JP4233628B2 - Austenitic stainless steel for hydrogen generator with excellent scale peeling resistance - Google Patents

Austenitic stainless steel for hydrogen generator with excellent scale peeling resistance Download PDF

Info

Publication number
JP4233628B2
JP4233628B2 JP08773998A JP8773998A JP4233628B2 JP 4233628 B2 JP4233628 B2 JP 4233628B2 JP 08773998 A JP08773998 A JP 08773998A JP 8773998 A JP8773998 A JP 8773998A JP 4233628 B2 JP4233628 B2 JP 4233628B2
Authority
JP
Japan
Prior art keywords
scale
austenitic stainless
stainless steel
steel
hydrogen generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP08773998A
Other languages
Japanese (ja)
Other versions
JPH11279714A (en
Inventor
滋 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel and Sumikin Stainless Steel Corp
Original Assignee
Nippon Steel and Sumikin Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Stainless Steel Corp filed Critical Nippon Steel and Sumikin Stainless Steel Corp
Priority to JP08773998A priority Critical patent/JP4233628B2/en
Publication of JPH11279714A publication Critical patent/JPH11279714A/en
Application granted granted Critical
Publication of JP4233628B2 publication Critical patent/JP4233628B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Articles (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、パイプ内に充填された触媒に炭化水素系ガスと水を導入し、その触媒部を炭化水素系ガスの燃焼熱を利用して加熱し、高温下での触媒反応により水素を発生させる水素発生器用の耐スケール剥離性に優れたオーステナイト系ステンレス鋼に関する。
【0002】
【従来の技術】
炭化水素系ガスの触媒反応を利用した水素発生器は、触媒と導入ガスの反応を開始させ、さらに効率を向上させるため、反応部を外部から加熱する必要がある。この加熱方法としてはヒーター等の電気的加熱では電気の存在が必須となり、使用環境に制約がある。このため、原料気体である炭化水素系ガスの燃焼バーナー等を使用した燃焼加熱方式が用いられる。
【0003】
この炭化水素系ガスの燃焼雰囲気中の加熱の酸化に関しては従来より研究が進められ、燃焼雰囲気中に存在する5〜15%程度の水分により加速酸化が起こり、大気中に比べ酸化量が著しく増加することが良く知られている。この加速酸化による酸化量の増加は材料の薄肉化の原因となり、また厚く形成したスケ−ルが使用中に剥離すると美観を損なうばかりでなく、水素発生器用材料としての触媒反応の効率低下等の大きな問題を引き起こす。
【0004】
このような水蒸気による加速酸化を抑制するため、Cr添加量を増加した耐酸化性に優れるオーステナイト系ステンレス鋼が開発されてきた。
さらに、特開昭57−39159号公報や特開昭60−92454号公報では剥離を抑えるためにCa、Mg、希土類元素を添加するオーステナイト系ステンレス鋼が、また、特開昭55−43498号公報では高温で安定なAl2 3 皮膜を形成させるためにAlを4.5%から6%添加したオーステナイト系ステンレス鋼が開示されている。また、Siを添加したAISI 302B(18Cr−9Ni−2.5Si)、AISI 314(25Cr−20Ni−2Si)が耐熱部材用のオーステナイト系ステンレス鋼として開発されている。
【0005】
【発明が解決しようとする課題】
しかしながら、前述した公知のオーステナイト系ステンレス鋼は連続長時間の加熱下での耐酸化性は優れるものの、加熱−冷却を繰り返す断続加熱下ではオーステナイト系ステンレス鋼が高い熱膨張率を持つが故に、スケールとの整合性が悪くスケールが剥離し易いという欠点がある。
従って、本願発明で適用する水素発生器のように、水素を必要とするある一定時間内に加熱を行い、その後放冷するサイクルで繰り返し使用される場合には、単に酸化速度の低下を目的としたこれまでのオーステナイト系ステンレス鋼では適用できなかった。
【0006】
さらに、水素発生器はその仕様上、原料の炭化水素系ガスと水を導入するガス入側では定常状態で400℃以下の低温、触媒によりそれらが反応する部位では600〜1200℃以上の高温となり、同一パイプ面内で0.2℃/mm以上の温度勾配を持つことになる。
すなわち、水素発生器には、
▲1▼水分が存在する燃焼雰囲気で600℃以上の高温
▲2▼加熱−冷却の熱サイクル
▲3▼0.2℃/mm以上の温度勾配
の過酷な環境下での耐スケール剥離性に優れた材料が要求される。
【0007】
しかしながら、これら3要素を満足するオーステナイト系ステンレス鋼は存在せず、適用できないという問題点があった。一方、フェライト系ステンレス鋼はオーステナイト系ステンレス鋼に比べ、熱膨張率の観点からは有利であるが、高温強度の点で適用が難しいとされていた。
【0008】
【課題を解決するための手段】
発明者らは上記3条件を満足するための合金指標を検討し、その指標に基づく耐スケ−ル剥離性に優れたオーステナイト系ステンレス鋼を完成させるに至り本発明をなしたものである。すなわち、本発明は、温度勾配を持ち、さらに炭化水素系ガスの燃焼雰囲気下で、断続的に加熱−冷却のサイクルを繰り返して使用される水素発生器用材料として、耐スケール剥離性に優れるオーステナイト系ステンレス鋼を提供するものであり、その要旨とするところは以下の構成からなる。
(1)質量%で、
C :0.01〜0.15%、 Si:0.5〜3.51%、
Mn:0.2〜2%、 P :0.04%以下、
S :0.02%以下、 Ni:12〜22%、
Cr:17〜26%
含有し、残部Feおよび不可避不純物よりなり、かつ、元素添加量と使用する最高加熱温度T(K)、温度勾配α(℃/mm)との間に、下記(1) 式を満足することを特徴とする耐スケール剥離性に優れた水素発生器用オーステナイト系ステンレス鋼。
{2.1(Cr−17)+3.5(Ni−12)+6.8(Si−0.5)
+3.9Al}/{0.012T+α}≧1 ・・・(1)
(2)前項記載の成分に加えて、さらに質量%で、Al:0.01〜2.74%を含有することを特徴とする前記 ( ) に記載の耐スケール剥離性に優れた水素発生器用オーステナイト系ステンレス鋼
) 前項記載の成分に加えて、さらに質量%で、
Cu:0.1〜2.5%、 Mo:0.1〜6.5%、
La:0.001〜0.1%、 Y :0.001〜0.1%、
Ce:0.001〜0.1%、 Pr:0.001〜0.1%、
Nd:0.001〜0.1%の1種以上を含有することを特徴とする前記(1)又は(2)に記載の耐スケ−ル剥離性に優れた水素発生器用オーステナイト系ステンレス鋼。
【0009】
【発明の実施の形態】
以下、本発明に至った経緯を含め、さらに詳細な説明をする。
発明者らは、高温強度、耐酸化性の観点から汎用的に用いられるSUS316L(17Cr−13Ni−2.5Mo)のオーステナイト系ステンレス鋼を中心として、Cr、Ni、Mn、Siを変化させた表1の成分のオーステナイト系ステンレス鋼を300kgの真空溶解し、通常の工程で厚さ0.7mmの薄板を製造し、直径が約15mmのパイプとし、次いで、パイプを200mmの長さに切断し、内部に貴金属を担持した触媒を充填し、メタンガス、空気、水の混合ガスを管内に導入しながら、外部よりメタンガス燃焼バーナーで加熱し、混合ガスの触媒反応により水素発生の実験を行った。
【0010】
この際の定常状態でのガス入側のパイプ温度は200℃、ガス出側のパイプ温度は1050℃であり、200mmの短管に約4℃/mmの温度勾配が存在する。また、水素を発生させるために高温保持する時間を1時間、その後30分間放冷し、再度加熱するサイクルを繰り返した。サイクル数に関しては全高温加熱時間が1000時間が一般的な水素発生器の使用寿命として、ここでは1000サイクルを目安とした。
【0011】
【表1】

Figure 0004233628
【0012】
表2は表1の各種成分鋼を用い、加熱−冷却を1000サイクルまで実施したときの、スケ−ルの剥離状態を観察した結果であり、表中の数字は剥離が開始したサイクル数である。ここで、1000サイクル超は全加熱時間が1000時間となる1000サイクル後でもスケ−ル剥離が無いことを示す。また、同表には燃焼雰囲気および大気中で温度勾配が無い状態での同様の熱サイクルを繰り返した際のスケール剥離開始までのサイクル数も参考として記載した。
【0013】
【表2】
Figure 0004233628
【0014】
SUS316Lは温度勾配が無く均一加熱の場合、大気中加熱では487サイクルまでスケール剥離が発生しなかったが、メタン燃焼雰囲気中では124サイクルで剥離した。さらに、温度勾配がある場合には55サイクルでスケ−ルが剥離した。また、SUS316LとCr量以外は同成分であるA、B鋼はCr量の増加とともに耐スケール剥離性が改善するものの、温度勾配が存在する条件ではA鋼では106サイクル、B鋼では867サイクルで剥離し、目標の1000サイクルを達成することが出来なかった。
【0015】
これらSUS316L、A鋼およびB鋼のスケ−ル剥離箇所を観察すると、均一加熱条件下での加熱では剥離は全面でランダムに発生しているのに対し、温度勾配を持つ条件下では約600℃程度の低温部から剥離が発生し、温度の増加とともに剥離面積が増大した。この結果から、
▲1▼燃焼雰囲気中とはいえ、通常はスケ−ル剥離がしないと考えられる600℃程度の低温域でも温度勾配が有る場合にはスケ−ル剥離が進行する。
▲2▼Crの増加のみでは耐スケ−ル剥離性を改善できない
ことが明らかになった。
【0016】
一方、A鋼とほぼ同Cr量のD鋼、F鋼、G鋼、またB鋼とほぼ同Cr量のC鋼、E鋼ではいずれの雰囲気、あるいは温度勾配の有無に拘わらず、1000サイクル後でもスケール剥離が認められず、より長時間の使用に耐えることがわかった。この原因を明らかにするために、剥離が発生したSUS316L、および表1のA鋼、B鋼では温度勾配の存在する条件下で加熱した時のスケ−ル剥離直前のサイクルのパイプおよびスケ−ル剥離直後のパイプ、そして剥離が発生しなかったC〜G鋼では1000サイクル終了後のパイプをガス入側の低温部からガス出側の高温部にかけて10mmずつ切り出し、それらの断面を光学顕微鏡観察およびEPMAによる元素分布測定を行った。
【0017】
その結果、以下のことが明らかになった。
▲1▼55サイクルでスケールが剥離したSUS316のスケールは、下地金属側の内層が(Cr、Fe)酸化物、外層がFe酸化物の2層構造であり、この内層スケールのCr量は加熱温度の増加とともに減少し、600℃以上の高温部ではCr量の少ない保護性の無い状態である。
▲2▼A鋼およびB鋼は、SUS316Lに比べて内層スケール中のCr量が多い(Cr、Fe)酸化物であり、スケール厚もSUS316Lよりは薄く、保護皮膜としてある程度作用しているが、温度域が600℃以上の部位より局所的に瘤状の膨れが発生する。この瘤状スケールは平滑部に比べてスケール厚が厚く、内層部もFe量が増加した状態であり、その部位からスケール剥離が進行する。 ▲3▼1000サイクル後も剥離しなかったC鋼〜G鋼の内層スケールは、低温部から高温部にかけてCr量が減少した酸化物となるものの、瘤状の膨れは認められない。また、スケールと下地金属との界面にはC鋼およびD鋼ではSiO2 が点状あるいは層状に形成しており、E鋼とF鋼は界面に金属状Niが濃化した領域が存在し、さらにはG鋼ではAl2 3 が点状あるいは層状に存在する。
【0018】
すなわち、温度勾配のある環境下での耐スケール剥離向上にはNi、Si、また必要に応じて添加するAlが極めて重要な役割を果たすことが明らかになった。そこで、Cr量をA鋼、D鋼、G鋼と同様の19%として、Ni量を11〜21%、Si量を0.4〜5.5%、Al量を0.01〜3.0%に変化させ、他のS、P等はSUS316Lと同量としたオ−ステナイト系ステンレス鋼を真空溶解し、1mm厚の冷延焼鈍板を作製した後、各種長さの直径20mmφのパイプ製造した。これを前述と同様のプロパンガスを使用した水素発生器の状況下でのガス入側温度を100℃〜500℃、ガス出側温度を800℃から1200℃として、1時間加熱、30分間放冷のサイクルを1000サイクル実施した。
【0019】
図1は横軸に{2.1(Cr−17)+3.5(Ni−12)+6.8(Si−0.5)+3.9Al}/{0.012T+α}とするCr、Ni、Si、Alの濃度、および使用時の最高温度T(K)、パイプに存在する温度勾配α(℃/mm)を関数とした因子を、縦軸にスケール剥離が開始までのサイクル数をまとめたものである。同図より明らかなように、{2.1(Cr−17)+3.5(Ni−12)+6.8(Si−0.5)+3.9Al}/{(0.012T+α}が1以上ではスケール剥離は発生せず、良好な特性を持つことがわかる。
【0020】
すなわち、温度勾配のある燃焼雰囲気中での形成するスケールの剥離を抑制するためには、使用する最高温度と温度勾配によりCrやNi、Si、また必要に応じて添加するAl量を考慮する必要がある。また、Cr量の係数は他の元素に比べて小さく、このことが前述したCrの増加ではスケール剥離を抑制できなかった理由であったことを示唆している。
【0021】
さらに発明者らは、このNi、SiおよびAlの効果について検討するため、上記試験材の断面観察を行った。その結果、Ni、Si、また必要に応じて添加するAlはスケール/下地界面に点状あるいは層状濃化しており、それらの濃化量は含有するSi、NiあるいはAl量の増加とともに増加することが明らかになった。一般的に、Ni、Si、Alの効果については、それらが酸化物あるいは金属状態でスケール/下地界面に濃化することにより、金属イオンの拡散係数を低下させ、スケール生成を抑制することで耐酸化性を向上させると考えられる。しかしながら、表2から明らかなように、温度勾配の有る場合にはスケール厚が薄い低サイクル数でも剥離し、温度勾配が無い場合にはそれ以上のスケール厚となってから剥離が発生する。したがって、発明者らはNi、Si、Alの効果は従来知見のような単にスケールの成長を抑制する役割ではなく、他の作用により耐スケ−ル剥離性向上に寄与しているとの知見を得た。
【0022】
そこで、スケールと下地金属界面を詳細に調査した結果、界面に濃化したSiやAlの酸化物、あるいは金属状Niは母材が温度勾配により長手方向に異なる膨張率で膨張する、あるいは冷却時に収縮する場合に、表層スケールに与える応力を緩和するように作用し、スケール剥離を抑制していることを見出した。さらに、Crを含めたこれらNi、Si、また必要に応じて添加するAlの添加量は使用する最高温度T(K)、温度勾配α(℃/mm)に下記(1) 式の関係があり、その条件を満足する場合にのみスケ−ル剥離が発生しないとの結論を得た。
{2.1(Cr-17) +3.5(Ni-12)+6.8(Si-0.5)+3.9Al}/{(0.012T+ α} ≧1
・・・(1)
【0023】
次に、本発明の限定理由について説明する。
CはCr炭化物を形成し易く、耐食性を劣化させるので低い方がよいが、水素発生器のように装置として固定した状態で使用する場合には高温強度も必要な特性となるため、0.01%以上、0.15以下とした。
【0024】
Siは前述したように、加熱時でスケ−ル/下地金属界面に濃化し、温度勾配により板面内に発生する応力分布を緩和し、耐スケール剥離性を向上させる元素である。一方、多量の添加は靱性を著しく低下するため、0.5%以上、3.51%以下とした。
【0025】
Mnは脱酸元素として有効であるのである程度必要である。しかし、耐食性、加工性の点から限界があるので0.2%〜2.0%とした。
【0026】
Pは粒界偏析し易い元素であり、熱間加工性、耐食性を劣化させ、さらには加熱使用時にスケ−ル/下地界面に濃化し易く、スケール剥離の原因ともなるため0.04%以下とした。
【0027】
Sは粒界偏析し易く、熱間加工性を著しく劣化し、熱間加工時の粒界割れを生じてヘゲ疵の主原因となる。また、SはPと同様に、使用加熱時にスケール/下地金属界面に濃化し、スケ−ル剥離の原因ともなるため0.02%以下とした。
【0028】
Niはオ−ステナイト系ステンレス鋼の主要元素である。温度勾配のある環境下では耐スケ−ル剥離性を向上させる作用を持ち、多くの添加が好ましいが、経済性の面から22%以下とした。また、下限については、スケール剥離抑制として作用する最低量として12%とした。
【0029】
Crは耐酸化性を確保する上で17%以上が必要であるが、熱間加工性、脆性を考慮して上限を26%とした。
【0030】
Alは耐スケール剥離性に効果があるものの、過剰な添加は製造性を著しく悪くするため、必要に応じて添加するものであり、その添加量は0.01%以上、2.74%以下とした。
【0032】
さらに本発明では、Cu,Mo,Ca,Y,Ce,Pr,Ndの少なくとも1種を必要に応じて添加する
【0033】
Cuは耐食性を向上させ、水素発生器として海浜地区等の環境下で使用する場合、あるいは触媒担体から出る腐食性物質が問題となる場合には有効な元素である。しかし、多量の添加は熱間加工性を著しく低下させるため、0.1%から2.5%とした。
【0034】
MoはCuと同様に耐食性を向上し、さらに高温強度の増加には有効な元素であるが、原料コストとδ−フェライト量の観点から0.1〜6.5%とした。
【0035】
【0036】
La、Y、Ce、Pr、Ndはスケ−ルの剥離性に有効な元素であるが、多くの添加はコストの増加と製造性の著しい低下の原因となるため、それぞれ0.001〜0.1%とした。
【0037】
【実施例】
表3には各種成分のオーステナイト系ステンレス鋼を用いて、各種板厚のパイプを製造し、触媒担体を充填した後、各種炭素系ガスの燃焼雰囲気下で加熱して水素発生を各種温度勾配、温度、時間で実施した時の全加熱時間が1000時間までのスケール剥離状態を観察した結果を示す。
【0038】
実験は水素発生器の使用寿命としての全加熱時間1000時間を目安として、1000時間までのサイクルで実施した。A鋼、B鋼およびC鋼の次式の(1) 式から計算されるA値が1以下の場合には1000時間以下で剥離が発生するが、A値が1以上となるC鋼〜L鋼では全加熱時間が1000時間でもスケ−ル剥離が無く、それ以上での使用に十分耐えることが明らかである。
A={2.1(Cr-17)+3.5(Ni-12)+ 6.8(Si-0.5)+3.9Al}/{0.012T+ α} ≧1・・・(1)
【0039】
【表3】
Figure 0004233628
【0040】
【発明の効果】
本発明により、炭素系ガスの燃焼雰囲気中で加熱−冷却が繰り返され、かつその温度分布に温度勾配がある水素発生器に於いて、全加熱時間が1000時間を超えてもスケール剥離の無い、オーステナイト系ステンレス鋼の提供が可能となった。水素発生器は次世代のエネルギー源として非常に重要であり、このための材料を提供できる本願発明の工業的価値は極めて高いものであるといえる。
【図面の簡単な説明】
【図1】耐スケール剥離性因子{2.1(Cr-17)+3.5(Ni-12)+ 6.8(Si-0.5)+3.9Al}/{0.012T+ α} と燃焼雰囲気下におけるスケ−ル剥離までの断続加熱時間の関係を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention introduces hydrocarbon-based gas and water into the catalyst filled in the pipe, heats the catalyst part using the combustion heat of the hydrocarbon-based gas, and generates hydrogen by catalytic reaction at high temperature. The present invention relates to an austenitic stainless steel having excellent scale peeling resistance for a hydrogen generator to be produced.
[0002]
[Prior art]
A hydrogen generator using a catalytic reaction of a hydrocarbon-based gas needs to heat the reaction part from the outside in order to start the reaction between the catalyst and the introduced gas and further improve the efficiency. As this heating method, the presence of electricity is indispensable in the electric heating of a heater or the like, and the use environment is limited. For this reason, a combustion heating method using a hydrocarbon-based gas combustion burner or the like as a raw material gas is used.
[0003]
Research on the oxidation of heating in the combustion atmosphere of this hydrocarbon-based gas has been advanced, and accelerated oxidation occurs due to about 5 to 15% of water present in the combustion atmosphere, and the amount of oxidation is significantly increased compared to the atmosphere. It is well known to do. This increase in the amount of oxidation due to accelerated oxidation causes thinning of the material, and if the thickly formed scale is peeled off during use, not only the appearance is impaired, but also the efficiency of the catalytic reaction as a hydrogen generator material is reduced. Cause a big problem.
[0004]
In order to suppress such accelerated oxidation by water vapor, austenitic stainless steels having excellent oxidation resistance with increased Cr addition amount have been developed.
Further, JP-A-57-39159 and JP-A-60-92454 disclose an austenitic stainless steel to which Ca, Mg and rare earth elements are added in order to suppress delamination, and JP-A-55-43498. Discloses an austenitic stainless steel to which Al is added in an amount of 4.5% to 6% in order to form an Al 2 O 3 film stable at a high temperature. Further, AISI 302B (18Cr-9Ni-2.5Si) and AISI 314 (25Cr-20Ni-2Si) to which Si is added have been developed as austenitic stainless steels for heat-resistant members.
[0005]
[Problems to be solved by the invention]
However, although the above-mentioned known austenitic stainless steel has excellent oxidation resistance under continuous heating for a long time, the austenitic stainless steel has a high thermal expansion coefficient under intermittent heating and repeated heating. There is a drawback that the scale is easily peeled off due to poor consistency with the material.
Therefore, in the case of repeated use in a cycle in which heating is performed within a certain period of time requiring hydrogen and then allowed to cool, as in the hydrogen generator applied in the present invention, the purpose is simply to reduce the oxidation rate. The conventional austenitic stainless steel cannot be applied.
[0006]
Furthermore, the hydrogen generator has a high temperature of 400 ° C. or lower in the steady state in the gas inlet side where the hydrocarbon gas and water as raw materials are introduced, and a temperature of 600 to 1200 ° C. or higher in the site where they react with the catalyst. The temperature gradient is 0.2 ° C./mm or more in the same pipe surface.
That is, the hydrogen generator
(1) High temperature of 600 ° C or higher in a combustion atmosphere containing moisture (2) Heating / cooling thermal cycle (3) Excellent resistance to scale peeling in harsh environments with a temperature gradient of 0.2 ° C / mm or higher Materials are required.
[0007]
However, there is a problem that austenitic stainless steel that satisfies these three elements does not exist and cannot be applied. On the other hand, ferritic stainless steel is more advantageous than austenitic stainless steel in terms of coefficient of thermal expansion, but is considered difficult to apply in terms of high-temperature strength.
[0008]
[Means for Solving the Problems]
The inventors have studied an alloy index for satisfying the above three conditions, and have completed the present invention to complete an austenitic stainless steel excellent in scale peel resistance based on the index. That is, the present invention is an austenite system that has a temperature gradient and is excellent in scale peeling resistance as a material for a hydrogen generator that is used by repeatedly repeating a heating-cooling cycle under a combustion atmosphere of a hydrocarbon gas. Stainless steel is provided, the gist of which is as follows.
(1) In mass %,
C: 0.01 to 0.15%, Si: 0.5 to 3.51 %,
Mn: 0.2-2%, P: 0.04% or less,
S: 0.02% or less, Ni: 12-22%,
Cr: 17-26%
The balance of Fe and inevitable impurities, and satisfying the following formula (1) between the amount of element addition and the maximum heating temperature T (K) and temperature gradient α (° C./mm) to be used An austenitic stainless steel for hydrogen generators with excellent scale peeling resistance.
{2.1 (Cr-17) +3.5 (Ni-12) +6.8 (Si-0.5)
+ 3.9Al} / {0.012T + α} ≧ 1 (1)
(2) In addition to the components described in the preceding paragraph, in addition to the mass, Al: 0.01-2.74% is contained, and hydrogen generation excellent in scale peel resistance described in ( 1 ) above Austenitic stainless steel for dexterity .
(3) In addition to the components set forth in the preceding paragraph, wherein in addition mass%,
Cu : 0.1-2.5%, Mo: 0.1-6.5%,
La: 0.001 to 0.1%, Y: 0.001 to 0.1%,
Ce: 0.001 to 0.1%, Pr: 0.001 to 0.1%,
The austenitic stainless steel for a hydrogen generator having excellent scale peel resistance as described in (1) or (2) above, containing one or more of Nd: 0.001 to 0.1%.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, further details including the background to the present invention will be described.
The inventors have changed the Cr, Ni, Mn, and Si, with a focus on SUS316L (17Cr-13Ni-2.5Mo) austenitic stainless steel, which is widely used from the viewpoint of high-temperature strength and oxidation resistance. Austenitic stainless steel of 1 component is melted in a vacuum of 300 kg, a thin plate having a thickness of 0.7 mm is produced by a normal process to obtain a pipe having a diameter of about 15 mm, and then the pipe is cut into a length of 200 mm; A catalyst carrying a noble metal was filled inside, and a mixed gas of methane gas, air, and water was introduced into the tube, and heated from the outside with a methane gas combustion burner.
[0010]
The pipe temperature on the gas inlet side in the steady state at this time is 200 ° C., the pipe temperature on the gas outlet side is 1050 ° C., and a temperature gradient of about 4 ° C./mm exists in a 200 mm short pipe. Moreover, in order to generate hydrogen, the cycle which hold | maintains high temperature for 1 hour, 30 minutes after that was allowed to cool, and was heated again was repeated. Regarding the number of cycles, the total high temperature heating time was 1000 hours as a general service life of a hydrogen generator, and here 1000 cycles was taken as a standard.
[0011]
[Table 1]
Figure 0004233628
[0012]
Table 2 shows the results of observing the peeled state of the scale when the various component steels shown in Table 1 were used for heating and cooling up to 1000 cycles, and the numbers in the table are the number of cycles at which peeling started. . Here, more than 1000 cycles indicates that there is no scale peeling even after 1000 cycles in which the total heating time is 1000 hours. In the same table, the number of cycles until the start of scale peeling when a similar thermal cycle in a state where there is no temperature gradient in the combustion atmosphere and the atmosphere is repeated is also described for reference.
[0013]
[Table 2]
Figure 0004233628
[0014]
In the case of SUS316L with no temperature gradient and uniform heating, scale peeling did not occur until 487 cycles when heated in the atmosphere, but peeled after 124 cycles in the methane combustion atmosphere. Further, when there was a temperature gradient, the scale peeled off in 55 cycles. In addition, SUS316L and the A and B steels, which are the same components except the Cr amount, improve the scale peel resistance as the Cr amount increases, but under conditions where a temperature gradient exists, the A steel has 106 cycles and the B steel has 867 cycles. It peeled off and the target 1000 cycles could not be achieved.
[0015]
When observing the scale peeling locations of these SUS316L, A steel and B steel, peeling occurred randomly on the entire surface when heated under uniform heating conditions, whereas it was about 600 ° C under conditions with a temperature gradient. Peeling occurred from the low temperature part, and the peeling area increased with increasing temperature. from this result,
{Circle around (1)} Although in the combustion atmosphere, the scale peeling proceeds if there is a temperature gradient even in a low temperature range of about 600 ° C., which is normally considered not to cause the scale peeling.
(2) It has been clarified that the scale peel resistance cannot be improved only by increasing Cr.
[0016]
On the other hand, D steel, F steel, G steel with approximately the same Cr amount as steel A, and C steel and E steel with approximately the same Cr amount as steel B, regardless of the atmosphere or temperature gradient, after 1000 cycles However, scale peeling was not recognized, and it was found that it could withstand longer use. In order to clarify this cause, SUS316L in which peeling occurred, and pipes and scales in the cycle immediately before peeling when heated under conditions where a temperature gradient exists in steels A and B in Table 1. Pipes immediately after exfoliation, and in C to G steel where exfoliation did not occur, the pipes after 1000 cycles were cut from the low temperature part on the gas inlet side to the high temperature part on the gas outlet side by 10 mm, and their cross sections were observed with an optical microscope. Element distribution was measured by EPMA.
[0017]
As a result, the following became clear.
(1) The scale of SUS316, which has peeled off in 55 cycles, has a two-layer structure in which the inner layer on the base metal side is (Cr, Fe) oxide and the outer layer is Fe oxide. As the temperature increases, the amount of Cr is small and there is no protective property at high temperatures of 600 ° C. or higher.
(2) Steels A and B are oxides with a large amount of Cr in the inner layer scale compared to SUS316L (Cr, Fe), and the scale thickness is also thinner than SUS316L, which acts as a protective film to some extent. A bump-like bulge is locally generated from a region where the temperature range is 600 ° C. or higher. The scale-like scale is thicker than the smooth part, and the inner layer part is also in an increased amount of Fe, and scale peeling progresses from that part. (3) The inner scale of C steel to G steel, which did not peel after 1000 cycles, became an oxide with a reduced Cr content from the low temperature portion to the high temperature portion, but no swollen swelling was observed. Further, in the steel C and D steel, SiO 2 is formed in a dotted or layered form at the interface between the scale and the base metal, and the E steel and the F steel have a region where metallic Ni is concentrated at the interface, Further, Al 2 O 3 is present in the form of dots or layers in G steel.
[0018]
That is, it has been clarified that Ni, Si, and Al added as necessary plays an extremely important role in improving the scale peeling resistance in an environment with a temperature gradient. Therefore, the Cr amount is 19% similar to the A steel, D steel, and G steel, the Ni amount is 11 to 21%, the Si amount is 0.4 to 5.5%, and the Al amount is 0.01 to 3.0. %, And other S, P, etc. were austenitic stainless steel with the same amount as SUS316L, vacuum-melted to produce cold-rolled annealed plates with a thickness of 1 mm, and then pipes with diameters of 20 mmφ of various lengths. Manufactured. This was heated for 1 hour and allowed to cool for 30 minutes with the gas inlet side temperature set to 100 to 500 ° C. and the gas outlet side temperature set to 800 to 1200 ° C. in the situation of a hydrogen generator using propane gas as described above. This cycle was performed 1000 times.
[0019]
FIG. 1 shows Cr, Ni, Si with {2.1 (Cr-17) +3.5 (Ni-12) +6.8 (Si-0.5) +3.9 Al} / {0.012T + α} on the horizontal axis. , The concentration of Al, the maximum temperature T (K) at the time of use, and a factor as a function of the temperature gradient α (° C / mm) existing in the pipe, the vertical axis summarizes the number of cycles until scale peeling starts It is. As is clear from the figure, when {2.1 (Cr-17) +3.5 (Ni-12) +6.8 (Si-0.5) + 3.9Al} / {(0.012T + α} is 1 or more, It can be seen that scale peeling does not occur and that the film has good characteristics.
[0020]
Consider Namely, in order to suppress the peeling of the scale forming in the combustion atmosphere of a temperature gradient, Cr and Ni by the maximum temperature and temperature gradients to be used, Si, also the amount of Al to be added as required There is a need. Further, the coefficient of Cr amount is smaller than that of other elements, suggesting that this was the reason why scale peeling could not be suppressed by the increase in Cr described above.
[0021]
Furthermore, in order to examine the effects of Ni, Si and Al, the inventors performed cross-sectional observation of the test material. As a result, Ni, Si, and Al added as needed are concentrated in the form of dots or layers at the scale / underlying interface, and the concentration increases as the amount of Si, Ni or Al contained increases. Became clear. In general, the effects of Ni, Si and Al are concentrated in the oxide / metal state at the scale / underlying interface, thereby reducing the diffusion coefficient of metal ions and suppressing the formation of scale. It is thought to improve the chemical properties. However, as is apparent from Table 2, peeling occurs even with a low cycle number where the scale thickness is thin when there is a temperature gradient, and peeling occurs after a larger scale thickness when there is no temperature gradient. Accordingly, the inventors have found that the effects of Ni, Si, and Al are not simply the role of suppressing the growth of scale as in the conventional knowledge, but contribute to the improvement of the scale peel resistance by other actions. Obtained.
[0022]
Therefore, as a result of detailed investigation of the interface between the scale and the underlying metal, Si or Al oxide or metallic Ni concentrated at the interface expands with a different expansion coefficient in the longitudinal direction due to the temperature gradient, or during cooling It has been found that when it shrinks, it acts to relieve stress applied to the surface scale and suppresses scale peeling. Furthermore, the amount of Ni, Si including Cr, and the amount of Al added as necessary is related to the maximum temperature T (K) and temperature gradient α (° C./mm) using the following formula (1). It was concluded that scale peeling does not occur only when the conditions are satisfied.
{2.1 (Cr-17) +3.5 (Ni-12) +6.8 (Si-0.5) + 3.9Al} / {(0.012T + α} ≧ 1
... (1)
[0023]
Next, the reason for limitation of the present invention will be described.
Since C is easy to form Cr carbide and deteriorates corrosion resistance, it is better to be low. However, when used in a state of being fixed as a device like a hydrogen generator, high temperature strength is also a necessary characteristic. % Or more and 0.15 or less.
[0024]
As described above, Si is an element that concentrates at the scale / underlying metal interface during heating, relaxes the stress distribution generated in the plate surface due to the temperature gradient, and improves the scale peel resistance. On the other hand, addition of a large amount significantly reduces toughness, so the content was made 0.5% to 3.51 %.
[0025]
Since Mn is effective as a deoxidizing element, it is necessary to some extent. However, there is a limit in terms of corrosion resistance and workability, so 0.2% to 2.0% was set.
[0026]
P is an element that easily segregates at the grain boundary, deteriorates hot workability and corrosion resistance, and further tends to concentrate at the scale / underlying interface during heating, and also causes scale peeling, and is 0.04% or less. did.
[0027]
S is easily segregated at the grain boundary, remarkably deteriorates hot workability, and causes grain boundary cracking during hot working, which is a main cause of whipping. Further, S, like P, is concentrated at the scale / underlying metal interface during use heating and causes scale peeling, so it was made 0.02% or less.
[0028]
Ni is a main element of austenitic stainless steel. In an environment with a temperature gradient, it has the effect of improving the scale peel resistance, and many additions are preferable, but it was made 22% or less from the viewpoint of economy. The lower limit was set to 12% as the minimum amount that acts as a scale peeling inhibitor.
[0029]
In order to ensure oxidation resistance, Cr needs to be 17% or more, but the upper limit was made 26% in consideration of hot workability and brittleness.
[0030]
Although Al is effective in resistance to scale peeling, excessive addition significantly deteriorates manufacturability, so it is added as necessary, and the addition amount is 0.01% or more and 2.74 % or less. did.
[0032]
Furthermore, in the present invention, at least one of Cu , Mo, Ca, Y, Ce, Pr, and Nd is added as necessary .
[0033]
Cu improves corrosion resistance, and is an effective element when used in an environment such as a beach area as a hydrogen generator, or when a corrosive substance coming out of a catalyst carrier becomes a problem. However, a large amount of addition significantly reduces the hot workability, so the content was made 0.1% to 2.5%.
[0034]
Mo, like Cu, improves corrosion resistance and is an effective element for increasing high-temperature strength. However, it was made 0.1 to 6.5% from the viewpoint of raw material cost and δ-ferrite content.
[0035]
[0036]
La, Y, Ce, Pr, and Nd are effective elements for the releasability of the scale, but many additions cause an increase in cost and a significant decrease in manufacturability. 1%.
[0037]
【Example】
In Table 3, various austenitic stainless steels of various components are used to manufacture pipes with various plate thicknesses, and after filling with a catalyst carrier, heating is performed in a combustion atmosphere of various carbon-based gases to generate various temperature gradients. The result of having observed the scale peeling state to the total heating time up to 1000 hours when implemented by temperature and time is shown.
[0038]
The experiment was carried out in a cycle of up to 1000 hours, with a total heating time of 1000 hours as the service life of the hydrogen generator as a guide. Peeling occurs in 1000 hours or less when the A value calculated from the following formula (1) of steel A, steel B and steel C is 1 or less, but steel C having an A value of 1 or more to L It is clear that steel does not have scale peeling even when the total heating time is 1000 hours, and is sufficiently resistant to use beyond that.
A = {2.1 (Cr-17) +3.5 (Ni-12) + 6.8 (Si-0.5) + 3.9Al} / {0.012T + α} ≧ 1 ... (1)
[0039]
[Table 3]
Figure 0004233628
[0040]
【The invention's effect】
According to the present invention, in a hydrogen generator in which heating and cooling are repeated in a combustion atmosphere of a carbon-based gas and the temperature distribution thereof has a temperature gradient, there is no scale peeling even when the total heating time exceeds 1000 hours. Austenitic stainless steel can be provided. The hydrogen generator is very important as a next-generation energy source, and it can be said that the industrial value of the present invention capable of providing a material for this purpose is extremely high.
[Brief description of the drawings]
[Figure 1] Scale peeling resistance factor {2.1 (Cr-17) + 3.5 (Ni-12) + 6.8 (Si-0.5) + 3.9Al} / {0.012T + α} and scale peeling in a combustion atmosphere It is a figure which shows the relationship of the intermittent heating time of.

Claims (3)

質量%で、
C :0.01〜0.15%、
Si:0.5〜3.51%、
Mn:0.2〜2%、
P :0.04%以下、
S :0.02%以下、
Ni:12〜22%、
Cr:17〜26%、
含有し、残部Feおよび不可避不純物よりなり、かつ、元素添加量と使用する最高加熱温度T(K)、温度勾配α(℃/mm)との間に、下記(1) 式を満足することを特徴とする耐スケール剥離性に優れた水素発生器用オーステナイト系ステンレス鋼。
{2.1(Cr−17)+3.5(Ni−12)+6.8(Si−0.5)
+3.9Al}/(0.012T+α)≧1 ・・・(1)
% By mass
C: 0.01 to 0.15%,
Si: 0.5 to 3.51 %,
Mn: 0.2-2%
P: 0.04% or less,
S: 0.02% or less,
Ni: 12-22%,
Cr: 17 to 26%,
The balance of Fe and inevitable impurities, and satisfying the following formula (1) between the amount of element addition and the maximum heating temperature T (K) and temperature gradient α (° C./mm) to be used An austenitic stainless steel for hydrogen generators with excellent scale peeling resistance.
{2.1 (Cr-17) +3.5 (Ni-12) +6.8 (Si-0.5)
+ 3.9Al} / (0.012T + α) ≧ 1 (1)
鋼成分として、さらに質量%で、Al:0.01〜2.74%を含有することを特徴とする請求項1に記載の耐スケール剥離性に優れた水素発生器用オーステナイト系ステンレス鋼 The austenitic stainless steel for a hydrogen generator excellent in scale peel resistance according to claim 1, wherein the steel component further contains Al: 0.01-2.74% by mass% . 鋼成分として、さらに質量%で、
Cu:0.1〜2.5%、
Mo:0.1〜6.5%、
La:0.001〜0.1%、
Y :0.001〜0.1%、
Ce:0.001〜0.1%、
Pr:0.001〜0.1%、
Nd:0.001〜0.1%
の1種以上を含有することを特徴とする請求項1又は2に記載の耐スケール剥離性に優れた水素発生器用オーステナイト系ステンレス鋼。
As a steel component, further in mass %,
Cu : 0.1 to 2.5%,
Mo: 0.1 to 6.5%,
La: 0.001 to 0.1%,
Y: 0.001 to 0.1%
Ce: 0.001 to 0.1%,
Pr: 0.001 to 0.1%,
Nd: 0.001 to 0.1%
The austenitic stainless steel for a hydrogen generator excellent in scale peel resistance according to claim 1 or 2 , wherein the austenitic stainless steel has excellent scale peeling resistance.
JP08773998A 1998-03-31 1998-03-31 Austenitic stainless steel for hydrogen generator with excellent scale peeling resistance Expired - Lifetime JP4233628B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08773998A JP4233628B2 (en) 1998-03-31 1998-03-31 Austenitic stainless steel for hydrogen generator with excellent scale peeling resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08773998A JP4233628B2 (en) 1998-03-31 1998-03-31 Austenitic stainless steel for hydrogen generator with excellent scale peeling resistance

Publications (2)

Publication Number Publication Date
JPH11279714A JPH11279714A (en) 1999-10-12
JP4233628B2 true JP4233628B2 (en) 2009-03-04

Family

ID=13923305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08773998A Expired - Lifetime JP4233628B2 (en) 1998-03-31 1998-03-31 Austenitic stainless steel for hydrogen generator with excellent scale peeling resistance

Country Status (1)

Country Link
JP (1) JP4233628B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1679387B1 (en) * 2003-10-20 2012-10-17 Kubota Corporation Heat-resistant cast steel for reaction tube for hydrogen production being excellent in aging ductility and creep rupture strength
JP5208354B2 (en) 2005-04-11 2013-06-12 新日鐵住金株式会社 Austenitic stainless steel
CN102400060A (en) * 2010-09-07 2012-04-04 鞍钢股份有限公司 Novel nitrogen-containing austenitic heat-resistant steel
CN102383050A (en) * 2011-11-16 2012-03-21 钢铁研究总院 Cr-Ni based high temperature-resistant oxyaustenitic heat-resistant steel bar and preparation method thereof
CN102618804B (en) * 2012-03-26 2014-06-04 宝山钢铁股份有限公司 Austenitic heat-resistant steel and production method thereof
JP6423138B2 (en) * 2013-06-14 2018-11-14 新日鐵住金ステンレス株式会社 Austenitic stainless steel for fuel reformer with excellent adhesion of oxide film and method for producing the same
DE102014110902A1 (en) * 2014-07-31 2016-02-04 Sandvik Materials Technology Deutschland Gmbh Method for producing a stainless steel tube and stainless steel tube
KR102031424B1 (en) * 2017-12-01 2019-10-11 주식회사 포스코 Austenitic stainless having excellent surface quality and mathod for manufacturing thereof
JP6498263B2 (en) * 2017-12-07 2019-04-10 新日鐵住金ステンレス株式会社 Austenitic stainless steel for fuel reformer with excellent adhesion of oxide film and method for producing the same
WO2022103243A1 (en) * 2020-11-16 2022-05-19 울산과학기술원 Austenitic stainless steel having corrosion-resistant alumina oxide film formed thereon in lead or lead-bismuth eutectic, and manufacturing method therefor
KR102670439B1 (en) * 2020-11-16 2024-05-29 울산과학기술원 Corrosion resistant alumina-oxide forming austenitic stainless steels and their manufacturing method for use in lead or lead-bismuth eutectic liquid
CN116043132A (en) * 2021-10-28 2023-05-02 江苏新华合金有限公司 314 heat-resistant steel wire and preparation method thereof

Also Published As

Publication number Publication date
JPH11279714A (en) 1999-10-12

Similar Documents

Publication Publication Date Title
JP4233628B2 (en) Austenitic stainless steel for hydrogen generator with excellent scale peeling resistance
CN105431562B (en) Ferrite-group stainless steel paper tinsel
JP3995978B2 (en) Ferritic stainless steel for heat exchanger
JP5600012B2 (en) Ferritic stainless steel with excellent oxidation resistance and secondary work brittleness resistance, as well as steel and secondary work products
JP2011162863A (en) Al-CONTAINING FERRITIC STAINLESS STEEL SUPERIOR IN OXIDATION RESISTANCE AND ELECTRIC CONDUCTIVITY
EP3369832A1 (en) Al-CONTAINING FERRITIC STAINLESS STEEL WITH EXCELLENT CREEP CHARACTERISTICS, MANUFACTURING METHOD THEREFOR, AND FUEL CELL MEMBER
JP2011225971A (en) Stainless steel foil and catalyst carrier for exhaust gas purifying device using the foil
CN103459644B (en) Stainless steel foil and use the emission-control equipment catalyst carrier of this paper tinsel
JP4206836B2 (en) Ferritic stainless steel with excellent corrosion resistance, high temperature strength and high temperature oxidation resistance
JP2803538B2 (en) Ferritic stainless steel for automotive exhaust manifold
JP2004218013A (en) Ferritic stainless steel for equipment in automobile exhaust system
JP2009007601A (en) Ferritic stainless steel member for heat collection apparatus
JP2003286005A (en) Fuel reformer
JP4299507B2 (en) Austenitic stainless steel with excellent red scale resistance
JP2008156692A (en) Ferritic stainless steel for high-temperature device of fuel cell
JP4463663B2 (en) Ferritic steel material excellent in high temperature steam oxidation resistance and method of use thereof
JP3827988B2 (en) Austenitic stainless steel with excellent steam oxidation resistance, carburization resistance and σ embrittlement resistance
JP2006134662A (en) Heat exchanger for fuel cell system of automobile
JP4078881B2 (en) Austenitic stainless steel sheet for heat exchanger
JP4154932B2 (en) Ferritic stainless steel with excellent high-temperature strength, high-temperature oxidation resistance, and high-temperature salt damage resistance
CN1212024A (en) Austenitic stainless steel and use of steel
JP2004269986A (en) Stainless steel thin sheet
JP2002507249A (en) Ferritic stainless steel and its use as a substrate for catalytic converters
JP3865452B2 (en) Fe-Cr-Al ferrite stainless steel with excellent high-temperature oxidation resistance and high-temperature deformation resistance
JP3926492B2 (en) Ferritic stainless steel sheet with oxide scale that has excellent high-temperature strength during intermittent heating and is difficult to peel off during intermittent heating

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050203

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050225

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070123

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131219

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term