert cathode for selective oxygen reduction and its preparation Expired - Fee Related JP4235986B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19644628A DE19644628C2 (en) 1996-10-17 1996-10-17 Process for the preparation of an inert cathode for selective oxygen reduction and application of the cathode produced
DE19644628.7 1996-10-17
PCT/DE1997/002453 WO1998018171A1 (en) 1996-10-17 1997-10-16 Inert cathode for selective reduction of oxygen and a method for the production thereof

Publications (2)

Publication Number Publication Date
JP2001502467A JP2001502467A (en) 2001-02-20
JP4235986B2 true JP4235986B2 (en) 2009-03-11

Family

ID=7810135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51883598A Expired - Fee Related JP4235986B2 (en) 1996-10-17 1997-10-16 Inert cathode for selective oxygen reduction and its preparation

Country Status (6)

Country Link
EP (1) EP0947016A1 (en)
JP (1) JP4235986B2 (en)
AU (1) AU5221698A (en)
CA (1) CA2269051A1 (en)
DE (1) DE19644628C2 (en)
WO (1) WO1998018171A1 (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19914661C2 (en) * 1999-03-31 2002-11-14 Joerg Mueller Process for the production of an integrated interconnected polymer electrolyte membrane fuel cell
DE19914680C2 (en) * 1999-03-31 2003-02-20 Joerg Mueller Polymer electrolyte membrane with integrated catalyst metal-doped porous graphite contact layer
DE19914681C2 (en) * 1999-03-31 2002-07-18 Joerg Mueller Polymer electrolyte membrane Fuel cell system in microsystem technology
DE10052189B4 (en) * 2000-10-21 2007-09-06 Daimlerchrysler Ag A multilayer gas diffusion electrode of a polymer electrolyte membrane fuel cell, a membrane electrode assembly, a method of manufacturing a gas diffusion electrode and a membrane electrode assembly, and use of the membrane electrode assembly
US7879753B2 (en) * 2003-05-27 2011-02-01 Industrie De Nora S.P.A. Catalyst for oxygen reduction
JP2005317288A (en) * 2004-04-27 2005-11-10 Japan Science & Technology Agency Platinum-free sulfide type fuel cell catalyst, and manufacturing method of same
KR100684767B1 (en) * 2005-07-29 2007-02-20 삼성에스디아이 주식회사 Catalyst for cathode used in fuel cell, membrane-electrode assembly and fuel cell system comprising same
EP1772916A3 (en) 2005-08-31 2009-01-28 Samsung SDI Co., Ltd. Catalyst for Cathode of Fuel Cell, and Membrane-Electrode Assembly for Fuel Cell
KR101223630B1 (en) * 2005-11-11 2013-01-17 삼성에스디아이 주식회사 Catalyst for cathode of fuel cell, method of preparing same, membrane-electrode assembly and fuel cell comprising same
US9012107B2 (en) 2005-11-11 2015-04-21 Samsung Sdi Co., Ltd. Cathode catalyst for fuel cell, method of preparing same, and membrane-electrode assembly comprising same
KR100684853B1 (en) 2005-11-30 2007-02-20 삼성에스디아이 주식회사 Cathode catalyst for fuel cell, membrane-electrode assembly for fuel cell comprising same and fuel cell system comprising same
JP4745988B2 (en) * 2006-01-18 2011-08-10 三星エスディアイ株式会社 FUEL CELL CATALYST CATALYST AND ITS MANUFACTURING METHOD, FUEL CELL MEMBRANE-ELECTRODE ASSEMBLY CONTAINING THE CATHODE CATALYST, AND FUEL CELL SYSTEM
KR100766977B1 (en) * 2006-03-31 2007-10-12 삼성에스디아이 주식회사 Cathode catalyst for fuel cell, and membrane-electrode assembly for fuel cell and fuel cell system comprising same
KR100766976B1 (en) 2006-04-28 2007-10-12 삼성에스디아이 주식회사 Catalyst for cathod of fuel cell, method for preparing same, and membrane-electrode assembly for fuel cell and fuel cell system comprising same
KR100728182B1 (en) 2006-05-12 2007-06-13 삼성에스디아이 주식회사 Cathode catalyst for fuel cell, membrane-electrode assembly for fuel cell comprising same, and system for fuel cell comprising same
KR100728188B1 (en) * 2006-05-16 2007-06-13 삼성에스디아이 주식회사 Cathode catalyst for fuel cell, membrane-electrode assembly for fuel cell comprising same and fuel cell system comprising same
JP2009007647A (en) * 2007-06-29 2009-01-15 Hitachi Ltd Organic hydride manufacturing apparatus and distributed power supply and automobile using the same
JP4530003B2 (en) 2007-07-12 2010-08-25 トヨタ自動車株式会社 Fuel cell electrode catalyst and solid polymer fuel cell using the same
JP5056236B2 (en) * 2007-07-24 2012-10-24 トヨタ自動車株式会社 ELECTRODE CATALYST FOR FUEL CELL, METHOD FOR EVALUATING PERFORMANCE OF OXYGEN REDUCTION CATALYST, AND SOLID POLYMER FUEL CELL
JP5056256B2 (en) * 2007-08-09 2012-10-24 トヨタ自動車株式会社 ELECTRODE CATALYST FOR FUEL CELL, METHOD FOR EVALUATING PERFORMANCE OF OXYGEN REDUCTION CATALYST, AND SOLID POLYMER FUEL CELL
JP5056257B2 (en) * 2007-08-09 2012-10-24 トヨタ自動車株式会社 ELECTRODE CATALYST FOR FUEL CELL, METHOD FOR EVALUATING PERFORMANCE OF OXYGEN REDUCTION CATALYST, AND SOLID POLYMER FUEL CELL
JP5056258B2 (en) * 2007-08-09 2012-10-24 トヨタ自動車株式会社 ELECTRODE CATALYST FOR FUEL CELL, METHOD FOR EVALUATING PERFORMANCE OF OXYGEN REDUCTION CATALYST, AND SOLID POLYMER FUEL CELL
JP2009082910A (en) 2007-09-14 2009-04-23 Toyota Motor Corp Fine-particle composite, process for producing the fine-particle composite, catalyst for solid polymer electrolyte fuel cell, and solid polymer electrolyte fuel cell
JP5678499B2 (en) * 2010-07-15 2015-03-04 トヨタ自動車株式会社 Lithium air battery
FR2992234B1 (en) * 2012-06-22 2016-12-09 Centre Nat De La Rech Scient (C N R S) PROCESS FOR THE PREPARATION OF CATALYST NANOPARTICLES FOR THE CATHODIC REDUCTION OF DIOXYGEN IN THE PRESENCE OF METHANOL

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3624054A1 (en) * 1986-07-14 1988-01-21 Hahn Meitner Kernforsch Inert electrode with catalytic activity
JPS63252908A (en) * 1987-04-08 1988-10-20 Agency Of Ind Science & Technol Immobilized oxide of metallic fine particle, production thereof, oxidation catalyst, reduction catalyst, combustible gas sensor element and catalyst for electrode
DE3802236A1 (en) * 1988-01-22 1989-08-03 Hahn Meitner Kernforsch Mixture of material for producing a metal chalcogenide and use of such a mixture
ATE136949T1 (en) * 1988-11-17 1996-05-15 Physical Sciences Inc ELECTROCATALYST, METHOD FOR PRODUCTION, ELECTRODES PRODUCED THEREFROM AND METHOD OF USE THEREOF
US5338334A (en) * 1992-01-16 1994-08-16 Institute Of Gas Technology Process for preparing submicron/nanosize ceramic powders from precursors incorporated within a polymeric foam

Also Published As

Publication number Publication date
CA2269051A1 (en) 1998-04-30
JP2001502467A (en) 2001-02-20
DE19644628A1 (en) 1998-04-23
DE19644628C2 (en) 2001-05-23
WO1998018171A1 (en) 1998-04-30
EP0947016A1 (en) 1999-10-06
AU5221698A (en) 1998-05-15

Similar Documents

Publication Publication Date Title
JP4235986B2 (en) Inert cathode for selective oxygen reduction and its preparation
US7642217B2 (en) Pt/Ru alloy catalyst for fuel cell
US6670301B2 (en) Carbon monoxide tolerant electrocatalyst with low platinum loading and a process for its preparation
KR101797782B1 (en) Catalyst with metal oxide doping for fuel cells
US8221937B2 (en) Metal-free vertically-aligned nitrogen-doped carbon nanotube catalyst for fuel cell cathodes
CA2570992A1 (en) Catalyst support for an electrochemical fuel cell
US20050260094A1 (en) Platinum-ruthenium-palladium fuel cell electrocatalyst
JP2005527957A (en) Proton conductive carbonaceous material
US8252485B2 (en) Electrocatalyst compositions and processes for making and using same
US9799893B2 (en) Catalyst support for fuel cell
JP2002511639A (en) Improved compositions of selective oxidation catalysts for fuel cells
KR100668321B1 (en) Fuel cell electrode containing metal phosphate and fuel cell using the same
KR101624641B1 (en) Electrode catalyst for fuel cell, manufacturing method thereof, membrane electrode assembly and fuel cell including the same
JP2010536548A (en) Catalyst, method for producing the same, and method for using the same
WO2018124193A1 (en) Oxygen reduction catalyst, membrane electrode assembly, and fuel cell
WO2016177951A1 (en) Catalyst supported by carbon nanotubes and by graphene, and method for preparing same
JP2007504624A (en) Platinum-nickel-iron fuel cell catalyst
JPH1092441A (en) Solid high molecular type fuel cell
CN109643806B (en) Fuel cell
Ozenler et al. The effect of the matrix on the electro-catalytic properties of methanol tolerant oxygen reduction catalysts based on ruthenium-chalcogenides
WO2022114514A1 (en) Composite particles of core-shell structure including metal oxide particle core and platinum-group transition metal shell, and electrochemical reaction electrode material including same
JPH08509094A (en) Electrocatalyst material containing platinum alloy or conductive carrier
JP5168913B2 (en) Catalyst electrode for fuel cell and production method thereof
Borja-Arco et al. Microwave assisted synthesis of osmium electrocatalysts for the oxygen reduction reaction in the absence and presence of aqueous methanol
CN113231641B (en) Carbon black loaded highly-ordered PtCo intermetallic compound and synthesis method and application thereof

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040723

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A72 Notification of change in name of applicant

Free format text: JAPANESE INTERMEDIATE CODE: A721

Effective date: 20080627

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080630

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080715

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080811

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080730

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080908

A524 Written submission of copy of amendment under section 19 (pct)

Free format text: JAPANESE INTERMEDIATE CODE: A524

Effective date: 20080901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081209

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees