JP4232508B2 - Connecting structure of pier and girder - Google Patents

Connecting structure of pier and girder Download PDF

Info

Publication number
JP4232508B2
JP4232508B2 JP2003093067A JP2003093067A JP4232508B2 JP 4232508 B2 JP4232508 B2 JP 4232508B2 JP 2003093067 A JP2003093067 A JP 2003093067A JP 2003093067 A JP2003093067 A JP 2003093067A JP 4232508 B2 JP4232508 B2 JP 4232508B2
Authority
JP
Japan
Prior art keywords
girder
pier
steel
main
concrete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003093067A
Other languages
Japanese (ja)
Other versions
JP2004300698A (en
Inventor
拓志 熊野
祐人 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2003093067A priority Critical patent/JP4232508B2/en
Publication of JP2004300698A publication Critical patent/JP2004300698A/en
Application granted granted Critical
Publication of JP4232508B2 publication Critical patent/JP4232508B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、鉄骨コンクリート造の橋脚とこの橋脚上に支承された鋼製の桁とを一体化して結合した構造に関するものである。
【0002】
【従来の技術】
従来、道路橋などの橋脚と桁との結合構造においては、鉄筋コンクリート造の橋脚を構築し、この橋脚の上に鋼製の桁を支承し、橋脚と桁とを互いに結合させている(たとえば、特許文献1を参照)。
従来の橋脚と桁との結合構造の一例を図8及び図9を参照しつつ説明する。図8に示すように、鉄筋コンクリート造の橋脚10がその上に鋼製の桁4を支承し、桁4の上に道路2が形成されている。橋脚10の内部には鉄筋である主筋12の集合体が鉛直方向に配筋されており、主筋12の集合体の全長にわたってその集合体の周囲には剪断補強筋14をなす鉄筋が間隔をあけて配筋されている(図9を参照)。なお、図8において、剪断補強筋14の図示は省略されている。
【0003】
橋脚10は、その下端から桁4の下端よりもやや低い高さまでを一次施工用のコンクリート22により充填されており、この一次施工用コンクリート22の上端から主筋12と剪断補強筋14が上方に突出して鉄筋の突出部分13を形成している。
桁4は主桁4Mと横桁4Sとからなり、主桁4Mは道路2の進行方向に延びるI型鋼の桁であり、横桁4Sは主桁4Mの間に張り渡されたI型鋼の桁であり、主桁4Mと横桁4Sは互いに交差して桁組を形成している。これらの横桁4Sと主桁4Mとからなる桁組の間に突出部分13の上部分が入り込んでいる。
【0004】
また、突出部分13の上部分にある主筋12の集合体は横桁4Sと向かい合っており、主桁4Mの一部分が突出部分13の主筋12の集合体の間に挟まれている。そして、橋脚10の一次施工用コンクリート22よりも上方には、二次施工用のコンクリート24が充填されており、突出部分13は二次施工用コンクリート24中に埋没し、突出部分13及びこの突出部分13に向き合う横桁4Sとの間も二次施工用コンクリート24が充填されている。したがって、突出部分13の主筋12の間に挟まれている主桁4Mの一部分も、二次施工用コンクリート24中に埋没している。
【0005】
さらに、充填された二次施工用コンクリート24と接する横桁4Sの腹板8Sの面上には、多数のスタッドジベル26が植設されている。このスタッドジベル26は鋲状部材であり、その頭部分が腹板8Sの面上から突出しており、この突出した頭部分は二次施工用コンクリート24中に埋没している。また、突出部分13の主筋12の間に挟まれて二次施工用コンクリート24中に埋没している主桁4Mの面上にも、同様にスタッドジベル26が植設されている。
そして、橋脚10の二次施工用コンクリート24が充填された部分と、二次施工用コンクリート24に接触している主桁4M及び横桁4Sの部分とが剛結部34を形成し、この剛結部34が橋脚10と桁4とを結合している。
【0006】
【特許文献1】
特開平4―92007号公報(第1〜4頁、第1〜15図)
【0007】
【発明が解決しようとする課題】
しかしながら、従来の橋脚10と桁4との結合構造においては、橋脚10の曲げ耐力を確保するために剪断補強筋14を密に配筋する必要があり、剛結部34内でスタッドジベル26が主筋12及び剪断補強筋14と干渉し合う箇所が多数発生してしまうという不具合があった。すなわち、剛結部34内の主筋12及び剪断補強筋14とこれらに対向する横桁4Sの腹板8Sとの間の距離が短いと、スタッドジベル26の頭部分が主筋12及び剪断補強筋14と接触して干渉箇所を生じる。このような干渉箇所があると、主筋12及び剪断補強筋14の配筋に支障をきたす。また、主筋12を桁4の下フランジに貫通させる必要が生じる場合もある。したがって、これらの干渉箇所を少なくするために、剛結部34内における主筋12及び剪断補強筋14の配筋状態を変えなければならず、作業が煩雑になっていた。
【0008】
また、スタッドジベル26と主筋12及び剪断補強筋14との間の干渉箇所が多数存在すると、剛結部34へ二次施工用コンクリート24を充填する作業が困難となる。このため、煩雑な型枠設置作業が必要となる等の施工上の不具合もあった。
さらに、桁4と橋脚10の主筋12及び剪断補強筋14とが剛結部34内において二次施工用コンクリート24を介して互いに結合しているが、主桁4Mや横桁4Sの高さが低い場合には、横桁4Sと橋脚10とを結合する剛結部34の部分の縦方向長さ(定着長L)が短くなってしまう。定着長Lを充分大きくとることができないと、継手等の手段を用いて桁4と橋脚10との間の結合を補強しなければならないという不具合もあった。
【0009】
また、剛結部34における橋脚10と桁4との結合は二次施工用コンクリート24を介して行われているので、橋脚10と桁4との結合面が開口してしまった場合に備えておく必要があり、主筋12及び剪断補強筋14に防食対策を施しておく必要もあった。
本発明は、上記した従来の技術の問題点を除くためになされたものであり、その目的とするところは、桁と橋脚との間を強固に結合でき、橋脚を構築して桁と結合する際に必要な配筋作業を簡略化して施工性を向上させることができ、桁の高さが低い場合でも橋脚と桁との間の強固な結合を確保できる橋脚と桁との結合構造を提供することである。
【0010】
【課題を解決するための手段】
本発明は、その課題を解決するために以下のような構成をとる。すなわち本発明は、鉄骨コンクリート造の橋脚と、当該橋脚上に支承された鋼製の桁との結合構造であって、前記橋脚上部から突出させた鉄骨の上端部と前記桁とを結合し、この突出部分と前記桁との間に硬化材を充填した橋脚と桁との結合構造である。
【0011】
発明によると、橋脚の突出部分の鉄骨の上端部と桁との間の結合と、突出部分と桁との間の硬化材を介した結合とによって、橋脚と桁とは結合されている。鉄骨と桁を結合しているので、主筋としての鉄筋は不要である。したがって、剛結部内の鉄筋の配筋を省略でき、突出部分と桁との間に硬化材を充填する作業も容易になる。また、桁の高さが低い場合でも、鉄骨と桁と結合しているので、橋脚と桁の間の定着長Lの長さが不足して橋脚と桁の結合が弱くなることは防止される。
【0012】
このとき、前記鉄骨の上端部と前記桁の下面とを、溶接及び締結具のうち少なくともいずれか一方の手段を用いて結合すると良い。
脚の鉄骨の上端部と桁との結合を溶接と締結具のうち少なくともいずれか一方の手段により行うので、鉄骨は桁と強固に結合され、橋脚は桁と一体化する。なお、締結具としては、例えば、ボルトとナット等を挙げることができる。
【0013】
また、前記鉄骨を形鋼とすると良い
鋼によって橋脚の鉄骨は形成されており、橋脚の曲げ耐力が確保され、橋脚の強度が向上する。なお、形鋼としてH形鋼、山形鋼、みぞ形鋼、T形鋼、I形鋼等を挙げることができる。
【0014】
また、前記鉄骨を鋼管とすると良い
管によって橋脚の鉄骨は形成されており、橋脚の曲げ耐力が確保され、橋脚の強度が向上する。
また、前記桁と結合された鋼板を介して前記鉄骨の上端部と前記桁とを結合すると良い
【0015】
脚の鉄骨は桁の下の鋼板と結合し、この鋼板が桁と結合されているので、橋脚と桁が強固に一体化する。また、鋼鈑を介して鉄骨は桁と結合しているので、桁の直下に鉄骨の上端部がない場合であっても桁と鉄骨との結合が可能となる。
【0016】
【発明の実施の形態】
本発明の第1の実施の形態を図面に基づいて説明する。
まず、図1ないし図6を参照して本実施の形態の構成を説明する。図1は本実施の形態に係る橋の側面図であり、図2は図1のA−A線縦断面図、図3は本実施の形態に係る橋脚の正面図、図4は図3のB−B線横断面図、図5は図3のC−C線横断面図、図6は本実施の形態に係る鉄骨と桁の結合部分の構成図である。なお、図3及び図5において、一次施工用コンクリート又は二次施工用コンクリートの図示を一部分省略してある。
【0017】
図1及び図2に示すように、橋1は橋脚10、桁4、道路2とから形成されている。橋脚10の上に、I形鋼からなる主桁4MとI形鋼からなる横桁4Sとからなる桁4が組まれて載っており、桁4の上に道路2が載っている。
図3及び図4に示すように、橋脚10は水平断面が矩形をなす鉄骨鉄筋コンクリート製の柱状構築物であり、内部には主筋として作用するH型鋼からなる鉄骨16、剪断補強筋14をなす鉄筋を有する。
【0018】
橋脚10内で、複数本の鉄骨16からなる集合体が橋脚10の周方向に口の字形の水平断面を形成して配設されている。また、鉄骨16の集合体の周囲には剪断補強筋14が巻きつけられており、この剪断補強筋14は鉄骨16の下部から上部にかけてほぼ一様な間隔で複数配筋されている。さらに、鉄骨16の上端部18Aの高さは横桁4Sの下部フランジ6SLよりもやや低い高さである。
【0019】
そして、図3及び図6に示すように、鉄骨16の上端部18Aの上には、高さ及び水平位置を調節するための調整用部材20がつなげられており、鉄骨16の長さが上方に延長されている。調整用部材20の上端部18Bの上には、さらに、仕口部材21がつなげられており、鉄骨16の長さが上方に延長されている。仕口部材21の上端部は、延長された鉄骨16の最上端部18Cをなし、この最上端部18Cは後述の天板32の下面につながっている。調整用部材20及び仕口部材21は、鉄骨16と同じH形鋼である。鉄骨16の上端部18Aと調整用部材20との接続部分は、鉄骨16と調整用部材20との間に架け渡された鋼製の接合板36が高力ボルト30とナットを用いて止められている。また、調整用部材20の上端部18Bと仕口部材21との間も、鉄骨16と調整用部材20との間と同様に接続されている。
【0020】
また、鉄骨16の上端部18Aよりやや下の高さまで橋脚10の中に充填されているコンクリートは、橋脚10と桁4を結合する前に充填された一次施工用コンクリート22である。一次施工用コンクリート22の上端から上側にある鉄骨16及び剪断補強筋14が上方に突出して、突出部分13を形成している。
さらに、図6に示すように、各鉄骨16の最上端部18Cの上にはそれぞれ鋼製の天板32が溶接により取り付けられており、これらの天板32の上には鋼製の底板28がのっている。各天板32は底板28の下面とは、溶接または高力ボルト30を用いた締結手段により締結され、各鉄骨16、天板32及び底板28は一体化している。
【0021】
また、図3に示すように、図4において口の字形をなす鉄骨16のうち上下の各辺を形成する鉄骨16の上には、底板28を介して、横桁4Sa、4Sbの各下側フランジ6SLの下面が載っている。図3に示すように、図4において口の字形をなす鉄骨16のうち左右の各辺を形成する鉄骨16よりも外側上方に、主桁4Ma、4Mbが位置している。主桁4Ma、4Mbの各下側フランジ6MLは底板28よりも下方の高さに位置するとともに、横桁4Sa、4Sbの各下側フランジ6SLよりも低い位置にある。また、主桁4Ma、4Mbの各上側フランジ6MUは横桁4Sa、4Sbの各上側フランジ6SUよりも高い位置にある。そして、橋脚10の突出部分13は主桁4Ma、4Mbの間に挟まれている。
【0022】
また、底板28の縁は、主桁4Ma、4Mb及び横桁4Sa、4Sbまで張り出している。そして、底板28の各縁は主桁4Ma、4Mbの各腹板8Mに溶接と高力ボルトを用いた締結手段により結合されているとともに、横桁4Sa、4Sbの各下側フランジ6SLの下面とも溶接と高力ボルトを用いた締結手段により結合されている。
【0023】
また、図5に示すように、主桁4Ma、4Mb及び横桁4Sa、4Sbによって囲まれた井桁の中に、I型鋼からなる2枚の隔壁5a、5bが形成されている。隔壁5a、5bの各下側フランジ6WLは、底板28を介して、図4において口の字形をなす鉄骨16のうち左右の各辺を形成する鉄骨16の上端にある仕口部材21の上に載っている。隔壁5a、5bの各下側フランジ6WL、底板28及び仕口部材21は、溶接または高力ボルトを用いた締結手段により結合されている。また、隔壁5a、5bと横桁4Sa、4Sbとの間は、溶接または高力ボルトを用いた締結手段により結合されている。
【0024】
また、図3及び図5に示すように、橋脚10の一次施工用コンクリート22の上端から底板28にかけての部分は硬化材である二次施工用のコンクリート24によって充填されている。さらに、底板28から上の主桁4Ma、4Mb及び横桁4Sa、4Sbによって囲まれた部分も二次施工用コンクリート24を充填してあり、突出部分13の鉄筋はすべて二次施工用コンクリート24中に埋没しているとともに、隔壁5a、5bも二次施工用コンクリート24中に埋没している。
【0025】
また、主桁4の上側フランジ6MU上には道路2が形成されており、主桁4が道路2を支承している。
本実施の形態は上記のように構成されており、次にその作用について説明する。
橋脚10は鉄骨16を内側に有し、これらの鉄骨16が橋脚10の強度を支えているので、主筋は不要となる。主筋がないので、橋脚10を構築する際の配筋作業が簡易化される。
【0026】
また、鉄骨16の上端部18Aと底板28の下面との間には、調整用部材20及び仕口部材21が存在してつないでいるので、橋脚10に一次施工用コンクリート22を打設した後、鉄骨16の上端部18Aの高さ位置に誤差が存在しても、この誤差を調整用部材20及び仕口部材21により調整することができる。
【0027】
さらに、調整用部材20及び仕口部材21により延長された鉄骨16の最上端部18Cが底板28の下面と結合し、底板28は主桁4Ma、4Mb及び横桁4Sa、4Sb、隔壁5a、5bと結合しているので、鉄骨16は主桁4Ma、4Mb、横桁4Sa、4Sb、隔壁5a、5bと直結した構造となっており、桁4から曲げモーメント等の断面力は鉄骨16を介して橋脚10へ直接伝達される。したがって、剪断補強筋14の数を減らすことが可能となる。このため、突出部分13において、主筋12の集合体の周りに配筋する剪断補強筋14の数を減少させることができ、前述のように主筋12の数も減少させることができるので、突出部分13における配筋量が減少し、主筋12及び剪断補強筋14の間の間隔を大きくとることができる。このため、鋲部材であるスタッドジベルが主桁4Ma、4Mbの各腹板8M上に植設されている場合であっても、スタッドジベルが剪断補強筋14と干渉しあう箇所の数は減少する。
【0028】
また、底板28から上方の主桁4Ma、4Mb及び横桁4Sa、4Sbによって囲まれた部分に二次施工用コンクリート24を打設しているので、底板28、主桁4Ma、4Mb及び横桁4Sa、4Sbが二次施工用コンクリート24用の型枠の役割を果たす。したがって、二次施工用コンクリート24充填のための作業が簡易なものとなり、二次施工用コンクリート24充填時の施工性が向上する。
【0029】
また、二次施工用コンクリート24中に埋没している隔壁5a、5bは、二次施工用コンクリート24内で骨格をなし、二次施工用コンクリート24の強度が向上し、橋脚10と桁4との結合部分の剛性も向上する。
また、主桁4Mや横桁4Sの縦方向長さが短い場合であっても、主桁4Mや横桁4Sは鉄骨16と直結しているので結合上の問題はない。二次施工用コンクリート24を介した突出部分13の鉄骨16と主桁4Ma、4Mb及び横桁4Sa、4Sbとの間の定着長Lは短くなるが、鉄骨16が底板28を介して桁4と結合されている。したがって、継手等の手段を用いて桁4と橋脚10との間の定着長Lの短さを補う必要はなくなる。
【0030】
また、本実施の形態において橋脚10は断面が矩形で、鉄骨16をH形鋼により構成したが、替わりに、図7の変形例に示すような構成の橋脚10とすることも可能である。すなわち、鉄骨を円形鋼管38により形成し、この円形鋼管38の内周沿いに主筋12の集合体を配筋し、円形鋼管38の内側に一次施工用コンクリート22を充填し、橋脚10を構成する。円形鋼管38を鉄骨とすることで、橋脚10内への一次施工用コンクリート22の充填を型枠を使用せずに行うことができる。
【0031】
さらに、本実施の形態において鉄骨16をH形鋼により構成したが、H形鋼の替わりに、山形鋼、みぞ形鋼、T形鋼、I形鋼等により鉄骨16を構成できることは勿論である。
また、本実施の形態において鉄骨16を天板32及び底板28を介して桁4に結合したが、以下に説明する結合とすることも可能である。すなわち、各鉄骨16を主桁4Ma、4Mb、横桁4Sa、4Sbの直下に配置し、各鉄骨16の長さを高さ調整用部材20で調整し、延長された各鉄骨16の上端部18Bを直上にあるいずれかの主桁4Ma、4Mb、横桁4Sa、4Sbに溶接により直接結合する。このような鉄骨16と桁4との結合によっても、橋脚10と桁4を強固に結合して一体化することができる。
【0032】
【発明の効果】
本発明は、上記のような橋脚と桁との結合構造であるので、桁と橋脚との間を強固に結合でき、橋脚を構築して桁と結合する際に必要な配筋作業を簡略化して施工性を向上させることができ、桁の高さが低い場合でも橋脚と桁との間の強固な結合を確保できる橋脚と桁との結合構造を提供できるという効果がある。
【図面の簡単な説明】
【図1】本実施の形態に係る橋の側面図である。
【図2】図1のA−A線縦断面図である。
【図3】本実施の形態に係る橋脚の正面図である。
【図4】図3のB−B線横断面図である。
【図5】図3のC−C線横断面図であり、一部分の二次施工用コンクリートの図示及び一部分の底板の図示を省略した図である。
【図6】本実施の形態に係る鉄骨と桁の結合部分の構成図である。
【図7】本実施の形態の変形例に係る橋脚の横断面図である。
【図8】従来の橋脚と桁の結合部分の構成図である。
【図9】従来の橋脚が有する主筋と剪断補強筋の構成図である。
【符号の説明】
1 橋
2 道路
4 桁
4M、4Ma、4Mb 主桁
4S、4Sa、4Sb 横桁
5a、5b 隔壁
6ML 主桁の下側フランジ
6MU 主桁の上側フランジ
6SU 横桁の上部フランジ
6SL 横桁の下部フランジ
6WL 隔壁の下部フランジ
8M 主桁の腹板
8S 横桁の腹板
10 橋脚
12 主筋
13 鉄筋の突出部分
14 剪断補強筋
16 鉄骨
18A 鉄骨の上端部
18B 調整用部材の上端部
18C 調整用部材及び仕口部材により延長された鉄骨の最上端部
20 調整用部材
21 仕口部材
22 一次施工用コンクリート
24 二次施工用コンクリート
26 スタッドジベル
28 底板
30 高力ボルト
32 天板
34 剛結部
38 円形鋼管
L 定着長
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a structure in which a steel concrete concrete pier and a steel girder supported on the pier are integrated and coupled.
[0002]
[Prior art]
Conventionally, in a connecting structure of a bridge pier such as a road bridge and a girder, a reinforced concrete pier is constructed, a steel girder is supported on the pier, and the pier and the girder are coupled to each other (for example, (See Patent Document 1).
An example of a conventional coupling structure between a pier and a girder will be described with reference to FIGS. As shown in FIG. 8, a reinforced concrete pier 10 supports a steel girder 4 thereon, and a road 2 is formed on the girder 4. Inside the pier 10, an assembly of main reinforcing bars 12, which are reinforcing bars, is arranged in the vertical direction, and the reinforcing bars forming the shear reinforcement bars 14 are spaced around the aggregate over the entire length of the main reinforcing bar 12 assembly. (See FIG. 9). In addition, in FIG. 8, illustration of the shear reinforcement 14 is abbreviate | omitted.
[0003]
The pier 10 is filled with concrete 22 for primary construction from the lower end to a height slightly lower than the lower end of the girder 4, and the main reinforcement 12 and the shear reinforcement 14 protrude upward from the upper end of the primary construction concrete 22. Thus, the protruding portion 13 of the reinforcing bar is formed.
The girder 4 is composed of a main girder 4M and a horizontal girder 4S. The main girder 4M is an I-shaped steel girder extending in the traveling direction of the road 2, and the horizontal girder 4S is an I-shaped steel girder stretched between the main girder 4M. The main beam 4M and the horizontal beam 4S intersect with each other to form a beam set. The upper part of the projecting portion 13 is inserted between the girder composed of the horizontal girder 4S and the main girder 4M.
[0004]
The assembly of the main bars 12 on the upper part of the protruding portion 13 faces the cross beam 4S, and a part of the main beam 4M is sandwiched between the sets of the main bars 12 of the protruding portion 13. The concrete 24 for the secondary construction is filled above the concrete 22 for the primary construction of the pier 10, and the protruding portion 13 is buried in the concrete 24 for the secondary construction. The concrete 24 for secondary construction is also filled between the cross beams 4S facing the portion 13. Therefore, a part of the main beam 4M sandwiched between the main bars 12 of the protruding portion 13 is also buried in the concrete 24 for secondary construction.
[0005]
In addition, a large number of stud dowels 26 are planted on the surface of the abdominal plate 8S of the cross beam 4S in contact with the filled concrete 24 for secondary construction. The stud gibber 26 is a bowl-shaped member, and its head portion protrudes from the surface of the abdominal plate 8S, and this protruding head portion is buried in the concrete 24 for secondary construction. Similarly, a stud gibber 26 is also planted on the surface of the main girder 4M sandwiched between the main bars 12 of the protruding portion 13 and buried in the concrete 24 for secondary construction.
The portion of the pier 10 filled with the secondary construction concrete 24 and the portion of the main girder 4M and the lateral girder 4S that are in contact with the secondary construction concrete 24 form a rigid connection portion 34. A connecting portion 34 connects the pier 10 and the girder 4.
[0006]
[Patent Document 1]
Japanese Patent Laid-Open No. 4-92007 (pages 1 to 4 and FIGS. 1 to 15)
[0007]
[Problems to be solved by the invention]
However, in the conventional coupling structure of the pier 10 and the girder 4, it is necessary to closely arrange the shear reinforcement bars 14 in order to secure the bending strength of the pier 10, and the stud gibber 26 is formed in the rigid connection portion 34. There was a problem that a large number of locations where the main reinforcement 12 and the shear reinforcement 14 interfere with each other. That is, when the distance between the main muscle 12 and the shear reinforcement 14 in the rigid connection portion 34 and the abdominal plate 8S of the cross beam 4S opposed to the main reinforcement 12 and the shear reinforcement 14 is short, the head portion of the stud gibber 26 becomes the main muscle 12 and the shear reinforcement 14. Contact point and cause interference. If there is such an interference location, the main bar 12 and the shear reinforcement bar 14 will be disturbed. Further, it may be necessary to pass the main bar 12 through the lower flange of the girder 4. Therefore, in order to reduce these interference locations, it is necessary to change the bar arrangement state of the main reinforcement 12 and the shear reinforcement 14 in the rigid connection portion 34, and the work is complicated.
[0008]
In addition, when there are many interference points between the stud gibber 26 and the main reinforcement 12 and the shear reinforcement 14, it becomes difficult to fill the rigid joint 34 with the concrete 24 for secondary construction. For this reason, there were also problems in construction such as requiring complicated formwork installation work.
Further, the girder 4 and the main reinforcement 12 and the shear reinforcement 14 of the bridge pier 10 are connected to each other via the secondary construction concrete 24 in the rigid connection portion 34. However, the height of the main girder 4M and the horizontal girder 4S is high. If it is low, the length in the vertical direction (fixing length L) of the portion of the rigid coupling portion 34 that connects the cross beam 4S and the pier 10 will be short. If the fixing length L cannot be made sufficiently large, there is a problem in that the connection between the beam 4 and the pier 10 must be reinforced using means such as a joint.
[0009]
In addition, since the connection between the bridge pier 10 and the girder 4 in the rigid connection portion 34 is performed through the concrete 24 for secondary construction, in case the connection surface between the pier 10 and the girder 4 is opened. It is also necessary to take anticorrosion measures on the main reinforcement 12 and the shear reinforcement 14.
The present invention has been made in order to eliminate the above-mentioned problems of the prior art, and the object of the present invention is to firmly connect the beam and the bridge pier, construct the bridge pier, and connect the beam to the beam. The construction work can be improved by simplifying the bar arrangement work required at the time, and providing a coupling structure between the pier and the girder that can secure a strong coupling between the pier and the girder even when the girder height is low It is to be.
[0010]
[Means for Solving the Problems]
The present invention adopts the following configuration in order to solve the problem. That is, the present invention is a connecting structure of a steel concrete concrete pier and a steel girder supported on the pier, and connects the upper end of the steel frame protruding from the upper part of the pier and the girder, This is a coupling structure of a bridge pier and a girder filled with a hardening material between the protruding portion and the girder.
[0011]
According to the present invention, the pier and the girder are coupled by the coupling between the upper end portion of the steel frame of the projecting portion of the pier and the girder and the coupling between the projecting portion and the girder via the hardening material. Since the steel frame and the girder are connected, the reinforcing bar as the main reinforcing bar is unnecessary. Therefore, it is possible to omit reinforcing bars in the rigid connection portion, and the work of filling the hardening material between the protruding portions and the girders becomes easy. Moreover, even when the height of the girder is low, since the steel frame and the girder are coupled, it is possible to prevent the fixing length L between the pier and the girder from being insufficient and the coupling between the pier and the girder from becoming weak. .
[0012]
At this time , it is preferable that the upper end portion of the steel frame and the lower surface of the beam are coupled using at least one of welding and fasteners .
Is performed by at least one means of the coupling between the upper portion and the digit of steel bridge legs and welding the fastener, steel is strongly coupled with the digit, piers integrated with digits. In addition, as a fastener, a volt | bolt, a nut, etc. can be mentioned, for example.
[0013]
Furthermore, may the steel and shape steel.
The steel frame of the pier is formed by the shape steel, the bending strength of the pier is secured, and the strength of the pier is improved. Examples of the shape steel include H-shape steel, angle steel, groove-shape steel, T-shape steel, and I-shape steel.
[0014]
Furthermore, the steel may be a steel pipe.
Steel piers of steel pipe is formed, piers bending strength is ensured, thereby improving the strength of the pier.
Moreover, it is good to couple | bond the upper end part of the said steel frame, and the said girder via the steel plate couple | bonded with the said girder.
[0015]
Steel bridge leg combines with steel below the digits, this steel sheet is combined with digits, bridge piers and columns are firmly integrated. Further, since the steel frame is coupled to the girder via the steel plate, the girder and the steel frame can be coupled even when the upper end portion of the steel frame is not directly below the girder.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
A first embodiment of the present invention will be described with reference to the drawings.
First, the configuration of the present embodiment will be described with reference to FIGS. 1 is a side view of the bridge according to the present embodiment, FIG. 2 is a longitudinal sectional view taken along line AA of FIG. 1, FIG. 3 is a front view of the pier according to the present embodiment, and FIG. FIG. 5 is a cross-sectional view taken along the line C-C of FIG. 3, and FIG. 6 is a configuration diagram of a connecting portion of the steel frame and the girder according to the present embodiment. 3 and 5, the illustration of the concrete for primary construction or the concrete for secondary construction is partially omitted.
[0017]
As shown in FIGS. 1 and 2, the bridge 1 is formed of a pier 10, a girder 4, and a road 2. On the bridge pier 10, a girder 4 made up of a main girder 4M made of I-shaped steel and a cross girder 4S made of I-shaped steel is assembled, and the road 2 is placed on the girder 4.
As shown in FIGS. 3 and 4, the pier 10 is a columnar structure made of steel reinforced concrete having a rectangular horizontal cross section, and internally includes a steel frame 16 made of H-shaped steel acting as a main reinforcing bar and a reinforcing bar forming a shear reinforcing bar 14. Have.
[0018]
In the pier 10, an assembly made up of a plurality of steel frames 16 is disposed in the circumferential direction of the pier 10 so as to form a horizontal cross-section of the mouth shape. In addition, a shear reinforcement bar 14 is wound around the aggregate of the steel frames 16, and a plurality of the shear reinforcement bars 14 are arranged at a substantially uniform interval from the lower part to the upper part of the steel frame 16. Furthermore, the height of the upper end portion 18A of the steel frame 16 is slightly lower than the lower flange 6SL of the cross beam 4S.
[0019]
3 and 6, an adjustment member 20 for adjusting the height and the horizontal position is connected on the upper end portion 18A of the steel frame 16, and the length of the steel frame 16 is upward. Has been extended. On the upper end portion 18B of the adjusting member 20, a joint member 21 is further connected, and the length of the steel frame 16 is extended upward. The upper end portion of the joint member 21 forms an uppermost end portion 18C of the extended steel frame 16, and the uppermost end portion 18C is connected to a lower surface of a top plate 32 described later. The adjusting member 20 and the joint member 21 are the same H-shaped steel as the steel frame 16. The connecting portion between the upper end portion 18A of the steel frame 16 and the adjustment member 20 is secured to the steel joining plate 36 spanned between the steel frame 16 and the adjustment member 20 using a high-strength bolt 30 and a nut. ing. Further, the upper end portion 18 </ b> B of the adjustment member 20 and the joint member 21 are connected in the same manner as between the steel frame 16 and the adjustment member 20.
[0020]
The concrete filled in the pier 10 to a height slightly below the upper end portion 18 </ b> A of the steel frame 16 is the concrete 22 for primary construction filled before the pier 10 and the girder 4 are joined. The steel frame 16 and the shear reinforcement 14 on the upper side from the upper end of the concrete 22 for primary construction protrude upward, and the protrusion part 13 is formed.
Further, as shown in FIG. 6, steel top plates 32 are attached to the top end portions 18 </ b> C of the steel frames 16 by welding, and the steel bottom plates 28 are mounted on these top plates 32. There is. Each top plate 32 is fastened to the bottom surface of the bottom plate 28 by welding or fastening means using high-strength bolts 30, and each steel frame 16, top plate 32 and bottom plate 28 are integrated.
[0021]
Further, as shown in FIG. 3, on the steel frame 16 forming the upper and lower sides of the steel frame 16 having a mouth shape in FIG. 4, the lower side of each of the cross beams 4Sa and 4Sb is provided via the bottom plate 28. The lower surface of the flange 6SL is placed. As shown in FIG. 3, the main girders 4Ma and 4Mb are located on the outer upper side of the steel frame 16 forming the left and right sides of the steel frame 16 having a square shape in FIG. 4. The lower flanges 6ML of the main girders 4Ma and 4Mb are located at a lower level than the bottom plate 28 and are lower than the lower flanges 6SL of the horizontal girders 4Sa and 4Sb. The upper flanges 6MU of the main girders 4Ma and 4Mb are positioned higher than the upper flanges 6SU of the horizontal girders 4Sa and 4Sb. And the protrusion part 13 of the bridge pier 10 is pinched | interposed between main girders 4Ma and 4Mb.
[0022]
Further, the edge of the bottom plate 28 extends to the main girders 4Ma and 4Mb and the horizontal girders 4Sa and 4Sb. The edges of the bottom plate 28 are coupled to the abdominal plates 8M of the main girders 4Ma, 4Mb by fastening means using welding and high-strength bolts, and the lower surfaces of the lower flanges 6SL of the horizontal girders 4Sa, 4Sb. They are connected by welding and fastening means using high-strength bolts.
[0023]
As shown in FIG. 5, two partition walls 5a and 5b made of I-shaped steel are formed in a well beam surrounded by main beams 4Ma and 4Mb and horizontal beams 4Sa and 4Sb. The lower flanges 6WL of the partition walls 5a and 5b are placed on the joint member 21 at the upper end of the steel frame 16 forming the left and right sides of the steel frame 16 having a mouth shape in FIG. It is listed. The lower flanges 6WL, the bottom plate 28, and the joint member 21 of the partition walls 5a and 5b are joined by welding or fastening means using high-strength bolts. Further, the partition walls 5a and 5b and the cross beams 4Sa and 4Sb are coupled by fastening means using welding or high-strength bolts.
[0024]
Moreover, as shown in FIG.3 and FIG.5, the part from the upper end of the concrete 22 for primary construction of the pier 10 to the baseplate 28 is filled with the concrete 24 for secondary construction which is a hardening material. Further, the portion surrounded by the main girders 4Ma and 4Mb and the horizontal girders 4Sa and 4Sb from the bottom plate 28 is also filled with the secondary construction concrete 24, and all the reinforcing bars of the protruding portion 13 are in the secondary construction concrete 24. And the partition walls 5a and 5b are also buried in the concrete 24 for secondary construction.
[0025]
A road 2 is formed on the upper flange 6MU of the main girder 4, and the main girder 4 supports the road 2.
This embodiment is configured as described above, and the operation thereof will be described next.
The bridge pier 10 has steel frames 16 on the inner side, and these steel frames 16 support the strength of the bridge pier 10, so that the main bars are unnecessary. Since there is no main reinforcement, the reinforcement work when constructing the pier 10 is simplified.
[0026]
Further, since the adjusting member 20 and the joint member 21 are connected between the upper end portion 18A of the steel frame 16 and the lower surface of the bottom plate 28, after the concrete 22 for primary construction is placed on the pier 10 Even if there is an error in the height position of the upper end portion 18 </ b> A of the steel frame 16, this error can be adjusted by the adjusting member 20 and the joint member 21.
[0027]
Further, the uppermost end portion 18C of the steel frame 16 extended by the adjusting member 20 and the joint member 21 is coupled to the lower surface of the bottom plate 28, and the bottom plate 28 is composed of the main girders 4Ma and 4Mb and the cross girders 4Sa and 4Sb, and the partition walls 5a and 5b. The steel frame 16 has a structure directly connected to the main girders 4Ma, 4Mb, the horizontal girders 4Sa, 4Sb, and the partition walls 5a, 5b. The cross-sectional force such as a bending moment is transmitted from the girder 4 via the steel frame 16. Directly transmitted to the pier 10. Therefore, the number of shear reinforcement bars 14 can be reduced. For this reason, in the protrusion part 13, the number of the shear reinforcement bars 14 arranged around the aggregate of the main bars 12 can be reduced, and the number of the main bars 12 can also be reduced as described above. The amount of bar arrangement at 13 is reduced, and the space between the main reinforcement 12 and the shear reinforcement 14 can be increased. For this reason, even when the stud gibber, which is a saddle member, is implanted on each abdominal plate 8M of the main girders 4Ma, 4Mb, the number of locations where the stud diver interferes with the shear reinforcement 14 is reduced. .
[0028]
Further, since the concrete 24 for the secondary construction is placed in a portion surrounded by the main girders 4Ma and 4Mb and the horizontal girders 4Sa and 4Sb above the bottom plate 28, the bottom plate 28, the main girders 4Ma and 4Mb, and the cross girders 4Sa. 4Sb serves as a formwork for the concrete 24 for secondary construction. Therefore, the work for filling the concrete for secondary construction 24 becomes simple, and the workability when filling the concrete for secondary construction 24 is improved.
[0029]
In addition, the partition walls 5a and 5b buried in the concrete for secondary construction 24 form a skeleton in the concrete for secondary construction 24, and the strength of the concrete for secondary construction 24 is improved. The rigidity of the joint portion is also improved.
Even if the longitudinal length of the main girder 4M and the horizontal girder 4S is short, the main girder 4M and the horizontal girder 4S are directly connected to the steel frame 16, so there is no problem in connection. Although the fixing length L between the steel frame 16 of the projecting portion 13 through the secondary construction concrete 24 and the main beams 4Ma, 4Mb and the horizontal beams 4Sa, 4Sb is shortened, the steel frame 16 is connected to the beam 4 via the bottom plate 28. Are combined. Therefore, it is not necessary to compensate for the short fixing length L between the beam 4 and the pier 10 by using a means such as a joint.
[0030]
Further, in this embodiment, the pier 10 has a rectangular cross section and the steel frame 16 is made of H-shaped steel. Instead, the pier 10 may be configured as shown in the modified example of FIG. That is, the steel frame is formed by the circular steel pipe 38, the aggregate of the main reinforcing bars 12 is arranged along the inner periphery of the circular steel pipe 38, and the primary construction concrete 22 is filled inside the circular steel pipe 38 to constitute the pier 10. . By making the circular steel pipe 38 into a steel frame, the concrete 22 for primary construction into the pier 10 can be filled without using a formwork.
[0031]
Further, in the present embodiment, the steel frame 16 is made of H-shaped steel, but it goes without saying that the steel frame 16 can be made of angle steel, groove-shaped steel, T-shaped steel, I-shaped steel or the like instead of the H-shaped steel. .
Further, in the present embodiment, the steel frame 16 is coupled to the girder 4 via the top plate 32 and the bottom plate 28. However, the coupling described below is also possible. That is, each steel frame 16 is arranged immediately below the main girders 4Ma, 4Mb and the horizontal girders 4Sa, 4Sb, the length of each steel frame 16 is adjusted by the height adjusting member 20, and the upper end portion 18B of each extended steel frame 16 is placed. Is directly coupled to any of the main girders 4Ma, 4Mb and the transverse girders 4Sa, 4Sb directly above by welding. Even by such a connection between the steel frame 16 and the girder 4, the pier 10 and the girder 4 can be firmly coupled and integrated.
[0032]
【The invention's effect】
Since the present invention has the above-described structure of the bridge pier and the girder, the girder and the pier can be firmly coupled, and the reinforcement work required when constructing the pier and coupling with the girder is simplified. Thus, it is possible to improve the workability, and it is possible to provide a coupling structure between the pier and the girder that can secure a strong coupling between the pier and the girder even when the height of the girder is low.
[Brief description of the drawings]
FIG. 1 is a side view of a bridge according to the present embodiment.
2 is a longitudinal sectional view taken along line AA in FIG.
FIG. 3 is a front view of a pier according to the present embodiment.
4 is a cross-sectional view taken along line BB in FIG. 3. FIG.
FIG. 5 is a cross-sectional view taken along the line CC of FIG. 3, and is a view in which illustration of a part of concrete for secondary construction and illustration of a part of the bottom plate are omitted.
FIG. 6 is a configuration diagram of a joint portion between a steel frame and a girder according to the present embodiment.
FIG. 7 is a cross-sectional view of a pier according to a modification of the present embodiment.
FIG. 8 is a configuration diagram of a conventional connecting portion between a bridge pier and a girder.
FIG. 9 is a configuration diagram of main bars and shear reinforcement bars of a conventional pier.
[Explanation of symbols]
1 Bridge 2 Road 4 Girder 4M, 4Ma, 4Mb Main girder 4S, 4Sa, 4Sb Cross girder 5a, 5b Bulkhead 6ML Lower girder 6MU of main girder Upper flange 6SU of main girder Upper flange 6SL of girder Lower flange 6WL of girder Bulkhead Lower Flange 8M Main Girder Abdominal Plate 8S Horizontal Girder Abdominal Plate 10 Bridge Pier 12 Main Reinforcement 13 Reinforcing Bar Projection 14 Shear Reinforcement 16 Steel Frame 18A Steel Upper End 18B Adjustment Member Upper End 18C Adjustment Member and Joint Upper end 20 of steel frame extended by member 21 Adjustment member 21 Joint member 22 Primary construction concrete 24 Secondary construction concrete 26 Stud gibber 28 Bottom plate 30 High strength bolt 32 Top plate 34 Rigid joint 38 Round steel pipe L Fixation Long

Claims (2)

上下に延在する複数の鉄骨を備える鉄骨鉄筋コンクリート造の橋脚と、当該橋脚上に支承された鋼製の桁との結合構造であって、
前記橋脚上部から突出させた複数の鉄骨の上端部を同一の底板に接合し、その底板を前記桁に接合し、
この突出部分と前記桁との間に硬化材を充填したことを特徴とする橋脚と桁との結合構造。
A structure comprising a steel reinforced concrete pier having a plurality of steel frames extending vertically and a steel girder supported on the pier,
Bonding the upper ends of a plurality of steel frames protruding from the upper part of the pier to the same bottom plate, joining the bottom plate to the beam,
A coupling structure of a bridge pier and a girder, wherein a hardening material is filled between the protruding portion and the girder.
鋼製の桁は、主桁と、主桁間に架け渡された横桁とで構成され、
上記底板の上面を横桁に結合すると共に、当該底板の縁を主桁に結合することを特徴とする請求項に記載した橋脚と桁との結合構造。
A steel girder consists of a main girder and a horizontal girder spanned between the main girder.
With coupling the upper surface of the bottom plate to the crossbeam, the coupling structure of the pier and column according to claim 1, characterized in that the coupling edges of the bottom plate to the main girder.
JP2003093067A 2003-03-31 2003-03-31 Connecting structure of pier and girder Expired - Lifetime JP4232508B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003093067A JP4232508B2 (en) 2003-03-31 2003-03-31 Connecting structure of pier and girder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003093067A JP4232508B2 (en) 2003-03-31 2003-03-31 Connecting structure of pier and girder

Publications (2)

Publication Number Publication Date
JP2004300698A JP2004300698A (en) 2004-10-28
JP4232508B2 true JP4232508B2 (en) 2009-03-04

Family

ID=33405946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003093067A Expired - Lifetime JP4232508B2 (en) 2003-03-31 2003-03-31 Connecting structure of pier and girder

Country Status (1)

Country Link
JP (1) JP4232508B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4901178B2 (en) * 2005-10-17 2012-03-21 三井造船株式会社 Steel / concrete composite rigid frame bridge construction method

Also Published As

Publication number Publication date
JP2004300698A (en) 2004-10-28

Similar Documents

Publication Publication Date Title
KR101186062B1 (en) Connection of concrete filled steel tube column and H-shaped steel beam and constructing method of the same
JP4834197B2 (en) Construction method of continuous girder bridge, composite floor slab and continuous girder bridge
KR100947306B1 (en) Composite bridge structure with concrete shear connector and construction method of the same
KR101398815B1 (en) Composite beam with reinforced support member and the building construction method therewith
CN112647591A (en) Prefabricated reinforced concrete beam column steel node
KR20170083694A (en) Roll forming steel plates built-up beam and steel frame using the same
KR200455723Y1 (en) Hybrid steel ball
KR101458975B1 (en) Joint of girder and beam for prefabricated steel frame with lattice and prefabricated steel frame with lattice using the same
KR101347939B1 (en) Composite structure of corrugated steel plate web-PSC composite beam structure which combined corrugated steel plate and concrete plate with L shape steel
JP5217428B2 (en) Composite hollow structure of bridge column head or girder end
JPH09221719A (en) Method for reinforcing pier
KR101954614B1 (en) Strcutrue of connecting traverse beam with main beam in bridge upper structure and method of constructing the same
JP2001081729A (en) Composite floor slab
KR101402384B1 (en) Steel frame girder having pressure plate and, construction method for the same
JP4232508B2 (en) Connecting structure of pier and girder
KR101347555B1 (en) Method for continuous supporting structure of Corrugated steel plate web-PSC composite beam
KR101878762B1 (en) Coupling structure of double type for girder and column capable of reducing girder height
KR101483173B1 (en) Corrugated steel plate web-PSC composite beam and Construction method of corrugated steel plate web-PSC composite beam
JP5157433B2 (en) Composite hollow structure of bridge column head or girder end
JP4039139B2 (en) Steel framework structure of steel concrete composite slab
JP2004225290A (en) Composite floor-slab girder
JP4293696B2 (en) Construction method of composite floor slab bridge
KR101059632B1 (en) Steel beam linking structure and composite beam execution method using thereof
KR20210004289A (en) Transfer Structure Construction Method Using U-shaped Steel Girder
KR100485060B1 (en) Joint between steel superstructure and reinforced concrete substructure of rahmen typed hybrid bridge

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080407

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080428

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4232508

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131219

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term