JP4229819B2 - Engine control system for construction machinery - Google Patents

Engine control system for construction machinery Download PDF

Info

Publication number
JP4229819B2
JP4229819B2 JP2003403937A JP2003403937A JP4229819B2 JP 4229819 B2 JP4229819 B2 JP 4229819B2 JP 2003403937 A JP2003403937 A JP 2003403937A JP 2003403937 A JP2003403937 A JP 2003403937A JP 4229819 B2 JP4229819 B2 JP 4229819B2
Authority
JP
Japan
Prior art keywords
engine
load operation
egr
load
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003403937A
Other languages
Japanese (ja)
Other versions
JP2005163638A (en
Inventor
和俊 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo SHI Construction Machinery Co Ltd
Original Assignee
Sumitomo SHI Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo SHI Construction Machinery Co Ltd filed Critical Sumitomo SHI Construction Machinery Co Ltd
Priority to JP2003403937A priority Critical patent/JP4229819B2/en
Publication of JP2005163638A publication Critical patent/JP2005163638A/en
Application granted granted Critical
Publication of JP4229819B2 publication Critical patent/JP4229819B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Description

本発明は油圧ショベル等の建設機械のエンジン制御システムに関するものであり、特に、NOx(窒素酸化物)とPM(粒子状浮遊物)及び黒煙を低減させて排気ガス規制に対応できる建設機械のエンジン制御システムに関するものである。   The present invention relates to an engine control system for a construction machine such as a hydraulic excavator, and more particularly to a construction machine that can meet exhaust gas regulations by reducing NOx (nitrogen oxide), PM (particulate suspended matter), and black smoke. The present invention relates to an engine control system.

一般に、油圧ショベルでは、動力源としてディーゼルエンジンを装備し、該ディーゼルエンジンに搭載された油圧ポンプを駆動源として、ブーム、アーム、バケット等を動作させ、各種の作業を行うようにしている。   In general, a hydraulic excavator is equipped with a diesel engine as a power source, and a boom, an arm, a bucket, and the like are operated using a hydraulic pump mounted on the diesel engine as a drive source to perform various operations.

ディーゼルエンジンは、空気中への有害成分の排出が問題とされ、排出ガス規制が強化される中、様々な規制対応技術が採用されている。その一つの技術として、排気中の有害成分であるNOxの発生を抑制するために、吸気管に不活性の排出ガスを再循環させる、所謂、EGR(Exhaust Gas Recirculation)システムが知られている(例えば、特許文献
1参照)。
特開平6−147024号公報。
Diesel engines are concerned with the emission of harmful components into the air, and while regulations on exhaust emissions are being strengthened, various regulations-compliant technologies have been adopted. As one of the techniques, a so-called EGR (Exhaust Gas Recirculation) system is known in which inactive exhaust gas is recirculated to the intake pipe in order to suppress generation of NOx that is a harmful component in exhaust gas ( For example, see Patent Document 1).
JP-A-6-147024.

特許文献1記載の発明に見られるようなEGRシステムは、NOxを低減させるために、燃焼温度の低下を目的として採用されている。NOxは燃焼温度が高い状態でより多く発生するため、EGR制御はエンジンにかかる負荷が高く、且つ、安定的に加わる定常負荷状態(一般的に車両に見られる負荷状態)で有効と考えられる。   The EGR system as found in the invention described in Patent Document 1 is employed for the purpose of lowering the combustion temperature in order to reduce NOx. Since NOx is generated more in a state where the combustion temperature is high, EGR control is considered to be effective in a steady load state (a load state generally found in a vehicle) in which the load on the engine is high and stably applied.

しかしながら、エンジンにかかる負荷が常に急激な変動を繰り返す建設機械においては、EGR制御は燃焼効率の悪化を伴うため、NOxに置き換わりPMや黒煙の増加が余儀なくされる。つまり、燃焼温度が高い状態(完全燃焼に近い状態)では、NOxが多くPM・黒煙は少ないが、逆に燃焼温度が低い状態(不完全燃焼)ではNOxは少なくPM・黒煙が多くなるというように、一方を追求すれば他方を犠牲にせざるを得ないという、所謂、トレードオフの関係にある。   However, in a construction machine in which the load on the engine is constantly changing rapidly, EGR control is accompanied by a deterioration in combustion efficiency, so that NOx is replaced and PM and black smoke are forced to increase. In other words, when the combustion temperature is high (close to complete combustion), the amount of NOx is large and the amount of PM / black smoke is small. Conversely, when the combustion temperature is low (incomplete combustion), the amount of NOx is small and the amount of PM / black smoke increases. Thus, there is a so-called trade-off relationship in which if one is pursued, the other must be sacrificed.

そこで、エンジンに於けるNOxとPM・黒煙のトレードオフ関係を解消するために解決すべき技術的課題が生じてくるのであり、本発明はこの課題を解決することを目的とする。   Therefore, a technical problem to be solved in order to eliminate the trade-off relationship between NOx and PM / black smoke in the engine arises, and the present invention aims to solve this problem.

本発明は上記目的を達成するために提案されたものであり、本発明は、エンジンと、該エンジンにより駆動する油圧ポンプと、該油圧ポンプからの吐出圧により駆動する油圧アクチュエータと、該エンジンの排気ガスを燃焼室に還流するEGR手段を備え、前記EGR手段が、前記エンジンの負荷変動を検出し、前記エンジンが無負荷アイドル運転から低負荷運転及び中負荷運転の状態を超えて急激に高負荷運転に切り替った時、或いは、低負荷運転から急激に中負荷運転の状態を超えて高負荷運転になる時は、前記燃焼室に送り込む前記排気ガスの量を定常量まで徐々に増加させ、逆に、高負荷運転から中負荷運転の状態を超えて低負荷運転の状態に切り替わった時には、前記燃焼室に送り込む前記排気ガスを瞬時にオフ或いは低流量になるように制御する建設機械のエンジン制御システムに於いて、
上記EGR手段が、上記エンジンの負荷変動を、上記油圧ポンプの吐出圧から検出するように構成されたことを特徴とする建設機械のエンジン制御システムを提供する。
The present invention has been proposed to achieve the above object, and the present invention relates to an engine, a hydraulic pump driven by the engine, a hydraulic actuator driven by a discharge pressure from the hydraulic pump, EGR means for recirculating the exhaust gas to the combustion chamber, the EGR means detects a load change of the engine, and the engine rapidly increases from a no-load idle operation to a state of low load operation and medium load operation. When switching to load operation, or when suddenly exceeding the state of medium load operation from low load operation to high load operation, the amount of exhaust gas fed into the combustion chamber is gradually increased to a steady amount. on the contrary, when switched to a state of low load operation beyond the state of the middle load operation from the high load operation, off some have the exhaust gas fed into the combustion chamber to instantaneously sounds in low flow In the construction machine of the engine control system to control in this way,
There is provided an engine control system for a construction machine, wherein the EGR means is configured to detect a load fluctuation of the engine from a discharge pressure of the hydraulic pump.

この構成によれば、エンジンの負荷変動を油圧ポンプの吐出圧から簡単に検出することにより、燃焼温度が高く、これによってNOxが多く排出される高負荷運転の状態になった時には前記燃焼室に排気ガスを送り込むことで、NOxの発生が抑えられる。逆に、燃焼温度が低く、NOxは少ない代わりにPM・黒鉛が多く排出される急激な負荷変動(低負荷から高負荷)時には、前記燃焼室に排気ガスを徐々に送り込むことになるので、PM・黒鉛の排出を少なくすることができる。   According to this configuration, when the engine load fluctuation is easily detected from the discharge pressure of the hydraulic pump, the combustion chamber has a high combustion temperature. By sending exhaust gas, generation of NOx can be suppressed. On the other hand, when the combustion temperature is low and NOx is small, but PM and graphite are exhausted, a sudden load change (low load to high load) causes exhaust gas to be gradually fed into the combustion chamber.・ The discharge of graphite can be reduced.

本発明は、エンジンの負荷変動を油圧ポンプの吐出圧から簡単に検出することができるので、燃焼温度が高いときに発生するNOxと急激な負荷変動時に発生するPM・黒鉛の両方を低減させることができる。Since the present invention can easily detect engine load fluctuations from the discharge pressure of the hydraulic pump, it can reduce both NOx generated when the combustion temperature is high and PM / graphite generated during sudden load fluctuations. Can do.

エンジンに於けるNOxとPM・黒煙のトレードオフ関係を解消するという目的を達成するために、エンジンと、該エンジンにより駆動する油圧ポンプと、該油圧ポンプからの吐出圧により駆動する油圧アクチュエータと、該エンジンの排気ガスを燃焼室に還流するEGR手段を備え、前記EGR手段が、前記エンジンの負荷変動を検出し、前記エンジンが無負荷アイドル運転から低負荷運転及び中負荷運転の状態を超えて急激に高負荷運転に切り替った時、或いは、低負荷運転から急激に中負荷運転の状態を超えて高負荷運転になる時は、前記燃焼室に送り込む前記排気ガスの量を定常量まで徐々に増加させ、逆に、高負荷運転から中負荷運転の状態を超えて低負荷運転の状態に切り替わった時には、前記燃焼室に送り込む前記排気ガスを瞬時にオフ或いは低流量になるように制御する建設機械のエンジン制御システムに於いて、
上記EGR手段が、上記エンジンの負荷変動を、上記油圧ポンプの吐出圧から検出するように構成されたことを特徴とする建設機械のエンジン制御システムを提供することにより実現した。
In order to achieve the purpose of eliminating the trade-off relationship between NOx and PM / black smoke in an engine, an engine, a hydraulic pump driven by the engine, and a hydraulic actuator driven by discharge pressure from the hydraulic pump, EGR means for recirculating the exhaust gas of the engine to the combustion chamber, the EGR means detects a load fluctuation of the engine, and the engine exceeds a state of low load operation and medium load operation from no-load idle operation When the engine is suddenly switched to high-load operation, or when it suddenly exceeds the state of medium-load operation from low-load operation and becomes high-load operation, the amount of the exhaust gas fed into the combustion chamber is reduced to a steady amount. When the exhaust gas gradually increases and conversely switches from the high load operation to the low load operation state beyond the medium load operation state, the exhaust gas fed into the combustion chamber is reduced. Sometimes off some stomach In a construction machine engine control system for controlling so that the low flow rate,
This is realized by providing an engine control system for a construction machine, wherein the EGR means is configured to detect a load fluctuation of the engine from a discharge pressure of the hydraulic pump.

以下、本発明の一実施例を図面に従って詳述する。尚、本発明に関連する技術事項も同時に説明することにする。図1は本発明を適用した建設機械としての油圧ショベルを示す。該油圧ショベル10は、下部走行体11の上に旋回機構12を介して上部旋回体13が旋回自在に載置されている。上部旋回体13には、その前方一側部にキャブ14が設けられ、且つ、前方中央部にブーム15が俯仰可能に取り付けられている。又、ブーム15の先端にアーム16が上下回動自在に取り付けられ、更に該アーム16の先端にバケット17が取り付けられている。 Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. The technical matters related to the present invention will be described at the same time. FIG. 1 shows a hydraulic excavator as a construction machine to which the present invention is applied. In the hydraulic excavator 10, an upper swing body 13 is rotatably mounted on a lower traveling body 11 via a swing mechanism 12. The upper swing body 13 is provided with a cab 14 on one front side thereof, and a boom 15 is attached to the front center portion so as to be able to be raised and lowered. An arm 16 is attached to the tip of the boom 15 so as to be rotatable up and down, and a bucket 17 is attached to the tip of the arm 16.

図2は図1の油圧ショベル10に適用可能したエンジン制御システムの構成ブロック図である。図2に於いて、本実施例のエンジン制御システムは、油圧ショベル10を駆動するエンジン21と、該エンジン21のパワーラインに接続された油圧ポンプ22と、EGR制御部23と、実回転数センサ26、過給圧センサ27、ポンプ吐出圧センサ28とで構成されている。   FIG. 2 is a configuration block diagram of an engine control system applicable to the hydraulic excavator 10 of FIG. 2, the engine control system of the present embodiment includes an engine 21 that drives the excavator 10, a hydraulic pump 22 that is connected to the power line of the engine 21, an EGR control unit 23, and an actual rotational speed sensor. 26, a supercharging pressure sensor 27, and a pump discharge pressure sensor 28.

エンジン21は本実施例ではディーゼルエンジンであり、該エンジン21を駆動源として油圧ショベル10が走行する。尚、図示しないが、エンジン21にはターボ過給器が設けられている。   The engine 21 is a diesel engine in this embodiment, and the excavator 10 travels using the engine 21 as a drive source. Although not shown, the engine 21 is provided with a turbocharger.

前記油圧ポンプ22は、ブーム15,アーム,バケット17を動作させる各油圧シリンダを含むアクチュエータ(図示せず)を駆動するもので、エンジン21の駆動力を受けて動作する。   The hydraulic pump 22 drives an actuator (not shown) including hydraulic cylinders that operate the boom 15, the arm, and the bucket 17, and operates under the driving force of the engine 21.

EGR制御部23は、マイクロコンピュータ(通称「マイコン」)を内蔵した制御演算部として機能するもので、エンジン21の駆動を制御するエンジンコントローラ24と油圧システムを制御するショベルコントローラ25とを有する。該EGR制御部23は、ポンプ吐出センサ28からのポンプ吐出圧信号と、実回転数センサ26からのエンジン実回転数信号と、過給圧センサ27からのターボ過給圧信号を受け、マイクロコンピュータ内に予めプログラムされている制御手順に従い、エンジンコントローラ24及びショベルコントローラ25にそれぞれ所定の制御を行わせる。   The EGR control unit 23 functions as a control calculation unit including a microcomputer (commonly called “microcomputer”), and includes an engine controller 24 that controls the drive of the engine 21 and an excavator controller 25 that controls the hydraulic system. The EGR control unit 23 receives a pump discharge pressure signal from the pump discharge sensor 28, an engine actual speed signal from the actual speed sensor 26, and a turbo boost pressure signal from the boost pressure sensor 27. The engine controller 24 and the excavator controller 25 are each caused to perform predetermined control in accordance with a control procedure programmed in advance.

又、EGR制御部23によるEGR制御は、前記エンジン21の負荷変動を検出し、前記エンジン21が無負荷アイドル運転から低負荷運転及び中負荷運転の状態を超えて急激に高負荷運転に切り替った時、或いは、低負荷運転から急激に中負荷運転の状態を超えた高負荷運転になる時は、燃焼室に送り込む排気ガスの量を定常量まで徐々に増加させ、逆に、高負荷運転から中負荷運転の状態を超えた低負荷運転の状態に切り替わった時には、前記燃焼室に送り込む前記排気ガスを瞬時にオフ或いは低流量になるように、負荷に応じて制御することで、燃焼温度が高いときに発生するNOxと急激な負荷変動時に発生するPM・黒鉛のトレードオフ関係を解消するようにしている。 The EGR control by the EGR control unit 23 detects a load change of the engine 21 and the engine 21 is suddenly switched from a no-load idle operation to a low load operation and a medium load operation to a high load operation. Or when the load changes from low load operation to high load operation that suddenly exceeds the state of medium load operation, gradually increase the amount of exhaust gas sent to the combustion chamber to a steady amount, and conversely, high load operation when switched to the state of low load operation beyond the state of the middle load operation from the off some have the exhaust gas fed into the combustion chamber to instantaneously so that the low flow rate, by controlling in accordance with the load, The trade-off relationship between NOx generated when the combustion temperature is high and PM / graphite generated during a sudden load change is eliminated.

以下、そのEGR制御部23によるEGR制御の具体的例を図3乃至図5を用いて説明する。   Hereinafter, a specific example of EGR control by the EGR control unit 23 will be described with reference to FIGS.

(具体例1:図3参照)
具体例1は、エンジンの負荷変動の状態を、EGR制御部23がポンプ吐出圧センサ28から得られるポンプ吐出圧信号から検出する場合である。そして、図3は油圧ポンプ22の信号波形とEGR量の波形を対応させて示しており、(a)の横軸には時間t、縦軸には時間tに伴うポンプ吐出圧Pの変化、(b)の横軸には時間t、縦軸には時間tに伴うEGR量Qの変化をそれぞれ示している。
(Specific example 1: See FIG. 3)
Specific example 1 is a case where the EGR control unit 23 detects the state of engine load fluctuation from a pump discharge pressure signal obtained from the pump discharge pressure sensor 28. FIG. 3 shows the signal waveform of the hydraulic pump 22 in correspondence with the waveform of the EGR amount. The horizontal axis of (a) is the time t, the vertical axis is the change in the pump discharge pressure P with the time t, The horizontal axis of (b) shows time t, and the vertical axis shows the change in the EGR amount Q with time t.

EGR制御部23は、図3に於いて、油圧ポンプ22のポンプ吐出圧Pをポンプ吐出圧信号から読み込み、図3(a)中にS1で予め設定される圧力と比較する。そして、設定圧力S1を超えている時は、高負荷運転の状態下にあると判定して定常量のEGR制御を行う。逆に、設定圧力S1以下になると、高負荷運転から低負荷運転の状態に切り替わったと判定してEGR制御を瞬時にOFF(オフ)し、排気ガスをエンジン21の燃焼室内に送り込むのを止める。又、設定圧力S1以下から設定圧力S1を超えると、低負荷運転から
高負荷運転の状態に切り替わったと判定してEGR量(排気ガス量)を定常量まで徐々に増加させて行く。
In FIG. 3, the EGR control unit 23 reads the pump discharge pressure P of the hydraulic pump 22 from the pump discharge pressure signal, and compares it with the pressure preset in S1 in FIG. When the pressure exceeds the set pressure S1, it is determined that the vehicle is under a high load operation state, and steady-state EGR control is performed. On the other hand, when the pressure is lower than the set pressure S1, it is determined that the high load operation is switched to the low load operation, and the EGR control is instantaneously turned off (off) to stop sending exhaust gas into the combustion chamber of the engine 21. When the set pressure S1 or less exceeds the set pressure S1, it is determined that the low load operation is switched to the high load operation state, and the EGR amount (exhaust gas amount) is gradually increased to a steady amount.

即ち、図3では、時間領域T1,T3,T5では、ポンプ吐出圧Pが低負荷、即ち設定圧力S1以下の状態にあり、従ってEGR制御はOFFである。又、図3(b)からは、高負荷運転から低負荷運転の状態に入るとEGR(排気ガス)は瞬時にしてOFFされていることがわかる(時間領域T3,T5参照)。逆に、低負荷運転から高負荷運転の状態に入ると、EGRは徐々に増加して定常のEGR量に戻っていることがわかる(時間領域T2,
T4参照)。
That is, in FIG. 3, in the time regions T1, T3, and T5, the pump discharge pressure P is in a low load state, that is, a state equal to or lower than the set pressure S1, and therefore the EGR control is OFF. Further, FIG. 3B shows that EGR (exhaust gas) is instantaneously turned off when entering the state of high load operation to low load operation (see time regions T3 and T5). Conversely, when entering the state of high load operation from low load operation, it can be seen that EGR gradually increases and returns to the steady EGR amount (time region T2, T2).
(See T4).

従って、具体例1のようにして、EGRを制御すると、燃焼温度が高い時に発生するNOxと、燃焼温度が低く急負荷時に発生するPM・黒鉛の両方を低減させることができる。   Therefore, when EGR is controlled as in the first specific example, both NOx generated when the combustion temperature is high and PM / graphite generated when the combustion temperature is low and sudden load can be reduced.

(具体例2:図4参照)
具体例2は、EGR制御部23がエンジンの負荷変動の状態を、過給圧センサ27から得られるターボ過給圧信号とポンプ吐出圧センサ28から得られるポンプ吐出圧信号から検出する場合である。そして、図4は油圧ポンプ22の信号波形とターボ過給器(図示せ
ず)の信号波形とEGR量の波形を対応させて示しており、(a)の横軸には時間t、縦軸
には時間tに伴うポンプ吐出圧Pの変化、(b)の横軸には時間t、縦軸には時間tに伴うターボ過給圧Pの変化、(c)の横軸には時間t、縦軸には時間tに伴うEGR量の変化をそれぞれ示している。
(Specific example 2: see Fig. 4)
Specific example 2 is a case where the EGR control unit 23 detects the engine load fluctuation state from the turbo boost pressure signal obtained from the boost pressure sensor 27 and the pump discharge pressure signal obtained from the pump discharge pressure sensor 28. . FIG. 4 shows the signal waveform of the hydraulic pump 22, the signal waveform of the turbocharger (not shown), and the waveform of the EGR amount in correspondence with each other. Is the change in pump discharge pressure P with time t, the horizontal axis of (b) is time t, the vertical axis is the change of turbocharge pressure P with time t, and the horizontal axis of (c) is time t. The vertical axis represents the change in EGR amount with time t.

EGR制御部23は、図4に於いて、ポンプ吐出圧信号からポンプ吐出圧Pを読み込むと共にターボ過給圧信号からターボ過給圧Pを読み込み、図4(b)中にS2で示す設定される圧力と比較する。そして、設定圧力S2を超えている時は高負荷運転の状態にあると判定して定常量のEGR制御を行う。逆に、設定圧力S2以下になると、高負荷運転から低負荷運転の状態に切り替わったと判定してEGR制御を瞬時にOFF(オフ)し、排気ガスをエンジン21の燃焼室内に送り込むのを止める。又、設定圧力S2以下から設定圧力S2を超えると、低負荷運転から高負荷運転の状態に切り替わったと判定してEGR量を定常量まで徐々に増加させて行く。   In FIG. 4, the EGR control unit 23 reads the pump discharge pressure P from the pump discharge pressure signal and also reads the turbo boost pressure P from the turbo boost pressure signal, and is set as indicated by S2 in FIG. 4B. Compare with the pressure. When the pressure exceeds the set pressure S2, it is determined that the vehicle is in a high load operation state, and a steady amount of EGR control is performed. On the other hand, when the pressure becomes lower than the set pressure S2, it is determined that the high load operation has been switched to the low load operation state, and the EGR control is instantaneously turned off (off) to stop sending exhaust gas into the combustion chamber of the engine 21. When the set pressure S2 or less is exceeded and the set pressure S2 is exceeded, it is determined that the low load operation is switched to the high load operation state, and the EGR amount is gradually increased to the steady amount.

即ち、図4では、時間領域T1,T3,T5では、ポンプ吐出圧Pが低負荷、即ち設定圧力S2以下の状態にあり、従ってEGR制御はOFFである。又、図4(c)からは、高負荷運転から低負荷運転の状態に入るとEGRは瞬時にしてOFFされていることがわかる(時間領域T3,T5参照)。逆に、低負荷運転から高負荷運転の状態に入ると、EGRは徐々に増加して定常のEGR量に戻っていることがわかる(時間領域T2,T4参照)。   That is, in FIG. 4, in the time regions T1, T3, T5, the pump discharge pressure P is in a low load, that is, a state equal to or lower than the set pressure S2, and therefore the EGR control is OFF. Also, from FIG. 4C, it can be seen that EGR is turned off instantaneously when entering the state of high load operation to low load operation (see time regions T3 and T5). On the contrary, when entering the state of high load operation from low load operation, it can be seen that EGR gradually increases and returns to the steady EGR amount (see time regions T2 and T4).

従って、具体例2のようにして、EGRを制御すると、具体例1の場合と同様に燃焼温度が高い時に発生するNOxと、燃焼温度が低く急負荷時に発生するPM・黒鉛の両方を低減させることができる。   Therefore, when EGR is controlled as in Example 2, both NOx generated when the combustion temperature is high and PM / graphite generated when the combustion temperature is low and sudden load are reduced as in Example 1. be able to.

(具体例3:図5参照)
具体例3は、EGR制御部23がエンジンの負荷変動の状態を、ポンプ吐出圧信号と実回転数センサ26から得られるエンジン実回転数から検出する場合である。そして、図5は油圧ポンプ22の信号波形とエンジン回転数の信号波形とEGR量の波形を対応させて示しており、(a)の横軸には時間t、縦軸には時間tに伴うポンプ吐出圧Pの変化、(b)の横軸には時間t、縦軸には時間tに伴うエンジン回転数Nの変化、(c)の横軸には時間t、縦軸には時間tに伴うEGR量の変化をそれぞれ示している。又、(b)のエンジン回転数では、目標回転数N0を設け、更に、該目標回転数N0からある回転数αを引いた設
定回転数S3を設けている。
(Specific example 3: See FIG. 5)
Specific example 3 is a case where the EGR control unit 23 detects the engine load fluctuation state from the pump discharge pressure signal and the actual engine speed obtained from the actual engine speed sensor 26. FIG. 5 shows the signal waveform of the hydraulic pump 22, the signal waveform of the engine speed, and the waveform of the EGR amount in correspondence with each other. The horizontal axis of (a) is time t and the vertical axis is time t. Changes in pump discharge pressure P, time t on the horizontal axis of (b), change in engine speed N with time t on the vertical axis, time t on the horizontal axis of (c), time t on the vertical axis The change of the EGR amount accompanying the is shown, respectively. In the engine speed (b), a target speed N0 is provided, and a set speed S3 obtained by subtracting a certain speed α from the target speed N0 is provided.

そして、EGR制御部23は、図5に於いて、ポンプ吐出圧信号からポンプ吐出圧Pを読み込むと共に、エンジン21の実回転数N1をエンジン実回転数信号から読み込み、設定回転数S3と比較する。設定回転数S3を超えている時は高負荷運転の状態にあると判定して定常量のEGR制御を行う。逆に、設定回転数S3以下になると、高負荷運転から低負荷運転の状態に切り替わったと判定してEGR制御を瞬時にOFF(オフ)し、排気ガスをエンジン21の燃焼室内に送り込むのを止める。又、設定回転数S3を超えると、低負荷運転から高負荷運転の状態に切り替わったと判定してEGR量を定常量まで徐々に増加させて行く。尚、図5に於いて、時間領域T0,T5はアイドリング時等の無負荷時の状態にあり、従って本例では無負荷の時もEGRをOFFするように設定している。   Then, in FIG. 5, the EGR control unit 23 reads the pump discharge pressure P from the pump discharge pressure signal, and also reads the actual engine speed N1 of the engine 21 from the engine actual engine speed signal, and compares it with the set engine speed S3. . When the set rotational speed S3 is exceeded, it is determined that the engine is in a high-load operation state, and steady-state EGR control is performed. On the other hand, when the rotation speed is lower than the set speed S3, it is determined that the high load operation is switched to the low load operation state, and the EGR control is instantaneously turned off to stop sending exhaust gas into the combustion chamber of the engine 21. . When the set rotational speed S3 is exceeded, it is determined that the low load operation is switched to the high load operation state, and the EGR amount is gradually increased to the steady amount. In FIG. 5, the time regions T0 and T5 are in a no-load state such as idling. Therefore, in this example, the EGR is set to be OFF even when there is no load.

又、図5では、時間領域T1,T3は、ポンプ吐出圧Pが急負荷、即ち設定回転数S3以下の状態にあり、従ってEGR制御はOFFである。更に、図5(c)からは、高負荷運転から低負荷運転の状態に入るとEGRは瞬時にしてOFFされていることがわかる(時
間領域T3,T5参照)。逆に、低負荷運転から高負荷運転の状態に入ると、EGRは徐
々に増加して定常のEGR量に戻っていることがわかる(時間領域T2,T4参照)。
In FIG. 5, in the time regions T1 and T3, the pump discharge pressure P is in a state of sudden load, that is, the set rotational speed S3 or less, and therefore the EGR control is OFF. Further, FIG. 5 (c) shows that EGR is instantaneously turned off when the low load operation state is entered from the high load operation (see time regions T3 and T5). On the contrary, when entering the state of high load operation from low load operation, it can be seen that EGR gradually increases and returns to the steady EGR amount (see time regions T2 and T4).

従って、具体例3のようにして、EGRを制御すると、具体例1,2の場合と同様に燃焼温度が高い時に発生するNOxと、燃焼温度が低く急負荷時に発生するPM・黒鉛の両方を低減させることができる。   Therefore, when the EGR is controlled as in the specific example 3, both NOx generated when the combustion temperature is high and PM / graphite generated when the combustion temperature is low and sudden load is applied as in the case of the specific examples 1 and 2. Can be reduced.

尚、本発明は、本発明の精神を逸脱しない限り種々の改変を為すことができ、そして、本発明が該改変されたものに及ぶことは当然である。   It should be noted that the present invention can be variously modified without departing from the spirit of the present invention, and the present invention naturally extends to the modified ones.

図は本発明の一実施の形態を示すものである。
本発明に係るエンジン制御システムを適用した油圧ショベルの全体構成図。 同上エンジン制御システムの構成ブロック図。 本発明システムに於けるEGR制御の具体例1を示すもので、(a)はポンプ吐出圧の変化を時間と対応させて示す波形図、(b)EGR量の変化を時間と対応させて示す波形図。 本発明システムに於けるEGR制御の具体例2を示すもので、(a)はポンプ吐出圧の変化を時間と対応させて示す波形図、(b)はターボ過給器のターボ過給圧の変化を時間と対応させて示す波形図、(c)EGR量の変化を時間と対応させて示す波形図。 本発明システムに於けるEGR制御の具体例3を示すもので、(a)は油圧ポンプの吐出圧の変化を時間と対応させて示す波形図、(b)はエンジンの実回転数の変化を時間と対応させて示す波形図、(c)EGR量の変化を時間と対応させて示す波形図。
The figure shows an embodiment of the present invention.
1 is an overall configuration diagram of a hydraulic excavator to which an engine control system according to the present invention is applied. The block diagram of a structure of an engine control system same as the above. A specific example 1 of EGR control in the system of the present invention is shown. (A) is a waveform diagram showing a change in pump discharge pressure in correspondence with time, and (b) a change in EGR amount in correspondence with time. Waveform diagram. FIG. 2 shows a specific example 2 of EGR control in the system of the present invention, where (a) is a waveform diagram showing a change in pump discharge pressure in correspondence with time, and (b) is a turbocharger pressure of a turbocharger. The waveform diagram which shows a change corresponding to time, (c) The waveform diagram which shows the change of the EGR amount corresponding to time. FIG. 3 shows a specific example 3 of EGR control in the system of the present invention, where (a) is a waveform diagram showing a change in the discharge pressure of the hydraulic pump in correspondence with time, and (b) is a change in the actual engine speed. FIG. 4 is a waveform diagram showing the time corresponding to the time, and (c) a waveform diagram showing the change in the EGR amount corresponding to the time.

符号の説明Explanation of symbols

21 エンジン
22 油圧ポンプ
23 EGR制御部
24 エンジンコントローラ
25 ショベルコントローラ
26 実回転数センサ
27 過給圧センサ
28 ポンプ吐出圧センサ
DESCRIPTION OF SYMBOLS 21 Engine 22 Hydraulic pump 23 EGR control part 24 Engine controller 25 Excavator controller 26 Actual rotation speed sensor 27 Supercharging pressure sensor 28 Pump discharge pressure sensor

Claims (1)

エンジンと、該エンジンにより駆動する油圧ポンプと、該油圧ポンプからの吐出圧により駆動する油圧アクチュエータと、該エンジンの排気ガスを燃焼室に還流するEGR手段を備え、前記EGR手段が、前記エンジンの負荷変動を検出し、前記エンジンが無負荷アイドル運転から低負荷運転及び中負荷運転の状態を超えて急激に高負荷運転に切り替った時、或いは、低負荷運転から急激に中負荷運転の状態を超えて高負荷運転になる時は、前記燃焼室に送り込む前記排気ガスの量を定常量まで徐々に増加させ、逆に、高負荷運転から中負荷運転の状態を超えて低負荷運転の状態に切り替わった時には、前記燃焼室に送り込む前記排気ガスを瞬時にオフ或いは低流量になるように制御する建設機械のエンジン制御システムに於いて、
上記EGR手段が、上記エンジンの負荷変動を、上記油圧ポンプの吐出圧から検出するように構成されたことを特徴とする建設機械のエンジン制御システム。
An engine, a hydraulic pump driven by the engine, a hydraulic actuator driven by a discharge pressure from the hydraulic pump, and an EGR means for returning the exhaust gas of the engine to a combustion chamber, wherein the EGR means When a load change is detected and the engine is suddenly switched from a no-load idle operation to a low-load operation and a medium-load operation to a high-load operation, or from a low-load operation to a medium-load operation When the engine is in a high load operation over the range, the amount of the exhaust gas fed into the combustion chamber is gradually increased to a steady amount, and conversely, the state of the low load operation is exceeded from the high load operation to the medium load operation state. to when switched, the off certain have the exhaust gas instantaneously feeding into the combustion chamber at the construction machine engine control system for controlling so that the low flow rate,
An engine control system for a construction machine, wherein the EGR means is configured to detect a load fluctuation of the engine from a discharge pressure of the hydraulic pump.
JP2003403937A 2003-12-03 2003-12-03 Engine control system for construction machinery Expired - Fee Related JP4229819B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003403937A JP4229819B2 (en) 2003-12-03 2003-12-03 Engine control system for construction machinery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003403937A JP4229819B2 (en) 2003-12-03 2003-12-03 Engine control system for construction machinery

Publications (2)

Publication Number Publication Date
JP2005163638A JP2005163638A (en) 2005-06-23
JP4229819B2 true JP4229819B2 (en) 2009-02-25

Family

ID=34727053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003403937A Expired - Fee Related JP4229819B2 (en) 2003-12-03 2003-12-03 Engine control system for construction machinery

Country Status (1)

Country Link
JP (1) JP4229819B2 (en)

Also Published As

Publication number Publication date
JP2005163638A (en) 2005-06-23

Similar Documents

Publication Publication Date Title
JP4215069B2 (en) Exhaust gas recirculation device for internal combustion engine
JP2007315230A (en) Apparatus for recirculating exhaust gas of internal combustion engine
JP6412595B2 (en) Work machine, power unit and work machine diesel engine
JP2006233788A (en) Valve driving control method for engine with turbocharger
JP2008303763A (en) Exhaust emission control device for internal combustion engine
JP2008138638A (en) Exhaust recirculating device of internal combustion engine
JP4736931B2 (en) Exhaust gas recirculation device for internal combustion engine
KR102451913B1 (en) Engine system having secondary air injection apparatus
JP2006207382A (en) Surging prevention device for turbocharger
JP2007092622A (en) Control device for internal combustion engine
WO2018088341A1 (en) Regeneration control device for exhaust purification device
JP4196343B2 (en) Internal combustion engine and method for operating the same
JP4229819B2 (en) Engine control system for construction machinery
WO2006129840A1 (en) Diesel engine and method of controlling the same
JP2006322398A (en) Internal combustion engine
JP4765966B2 (en) Exhaust gas recirculation device for internal combustion engine
WO2018212088A1 (en) Air intake/exhaust structure for compressed natural gas engine
JP2008038767A (en) Supercharging device of engine
KR20150010842A (en) Engine system
WO2010143546A1 (en) Diesel engine
JP2009243449A (en) Supercharger control device
JP3741030B2 (en) Internal combustion engine
JP2008169753A (en) Exhaust emission control system for internal combustion engine
JP2007291975A (en) Exhaust recirculation device of internal combustion engine
JP2010127187A (en) Diesel engine

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20050315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081202

R150 Certificate of patent or registration of utility model

Ref document number: 4229819

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131212

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees