JP4230621B2 - Pneumatic tire - Google Patents

Pneumatic tire Download PDF

Info

Publication number
JP4230621B2
JP4230621B2 JP22876999A JP22876999A JP4230621B2 JP 4230621 B2 JP4230621 B2 JP 4230621B2 JP 22876999 A JP22876999 A JP 22876999A JP 22876999 A JP22876999 A JP 22876999A JP 4230621 B2 JP4230621 B2 JP 4230621B2
Authority
JP
Japan
Prior art keywords
groove
tread
lug groove
lug
axial direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22876999A
Other languages
Japanese (ja)
Other versions
JP2001055014A (en
Inventor
光司 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP22876999A priority Critical patent/JP4230621B2/en
Publication of JP2001055014A publication Critical patent/JP2001055014A/en
Application granted granted Critical
Publication of JP4230621B2 publication Critical patent/JP4230621B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/13Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
    • B60C11/1307Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping with special features of the groove walls
    • B60C11/1315Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping with special features of the groove walls having variable inclination angles, e.g. warped groove walls

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、オフロード用およびオン・オフロード両用として好適であり、ラグ溝内の泥づまりを低減でき、乾燥路における操縦安定性を損ねることなく泥濘地での走行性能を向上しうる空気入りタイヤに関する。
【0002】
【従来の技術】
泥濘地の走行を可能としたオフロード用およびオン・オフロード両用等の空気入りタイヤでは、一般に、ラグ溝を基調としこのラグ溝の溝長さや溝深さを大きくしたブロックタイプやラグ・リブタイプのトレッドパターンを採用するとともに、このトレッドパターンにおける海面積比(トレッド面積Stに対するトレッド溝の全溝面積Sgの比Sg/St)を、例えば40%以上と大きく設定している。
【0003】
これにより、ラグ溝内で泥をしっかりとグリップし、泥の掘り起こし摩擦力や剪断摩擦力を高め、泥濘地におけるトラクション性を確保している。またこのトラクション性をさらに高めるために、ラグ溝壁面の傾斜角度を、例えば10゜程度と低く、すなわちトレッド面に対して直角に近い角度で配することも行われている。
【0004】
【発明が解決しようとする課題】
しかしながら、前記ラグ溝の長寸化、海面積比の増大、およびラグ溝壁面における傾斜角度の低減は、パターン剛性の低下を招くなど、乾燥路における操縦安定性を低下させる。またこのものは、泥はけ性の低下をもたらし、溝内で捉えた泥が排出されずに目づまりを起こしやすいという問題がある。特にラグ溝に泥づまりが発生すると、トラクション性が機能せず泥濘地での走破性を著しく悪化させることとなる。
【0005】
そこで本発明は、ラグ溝の溝壁面傾斜角度αを、ラグ溝のタイヤ軸方向内端部における溝壁面傾斜角度α1から外端部における溝壁面傾斜角度α2まで増加させることを基本として、ラグ溝の泥づまりを効果的に抑制でき、しかもトレッド端側のパターン剛性を増加させるなどコーナリングパワーが高まり、乾燥路における操縦安定性を向上しうる空気入りタイヤの提供を目的としている。
【0006】
【課題を解決するための手段】
前記目的を達成するために、本願の請求項1の発明は、
トレッド面に、トレッド縁からタイヤ軸方向内方にのびるラグ溝を少なくとも含むトレッド溝を具え、しかもトレッド面の面積Stとトレッド面内における前記トレッド溝の全溝面積Sgとの比である海面積比(Sg/St)を40%以上、かつ65%以下とした泥濘地の走行に適した空気入りタイヤであって、
前記ラグ溝は、溝中心線のタイヤ軸方向線に対する溝中心線角度θを0〜40度、かつこのラグ溝のタイヤ軸方向長さWgを、トレッド巾TWの0.15倍以上、かつ0.35倍以下とするとともに、
前記ラグ溝を挟み対向する2つのラグ溝壁面の該ラグ溝壁面が連なるトレッド面に立てた法線に対してこの法線を含みラグ溝中心線と直交する面における傾き角度である溝壁面傾斜角度αは、前記対向する2つのラグ溝壁面において、前記ラグ溝のタイヤ軸方向内端部における溝壁面傾斜角度α1から外端部における溝壁面傾斜角度α2まで増加させたことを特徴としている。
【0007】
また請求項2の発明では、前記溝壁面傾斜角度α1、α2の差(α2−α1)は、10〜30度であることを特徴としている。
【0008】
また請求項3の発明では、前記ラグ溝は、タイヤ軸方向内側において、タイヤ周方向溝と交差して途切れることを特徴としている。
【0009】
【発明の実施の形態】
以下、本発明の実施の形態を、図示例とともに説明する。
図1、2は、本発明の空気入りタイヤ1が、オン・オフロード両用の四輪駆動車用タイヤとして形成された場合のトレッド部2を例示しており、図において、空気入りタイヤ1は、トレッド面2Sに、トレッド縁TEからタイヤ軸方向内方にのびるラグ溝3を少なくとも含むトレッド溝4を設けている。
【0010】
前記トレッド溝4として、本例では、タイヤ赤道COの両側に配されるタイヤ周方向溝5、5と、トレッド縁TEからタイヤ軸方向内方にのびるとともに前記タイヤ周方向溝5と交差して途切れるラグ溝3・・・と、前記タイヤ周方向溝5、5間を横切る横溝6・・・とから形成される場合を例示している。これによって、本例では、タイヤ赤道CO上で周方向に配列する中のブロックBiと、トレッド縁TEに沿って周方向に配列するショルダーブロックBoとを具えるブロックタイプのトレッドパターンを形成している。
【0011】
このトレッドパターンでは、前記トレッド面2Sの面積Stと、トレッド面内における前記トレッド溝4の全溝面積Sgとの比である海面積比(Sg/St)を40%以上としている。これは、悪路、特に泥濘地の走行においては、前記海面積比(Sg/St)が、本願においても重要であり、40%以下では浮力の影響が大きくなり、ブロックBが地中深く入り込んで泥をしっかりとグリップすることが難しくなるなど、泥濘地での良好なトラクション性が得られなくなるからである。なお海面積比(Sg/St)が65%をこえると、乾燥した良路(例えばアスファルト路面等)での操縦安定性が損なわれるため好ましくない。
【0012】
次に、本願では、トレッド縁TEで開口する横溝を「ラグ溝3」として定義しており、このラグ溝3は、前記トラクション性のために、その溝中心線Cのタイヤ軸方向線に対する溝中心線角度θを0〜40度に規制している。該溝中心線角度θが40度を超えると、ラグ溝3内でグリップした泥から得られる剪断摩擦力および泥の掘り起こし摩擦力の周方向成分力が著減し、トラクション性の確保が困難となる。ここで、「溝中心線C」とは、ラグ溝3のトレッド面2S上における稜線E、E間の中央を通る線を意味する。
【0013】
また前記ラグ溝3では、そのタイヤ軸方向長さWgを、トレッド巾TWの0.15倍以上としている。ここで、ラグ溝3のタイヤ軸方向長さWg(以下ラグ溝長さWgとよぶ)とは、前記溝中心線Cが終端する点Pからトレッド縁TEまでの距離を意味し、本例の如く、ラグ溝3がタイヤ周方向溝5と交差する場合には、図1に示すように、前記溝中心線Cが、前記タイヤ周方向溝5のタイヤ軸方向外側の稜線仮想線Lと交差する点Pからトレッド縁TEまでの距離を意味する。このラグ溝長さWgが0.15×TWより小の時、グリップした泥から得られる剪断摩擦力自体が過小となってしまう。逆に、ラグ溝長さWgが0.35×TWより大では、トレッド中央部の剛性及びエッジ成分の減少により横滑りが発生しやすくなる。なお図1では、便宜上、トレッド溝4のトレッド面2S上における稜線を用いてトレッドパターンを示しており、従って、図1では溝底と溝壁面とは区別されていない。
【0014】
ここで、「トレッド巾TW」とは、前記トレッド縁TE、TE間のタイヤ軸方向の距離を意味し、本例では、トレッド面2Sとトレッド側面BS(バットレス面)とが角状に交わる所謂スクエアショルダーをなすことにより、この角状の交点によってトレッド縁TEを形成する場合を例示する。なお、オフロード用およびオン・オフロード両用としては一般に採用されていないが、トレッド面2Sとトレッド側面BSとが斜面を介して交わる所謂テーパーショルダー、或いは小円弧面を介して交わる所謂ラウンドショルダーの場合には、トレッド面2Sと斜面或いは小円弧面との交点によってトレッド縁TEを形成する。
【0015】
そして、本願では、図3、4に示すように、ラグ溝壁面3Sの溝壁面傾斜角度α(傾き角度)を、前記ラグ溝3のタイヤ軸方向内端部Y1における溝壁面傾斜角度α1から外端部Y2における溝壁面傾斜角度α2まで増加させたことに大きな特徴がある。ここで、ラグ溝壁面3Sとは、当初請求項1に記載していたように「前記ラグ溝3を挟むラグ溝壁面3S」であり、図3,及び後記する図5,6のように、ラグ溝3を挟んで対向する2つのラグ溝壁面3S,3Sを有し、この2つのラグ溝壁面3S,3S(即ちそれぞれ)において、溝壁面傾斜角度α(傾き角度)を、前記ラグ溝3のタイヤ軸方向内端部Y1における溝壁面傾斜角度α1から外端部Y2における溝壁面傾斜角度α2まで増加させていることは明らかである。この記載は、[0019]の「ラグ溝3は、ラグ溝壁面3S、3Sがタイヤ軸方向外方に向かって徐々に倒れた、すなわち溝巾が半径方向外方に広がるラッパ状の形状となる」の記載からも明瞭である。
【0016】
ここで、「溝壁面傾斜角度α」とは、図4、5に示すように、前記ラグ溝壁面3Sが連なるトレッド面2Sに立てた法線Nに対しての、この法線Nを含みラグ溝中心線Cと直交する面NSにおけるラグ溝壁面3Sの傾き角度を意味する。
【0017】
また前記内端部Y1及び外端部Y2とは、前記ラグ溝壁面3Sの稜線Eでの長さの0.15倍以下の距離を、稜線Eの内端点P1及び外端点P2から隔たる範囲の領域を意味する。
【0018】
なお内端部Y1では、前記溝壁面傾斜角度α1は、少なくとも内端点P1に向かって増加しない、すなわち略一定、或いは内端点P1に向かって漸減している。また外端部Y2では、前記溝壁面傾斜角度α2は、少なくとも外端点P2に向かって減少しない、すなわち略一定、或いは外端点P2に向かって漸増している。
【0019】
このように、ラグ溝3は、その溝壁面傾斜角度αを、夫々前記内端部Y1から外端部Y2に至り増加させているため、ラグ溝3は、ラグ溝壁面3S、3Sがタイヤ軸方向外方に向かって徐々に倒れた、すなわち溝巾が半径方向外方に広がるラッパ状の形状となる。
【0020】
その結果、タイヤ回転の遠心力により、ラグ溝3内に入り込んだ泥が半径方向外側に排出されやすくなる。
【0021】
またラグ溝3内に泥が新たに入ることで、元の泥がラグ溝壁面3Sの傾斜に沿って動くなど、タイヤ軸方向外方に向かって絞り出す向きの力が発生する。
【0022】
また、図6に示すように、ラグ溝3、3間のショルダーブロックBoにおいては、タイヤ軸方向内側の剛性が、外側の剛性よりも大となる。従って、このブロック内の剛性差により、ショルダーブロックBoの動きは、タイヤ軸方向外側よりも内側の方が大となり、ラグ溝3内の泥をタイヤ軸方向外方に誘導する。
【0023】
これらの作用が互いに有機的に結合して機能し、その結果、排土性が大巾に向上し、ラグ溝の泥づまりを効果的に抑制しうる。
【0024】
また前述の如く、ショルダーブロックBoの剛性が、タイヤ軸方向外側で大となるため、コーナリングパワーが増加し、従って、乾燥路での走行、特に旋回走行における剛性感、挙動安定性が大巾に改善される等操縦安定性を向上しうる。ここで、前記溝壁面傾斜角度α1、α2の差(α2−α1)は、10〜30度であることが好ましく、差が10度未満では、排土性の向上効果、及び操縦安定性の向上効果が充分に発揮されなくなる。逆に30度を超えると、ラグ溝3の断面積が過小となり、泥濘地の走破性に不利となる。
【0025】
なお前記溝壁面傾斜角度α1の値自体は、特に規制されないが、2〜10度の範囲が一般的であり、ラグ溝3の溝深さDgも、従来と同様12〜18mmが好適である。また前記内端部Y1と外端部Y2との間の溝壁面傾斜角度αの増加は、本例の如く連続的に滑らかに行うことが最も好ましいが、段階的に増加させることもできる。この時には、少なくとも3段階以上に分割し段差をできるだけ小さくすることが好ましい。
【0026】
またラグ溝3以外のトレッド溝4、すなわちタイヤ周方向溝5及び横溝6の形状、サイズ(溝巾や溝深さ)、本数等は要求に応じて自在な態様に変化させることができる。
【0027】
【実施例】
図1のトレッドパターンを有するタイヤサイズ235/85R16の空気入りタイヤを表1の仕様に基づき試作とともに、各試供タイヤの、泥濘地における排土性、トラクション力(牽引力)及び発進加速タイム、並びに乾燥路での操縦安定性をテストした。
【0028】
(1)泥濘地での排土性:
試供タイヤをリム(6J×16)、内圧(200kPa)の条件にて、車両(四輪駆動のRV車両)の全輪に装着し、深さ約200mmの泥層を有する泥濘地のテストコースを走行したときの、泥づまり状態を目視によって、×、△、○、◎の4段階で判定した。
【0029】
(2)泥濘地でのトラクション力(牽引力)
前記テストコースを走行したときのトラクション力を、登坂試験によって夫々10回測定するとともに、その平均値によって、×、△、○、◎の4段階で判定した。
【0030】
(3)泥濘地での発進加速タイム:
前記テストコースにおいて静止状態から20mまで進むに要した発進時の時間を10回測定するとともに、その平均値によって、×、△、○、◎の4段階で判定した。
【0031】
(4)乾燥路での操縦安定性:
前記車両を用い、乾燥したアスファルト路面のテストコースを走行したときの操縦安定性を、ドライバーの官能評価により×、△、○、◎の4段階で判定した。
【0032】
【表1】

Figure 0004230621
【0033】
【発明の効果】
叙上の如く本発明は、ラグ溝の溝壁面傾斜角度αを、ラグ溝のタイヤ軸方向内端部における溝壁面傾斜角度α1から外端部における溝壁面傾斜角度α2まで増加させているため、ラグ溝の泥づまりを効果的に抑制しうるとともに、乾燥路における操縦安定性を向上できる。
【図面の簡単な説明】
【図1】本発明の一実施例のタイヤのトレッドパターンの展開図である。
【図2】ラグ溝を示す断面図である。
【図3】ラグ溝を示す斜視図である。
【図4】(A)、(B)は、ラグ溝の溝壁面傾斜角度α1、α2を示す断面図である。
【図5】ラグ溝をその溝壁面とともに示す平面図である。
【図6】本発明の作用効果の一つを説明する線図である。
【符号の説明】
2S トレッド面
3 ラグ溝
3S ラグ溝壁面
4 トレッド溝
5 タイヤ周方向溝
C ラグ溝の溝中心線
N トレッド面に立てた法線
TE トレッド縁
Y1 ラグ溝の内端部
Y2 ラグ溝の外端部[0001]
BACKGROUND OF THE INVENTION
The present invention is a pneumatic tire that is suitable for both off-road use and on-off road use, can reduce mud clogging in the lug groove, and can improve running performance in a muddy place without impairing the handling stability on a dry road. About.
[0002]
[Prior art]
For off-road and on / off-road pneumatic tires that can run in muddy areas, block type and lug / rib type with lug groove as the main tone and groove length and groove depth are generally used. The tread pattern is used, and the sea area ratio in this tread pattern (ratio Sg / St of the total groove area Sg of the tread groove to the tread area St) is set to be as large as 40% or more, for example.
[0003]
As a result, the mud is firmly gripped in the lug groove, the mud digging up and the frictional force and shearing frictional force are increased, and the traction property in the mudland is secured. In order to further improve the traction, the lug groove wall has an inclination angle as low as about 10 °, that is, an angle close to a right angle with respect to the tread surface.
[0004]
[Problems to be solved by the invention]
However, an increase in the length of the lug groove, an increase in the sea area ratio, and a decrease in the inclination angle on the wall surface of the lug groove reduce the steering stability on the dry road, for example, leading to a decrease in pattern rigidity. In addition, this has a problem that mud repellency is lowered, and mud caught in the groove is not discharged and is easily clogged. In particular, when mud clogging occurs in the lug groove, the traction property does not function, and the running performance in the muddy ground is remarkably deteriorated.
[0005]
Therefore, the present invention is based on the fact that the groove wall inclination angle α of the lug groove is increased from the groove wall inclination angle α1 at the inner end portion in the tire axial direction of the lug groove to the groove wall inclination angle α2 at the outer end portion. An object of the present invention is to provide a pneumatic tire capable of effectively suppressing mud clogging, increasing cornering power by increasing pattern rigidity on the tread end side and improving driving stability on a dry road.
[0006]
[Means for Solving the Problems]
In order to achieve the object, the invention of claim 1 of the present application
The tread surface includes a tread groove including at least a lug groove extending inward in the tire axial direction from the tread edge, and the sea area is a ratio of the area St of the tread surface to the total groove area Sg of the tread groove in the tread surface. A pneumatic tire suitable for traveling in a muddy area with a ratio (Sg / St) of 40% or more and 65% or less ,
The lug groove has a groove center line angle θ of 0 to 40 degrees with respect to the tire axial direction line of the groove center line, and the tire axial direction length Wg of the lug groove is 0.15 times the tread width TW or more and 0 .35 times or less ,
Inclination of the groove wall surface that is an inclination angle in a plane that includes this normal line and is perpendicular to the center line of the lug groove with respect to the normal line of the two lug groove wall surfaces that are opposed to each other with the lug groove interposed therebetween. The angle α is characterized in that, in the two opposing lug groove wall surfaces, the groove wall inclination angle α1 at the inner end portion in the tire axial direction of the lug groove is increased from the groove wall inclination angle α2 at the outer end portion.
[0007]
The invention according to claim 2 is characterized in that a difference (α2−α1) between the groove wall inclination angles α1 and α2 is 10 to 30 degrees.
[0008]
According to a third aspect of the invention, the lug groove intersects with the tire circumferential groove and is interrupted on the inner side in the tire axial direction.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1 and 2 exemplify a tread portion 2 when the pneumatic tire 1 of the present invention is formed as a tire for a four-wheel drive vehicle for both on and off-road use. The tread surface 2S is provided with a tread groove 4 including at least a lug groove 3 extending inward in the tire axial direction from the tread edge TE.
[0010]
As the tread groove 4, in this example, the tire circumferential grooves 5 and 5 disposed on both sides of the tire equator CO, and the tire circumferential direction groove 5 extend inward in the tire axial direction from the tread edge TE. The case where it forms from the lug groove 3 ... which interrupts, and the horizontal groove 6 ... which crosses between the said tire circumferential direction grooves 5 and 5 is illustrated. Thus, in this example, a block type tread pattern is formed that includes blocks Bi arranged in the circumferential direction on the tire equator CO and shoulder blocks Bo arranged in the circumferential direction along the tread edge TE. Yes.
[0011]
In this tread pattern, the sea area ratio (Sg / St), which is the ratio between the area St of the tread surface 2S and the total groove area Sg of the tread groove 4 in the tread surface, is 40% or more. This is because the sea area ratio (Sg / St) is also important in the present application when traveling on rough roads, especially in muddy areas, and the influence of buoyancy increases below 40%, and block B enters deeply into the ground. This is because it becomes difficult to grip mud firmly, and good traction characteristics in mudland cannot be obtained. A sea area ratio (Sg / St) exceeding 65% is not preferable because steering stability on a dry good road (for example, an asphalt road surface) is impaired.
[0012]
Next, in the present application, the lateral groove that opens at the tread edge TE is defined as “lug groove 3”, and this lug groove 3 is a groove with respect to the tire axial direction line of the groove center line C for the traction property. The center line angle θ is regulated to 0 to 40 degrees. If the groove center line angle θ exceeds 40 degrees, the shear frictional force obtained from the mud gripped in the lug groove 3 and the circumferential component force of the mud digging frictional force are significantly reduced, making it difficult to ensure traction. Become. Here, the “groove center line C” means a line passing through the center between the ridge lines E and E on the tread surface 2S of the lug groove 3.
[0013]
Moreover, in the said lug groove 3, the tire axial direction length Wg is 0.15 times or more of the tread width TW. Here, the tire axial direction length Wg of the lug groove 3 (hereinafter referred to as the lug groove length Wg) means the distance from the point P where the groove center line C terminates to the tread edge TE. Thus, when the lug groove 3 intersects with the tire circumferential groove 5, as shown in FIG. 1, the groove center line C intersects the ridge line imaginary line L outside the tire circumferential groove 5 in the tire axial direction. Means the distance from the point P to the tread edge TE. When the lug groove length Wg is smaller than 0.15 × TW, the shear frictional force itself obtained from the gripped mud becomes excessively small. On the other hand, when the lug groove length Wg is larger than 0.35 × TW, side slip is likely to occur due to the rigidity of the tread central portion and the reduction of the edge component. In FIG. 1, for the sake of convenience, the tread pattern is shown by using the ridgeline on the tread surface 2S of the tread groove 4, and therefore, the groove bottom and the groove wall surface are not distinguished in FIG.
[0014]
Here, the “tread width TW” means a distance in the tire axial direction between the tread edges TE and TE, and in this example, the so-called tread surface 2S and the tread side surface BS (buttress surface) intersect in a square shape. A case where the tread edge TE is formed by this square intersection by forming a square shoulder is illustrated. Although not generally used for both off-road use and on / off-road use, a so-called tapered shoulder where the tread surface 2S and the tread side surface BS intersect via a slope, or a so-called round shoulder where a small arc surface intersects. In this case, the tread edge TE is formed by the intersection of the tread surface 2S and the inclined surface or the small circular arc surface.
[0015]
In the present application, as shown in FIGS. 3 and 4, the groove wall inclination angle α (inclination angle) of the lug groove wall surface 3 </ b> S is outside the groove wall inclination angle α <b> 1 at the tire axial direction inner end Y <b> 1 of the lug groove 3. The feature is that the groove wall inclination angle α2 at the end Y2 is increased. Here, the lug groove wall surface 3S is “the lug groove wall surface 3S sandwiching the lug groove 3” as described in the first claim, and as shown in FIG. 3 and FIGS. There are two lug groove wall surfaces 3S, 3S that are opposed to each other with the lug groove 3 interposed therebetween, and in these two lug groove wall surfaces 3S, 3S (ie, respectively), the groove wall inclination angle α (inclination angle) is set to the lug groove 3 It is obvious that the groove wall inclination angle α1 at the inner end portion Y1 in the tire axial direction is increased from the groove wall inclination angle α2 at the outer end portion Y2. This description states that “the lug groove 3 of [0019] has a trumpet shape in which the lug groove wall surfaces 3S and 3S are gradually tilted outward in the tire axial direction, that is, the groove width spreads outward in the radial direction. It is clear from the description.
[0016]
Here, as shown in FIGS. 4 and 5, the “groove wall inclination angle α” means a lag including the normal N with respect to the normal N standing on the tread surface 2S where the lug groove wall 3S is continuous. It means the inclination angle of the lug groove wall surface 3S in the plane NS orthogonal to the groove center line C.
[0017]
Further, the inner end Y1 and the outer end Y2 are a range in which a distance of 0.15 times or less the length of the lug groove wall surface 3S at the ridge line E is separated from the inner end point P1 and the outer end point P2 of the ridge line E. Means the area.
[0018]
At the inner end Y1, the groove wall inclination angle α1 does not increase at least toward the inner end point P1, that is, is substantially constant or gradually decreases toward the inner end point P1. In the outer end Y2, the groove wall inclination angle α2 does not decrease at least toward the outer end point P2, that is, is substantially constant, or gradually increases toward the outer end point P2.
[0019]
Thus, since the lug groove 3 increases the groove wall inclination angle α from the inner end Y1 to the outer end Y2, the lug groove 3 includes the lug groove wall surfaces 3S and 3S on the tire shaft. It becomes a trumpet shape that gradually falls outward in the direction, that is, the groove width spreads outward in the radial direction.
[0020]
As a result, the mud that has entered the lug groove 3 is easily discharged radially outward by the centrifugal force of the tire rotation.
[0021]
Further, when mud newly enters the lug groove 3, a force in the direction of squeezing outward in the tire axial direction is generated, for example, the original mud moves along the inclination of the lug groove wall surface 3S.
[0022]
As shown in FIG. 6, in the shoulder block Bo between the lug grooves 3 and 3, the rigidity on the inner side in the tire axial direction is larger than the rigidity on the outer side. Therefore, due to the difference in rigidity in the block, the movement of the shoulder block Bo becomes larger on the inner side than on the outer side in the tire axial direction, and mud in the lug groove 3 is guided outward in the tire axial direction.
[0023]
These functions function by organically bonding to each other. As a result, the soil removal performance is greatly improved, and mud clogging in the lug grooves can be effectively suppressed.
[0024]
Further, as described above, the rigidity of the shoulder block Bo is increased on the outer side in the tire axial direction, so that the cornering power is increased. Therefore, the rigidity feeling and the behavioral stability in the driving on the dry road, particularly the turning driving are greatly increased. The improved steering stability can be improved. Here, the difference (α2−α1) between the groove wall inclination angles α1 and α2 is preferably 10 to 30 degrees, and if the difference is less than 10 degrees, the effect of improving the soil removal property and the improvement of the handling stability are obtained. The effect is not fully exhibited. On the other hand, if it exceeds 30 degrees, the cross-sectional area of the lug groove 3 becomes too small, which is disadvantageous for the running performance of the muddy ground.
[0025]
The value of the groove wall inclination angle α1 itself is not particularly limited, but is generally in the range of 2 to 10 degrees, and the groove depth Dg of the lug groove 3 is preferably 12 to 18 mm as in the conventional case. Further, it is most preferable to increase the groove wall inclination angle α between the inner end Y1 and the outer end Y2 continuously and smoothly as in this example, but it can also be increased stepwise. At this time, it is preferable to divide into at least three steps to make the step as small as possible.
[0026]
Further, the shape, size (groove width and groove depth), the number, etc. of the tread grooves 4 other than the lug grooves 3, that is, the tire circumferential grooves 5 and the lateral grooves 6, can be changed in any manner as required.
[0027]
【Example】
A pneumatic tire having a tire size of 235 / 85R16 having the tread pattern shown in FIG. 1 is manufactured on the basis of the specifications shown in Table 1, and the soil removal performance, traction force (traction force) and start acceleration time of each sample tire in the muddy ground, and drying. Tested on road stability.
[0028]
(1) Soil removal in a muddy area:
A test course for a muddy ground with a mud layer with a depth of about 200 mm is mounted on all wheels of a vehicle (four-wheel drive RV vehicle) under the conditions of a rim (6J × 16) and internal pressure (200 kPa). The state of mud clogging when traveling was visually judged in four stages, x, Δ, ○, and ◎.
[0029]
(2) Traction force (traction force) in a muddy area
The traction force when running on the test course was measured 10 times in each of the climbing tests, and the average value was determined in four stages of x, Δ, ○, and ◎.
[0030]
(3) Start acceleration time in a muddy area:
In the test course, the time required for starting from a stationary state to 20 m was measured 10 times, and the average value of the time was determined in four stages of x, Δ, ○, and ◎.
[0031]
(4) Steering stability on dry road:
Steering stability when running on a dry asphalt road test course using the vehicle was judged in four stages of ×, Δ, ○, and ◎ by sensory evaluation of the driver.
[0032]
[Table 1]
Figure 0004230621
[0033]
【The invention's effect】
As described above, the present invention increases the groove wall inclination angle α of the lug groove from the groove wall inclination angle α1 at the tire axial direction inner end of the lug groove to the groove wall inclination angle α2 at the outer end. It is possible to effectively suppress mud clogging in the lug grooves and improve steering stability in the dry road.
[Brief description of the drawings]
FIG. 1 is a development view of a tread pattern of a tire according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view showing lug grooves.
FIG. 3 is a perspective view showing a lug groove.
4A and 4B are cross-sectional views showing groove wall inclination angles α1 and α2 of lug grooves.
FIG. 5 is a plan view showing a lug groove together with a groove wall surface thereof.
FIG. 6 is a diagram illustrating one of the operational effects of the present invention.
[Explanation of symbols]
2S tread surface 3 lug groove 3S lug groove wall surface 4 tread groove 5 tire circumferential groove C groove center line N normal line TE standing on tread surface T1 edge Y1 inner end Y2 of lug groove outer end of lug groove

Claims (3)

トレッド面に、トレッド縁からタイヤ軸方向内方にのびるラグ溝を少なくとも含むトレッド溝を具え、しかもトレッド面の面積Stとトレッド面内における前記トレッド溝の全溝面積Sgとの比である海面積比(Sg/St)を40%以上、かつ65%以下とした泥濘地の走行に適した空気入りタイヤであって、
前記ラグ溝は、溝中心線のタイヤ軸方向線に対する溝中心線角度θを0〜40度、かつこのラグ溝のタイヤ軸方向長さWgを、トレッド巾TWの0.15倍以上、かつ0.35倍以下とするとともに、
前記ラグ溝を挟み対向する2つのラグ溝壁面の該ラグ溝壁面が連なるトレッド面に立てた法線に対してこの法線を含みラグ溝中心線と直交する面における傾き角度である溝壁面傾斜角度αは、前記対向する2つのラグ溝壁面において、前記ラグ溝のタイヤ軸方向内端部における溝壁面傾斜角度α1から外端部における溝壁面傾斜角度α2まで増加させたことを特徴とする空気入りタイヤ。
The tread surface includes a tread groove including at least a lug groove extending inward in the tire axial direction from the tread edge, and the sea area is a ratio of the area St of the tread surface to the total groove area Sg of the tread groove in the tread surface. A pneumatic tire suitable for traveling in a muddy area with a ratio (Sg / St) of 40% or more and 65% or less ,
The lug groove has a groove center line angle θ of 0 to 40 degrees with respect to the tire axial direction line of the groove center line, and the tire axial direction length Wg of the lug groove is 0.15 times the tread width TW or more and 0 .35 times or less ,
Inclination of the groove wall surface that is an inclination angle in a plane that includes this normal line and is perpendicular to the center line of the lug groove with respect to the normal line of the two lug groove wall surfaces that are opposed to each other with the lug groove interposed therebetween. The angle α is increased from the groove wall inclination angle α1 at the inner end in the tire axial direction of the lug groove to the groove wall inclination angle α2 at the outer end in the two opposing lug groove wall surfaces. Enter tire.
前記溝壁面傾斜角度α1、α2の差(α2−α1)は、10〜30度であることを特徴とする請求項1記載の空気入りタイヤ。  The pneumatic tire according to claim 1, wherein a difference (α2-α1) between the groove wall inclination angles α1 and α2 is 10 to 30 degrees. 前記ラグ溝は、タイヤ軸方向内側において、タイヤ周方向溝と交差して途切れることを特徴とする請求項1又は2記載の空気入りタイヤ。  3. The pneumatic tire according to claim 1, wherein the lug groove is interrupted by intersecting with the tire circumferential groove on the inner side in the tire axial direction.
JP22876999A 1999-08-12 1999-08-12 Pneumatic tire Expired - Fee Related JP4230621B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22876999A JP4230621B2 (en) 1999-08-12 1999-08-12 Pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22876999A JP4230621B2 (en) 1999-08-12 1999-08-12 Pneumatic tire

Publications (2)

Publication Number Publication Date
JP2001055014A JP2001055014A (en) 2001-02-27
JP4230621B2 true JP4230621B2 (en) 2009-02-25

Family

ID=16881563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22876999A Expired - Fee Related JP4230621B2 (en) 1999-08-12 1999-08-12 Pneumatic tire

Country Status (1)

Country Link
JP (1) JP4230621B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8197839B2 (en) 2001-06-29 2012-06-12 Virbac Corporation Sustained release delivery system
CN104972843A (en) * 2014-04-14 2015-10-14 住友橡胶工业株式会社 Pneumatic tyre

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4955860B2 (en) * 2001-04-09 2012-06-20 住友ゴム工業株式会社 Pneumatic tire
JP4414788B2 (en) * 2004-03-04 2010-02-10 株式会社ブリヂストン Rough terrain tire
JP4738276B2 (en) * 2006-08-03 2011-08-03 株式会社ブリヂストン Pneumatic tire
JP4276690B1 (en) * 2007-11-28 2009-06-10 住友ゴム工業株式会社 Pneumatic tire
CN101878120B (en) * 2007-11-28 2012-09-26 住友橡胶工业株式会社 Pneumatic tire
US9168791B2 (en) 2008-08-11 2015-10-27 The Goodyear Tire & Rubber Company Heavy duty tire
EP2911893B1 (en) * 2012-10-25 2018-05-30 Bridgestone Americas Tire Operations, LLC Material inclusion tread
JP5988852B2 (en) * 2012-12-05 2016-09-07 住友ゴム工業株式会社 Tire mud performance evaluation test method
JP5985381B2 (en) * 2012-12-20 2016-09-06 株式会社ブリヂストン Pneumatic tire
CN107933204B (en) 2014-03-26 2020-02-07 住友橡胶工业株式会社 Pneumatic tire
JP6014092B2 (en) * 2014-09-11 2016-10-25 住友ゴム工業株式会社 Pneumatic tire
JP6023741B2 (en) * 2014-03-26 2016-11-09 住友ゴム工業株式会社 Pneumatic tire
JP6107843B2 (en) * 2015-01-22 2017-04-05 横浜ゴム株式会社 Pneumatic tire
JP6919501B2 (en) * 2017-10-30 2021-08-18 横浜ゴム株式会社 Pneumatic tires
CN108248297A (en) * 2018-02-09 2018-07-06 建大橡胶(中国)有限公司 A kind of cross running beach vehicle tire
JP7205185B2 (en) * 2018-11-20 2023-01-17 住友ゴム工業株式会社 tire
JP7366715B2 (en) * 2019-11-29 2023-10-23 株式会社ブリヂストン tire

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8197839B2 (en) 2001-06-29 2012-06-12 Virbac Corporation Sustained release delivery system
CN104972843A (en) * 2014-04-14 2015-10-14 住友橡胶工业株式会社 Pneumatic tyre

Also Published As

Publication number Publication date
JP2001055014A (en) 2001-02-27

Similar Documents

Publication Publication Date Title
JP4230621B2 (en) Pneumatic tire
CN101815624B (en) Pneumatic tire
RU2395406C1 (en) Air tire with tread ledges on side strips (versions)
JP4580387B2 (en) Pneumatic tire
JP4739628B2 (en) Multipurpose tire for automobile
CN107804120B (en) Heavy load tire
JP3949939B2 (en) Pneumatic tire
JP3517404B2 (en) studless tire
JP2009161112A (en) Pneumatic tire
JPH10230712A (en) Pneumatic radial tire for all-season passenger car
KR101017152B1 (en) Pneumatic tire
JPH0268205A (en) Pneumatic tire
JP3035172B2 (en) Radial tire
JP4122179B2 (en) Pneumatic tire
JP2001225611A (en) Pneumatic tire having directional pattern
JP4116355B2 (en) Pneumatic tire
AU2010214654A1 (en) Pneumatic tyre
JP2008044441A (en) Pneumatic tire
JP4441009B2 (en) Pneumatic tire
JPH10278513A (en) Pneumatic tire for heavy load
JP4705671B2 (en) Pneumatic tire
JP3597600B2 (en) Pneumatic radial tire with directional pattern
JP3384716B2 (en) Pneumatic tire
JP2009161046A (en) Pneumatic tire
JP2002264613A (en) Pneumatic tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081204

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees