WO2006129840A1 - Diesel engine and method of controlling the same - Google Patents

Diesel engine and method of controlling the same Download PDF

Info

Publication number
WO2006129840A1
WO2006129840A1 PCT/JP2006/311177 JP2006311177W WO2006129840A1 WO 2006129840 A1 WO2006129840 A1 WO 2006129840A1 JP 2006311177 W JP2006311177 W JP 2006311177W WO 2006129840 A1 WO2006129840 A1 WO 2006129840A1
Authority
WO
WIPO (PCT)
Prior art keywords
combustion chamber
exhaust gas
diesel engine
amount
egr device
Prior art date
Application number
PCT/JP2006/311177
Other languages
French (fr)
Japanese (ja)
Inventor
Kunio Hasegawa
Hajime Fujita
Katsumasa Kurachi
Koji Matsubara
Original Assignee
Daihatsu Motor Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co., Ltd. filed Critical Daihatsu Motor Co., Ltd.
Publication of WO2006129840A1 publication Critical patent/WO2006129840A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0065Specific aspects of external EGR control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/006Controlling exhaust gas recirculation [EGR] using internal EGR
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/005Controlling exhaust gas recirculation [EGR] according to engine operating conditions
    • F02D41/0057Specific combustion modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a diesel engine such as a two-cycle or four-cycle engine and a control method thereof.
  • a diesel engine such as a two-cycle or four-cycle engine and a control method thereof.
  • BACKGROUND ART Generally, in a diesel engine, in order to suppress the generation of NO X, an exhaust path from a combustion chamber and an intake path to the combustion chamber are connected via an exhaust gas recirculation path to discharge from the combustion chamber. A part of the exhaust gas is recirculated into the combustion chamber through the exhaust gas recirculation passage. This is called an external EGR (Exhaust Gas Recirculation) device.
  • EGR exhaust Gas Recirculation
  • Patent Document 1 Japanese Patent Application Laid-Open No. 11-36 9 2 3
  • Patent Document 1 Japanese Patent Application Laid-Open No. 11-36 9 2 3
  • Patent Document 1 Japanese Patent Application Laid-Open No. 11-36 9 2 3
  • Patent Document 1 Japanese Patent Application Laid-Open No. 11-36 9 2 3
  • Patent Document 1 is that when the temperature of the fuel and the surrounding gas in the combustion chamber is lower than a certain temperature, By stopping the growth of hydrocarbons in the middle before reaching soot, soot is no longer generated, and when the temperature is so low, the amount of NO x generated is very small. It is based on the principle.
  • Patent Document 1 the state in which the amount of soot and N0 X generated can be reduced is considered only once from the combustion chamber, regardless of the exhaust gas remaining in the combustion chamber. A part of the exhaust gas discharged is returned to the combustion chamber again by the external EGR device.
  • a large amount of exhaust gas must be recirculated into the combustion chamber by the external EGR device. The exhaust gas recirculated from the external EGR device to the combustion chamber is rapidly reduced in temperature when it is once exhausted from the combustion chamber, and its activity is low.
  • the present invention is that the exhaust gas remaining in the combustion chamber without being exhausted from the combustion chamber after being combusted in the combustion chamber is high in temperature and contains a radical component and has high activity. Paying attention to this technical problem, it is important to use this residual exhaust gas to reliably eliminate the problems of the prior art, that is, the occurrence of misfire when the amount of inert gas in the combustion chamber is increased. To do.
  • claim 1 of the present invention comprises: a combustion chamber for burning fuel; an intake passage that communicates with the combustion chamber and supplies gas to the combustion chamber An exhaust gas recirculation passage communicating with the combustion chamber, and an external EGR device for recirculating at least part of the exhaust gas exhausted from the combustion chamber to the combustion chamber via the exhaust gas recirculation passage; An internal EGR device that increases residual exhaust gas remaining in the combustion chamber after burning the fuel in the chamber; and a low-temperature combustion region in which the amount of inert gas in the combustion chamber is increased and the amount of soot generated exceeds a peak
  • the control device includes an exhaust gas recirculated to the combustion chamber and a control device that adjusts the amount of residual exhaust gas by controlling the external EGR device and the internal EGR device.
  • a second aspect of the present invention is the diesel engine according to the first aspect, wherein the control device determines a ratio of residual exhaust gas to exhaust gas recirculated into the combustion chamber by the external EGR device. It is characterized by controlling to 1/8.
  • Claim 3 of the present invention is the diesel engine according to claim 1 or 2, wherein the control device includes at least an idling operation in an entire operation range of the diesel engine. The internal EGR is controlled to increase the residual exhaust gas in the combustion chamber.
  • the control device is configured to reduce the amount of exhaust gas recirculated to the combustion chamber in a region before reaching the low temperature combustion region.
  • the external EGR device is controlled so that the amount of the inert gas corresponding to the amount of the inert gas in the low temperature combustion region increases at a stroke.
  • the diesel engine in the diesel engine according to any one of the first to third aspects, is a two-cycle diesel engine provided with a scavenging compressor, and the internal EGR device includes the scavenging gas. The feature is that the scavenging pressure for the scavenging port by the compressor is reduced.
  • a sixth aspect of the present invention is the diesel engine according to any one of the first to fifth aspects, further comprising an EGR cooler in the exhaust gas recirculation passage.
  • Claim 7 of the present invention is the diesel engine according to any one of claims 1 to 4 and 6, wherein the diesel engine is a four-cycle diesel engine, and the four-cycle diesel engine is provided in the combustion chamber. It is characterized by having first exhaust valve control means for controlling the timing of closing the exhaust valve so that the exhaust gas remains in the combustion chamber.
  • Claim 8 of the present invention is the diesel engine according to any one of claims 1 to 4 and 6, wherein the diesel engine is a four-cycle diesel engine, and the four-cycle diesel engine is provided in the combustion chamber.
  • a second exhaust valve control means is provided for controlling the timing of closing the exhaust valve so that the exhaust gas discharged from the exhaust port is sucked back into the combustion chamber upon intake.
  • a ninth aspect of the present invention provides the diesel engine according to any one of the first to fourth and sixth aspects, wherein the four-cycle diesel engine is configured to exhaust the exhaust gas discharged from the intake port from the intake valve of the combustion chamber. Suction again into the combustion chamber during intake It is characterized by having an intake valve control means for controlling the opening time to return.
  • Claim 10 of the present invention is the diesel engine according to any one of claims 7 to 9, wherein at least one of the first exhaust valve control means, the second exhaust valve control means, and the intake valve control means. Both are characterized by the inclusion of two.
  • Claim 11 of the present invention comprises: a combustion chamber that burns fuel; an intake passage that communicates with the combustion chamber and supplies gas to the combustion chamber; an exhaust gas recirculation passage that communicates with the combustion chamber; An external EGR device having an exhaust gas return passage for returning at least a portion of the exhaust gas exhausted from the chamber to the combustion chamber via the exhaust gas return passage; and after the fuel is burned in the combustion chamber,
  • a diesel engine control method comprising an internal EGR device for increasing residual exhaust gas remaining in a combustion chamber, wherein the amount of inert gas in the combustion chamber is increased by the external EGR device, and the amount of soot generated peaks
  • the amount of exhaust gas recirculated to the combustion chamber and the amount of residual exhaust gas is adjusted by controlling the external EGR device and the internal EGR device in a low temperature combustion region exceeding There.
  • the above-mentioned prior art has a low-temperature combustion state in which the amount of inert gas in the combustion chamber is larger than the amount of inert gas at which the amount of soot peaks, regardless of the exhaust gas remaining in the combustion chamber.
  • the amount of exhaust gas produced by the external EGR device is gradually increased by the amount of soot generated.
  • the amount of exhaust gas recirculated into the combustion chamber by the external EGR device must be significantly increased until the peak is reached.
  • the amount of inert gas before the amount of soot reaches a peak due to an increase in the amount of inert gas.
  • the external EGR device secures the exhaust gas recirculated into the combustion chamber while the amount of inert gas in the case where the amount of soot generation is larger than the peak amount of inert gas. In this way, it is ensured by both the exhaust gas recirculated into the combustion chamber at the internal combustion chamber and the residual exhaust gas increased by the internal EGR device, so that it is recirculated into the combustion chamber by the external EGR device.
  • the amount of exhaust gas can be reduced by the amount of residual exhaust gas increased by the internal EGR device.
  • the residual exhaust gas remaining in the combustion chamber without being discharged from the combustion chamber has a higher temperature and contains more radical components than the exhaust gas recirculated to the combustion chamber by the external EGR device.
  • the ignition and combustion of the fuel can be greatly accelerated by increasing the residual exhaust gas volume with the internal EGR device. Therefore, according to the present invention, in a diesel engine, in order to suppress the generation of soot and NO x to a small amount, the amount of inert gas in the combustion chamber is larger than the amount of inert gas at which the generation amount of soot reaches a peak. If this happens, the risk of misfire can be reliably reduced. In addition, by reducing the risk of misfire, the amount of exhaust gas and residual exhaust gas recirculated to the combustion chamber can be increased by this amount, so that the generation of soot and NOX can be further suppressed, and the exhaust gas A high level of cleanliness can be achieved.
  • the ratio of the residual exhaust gas increasing in the internal EGR device to the exhaust gas recirculating into the combustion chamber in the external EGR device is 1/16 to 1 Z8. It is preferable to configure the settings. If it is less than 1 16, the amount of residual exhaust gas that increases in the internal EGR device is small, so that the ignition and combustion promotion of fuel by the exhaust gas remaining in the combustion chamber can be effectively achieved. In addition, when the value exceeds 1 Z 8, the amount of residual exhaust gas that increases in the internal EGR device increases, so the combustion temperature in the combustion chamber becomes too high and soot generation increases. It will be.
  • the combustion is performed at a lean leaner than the stoichiometric air-fuel ratio in the entire operation region, so that the low load including at least idling operation in the entire operation region is achieved.
  • the temperature of the exhaust gas in the low-speed operation region is lower than the other operation regions due to excess air for lean combustion, and as a result, a catalytic exhaust gas purification device installed in the exhaust path Because the temperature in the chamber does not rise, there is a problem that the exhaust gas purification efficiency is low.
  • This problem that is, that the purification efficiency of the catalytic exhaust gas purification device is low in the low-load / low-rotation operation region including idling operation, is that the exhaust gas is exhausted into the combustion chamber by the external EGR device as in the previous technology. This can be improved by reducing the amount of excess air that is inhaled by increasing the amount of exhaust gas recirculation, but on the other hand, the ignition / combustibility of the fuel becomes unstable.
  • the amount of the soot generated is larger than the amount of the inert gas at which the soot generation peak, the amount of the inert gas that is recirculated into the combustion chamber by the external EGR device and It is configured to ensure that both the exhaust gas increased by the internal EGR device and the residual exhaust gas increase in the low-load / low-rotation operation region including at least idling operation in the entire operation region of the diesel engine.
  • the ignition and combustibility of the fuel can be reliably promoted in a state where the generation of soot in the low load / low rotation operation region including the idling operation is reliably suppressed.
  • the temperature of the exhaust gas purification device can be increased.
  • the cleaner can be achieved.
  • the amount of soot generated gradually increases. In the period before reaching the peak, the amount of soot generated increases to the amount of the inert gas when the amount of the generated inert gas is larger than the peak amount of the inert gas. In the process of gradually increasing the amount of exhaust gas recirculated to the combustion chamber by an external EGR device, the amount of soot generated reaches its peak.
  • the amount of inert gas until the amount of soot reaches a peak due to the increase in the amount of inert gas is secured from the state in which the exhaust gas recirculated into the combustion chamber is secured by the external EGR device.
  • the amount of soot generated is larger than the amount of inert gas that makes a peak, the amount of inert gas is increased by the exhaust gas recirculated into the combustion chamber by the external EGR device and the internal EGR device.
  • the diesel engine is a two-cycle diesel engine provided with a scavenging compressor, and the internal EGR device is provided in the scavenging compressor. It is proposed that the scavenging pressure be lowered.
  • the residual exhaust gas that should remain in the combustion chamber during the combustion of fuel is the exhaust gas from the previous combustion.
  • the timing for closing the exhaust valve of the combustion chamber so as to leave the exhaust gas in the combustion chamber is controlled.
  • FIG. 1 is a graph showing the relationship between the amount of soot generated and the external EGR rate in an internal combustion engine.
  • FIG. 2 is an overall view showing an embodiment of the present invention.
  • reference numeral 1 denotes a diesel engine having at least two cylinders, and the diesel engine 1 includes a scavenging compressor 2 that is driven to rotate by the diesel engine 1.
  • a scavenging compressor 2 By supplying air compressed by a scavenging compressor to a scavenging port (not shown) in each cylinder, scavenging in each cylinder is performed.
  • This scavenging compressor may be provided in an air intake passage 8 from an air cleaner 7 to be described later, as shown by a two-dot chain line in FIG.
  • Reference numeral 3 denotes an exhaust turbocharger that is formed by directly connecting an exhaust turbine 3 a and a blower compressor 3 b.
  • the exhaust turbocharger 3 has an diesel exhaust bin 3 a at the inlet of the diesel turbocharger 3 a.
  • An exhaust passage 4 from an exhaust manifold 1a in the engine 1 is connected to an exhaust passage 5 to the atmosphere at an outlet of the exhaust turbine 3a, and a catalyst is placed in the middle of the exhaust passage 5 to the atmosphere.
  • An exhaust gas purification device 6 of the type is provided.
  • the air intake passage 8 from the air cleaner 7 is on the suction side of the blower compressor 3 b of the exhaust turbocharger 3, and the air intake passage 9 to the scavenging compressor 2 is on the discharge side.
  • a throttle valve 10 for controlling the intake air is provided in the middle of the air intake passage 8, and an in-cooler 11 is provided in the middle of the intake passage 9. .
  • the exhaust passage 5 to the atmosphere and the intake passage 9 are connected via an exhaust gas recirculation passage 12 that guides a part of the exhaust gas in the exhaust passage ⁇ to the intake passage 9.
  • An exhaust gas recirculation control valve 1 3 and an EGR cooler 14 are provided in the middle of the exhaust gas recirculation passage 1 2.
  • the intake passage 9 is provided with a bypass passage 16 connecting the upstream side and the downstream side of the scavenging compressor 2, and a bypass flow control valve 17 is provided in the middle of the bypass passage 16.
  • bypass flow rate control valve 17 When the bypass flow rate control valve 17 is opened, a part of the air is compressed by the scavenging compressor 2 and returned to the suction side of the scavenging compressor 2, so that the scavenging The scavenging air pressure is reduced to a certain level, and the scavenging air pressure is further reduced when the opening of the bypass flow control valve 17 is further increased.
  • these bypass passage 16 and bypass flow control valve 17 constitute an internal ⁇ GR device 18.
  • Reference numeral 19 designates the exhaust gas recirculation control valve 13 and the bypass by using signals from the opening sensor 20 and the rotation sensor 21 and the like in the diesel engine 1 as inputs. It is a controller for opening and closing the flow control valve 17 as described below.
  • the controller 19 is configured to perform exhaust gas recirculation in the external EGR device 15 in all other operating areas of the diesel engine 1 except for the low load / low speed operating area including idling operation.
  • the control valve 13 is opened, and a part of the exhaust gas in the exhaust passage 5 is recirculated to the intake passage 9 via the exhaust gas recirculation passage 12 and eventually into the combustion chamber in each cylinder.
  • the opening force of the bypass flow rate control valve 17 in the internal EGR device 18 is increased, and the scavenging compressor Part of the air compressed in step 2
  • the scavenging air pressure for the scavenging port in each cylinder is lowered, and this scavenging air pressure is lowered, thereby reducing the scavenging efficiency in each cylinder and remaining in the combustion chamber.
  • the amount of exhaust gas is larger than the amount of residual exhaust gas in the case of a normal diesel engine.
  • the amount is controlled so as to be secured by both the exhaust gas recirculated into the combustion chamber by the external EGR device 15 and the residual exhaust gas increasing by the internal EGR device 18. .
  • the inert gas in the case where the amount of soot generation is larger than the peak inactive gas amount is controlled so as to be secured by both the exhaust gas recirculated into the combustion chamber by the external EGR device 15 and the residual exhaust gas increasing by the internal EGR device 18.
  • the amount is ensured by both the exhaust gas recirculated into the combustion chamber by the external EGR device 15 and the residual exhaust gas that increases by the internal EGR device 18.
  • the amount of exhaust gas returned to the combustion chamber by the device 15 can be reduced by the amount of residual exhaust gas increased by the internal EGR device 18.
  • the residual exhaust gas remaining in the combustion chamber without being discharged from the combustion chamber is higher in temperature than the exhaust gas recirculated to the combustion chamber by the external EGR device 15 and contains a radical component. Because it contains a large amount and is rich in activity, it is possible to promote the ignition and combustion of fuel by increasing the amount of residual exhaust gas with the internal EGR device 18.
  • the time from the previous combustion to the next combustion is as short as about half that of the four-cycle diesel engine. Can be minimized by the reduction of radical components in the residual exhaust gas. In other words, exhaust gas having higher activity than that of a four-cycle diesel engine remains. Therefore, the above-mentioned effects can be achieved, and further acceleration of fuel ignition / combustion can be achieved.
  • the controller 19 operates the external EGR device 15 and the internal EGR device 18 simultaneously in a low load / low rotation operation region including idling operation,
  • the ratio of the residual exhaust gas that increases in the internal EGR device 1 8 to the exhaust gas recirculated into the combustion chamber in the EGR device 15 is regulated to 1 Z 16 to 1/8.
  • the controller 19 increases the amount of exhaust gas recirculated to the combustion chamber by the external EGR device 15, and the amount of soot generated gradually increases as the amount of inert gas in the combustion chamber increases. For example, when the amount of the above-mentioned generation is greater than the peak amount of inert gas at the time point A 1 on the upper right in curve A in Fig. 1, The active gas amount is configured to increase all at once, for example, to the amount of inert gas at point A 2 on the lower right side of curve A in Fig. 1.
  • the internal EGR device for increasing the residual exhaust gas remaining in the combustion chamber includes
  • (i). Means to increase the residual exhaust gas in the combustion chamber more than in the case of a normal diesel engine by making the timing of closing the exhaust valve early until the exhaust gas remains in the combustion chamber. (First exhaust valve control means). (ii). By delaying the timing of closing the exhaust valve until the exhaust gas discharged from the exhaust port is sucked back into the combustion chamber during intake, the residual exhaust gas in the combustion chamber Means to increase more (second exhaust valve control means).
  • the controller 19 can also serve as the first exhaust valve control means, the second exhaust valve control means, and the intake valve control means. If the two-cycle diesel engine is a Uniflow type equipped with an exhaust valve at the top of the combustion chamber, instead of decreasing the scavenging pressure as described above, or at the same time, the exhaust valve It is possible to increase the residual exhaust gas remaining in the combustion chamber by making the closing time earlier. Industrial applicability
  • the diesel engine of the present invention can reliably eliminate the occurrence of misfire when the amount of inert gas in the combustion chamber is increased.

Abstract

A diesel engine having an external EGR device (15) and an internal EGR device (18), the external EGR device (15) circulating exhaust gas from the inside of a combustion chamber into the combustion chamber, the internal EGR device (18) increasing residual exhaust gas remaining in the combustion chamber. The amount of inert gas in the combustion chamber is increased to a level greater than that at which the amount of production of soot is at the peak, and this is performed by both the external EGR device (15) and the internal EGR device (18).

Description

明 細 書 ディーゼル機関およびその制御方法 技術分野 本発明は, 二サイクル又は四サイクル等のディーゼル機関およびその 制御方法に関するものである。 背景技術 一般に, ディーゼル機関において, NO Xの発生を抑制するために, 燃焼室からの排気経路と燃焼室への吸気経路とを排気ガス還流通路を介 して接続して, 前記燃焼室から排出される排気ガスの一部を, この排気 ガス還流通路を介して前記燃焼室内に還流させるようにしている。 これ を外部 E GR(E x h a u s t G a s R e c i r c u l a t i o n) 装置と称する。 この外部 E GR装置において, 燃焼室内に還流する排気ガス量, つま り, E GR率 (排気ガス還流量と燃焼室への吸入空気量との和で, 排気 ガス還流量を割った値) を増大するほど燃焼室における燃焼温度が低く なるから, NO Xの発生を抑制することができる。 この場合において, 従来は, E G R率を増大させていくと, この外部 E GR率が或る限度を超えたときに煤の発生量, すなわち, スモークが 急激に増大するものとして考えられていた。 これに対し, 先行技術としての特許文献 1は, 第 1図に曲線 A , Bで 示すように, 前記外部 E G R装置による燃焼室への E G R率を前記した スモークの最大許容限界よりも大きくすればスモークが急激に増大する 力 , このスモークの発生量にはピークが存在し, このピークを超えて前 記外部 E G R率を更に大きくすると, スモークは急激に減少するという 現象が存在することに着目し, 燃焼室内の不活性ガス量を増大させてい くと煤の発生量が次第に増大してピークに達するディーゼル機関におい て, 煤の発生量がピークになる不活性ガス量よりも燃焼室内への不活性 ガス量を多くすることによつて燃焼室内における燃焼時の燃料及びその 周囲ガス温度を煤が生成される温度よりも低い温度に抑制し, それによ り燃焼室内において煤が発生されるのを阻止するようにした内燃機関を 提案している。 但し, 前記第 1図において, 曲線 Aは, 外部 E G R装置による排気ガ スを大型の冷却器にて約 9 0 にまで強制冷却した場合, 曲線 Bは, 外 部 E G R装置による排気ガスを強制冷却しない場合である。 特許文献 1 : 特開平 1 1 - 3 6 9 2 3号公報 そして, この先行技術 (特許文献 1 ) は, 燃焼室内における燃焼時の 燃料及びその周囲のガス温度が或る温度よりも低いときには, 炭化水素 の成長が煤に至る前の途中の段階で停止することにより, 煤が発生しな くなり, しかも, このように温度が低いときにおいては, N O xの発生 量がきわめて少量であるという原理に基づくものである。 この場合において, 前記先行技術 (特許文献 1 ) は, 前記した煤及び N〇 Xの発生量を少なくすることができる状態を, 燃焼室内に残留する 排気ガスと無関係に, 専ら, 燃焼室内から一旦排出される排気ガスの一 部を前記外部 E G R装置によって再び燃焼室に還流することによって達 成するようにしている。 しかし, 前記燃焼室内に, 前記した煤及び N O Xの発生量を少なく こ とができる状態を実現するためには, 前記外部 E G R装置により多量の 排気ガスを燃焼室内に還流するようにしなければならないが, この外部 E G R装置より燃焼室に還流される排気ガスは, 燃焼室内から一旦排出 された時点で温度が急激に下がり, 且つ, 活性度が低くなつていること により, これが多量に燃焼室内に還流されることで, 燃焼室内における 燃料の着火 , 燃焼を著しく妨げることになるから, 失火を生じるおそれ が大きくなるという問題があった。 発明の開示 本発明は, 燃焼室内での燃焼した後における排気ガスのうち燃焼室内 から排気されることなく燃焼室内に残留する排気ガスは, 高温であり, ラジカル成分を含み活性度が高いことに着目して, この残留排気ガスを 利用して, 前記先行技術が有する問題, つまり, 燃焼室内における不活 性ガス量を多く した場合における失火の発生を確実に解消することを技 術的課題とするものである。 この技術的課題を達成するため本発明の請求項 1は, 燃料を燃焼する 燃焼室と ; 前記燃焼室に連通し前記燃焼室にガスを供給する吸気通路 と ; 前記燃焼室と連通する排気ガス還流通路を備え、 前記燃焼室から排 気した排気ガスの少なくとも一部を前記排気ガス還流通路を介して前記 燃焼室に還流させる外部 E G R装置と ; 前記燃焼室で前記燃料を燃焼し た後に前記燃焼室に残留する残留排気ガスを増加させる内部 E G R装置 と ; 記燃焼室内の不活性ガス量を増大させ、 煤の発生量がピークを超え た低温燃焼領域において、 前記外部 E G R装置と前記内部 E G R装置を 制御することによって、 前記燃焼室に還流する排気ガスと, 残留排気ガ スの量を調整する制御装置とを備えることを特徴としている。 本発明の請求項 2は, 前記請求項 1記載のディーゼル機関において, 前記制御装置は前記外部 E G R装置にて前記燃焼室内に還流する排気ガ スに対する残留排気ガスの割合を, 1 Z 1 6〜 1 / 8になるように制御 することを特徴としている。 本発明の請求項 3は, 前記請求項 1又は 2記載のディーゼル機関にお いて, 前記制御装置は前記ディーゼル機関における全運転域のうち少な くともアイ ドリング運転を含む低負荷 · 低回転運転域において、 前記燃 焼室内の残留排気ガスを増加させるように前記内部 E G Rを制御するこ とを特徴としている。 本発明の請求項 4は, 前記請求項 1〜 3のいずれか記載のディーゼル 機関において, 前記制御装置は、 前記燃焼室に還流する排気ガス量を, 前記低温燃焼領域に至る前の領域において, 前記低温燃焼領域における 不活性ガス量に相当する不活性ガス量にまで一挙に増加するように前記 外部 E G R装置を制御することを特徴としている。 本発明の請求項 5は, 前記請求項 1 〜 3のいずれか記載のディーゼル 機関において, 前記ディーゼル機関が掃気用圧縮機を備えた二サイクル のディーゼル機関であり, 前記内部 E G R装置が, 前記掃気用圧縮機に よる掃気ポー卜に対する掃気圧を低くするように構成されたことを特徴 としている。 本発明の請求項 6は、 請求項 1 〜 5のいずれかに記載したディーゼル 機関において、 さらに前記排気ガス還流通路に、 E G Rクーラを備える ことを特徴としている。 本発明の請求項 7は. 請求項 1〜 4、 6のいずれかに記載のディーゼ ル機関において、 前記ディーゼル機関が、 四サイクルディーゼル機関で あって、 前記四サイクルディーゼル機関は、 前記燃焼室の排気弁を、 前 記燃焼室内に排気ガスを残留させるように閉じる時期を制御する第一排 気弁制御手段を有することを特徴としている。 本発明の請求項 8は、 請求項 1 〜 4、 6のいずれかに記載のディーゼ ル機関において、 前記ディーゼル機関が、 四サイクルディーゼル機関で あって、 前記四サイクルディーゼル機関は、 前記燃焼室の排気弁を、 排 気ポー卜から排出した排気ガスを吸気の際に再び燃焼室に吸い戻すよう に閉じる時期を制御する第二排気弁制御手段を有することを特徴として いる。 本発明の請求項 9は、 請求項 1 〜 4、 6のいずれかに記載のディーゼ ル機関において、 前記四サイクルディーゼル機関は、 前記燃焼室の吸気 弁を、 吸気ポー卜から排出した排気ガスを吸気の際に再び燃焼室に吸い 戻すように開く時期を制御する吸気弁制御手段を有することを特徴とし ている。 本発明の請求項 1 0は、 請求項 7〜 9のいずれかに記載のディーゼル 機関において、 前記第一排気弁制御手段、 前記第二排気弁制御手段、 及 び前記吸気弁制御手段のうち少なく とも 2つを含むことを特徴としてい る。 本発明の請求項 1 1は、 燃料を燃焼する燃焼室と ; 前記燃焼室に連通 し前記燃焼室にガスを供給する吸気通路と ; 前記燃焼室と連通する排気 ガス還流通路を備え、 前記燃焼室から排気した排気ガスの少なくとも一 部を前記排気ガス還流通路を介して前記燃焼室に還流させる排気ガス還 流通路を備えた外部 E G R装置と ; 前記燃焼室で前記燃料を燃焼した後 に前記燃焼室に残留する残留排気ガスを増加させる内部 E G R装置とを 備えたディーゼル機関の制御方法であって、 前記燃焼室内の不活性ガス 量を前記外部 E G R装置によって増大させ、 煤の発生量がピークを超え た低温燃焼領域において、 前記外部 E G R装置と前記内部 E G R装置を 制御することによって、 前記燃焼室に還流する排気ガスと, 残留排気ガ スの量を調整することを特徴としている。 本発明の効果は次の如くである。 TECHNICAL FIELD The present invention relates to a diesel engine such as a two-cycle or four-cycle engine and a control method thereof. BACKGROUND ART Generally, in a diesel engine, in order to suppress the generation of NO X, an exhaust path from a combustion chamber and an intake path to the combustion chamber are connected via an exhaust gas recirculation path to discharge from the combustion chamber. A part of the exhaust gas is recirculated into the combustion chamber through the exhaust gas recirculation passage. This is called an external EGR (Exhaust Gas Recirculation) device. In this external EGR device, the amount of exhaust gas recirculated into the combustion chamber, that is, the EGR rate (the sum of the exhaust gas recirculation amount and the intake air amount into the combustion chamber divided by the exhaust gas recirculation amount) The higher the temperature, the lower the combustion temperature in the combustion chamber, so that NO X generation can be suppressed. In this case, conventionally, when the EGR rate was increased, it was considered that the amount of soot, that is, the smoke, suddenly increased when the external EGR rate exceeded a certain limit. On the other hand, Patent Document 1 as a prior art, as shown by curves A and B in FIG. 1, shows that if the EGR rate to the combustion chamber by the external EGR device is larger than the maximum allowable limit of smoke. Focusing on the fact that there is a peak in the amount of smoke generated and the amount of smoke generated, and there is a phenomenon that smoke decreases rapidly when the external EGR rate is further increased beyond this peak. When the amount of inert gas in the combustion chamber is increased, the amount of soot generated gradually increases and reaches a peak. In diesel engines, the amount of soot generated in the combustion chamber is less than the amount of inert gas at which soot generation peaks. By increasing the amount of active gas, the temperature of the fuel and the surrounding gas during combustion in the combustion chamber is suppressed to a temperature lower than the temperature at which soot is generated, and soot is generated in the combustion chamber. It has proposed an internal combustion engine which is adapted to prevent the that. However, in Fig. 1, curve A shows the case where the exhaust gas from the external EGR device is forcibly cooled to about 90 with a large cooler, and curve B shows the exhaust gas from the external EGR device forcibly cooled. This is the case. Patent Document 1: Japanese Patent Application Laid-Open No. 11-36 9 2 3 And this prior art (Patent Document 1) is that when the temperature of the fuel and the surrounding gas in the combustion chamber is lower than a certain temperature, By stopping the growth of hydrocarbons in the middle before reaching soot, soot is no longer generated, and when the temperature is so low, the amount of NO x generated is very small. It is based on the principle. In this case, in the prior art (Patent Document 1), the state in which the amount of soot and N0 X generated can be reduced is considered only once from the combustion chamber, regardless of the exhaust gas remaining in the combustion chamber. A part of the exhaust gas discharged is returned to the combustion chamber again by the external EGR device. However, in order to realize a state where the amount of soot and NOX generated in the combustion chamber can be reduced, a large amount of exhaust gas must be recirculated into the combustion chamber by the external EGR device. The exhaust gas recirculated from the external EGR device to the combustion chamber is rapidly reduced in temperature when it is once exhausted from the combustion chamber, and its activity is low. As a result, the ignition and combustion of the fuel in the combustion chamber is significantly hindered, which increases the risk of misfire. DISCLOSURE OF THE INVENTION The present invention is that the exhaust gas remaining in the combustion chamber without being exhausted from the combustion chamber after being combusted in the combustion chamber is high in temperature and contains a radical component and has high activity. Paying attention to this technical problem, it is important to use this residual exhaust gas to reliably eliminate the problems of the prior art, that is, the occurrence of misfire when the amount of inert gas in the combustion chamber is increased. To do. In order to achieve this technical problem, claim 1 of the present invention comprises: a combustion chamber for burning fuel; an intake passage that communicates with the combustion chamber and supplies gas to the combustion chamber An exhaust gas recirculation passage communicating with the combustion chamber, and an external EGR device for recirculating at least part of the exhaust gas exhausted from the combustion chamber to the combustion chamber via the exhaust gas recirculation passage; An internal EGR device that increases residual exhaust gas remaining in the combustion chamber after burning the fuel in the chamber; and a low-temperature combustion region in which the amount of inert gas in the combustion chamber is increased and the amount of soot generated exceeds a peak The control device includes an exhaust gas recirculated to the combustion chamber and a control device that adjusts the amount of residual exhaust gas by controlling the external EGR device and the internal EGR device. A second aspect of the present invention is the diesel engine according to the first aspect, wherein the control device determines a ratio of residual exhaust gas to exhaust gas recirculated into the combustion chamber by the external EGR device. It is characterized by controlling to 1/8. Claim 3 of the present invention is the diesel engine according to claim 1 or 2, wherein the control device includes at least an idling operation in an entire operation range of the diesel engine. The internal EGR is controlled to increase the residual exhaust gas in the combustion chamber. According to a fourth aspect of the present invention, in the diesel engine according to any one of the first to third aspects, the control device is configured to reduce the amount of exhaust gas recirculated to the combustion chamber in a region before reaching the low temperature combustion region. The external EGR device is controlled so that the amount of the inert gas corresponding to the amount of the inert gas in the low temperature combustion region increases at a stroke. According to a fifth aspect of the present invention, in the diesel engine according to any one of the first to third aspects, the diesel engine is a two-cycle diesel engine provided with a scavenging compressor, and the internal EGR device includes the scavenging gas. The feature is that the scavenging pressure for the scavenging port by the compressor is reduced. A sixth aspect of the present invention is the diesel engine according to any one of the first to fifth aspects, further comprising an EGR cooler in the exhaust gas recirculation passage. Claim 7 of the present invention is the diesel engine according to any one of claims 1 to 4 and 6, wherein the diesel engine is a four-cycle diesel engine, and the four-cycle diesel engine is provided in the combustion chamber. It is characterized by having first exhaust valve control means for controlling the timing of closing the exhaust valve so that the exhaust gas remains in the combustion chamber. Claim 8 of the present invention is the diesel engine according to any one of claims 1 to 4 and 6, wherein the diesel engine is a four-cycle diesel engine, and the four-cycle diesel engine is provided in the combustion chamber. A second exhaust valve control means is provided for controlling the timing of closing the exhaust valve so that the exhaust gas discharged from the exhaust port is sucked back into the combustion chamber upon intake. A ninth aspect of the present invention provides the diesel engine according to any one of the first to fourth and sixth aspects, wherein the four-cycle diesel engine is configured to exhaust the exhaust gas discharged from the intake port from the intake valve of the combustion chamber. Suction again into the combustion chamber during intake It is characterized by having an intake valve control means for controlling the opening time to return. Claim 10 of the present invention is the diesel engine according to any one of claims 7 to 9, wherein at least one of the first exhaust valve control means, the second exhaust valve control means, and the intake valve control means. Both are characterized by the inclusion of two. Claim 11 of the present invention comprises: a combustion chamber that burns fuel; an intake passage that communicates with the combustion chamber and supplies gas to the combustion chamber; an exhaust gas recirculation passage that communicates with the combustion chamber; An external EGR device having an exhaust gas return passage for returning at least a portion of the exhaust gas exhausted from the chamber to the combustion chamber via the exhaust gas return passage; and after the fuel is burned in the combustion chamber, A diesel engine control method comprising an internal EGR device for increasing residual exhaust gas remaining in a combustion chamber, wherein the amount of inert gas in the combustion chamber is increased by the external EGR device, and the amount of soot generated peaks The amount of exhaust gas recirculated to the combustion chamber and the amount of residual exhaust gas is adjusted by controlling the external EGR device and the internal EGR device in a low temperature combustion region exceeding There. The effects of the present invention are as follows.
前記した先行技術は, 前記煤の発生量がピークになる不活性ガス量よ りも燃焼室内における不活性ガス量を多くするという低温燃焼の状態を, 燃焼室内に残留する排気ガスと無関係に, 専ら, 前記外部 E G R装置に て燃焼室内に還流する排気ガスによつて達成するようにしていることに より, この外部 E G R装置による排気ガス量を, 前記煤の発生量が次第 に増大してピークに達するまでの間において前記外部 E G R装置にて燃 焼室内に還流する排気ガス量よりも大幅に多く しなければならない。 これに対し,本発明は,請求項 1および請求項 1 1 に記載したように, 前記煤の発生量が不活性ガス量の増大にてピークに達するまでの間にお ける不活性ガス量を, 前記外部 E G R装置にて前記燃焼室内に還流する 排気ガスによって確保する一方, 前記煤の発生量がピークになる不活性 ガス量よりも多くする場合における不活性ガス量を, 前記外部 E G R装 置にて燃焼室内に還流する排気ガスと, 前記内部 E G R装置にて増加す る残留排気ガスとの両方によって確保するように構成したものであるこ とにより, 前記外部 E G R装置にて燃焼室内に還流する排気ガス量を, 前記内部 E G R装置にて増加する残留排気ガス量の分だけ少なくするこ とができる。 そして, 前記燃焼室内から排出されることなく燃焼室内に残留する残 留排気ガスは, 前記外部 E G R装置によって燃焼室に還流する排気ガス に比べて, 温度が高くて, 且つ, ラジカル成分を多く含んで活性に富ん でいることにより, この残留排気ガス量を, 前記内部 E G R装置にて増 量することによって, 燃料の着火 · 燃焼を大幅に促進できる。 従って, 本発明によると, ディーゼル機関において, 煤及び N O xの 発生を少量に抑制することのために, 燃焼室内における不活性ガス量を 煤の発生量がピークになる不活性ガス量よりも多く した場合に, 失火が 発生するおそれを確実に低減することができる。 しかも, 失火が発生するおそれが低減することにより, この分だけ, 燃焼室に還流する排気ガス及び残留排気ガスの量をより増量できるから, 煤及び N O Xの発生をより抑制できて, 排気ガスの高度のクリーン化を 図ることができる。 この場合, 請求項 2に記載したように, 前記外部 E G R装置にて燃焼 室内に還流する排気ガスに対する前記内部 E G R装置にて増加する残留 排気ガスの割合を, 1 / 1 6〜 1 Z 8に設定する構成にすることが好ま しい。 前記 1 1 6未満のときには, 前記内部 E G R装置にて増加する残留 排気ガス量が少ないことにより, この燃焼室内に残量する排気ガスによ る燃料の着火 · 燃焼促進を効果的に達成することができないのであり, また, 前記 1 Z 8を超えるときには, 前記内部 E G R装置にて増加する 残留排気ガス量が多いことにより, 燃焼室内における燃焼温度が高くな り過ぎるから, 煤の発生が増大することになる。 ところで, 最近のディーゼル機関においては, その燃焼を, 全運転域 において理論空燃比よりも薄いリーンで行うように構成していることに より, 前記全運転域のうち少なくともアイ ドリング運転を含む低負荷 · 低回転運転域における排気ガスの温度は, リーン燃焼を図るための過剰 空気によって, 他の運転域よりも更に低くなつており, ひいては, 排気 経路に設けられている触媒式の排気ガス浄化装置における温度は高くな らないから, 排気ガスの浄化効率が低いという問題がある。 この問題, つまり, 触媒式排気ガス浄化装置における浄化効率がアイ ドリング運転を含む低負荷 · 低回転運転域において低いことは, 前記先 行技術のように, 外部 E G R装置にて燃焼室内に排気ガスを多量に還流 する一方, 排気ガスの還流を多く した分だけ吸入される過剰空気を減ら すことによって改善することができるが, その反面, 燃料の着火 · 燃焼 性が不安定になる。 そこで, 請求項 3に記載したように, 前記煤の発生量がピークになる 不活性ガス量よりも多くする場合における不活性ガス量を, 前記外部 E G R装置にて燃焼室内に還流する排気ガスと, 前記内部 E G R装置にて 増加する残留排気ガスとの両方によって確保することを, 前記ディーゼ ル機関における全運転域のうち少なくともアイ ドリング運転を含む低負 荷 · 低回転運転域において行うように構成することにより, このアイ ド リング運転を含む低負荷 · 低回転運転域における煤の発生を確実に抑制 した状態のもとで, 燃料における着火 · 燃焼性を確実に促進することが でき, しかも, 排気経路に触媒式の排気ガス浄化装置が設けられている 場合に, この排気ガス浄化装置における温度を高くすることができるか ら, 排気ガスの一層のクリーン化を達成できる。 次に, 請求項 4に記載したように, 前記外部 E G R装置にて燃焼室に 還流する排気ガス量を, 前記燃焼室内の不活性ガス量を増大させていく と煤の発生量が次第に増大してピークに達するよりも以前の時期におい て, 前記煤の発生量がピークになる不活性ガス量よりも多くする場合に おける不活性ガス量にまで一挙に増加するように構成することにより, 前記外部 E G R装置によって前記燃焼室に還流する排気ガス量を次第に 増大していく過程において, 煤の発生量を, 当該煤の発生量がピークに 到達する状態にまで高くなることを確実に回避でき, 換言すると, 当該 煤の発生量がピークになるときよりも以前の低い値に維持することがで さる。 これにより, 前記煤の発生量が不活性ガス量の増大にてピークに達す るまでの間における不活性ガス量を前記外部 E G R装置にて前記燃焼室 内に還流する排気ガスによって確保する状態から, 前記煤の発生量がピ ークになる不活性ガス量よりも多くする場合における不活性ガス量を前 記外部 E G R装置にて燃焼室内に還流する排気ガスと前記内部 E G R装 置にて増加する残留排気ガスとの両方によって確保する状態に移行する ときの過渡期において, 煤が多量に発生することを回避できて, 前記の 移行を堰堤して円滑に行うことができる。 特に, 前記外部 E G R装置にて前記燃焼室内に還流する排気ガスを増 大させる際に, 燃焼状態が不安定になることを防止できる効果がある。 次に, 本発明は, 前記請求項 5に記載したように, 前記ディーゼル機 関が, 掃気用圧縮機を備えた二サイクルのディーゼル機関であり, 前記 内部 E G R装置が, 前記掃気用圧縮機における掃気圧を低くする構成に することを提案する。 前記したように, 燃料の燃焼に際して燃焼室内に残留すべき残留排気 ガスは, 一回前の燃焼のときにおける排気ガスであり, 二サイクルディ ーゼル機関の場合, 前の燃焼から次の燃焼に至るまでの時間は, 四サイ クルディーゼル機関の場合の約半分というように短いことにより, その 間において, 前記残留排気ガスの活性度が当該残留排気ガス中のラジカ ル成分の減少にて低下することを僅少にとどめることができる。 換言すると, 二サイクルディーゼル機関の場合, その燃焼室内に, 四 サイクルディーゼル機関の場合よりも高い活性度を有する排気ガスを残 留することができるから,前記した効果を確実に達成することができる。 しかも, 燃焼室内に残留する残留排気ガスの増加を, 掃気用圧縮機に おける掃気圧を低くすることによって, 正確, 且つ, 確実に制御するこ とができる。 次に、 本発明は請求項 6に記載したように、 排気ガス還流通路に E G Rクーラを備えることにより、 排気ガスが冷却され、 煤の発生量を低減 させることができる。 次に、 本発明の請求項 7〜 1 0に記載したように、 四サイクルディー ゼル機関において、 前記燃焼室の排気弁を、 前記燃焼室内に排気ガスを 残留させるように閉じる時期を制御する第一排気弁制御手段、 前記燃焼 室の排気弁を、 排気ポー卜から排出した排気ガスを吸気の際に再び燃焼 室に吸い戻すように閉じる時期を制御する第二排気弁制御手段、 前記燃 焼室の吸気弁を、 吸気ポー卜から排出した排気ガスを吸気の際に再び燃 焼室に吸い戻すように開く時期を制御する吸気弁制御手段の少なくとも 1つを有することにより、 四サイクルディーゼル機関においても、 低温 燃焼及びラジカル添加が可能となる。 図面の簡単な説明 第 1図は内燃機関において煤の発生量と外部 E G R率との関係を示す 図である。 The above-mentioned prior art has a low-temperature combustion state in which the amount of inert gas in the combustion chamber is larger than the amount of inert gas at which the amount of soot peaks, regardless of the exhaust gas remaining in the combustion chamber. By achieving the exhaust gas recirculated into the combustion chamber exclusively by the external EGR device, the amount of exhaust gas produced by the external EGR device is gradually increased by the amount of soot generated. The amount of exhaust gas recirculated into the combustion chamber by the external EGR device must be significantly increased until the peak is reached. In contrast, according to the present invention, as described in claims 1 and 11, the amount of inert gas before the amount of soot reaches a peak due to an increase in the amount of inert gas. The external EGR device secures the exhaust gas recirculated into the combustion chamber while the amount of inert gas in the case where the amount of soot generation is larger than the peak amount of inert gas. In this way, it is ensured by both the exhaust gas recirculated into the combustion chamber at the internal combustion chamber and the residual exhaust gas increased by the internal EGR device, so that it is recirculated into the combustion chamber by the external EGR device. The amount of exhaust gas can be reduced by the amount of residual exhaust gas increased by the internal EGR device. The residual exhaust gas remaining in the combustion chamber without being discharged from the combustion chamber has a higher temperature and contains more radical components than the exhaust gas recirculated to the combustion chamber by the external EGR device. Due to its high activity, the ignition and combustion of the fuel can be greatly accelerated by increasing the residual exhaust gas volume with the internal EGR device. Therefore, according to the present invention, in a diesel engine, in order to suppress the generation of soot and NO x to a small amount, the amount of inert gas in the combustion chamber is larger than the amount of inert gas at which the generation amount of soot reaches a peak. If this happens, the risk of misfire can be reliably reduced. In addition, by reducing the risk of misfire, the amount of exhaust gas and residual exhaust gas recirculated to the combustion chamber can be increased by this amount, so that the generation of soot and NOX can be further suppressed, and the exhaust gas A high level of cleanliness can be achieved. In this case, as described in claim 2, the ratio of the residual exhaust gas increasing in the internal EGR device to the exhaust gas recirculating into the combustion chamber in the external EGR device is 1/16 to 1 Z8. It is preferable to configure the settings. If it is less than 1 16, the amount of residual exhaust gas that increases in the internal EGR device is small, so that the ignition and combustion promotion of fuel by the exhaust gas remaining in the combustion chamber can be effectively achieved. In addition, when the value exceeds 1 Z 8, the amount of residual exhaust gas that increases in the internal EGR device increases, so the combustion temperature in the combustion chamber becomes too high and soot generation increases. It will be. By the way, in a recent diesel engine, the combustion is performed at a lean leaner than the stoichiometric air-fuel ratio in the entire operation region, so that the low load including at least idling operation in the entire operation region is achieved. · The temperature of the exhaust gas in the low-speed operation region is lower than the other operation regions due to excess air for lean combustion, and as a result, a catalytic exhaust gas purification device installed in the exhaust path Because the temperature in the chamber does not rise, there is a problem that the exhaust gas purification efficiency is low. This problem, that is, that the purification efficiency of the catalytic exhaust gas purification device is low in the low-load / low-rotation operation region including idling operation, is that the exhaust gas is exhausted into the combustion chamber by the external EGR device as in the previous technology. This can be improved by reducing the amount of excess air that is inhaled by increasing the amount of exhaust gas recirculation, but on the other hand, the ignition / combustibility of the fuel becomes unstable. Therefore, as described in claim 3, when the amount of the soot generated is larger than the amount of the inert gas at which the soot generation peak, the amount of the inert gas that is recirculated into the combustion chamber by the external EGR device and It is configured to ensure that both the exhaust gas increased by the internal EGR device and the residual exhaust gas increase in the low-load / low-rotation operation region including at least idling operation in the entire operation region of the diesel engine. As a result, the ignition and combustibility of the fuel can be reliably promoted in a state where the generation of soot in the low load / low rotation operation region including the idling operation is reliably suppressed. If a catalyst-type exhaust gas purification device is installed in the exhaust path, the temperature of the exhaust gas purification device can be increased. The cleaner can be achieved. Next, as described in claim 4, when the amount of exhaust gas recirculated to the combustion chamber by the external EGR device and the amount of inert gas in the combustion chamber are increased, the amount of soot generated gradually increases. In the period before reaching the peak, the amount of soot generated increases to the amount of the inert gas when the amount of the generated inert gas is larger than the peak amount of the inert gas. In the process of gradually increasing the amount of exhaust gas recirculated to the combustion chamber by an external EGR device, the amount of soot generated reaches its peak. In other words, it is possible to reliably avoid reaching a state where it reaches a state where it is reached, in other words, to maintain a lower value than before when the amount of generated soot reaches its peak. As a result, the amount of inert gas until the amount of soot reaches a peak due to the increase in the amount of inert gas is secured from the state in which the exhaust gas recirculated into the combustion chamber is secured by the external EGR device. When the amount of soot generated is larger than the amount of inert gas that makes a peak, the amount of inert gas is increased by the exhaust gas recirculated into the combustion chamber by the external EGR device and the internal EGR device. In the transitional period when shifting to a state secured by both the residual exhaust gas and the remaining exhaust gas, it is possible to avoid the occurrence of a large amount of soot and to smoothly carry out the transition. In particular, when the exhaust gas recirculated into the combustion chamber is increased by the external EGR device, the combustion state can be prevented from becoming unstable. Next, according to the present invention, as described in claim 5, the diesel engine is a two-cycle diesel engine provided with a scavenging compressor, and the internal EGR device is provided in the scavenging compressor. It is proposed that the scavenging pressure be lowered. As described above, the residual exhaust gas that should remain in the combustion chamber during the combustion of fuel is the exhaust gas from the previous combustion. In the case of a two-cycle diesel engine, the previous combustion leads to the next combustion. The time until is about half that of a four-cycle diesel engine. In the meantime, the activity of the residual exhaust gas can be reduced to a small extent due to the decrease of the radical component in the residual exhaust gas. In other words, in the case of a two-cycle diesel engine, exhaust gas having a higher activity than in the case of a four-cycle diesel engine can remain in the combustion chamber, so that the above-described effects can be reliably achieved. . In addition, the increase in residual exhaust gas remaining in the combustion chamber can be accurately and reliably controlled by lowering the scavenging pressure in the scavenging compressor. Next, according to the present invention, as described in claim 6, by providing the exhaust gas recirculation passage with the EGR cooler, the exhaust gas is cooled, and the amount of soot generated can be reduced. Next, as described in claims 7 to 10 of the present invention, in a four-cycle diesel engine, the timing for closing the exhaust valve of the combustion chamber so as to leave the exhaust gas in the combustion chamber is controlled. One exhaust valve control means, second exhaust valve control means for controlling the timing of closing the exhaust valve of the combustion chamber so that the exhaust gas discharged from the exhaust port is sucked back into the combustion chamber upon intake. A four-cycle diesel engine by having at least one intake valve control means for controlling the timing of opening the intake valve of the chamber so that the exhaust gas discharged from the intake port is sucked back into the combustion chamber upon intake. In this case, low temperature combustion and radical addition are possible. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a graph showing the relationship between the amount of soot generated and the external EGR rate in an internal combustion engine.
第 2図は本発明の実施の形態を示す全体図である。 発明を実施するための最良の形態 以下, 本発明の実施の形態を, 第 2図の図面について説明する。 この図において, 符号 1は, 少なくとも二つの気筒を備えたニサイク ルのディーゼル機関を示し, このディーゼル機関 1 には, 当該ディーゼ ル機関 1 にて回転駆動される掃気用圧縮機 2を備え, この掃気用圧縮機 にて圧縮した空気を, 前記各気筒における掃気ポート (図示せず) に供 給することによって, 前記各気筒内の掃気を行うように構成している。 なお, この掃気用圧縮機は, 第 2図に二点鎖線で示すように, 後述す るエアクリーナ 7からの大気吸気通路 8中に設けるという構成にしても 良い。 符号 3は, 排気タービン 3 aとブロワ一圧縮機 3 bとを直結して成る 排気ターボ過給機を示し, この排気ターボ過給機 3の排気夕一ビン 3 a における入口には, 前記ディーゼル機関 1における排気マ二ホールド 1 aからの排気通路 4が, 前記排気タービン 3 aにおける出口には, 大気 への排気通路 5が各々接続され, 前記大気への排気通路 5の途中には, 触媒式の排気ガス浄化装置 6が設けられている。 一方, 前記排気ターボ過給機 3のブロワ一圧縮機 3 bにおける吸い込 み側には, エアクリーナ 7からの大気吸気通路 8が, 吐出側には, 前記 掃気用圧縮機 2への吸気通路 9が各々接続され, 前記大気吸気通路 8の 途中には, 吸入空気を制御するためのスロッ トル弁 1 0力 , 前記吸気通 路 9の途中には, イン夕クーラ 1 1が各々設けられている。 前記大気への排気通路 5と, 前記吸気通路 9との間は, 前記排気通路 δにおける排気ガスの一部を前記吸気通路 9に導くようにした排気ガス 還流通路 1 2を介して接続され,この排気ガス還流通路 1 2の途中には, 排気ガス還流制御弁 1 3及び E G Rクーラ 1 4が設けられ, 前記排気ガ ス還流制御弁 1 3の開度を大きくすると, 吸気通路 9への排気ガスの還 流量が増大し, 前記排気ガス還流制御弁 1 3の開度を小さくすると, 吸 気通路 9への排気ガスの還流量が減少されるように構成している。 つま り, これら排気ガス還流通路 1 2 , 排気ガス還流制御弁 1 3及び E G R クーラ 1 4にて外部 E G R装置 1 5を構成している。 一方, 前記吸気通路 9には, 前記掃気用圧縮機 2の上流側と下流側と を接続するバイパス通路 1 6が設けられ, このバイパス通路 1 6の途中 には, バイパス流量制御弁 1 7が設けられ, このバイパス流量制御弁 1 7を開くと, 前記掃気用圧縮機 2で圧縮され空気の一部が前記掃気用圧 縮機 2の吸い込み側に戻されることにより, 前記各気筒に掃気ボ一トに 対する掃気圧が低くなり, 前記バイパス流量制御弁 1 7の開度を更に大 きくすると, 前記掃気圧が更に低くなるように構成している。 つまり, これらバイパス通路 1 6及びバイパス流量制御弁 1 7によって, 内部 Ε G R装置 1 8を構成している。 符号 1 9は, 前記ス口ッ トル弁 1 0における開度センサー 2 0及び前 記ディーゼル機関 1 における回転センサー 2 1等からの信号を入力とし て, 前記排気ガス還流制御弁 1 3及び前記バイパス流量制御弁 1 7を以 下に述べるように開閉作動するためのコントローラである。 すなわち, 前記コントローラ 1 9は, 前記ディーゼル機関 1 における 全運転域のうち少なくともアイ ドリング運転を含む低負荷 · 低回転運転 域を除くその他の運転域においては, 前記外部 E G R装置 1 5における 排気ガス還流制御弁 1 3を開いて, 前記排気通路 5における排気ガスの 一部を排気ガス還流通路 1 2を介して前記吸気通路 9に, ひいては, 各 気筒における燃焼室内に還流する。 これにより, 前記ディーゼル機関 1 における全運転域のうち少なくと もアイ ドリング運転を含む低負荷 ·低回転運転域を除くその他の運転域 においては, 前記先行技術に記載されているように, 煤の発生量が不活 性ガス量の増大にてピークに達するまでの間における不活性ガス量を, 前記外部 E G R装置 1 5にて前記燃焼室内に還流する排気ガスによって 確保するように制御するという構成にしている。 これに加えて, 前記コントローラ 1 9は, 前記ディーゼル機関 1にお ける全運転域のうち少なくともアイ ドリング運転を含む低負荷 · 低回転 運転域においては, 前記排気通路 5における排気ガスの一部を前記外部 E G R装置 1 5にて各気筒における燃焼室内に還流することに加えて, 前記内部 E G R装置 1 8におけるバイパス流量制御弁 1 7を開く力 そ の開度を大きく して, 掃気用圧縮機 2にて圧縮した空気の一部をその吸 い込み側に戻しバイパスすることにより, 各気筒における掃気ポートに 対する掃気圧が低くなり, この掃気圧が低くなることで, 各気筒内にお ける掃気効率が低下し, 燃焼室内に残留する残留排気ガスの量が, 通常 のディーゼル機関の場合における残留排気ガスの量よりも増加する。 これにより, アイ ドリング運転を含む低負荷 · 低回転運転域において は, 前記先行技術に記載されているように, 煤の発生量がピークになる 不活性ガス量よりも多くする場合における不活性ガス量を, 前記外部 E G R装置 1 5にて前記燃焼室内に還流する排気ガスと, 前記内部 E G R 装置 1 8にて増加する残留排気ガスとの両方によって確保するように制 御するという構成にしている。 つまり, 前記ディーゼル機関 1 における全運転域のうち少なくともァ ィ ドリング運転を含む低負荷 · 低回転運転域において, 前記煤の発生量 がピークになる不活性ガス量よりも多くする場合における不活性ガス量 を, 前記外部 E G R装置 1 5にて燃焼室内に還流する排気ガスと, 前記 内部 E G R装置 1 8にて増加する残留排気ガスとの両方によって確保す るものであり, これにより, 前記外部 E G R装置 1 5にて燃焼室内に還 流する排気ガス量を, 前記内部 E G R装置 1 8にて増加する残留排気ガ ス量の分だけ少なくすることができる。 そして, 前記燃焼室内から排出されることなく燃焼室内に残留する残 留排気ガスは, 前記外部 E G R装置 1 5によって燃焼室に還流する排気 ガスに比べて, 温度が高くて, 且つ, ラジカル成分を多く含んで活性に 富んでいることにより, この残留排気ガス量を, 前記内部 E G R装置 1 8にて増量することによって, 燃料の着火 · 燃焼を促進できる。 前記二サイクルのディーゼル機関 1の場合, 前の燃焼から次の燃焼に 至るまでの時間は, 四サイクルディーゼル機関の場合の約半分というよ うに短いことにより, その間において, 前記残留排気ガスの活性度が当 該残留排気ガス中のラジカル成分の減少にて低下することを僅少にとど めることができ, 換言すると, 四サイクルディーゼル機関の場合よりも 高い活性度を有する排気ガスを残留することができるから, 前記した効 果, 燃料の着火 · 燃焼の一層の促進を達成できる。 この場合において, 前記コントローラ 1 9は, アイ ドリング運転を含 む低負荷 · 低回転運転域において, 前記外部 E G R装置 1 5と, 前記内 部 E G R装置 1 8とを同時に作動する場合に, 前記外部 E G R装置 1 5 にて燃焼室内に還流する排気ガスに対する前記内部 E G R装置 1 8にて 増加する残留排気ガスの割合を, 1 Z 1 6〜 1 / 8に規制するように構 成しており, これにより, この燃焼室内に残量する排気ガスによる燃料 の着火 · 燃焼促進を, 煤の発生を増大することなく, 達成することがで さる。 更に, 前記コントローラ 1 9は, 前記外部 E G R装置 1 5にて燃焼室 に還流する排気ガス量を, 前記燃焼室内の不活性ガス量を増大させてい く と煤の発生量が次第に増大してピークに達するよりも以前の時期, 例 えば, 第 1図の曲線 Aにおいて右上がり上の点 A 1の時期において, 前 記煤の発生量がピークになる不活性ガス量よりも多くする場合における 不活性ガス量, 例えば, 第 1図の曲線 Aにおいて右下がり上の点 A 2の 点における不活性ガス量にまで一挙に増加するように構成している。 これにより, 前記外部 E G R装置 1 5によって前記燃焼室に還流する 排気ガス量を次第に増大していく過程において, 煤の発生量を, 当該煤 の発生量がピークに到達する状態にまで高くなることを確実に回避でき る。 また, 前記第 1図における点 A 2においては, 内部 E G R装置 1 8に て排気ガスが増大されているから, 不活性ガスが急増することによる過 度時の燃焼不安定を生じることがない。 なお, 前記実施の形態は, 二サイクルのディーゼル機関 1 に適用した 場合であつたが, 本発明は, これに限らず, 四サイクルのディーゼル機 関に対しても同様に適用することができる。 但し, 四サイクルディーゼル機関の場合において, 燃焼室内に残留す る残留排気ガスを増加するための内部 E G R装置には, FIG. 2 is an overall view showing an embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, an embodiment of the present invention will be described with reference to FIG. In this figure, reference numeral 1 denotes a diesel engine having at least two cylinders, and the diesel engine 1 includes a scavenging compressor 2 that is driven to rotate by the diesel engine 1. By supplying air compressed by a scavenging compressor to a scavenging port (not shown) in each cylinder, scavenging in each cylinder is performed. This scavenging compressor may be provided in an air intake passage 8 from an air cleaner 7 to be described later, as shown by a two-dot chain line in FIG. Reference numeral 3 denotes an exhaust turbocharger that is formed by directly connecting an exhaust turbine 3 a and a blower compressor 3 b. The exhaust turbocharger 3 has an diesel exhaust bin 3 a at the inlet of the diesel turbocharger 3 a. An exhaust passage 4 from an exhaust manifold 1a in the engine 1 is connected to an exhaust passage 5 to the atmosphere at an outlet of the exhaust turbine 3a, and a catalyst is placed in the middle of the exhaust passage 5 to the atmosphere. An exhaust gas purification device 6 of the type is provided. On the other hand, the air intake passage 8 from the air cleaner 7 is on the suction side of the blower compressor 3 b of the exhaust turbocharger 3, and the air intake passage 9 to the scavenging compressor 2 is on the discharge side. Are connected to each other, and a throttle valve 10 for controlling the intake air is provided in the middle of the air intake passage 8, and an in-cooler 11 is provided in the middle of the intake passage 9. . The exhaust passage 5 to the atmosphere and the intake passage 9 are connected via an exhaust gas recirculation passage 12 that guides a part of the exhaust gas in the exhaust passage δ to the intake passage 9. An exhaust gas recirculation control valve 1 3 and an EGR cooler 14 are provided in the middle of the exhaust gas recirculation passage 1 2. When the opening of the exhaust gas recirculation control valve 1 3 is increased, the exhaust gas to the intake passage 9 is exhausted. When the return flow of the gas increases and the opening of the exhaust gas recirculation control valve 13 decreases, the recirculation amount of the exhaust gas to the intake passage 9 is reduced. In other words, the exhaust gas recirculation passage 12, the exhaust gas recirculation control valve 13 and the EGR cooler 14 constitute an external EGR device 15. On the other hand, the intake passage 9 is provided with a bypass passage 16 connecting the upstream side and the downstream side of the scavenging compressor 2, and a bypass flow control valve 17 is provided in the middle of the bypass passage 16. When the bypass flow rate control valve 17 is opened, a part of the air is compressed by the scavenging compressor 2 and returned to the suction side of the scavenging compressor 2, so that the scavenging The scavenging air pressure is reduced to a certain level, and the scavenging air pressure is further reduced when the opening of the bypass flow control valve 17 is further increased. In other words, these bypass passage 16 and bypass flow control valve 17 constitute an internal Ε GR device 18. Reference numeral 19 designates the exhaust gas recirculation control valve 13 and the bypass by using signals from the opening sensor 20 and the rotation sensor 21 and the like in the diesel engine 1 as inputs. It is a controller for opening and closing the flow control valve 17 as described below. That is, the controller 19 is configured to perform exhaust gas recirculation in the external EGR device 15 in all other operating areas of the diesel engine 1 except for the low load / low speed operating area including idling operation. The control valve 13 is opened, and a part of the exhaust gas in the exhaust passage 5 is recirculated to the intake passage 9 via the exhaust gas recirculation passage 12 and eventually into the combustion chamber in each cylinder. As a result, as described in the above-mentioned prior art, at least the other operation areas except the low load / low rotation operation area including the idling operation in the entire operation area of the diesel engine 1 A configuration in which the amount of inert gas until the amount of generated gas reaches a peak due to an increase in the amount of inert gas is controlled by the external EGR device 15 so as to be secured by the exhaust gas recirculated into the combustion chamber. I have to. In addition to this, the controller 19 reduces a part of the exhaust gas in the exhaust passage 5 in the low load / low rotation operation region including at least the idling operation out of the entire operation region in the diesel engine 1. In addition to returning to the combustion chamber in each cylinder by the external EGR device 15, the opening force of the bypass flow rate control valve 17 in the internal EGR device 18 is increased, and the scavenging compressor Part of the air compressed in step 2 By bypassing back to the intake side, the scavenging air pressure for the scavenging port in each cylinder is lowered, and this scavenging air pressure is lowered, thereby reducing the scavenging efficiency in each cylinder and remaining in the combustion chamber. The amount of exhaust gas is larger than the amount of residual exhaust gas in the case of a normal diesel engine. As a result, in the low-load / low-rotation operation region including idling operation, as described in the prior art, the inert gas in the case where the amount of soot generation is larger than the inert gas amount that peaks. The amount is controlled so as to be secured by both the exhaust gas recirculated into the combustion chamber by the external EGR device 15 and the residual exhaust gas increasing by the internal EGR device 18. . In other words, in the low-load / low-rotation operation region including at least the idling operation in the entire operation region of the diesel engine 1, the inert gas in the case where the amount of soot generation is larger than the peak inactive gas amount. The amount is ensured by both the exhaust gas recirculated into the combustion chamber by the external EGR device 15 and the residual exhaust gas that increases by the internal EGR device 18. The amount of exhaust gas returned to the combustion chamber by the device 15 can be reduced by the amount of residual exhaust gas increased by the internal EGR device 18. The residual exhaust gas remaining in the combustion chamber without being discharged from the combustion chamber is higher in temperature than the exhaust gas recirculated to the combustion chamber by the external EGR device 15 and contains a radical component. Because it contains a large amount and is rich in activity, it is possible to promote the ignition and combustion of fuel by increasing the amount of residual exhaust gas with the internal EGR device 18. In the case of the two-cycle diesel engine 1, the time from the previous combustion to the next combustion is as short as about half that of the four-cycle diesel engine. Can be minimized by the reduction of radical components in the residual exhaust gas. In other words, exhaust gas having higher activity than that of a four-cycle diesel engine remains. Therefore, the above-mentioned effects can be achieved, and further acceleration of fuel ignition / combustion can be achieved. In this case, when the controller 19 operates the external EGR device 15 and the internal EGR device 18 simultaneously in a low load / low rotation operation region including idling operation, The ratio of the residual exhaust gas that increases in the internal EGR device 1 8 to the exhaust gas recirculated into the combustion chamber in the EGR device 15 is regulated to 1 Z 16 to 1/8. As a result, it is possible to achieve ignition and combustion promotion of the fuel by the exhaust gas remaining in the combustion chamber without increasing the generation of soot. Furthermore, the controller 19 increases the amount of exhaust gas recirculated to the combustion chamber by the external EGR device 15, and the amount of soot generated gradually increases as the amount of inert gas in the combustion chamber increases. For example, when the amount of the above-mentioned generation is greater than the peak amount of inert gas at the time point A 1 on the upper right in curve A in Fig. 1, The active gas amount is configured to increase all at once, for example, to the amount of inert gas at point A 2 on the lower right side of curve A in Fig. 1. As a result, in the process of gradually increasing the amount of exhaust gas recirculated to the combustion chamber by the external EGR device 15, the amount of soot is increased to a state where the amount of soot reaches a peak. Can be avoided reliably. In addition, at point A 2 in Fig. 1, the exhaust gas is increased by the internal EGR device 18, so there is no instability of combustion due to excessive increase of inert gas. Although the above embodiment is applied to a two-cycle diesel engine 1, the present invention is not limited to this, and can be similarly applied to a four-cycle diesel engine. However, in the case of a four-cycle diesel engine, the internal EGR device for increasing the residual exhaust gas remaining in the combustion chamber includes
( i ) . 排気弁を閉じる時期を, 燃焼室内に排気ガスを残留させる状態 にまで早くすることによって, 燃焼室内の残留排気ガスを, 通常のディ ーゼル機関の場合よりも増加するようにした手段(第一排気弁制御手段)。 ( i i ) . 排気弁を閉じる時期を, 排気ポートに出た排気ガスを吸気の際 に再び燃焼室に吸い戻す状態にまで遅らせることによって, 燃焼室内の 残留排気ガスを, 通常のディーゼル機関の場合よりも増加するようにし た手段 (第二排気弁制御手段) 。  (i). Means to increase the residual exhaust gas in the combustion chamber more than in the case of a normal diesel engine by making the timing of closing the exhaust valve early until the exhaust gas remains in the combustion chamber. (First exhaust valve control means). (ii). By delaying the timing of closing the exhaust valve until the exhaust gas discharged from the exhaust port is sucked back into the combustion chamber during intake, the residual exhaust gas in the combustion chamber Means to increase more (second exhaust valve control means).
( i i i ) . 吸気弁を開く時期を, 吸気ポートに出た排気ガスを吸気の際 に再び燃焼室に吸い戻す状態にまで早くすることによって, 燃焼室内の 残留排気ガスを, 通常のディーゼル機関の場合よりも増加するようにし た手段 (吸気弁制御手段) 。 ( i v) . 前記 (i ) , (i i ) 及び (i i i ) のうち二つ以上を組み合わせ る手段。 (iii). By opening the intake valve early so that the exhaust gas discharged from the intake port is sucked back into the combustion chamber during intake, the remaining exhaust gas in the combustion chamber is reduced to that of a normal diesel engine. Means that increase more than the case (intake valve control means). (iv). Means for combining two or more of (i), (ii) and (iii) above.
等が存在する。 前記コントローラ 1 9は上記第一排気弁制御手段、 第二 排気弁制御手段、 吸気弁制御手段を兼ねることができる。 また, 前記二サイクルディーゼル機関が, 燃焼室の頂部に排気弁を備 えたュニフロー型である場合には, 前記したように掃気圧を低下するこ とに代えて, 又は, これと同時に前記排気弁を閉じる時期を早くするこ とによって, 燃焼室内に残留する残留排気ガスを増加するように構成す ることができる。 産業上の利用の可能性 Etc. exist. The controller 19 can also serve as the first exhaust valve control means, the second exhaust valve control means, and the intake valve control means. If the two-cycle diesel engine is a Uniflow type equipped with an exhaust valve at the top of the combustion chamber, instead of decreasing the scavenging pressure as described above, or at the same time, the exhaust valve It is possible to increase the residual exhaust gas remaining in the combustion chamber by making the closing time earlier. Industrial applicability
本発明のディーゼル機関は、 燃焼室内における不活性ガス量を多く し た場合における失火の発生を確実に解消することができる。  The diesel engine of the present invention can reliably eliminate the occurrence of misfire when the amount of inert gas in the combustion chamber is increased.

Claims

請 求 の 範 囲 The scope of the claims
1 . 燃料を燃焼する燃焼室と、 1. a combustion chamber for burning fuel;
前記燃焼室に連通し前記燃焼室にガスを供給する吸気通路と、 前記燃焼室と連通する排気ガス還流通路を備え、 前記燃焼室から排気 した排気ガスの少なくとも一部を前記排気ガス還流通路を介して前記燃 焼室に還流させる外部 E G R装置と、  An intake passage that communicates with the combustion chamber and supplies gas to the combustion chamber; an exhaust gas recirculation passage that communicates with the combustion chamber; and at least a portion of the exhaust gas exhausted from the combustion chamber passes through the exhaust gas recirculation passage An external EGR device for returning to the combustion chamber via
前記燃焼室で前記燃料を燃焼した後に前記燃焼室に残留する残留排気 ガスを増加させる内部 E G R装置と、  An internal EGR device for increasing residual exhaust gas remaining in the combustion chamber after burning the fuel in the combustion chamber;
前記燃焼室内の不活性ガス量を増大させ、 煤の発生量がピークを超え た低温燃焼領域において、 前記外部 E G R装置と前記内部 E G R装置を 制御することによって、 前記燃焼室に還流する排気ガスと, 残留排気ガ スの量を調整する制御装置とを備えたディーゼル機関。  By controlling the external EGR device and the internal EGR device in a low-temperature combustion region where the amount of inert gas in the combustion chamber is increased and the amount of soot generated exceeds the peak, exhaust gas recirculated to the combustion chamber and , Diesel engine equipped with a control device that adjusts the amount of residual exhaust gas.
2 . 前記制御装置は前記外部 E G R装置にて前記燃焼室内に還流す る排気ガスに対する残留排気ガスの割合を, 1 1 6〜 1 8になるよ うに制御することを特徴とする前記請求項 1に記載したディーゼル機関。 2. The control device according to claim 1, wherein the ratio of the residual exhaust gas to the exhaust gas recirculated into the combustion chamber by the external EGR device is controlled to be 1 16 to 18. The diesel engine described in 1.
3 . 前記制御装置は前記ディーゼル機関における全運転域のうち少 なくともアイ ドリング運転を含む低負荷 , 低回転運転域において、 前記 燃焼室内の残留排気ガスを増加させるように前記内部 E G Rを制御する ことを特徴とする前記請求項 1又は 2に記載したディーゼル機関。 3. The control device controls the internal EGR so as to increase the residual exhaust gas in the combustion chamber in a low load and low rotation operation region including at least an idling operation in the entire operation region of the diesel engine. The diesel engine according to claim 1 or 2, characterized by the above.
4 . 前記制御装置は、 前記燃焼室に還流する排気ガス量を, 前記低 温燃焼領域に至る前の領域において, 前記低温燃焼領域における不活性 ガス量に相当する不活性ガス量にまで一挙に増加するように前記外部 E G R装置を制御することを特徴とする前記請求項 1〜 3のいずれかに記 載したディーゼル機関。 4. The control device is configured to reduce the amount of exhaust gas recirculated to the combustion chamber to the amount of inert gas corresponding to the amount of inert gas in the low temperature combustion region in the region before reaching the low temperature combustion region. Said external E to increase The diesel engine according to any one of claims 1 to 3, wherein the diesel engine is controlled.
5 . 前記ディーゼル機関が, 掃気用圧縮機を備えた二サイクルのデ イーゼル機関であり, 前記内部 E G R装置が, 前記掃気用圧縮機による 掃気ポートに対する掃気圧を低くするように構成されたことを特徴とす る前記請求項 1〜 4のいずれかに記載したディーゼル機関。 5. The diesel engine is a two-cycle diesel engine equipped with a scavenging compressor, and the internal EGR device is configured to reduce the scavenging air pressure to the scavenging port of the scavenging compressor. The diesel engine according to any one of claims 1 to 4, wherein the diesel engine is characterized.
6 . さらに前記排気ガス還流通路に、 E G Rクーラを備えることを 特徴とする前記請求項 1 〜 5のいずれかに記載したディーゼル機関。 6. The diesel engine according to any one of claims 1 to 5, further comprising an EGR cooler in the exhaust gas recirculation passage.
7 . 前記ディーゼル機関が、 四サイクルディーゼル機関であって、 前記四サイクルディーゼル機関は、 前記燃焼室の排気弁を、 前記燃焼室 内に排気ガスを残留させるように閉じる時期を制御する第一排気弁制御 手段を有することを特徴とする請求項 1〜 4、 6のいずれかに記載のデ ィーゼル機関。 7. The diesel engine is a four-cycle diesel engine, wherein the four-cycle diesel engine controls the timing of closing the exhaust valve of the combustion chamber so that the exhaust gas remains in the combustion chamber. The diesel engine according to any one of claims 1 to 4 and 6, further comprising valve control means.
8 . 前記ディーゼル機関が、 四サイクルディーゼル機関であって、 前記四サイクルディーゼル機関は、 前記燃焼室の排気弁を、 排気ポート から排出した排気ガスを吸気の際に再び燃焼室に吸い戻すように閉じる 時期を制御する第二排気弁制御手段を有することを特徴とする請求項 1 〜 4、 6のいずれかに記載のディーゼル機関。 8. The diesel engine is a four-cycle diesel engine, and the four-cycle diesel engine causes the exhaust valve of the combustion chamber to suck the exhaust gas exhausted from the exhaust port back into the combustion chamber again during intake. The diesel engine according to any one of claims 1 to 4, further comprising second exhaust valve control means for controlling the closing timing.
9 . 前記ディーゼル機関が四サイクルディーゼル機関であって、 前 記四サイクルディーゼル機関は、 前記燃焼室の吸気弁を、 吸気ポートか ら排出した排気ガスを吸気の際に再び燃焼室に吸い戻すように開く時期 を制御する吸気弁制御手段を有することを特徴とする請求項 1 〜 4、 6 のいずれかに記載のディーゼル機関。 9. The diesel engine is a four-cycle diesel engine, and the four-cycle diesel engine uses the intake valve of the combustion chamber so that the exhaust gas discharged from the intake port is sucked back into the combustion chamber during intake. When to open The diesel engine according to any one of claims 1 to 4, further comprising an intake valve control means for controlling the engine.
1 0 . 前記第一排気弁制御手段、 前記第二排気弁制御手段、 及び前 記吸気弁制御手段のうち少なくとも 2つを含む請求項 7〜 9に記載のデ イーゼル機関。 10. The diesel engine according to any one of claims 7 to 9, comprising at least two of the first exhaust valve control means, the second exhaust valve control means, and the intake valve control means.
1 1 . 燃料を燃焼する燃焼室と、 1 1. Combustion chamber for burning fuel,
前記燃焼室に連通し前記燃焼室にガスを供給する吸気通路と、 前記燃焼室と連通する排気ガス還流通路を備え、 前記燃焼室から排気 し ,た排気ガスの少なくとも一部を前記排気ガス還流通路を介して前記燃 焼室に還流させる排気ガス還流通路を備えた外部 E G R装置と、  An exhaust passage that communicates with the combustion chamber and supplies gas to the combustion chamber; and an exhaust gas recirculation passage that communicates with the combustion chamber; and at least part of the exhaust gas exhausted from the combustion chamber An external EGR device having an exhaust gas recirculation passage for recirculation to the combustion chamber through the passage;
前記燃焼室で前記燃料を燃焼した後に前記燃焼室に残留する残留排気 ガスを増加させる内部 E G R装置とを備えたディーゼル機関の制御方法 であって、  A control method for a diesel engine comprising an internal EGR device for increasing residual exhaust gas remaining in the combustion chamber after burning the fuel in the combustion chamber,
前記燃焼室内の不活性ガス量を前記外部 E G R装置によって増大さ せ、  The amount of inert gas in the combustion chamber is increased by the external EGR device;
煤の発生量がピークを超えた低温燃焼領域において、 前記外部 E G R 装置と前記内部 E G R装置を制御することによって、 前記燃焼室に還流 する排気ガスと, 残留排気ガスの量を調整することを特徴とする前記デ ィーゼル機関の制御方法。  Controlling the external EGR device and the internal EGR device in the low-temperature combustion region where the amount of soot generated exceeds the peak adjusts the amount of exhaust gas recirculated to the combustion chamber and the amount of residual exhaust gas The method for controlling the diesel engine.
PCT/JP2006/311177 2005-05-31 2006-05-30 Diesel engine and method of controlling the same WO2006129840A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005158335A JP2006336466A (en) 2005-05-31 2005-05-31 Diesel engine
JP2005-158335 2005-05-31

Publications (1)

Publication Number Publication Date
WO2006129840A1 true WO2006129840A1 (en) 2006-12-07

Family

ID=37481755

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/311177 WO2006129840A1 (en) 2005-05-31 2006-05-30 Diesel engine and method of controlling the same

Country Status (2)

Country Link
JP (1) JP2006336466A (en)
WO (1) WO2006129840A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5169439B2 (en) * 2008-04-24 2013-03-27 株式会社デンソー Internal combustion engine control device and internal combustion engine control system
WO2011141987A1 (en) 2010-05-10 2011-11-17 トヨタ自動車株式会社 Control device for internal combustion engine
JP6043112B2 (en) * 2012-07-18 2016-12-14 川崎重工業株式会社 Uniflow 2-stroke engine
JP5965234B2 (en) * 2012-07-18 2016-08-03 川崎重工業株式会社 Uniflow 2-stroke engine
DK3404237T3 (en) * 2017-05-15 2021-04-26 Winterthur Gas & Diesel Ag Method for operating a large diesel engine as well as a large diesel engine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03246361A (en) * 1990-02-21 1991-11-01 Mazda Motor Corp Exhaust gas recirculation control device for diesel engine
JPH10252487A (en) * 1997-03-11 1998-09-22 Shuichi Kitamura Two-cycle diesel engine with bypass valve
JPH11200839A (en) * 1998-01-09 1999-07-27 Toyota Motor Corp Compression ignition type internal combustion engine
JP2000179408A (en) * 1998-12-16 2000-06-27 Toyota Motor Corp Internal combustion engine
JP2004144089A (en) * 2002-10-22 2004-05-20 Avl List Gmbh Method of operating direct injection diesel engine and diesel engine for performing the same
JP2005061323A (en) * 2003-08-13 2005-03-10 Honda Motor Co Ltd Control device for compression ignition internal combustion engine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03246361A (en) * 1990-02-21 1991-11-01 Mazda Motor Corp Exhaust gas recirculation control device for diesel engine
JPH10252487A (en) * 1997-03-11 1998-09-22 Shuichi Kitamura Two-cycle diesel engine with bypass valve
JPH11200839A (en) * 1998-01-09 1999-07-27 Toyota Motor Corp Compression ignition type internal combustion engine
JP2000179408A (en) * 1998-12-16 2000-06-27 Toyota Motor Corp Internal combustion engine
JP2004144089A (en) * 2002-10-22 2004-05-20 Avl List Gmbh Method of operating direct injection diesel engine and diesel engine for performing the same
JP2005061323A (en) * 2003-08-13 2005-03-10 Honda Motor Co Ltd Control device for compression ignition internal combustion engine

Also Published As

Publication number Publication date
JP2006336466A (en) 2006-12-14

Similar Documents

Publication Publication Date Title
JP4843035B2 (en) Engine and method for maintaining engine exhaust temperature
KR100504087B1 (en) Excess air factor control of diesel engine
JP4544803B2 (en) Low emission diesel cycle engine
US20070068149A1 (en) Air and fuel supply system for combustion engine with particulate trap
JP2006233898A (en) Egr device
JP2007315230A (en) Apparatus for recirculating exhaust gas of internal combustion engine
JP5444996B2 (en) Internal combustion engine and control method thereof
JP2005248748A (en) Diesel engine
KR20080026659A (en) Boost pressure control
WO2006129840A1 (en) Diesel engine and method of controlling the same
EP1193388A2 (en) Exhaust gas purifying apparatus for an internal combustion engine with a supercharger
JP4182770B2 (en) diesel engine
WO2005003536A1 (en) Diesel engine exhaust gas purifier and control means
JP2009002275A (en) Control system of internal combustion engine
JP2004124749A (en) Exhaust device for turbocharged engine
JP4250824B2 (en) Control device for turbocharged engine
JP4482848B2 (en) Exhaust gas purification device for turbocharged engine
JP2009047014A (en) Control device for diesel engine
JP4591403B2 (en) Control device for internal combustion engine
JP4265382B2 (en) Premixed compression ignition internal combustion engine
JPS63309727A (en) Exhaust gas treatment device for internal combustion engine with exhaust turbosupercharger
JP2011001877A (en) Internal combustion engine equipped with mechanical supercharger and supercharging method therefor
JP2006299892A (en) Internal combustion engine with supercharger
JP2004156519A (en) Combustion control device for engine
JP4924280B2 (en) Diesel engine control device.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06747157

Country of ref document: EP

Kind code of ref document: A1