JP4228570B2 - Optical fiber drawing furnace - Google Patents

Optical fiber drawing furnace Download PDF

Info

Publication number
JP4228570B2
JP4228570B2 JP2001367215A JP2001367215A JP4228570B2 JP 4228570 B2 JP4228570 B2 JP 4228570B2 JP 2001367215 A JP2001367215 A JP 2001367215A JP 2001367215 A JP2001367215 A JP 2001367215A JP 4228570 B2 JP4228570 B2 JP 4228570B2
Authority
JP
Japan
Prior art keywords
optical fiber
fiber preform
sheet
heat
sealing material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001367215A
Other languages
Japanese (ja)
Other versions
JP2003171139A (en
Inventor
芳宣 黒沢
健二 大村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2001367215A priority Critical patent/JP4228570B2/en
Publication of JP2003171139A publication Critical patent/JP2003171139A/en
Application granted granted Critical
Publication of JP4228570B2 publication Critical patent/JP4228570B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/029Furnaces therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/60Optical fibre draw furnaces
    • C03B2205/80Means for sealing the preform entry or upper end of the furnace

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical fiber drawing furnace in which the degradation of a furnace core pipe by oxidation and the deterioration of strength of an optical fiber are prevented by preventing the flow-in of atmospheric air in a furnace core. <P>SOLUTION: In the optical fiber drawing furnace 21 for drawing an optical fiber preform 23 to which a dummy rod 22 is connected in advance, a sheet like heat resistant sealing material 28 for preventing the flow-in of the atmospheric air to the inside of the furnace core 26 by sealing a gap between the optical fiber preform and an optical fiber preform inserting port 27 on the upper part of the furnace core pipe 25 of the drawing furnace 21 is provided in the optical fiber preform inserting port 27, a small chamber 29 covering the sheet like heat resistant sealing material 28 is formed above the optical fiber preform inserting port 27 and a sheet like sealing material 43 for sealing a gap formed between the dummy rod 22 and the optical fiber preform inserting port 35 in the upper part of the small chamber 29 is provided in the dummy rod 22 side of the outside of the small chamber 29. <P>COPYRIGHT: (C)2003,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、光ファイバ線引装置のうち、ダミー棒を予め連結した光ファイバ母材を線引きする光ファイバ線引炉に関するものである。
【0002】
【従来の技術】
図2は光ファイバ線引装置を示した概略図、図3は従来の光ファイバ線引炉を示した断面図である。
【0003】
図2に示すように、光ファイバ線引装置1は、光ファイバ母材2を線引炉3の炉心管11内で加熱溶融し、線引炉3の炉下口4から光ファイバ5を引き出した後、連続的に2層の硬さの異なるUV硬化型の樹脂を被覆して巻き取るものである。1層目は被覆ダイス6及びUVランプ7を介して比較的低弾性の樹脂を被覆し、2層目は下流側の被覆ダイス8及びUVランプ9を介して高弾性の樹脂を被覆するのが一般的である。
【0004】
線引炉3は石英ベースの光ファイバ母材2を約2000℃まで加熱する必要があるため、炉心管11の材質としては、ジルコニア等のセラミック或いは高純度カーボンが用いられるのが一般的である。
【0005】
ここでは、図3によって、カーボンによる炉心管11について説明する。炉心管11の材質として高純度カーボンを用いる場合は、炉心12の酸化消耗を防止するために、炉心12内にヘリウムやアルゴン等の不活性ガスをパージする必要がある。
【0006】
線引炉3の炉心管11の下部には、連続的に光ファイバ5が引き出されるため直径数mmの炉下口4が形成され、線引炉3の炉心管11の上部には、光ファイバ母材2の径よりも僅かに大きい径の光ファイバ母材挿入口14が形成されている。光ファイバ母材挿入口14では、炉心12内を正圧に保つために、カーボンフェルト等にてなるシート状耐熱封止材15が設けられている。
【0007】
光ファイバ母材挿入口14の上部には、シート状耐熱封止材15を覆う円筒形の小室17が形成されている。この小室17の上面には、挿入される光ファイバ母材2の径よりも僅かに大きな径を有する光ファイバ母材挿入口18が形成されている。
【0008】
光ファイバ母材2の径が比較的細い場合には、母材径と同径の石英製ダミー棒或いはダミー管を光ファイバ母材2に予め融着させておき、線引炉3上部から順次挿入して母材端部から線引きし、光ファイバ化する。
【0009】
一方、光ファイバ母材2の径が太い場合には、ダミー棒またはダミー管を接続するのが困難になるため、母材径よりも細いダミー棒16を接続する(図3参照)。このような異径母材に対しては、光ファイバ母材2とダミー棒16との接続部に母材径と同径の円筒型キャップ19を被せて疑似同径母材とする。
【0010】
【発明が解決しようとする課題】
しかしながら、光ファイバ線引炉3では、線引中の光ファイバ母材2は、径の大小にかかわらず、母材先端溶融部の熱が母材中を伝搬してダミー棒16との接続部20で散熱して局所的に高温になる。
【0011】
そのため、線引が進むにつれて光ファイバ母材2が順次送り込まれて、図3(b)参照に示すように、光ファイバ母材2とダミー棒16との接続部20がシート状耐熱封止材15の近傍にさしかかると、その接続部20から放散される熱によってカーボンフェルトが焼失することがある。これによって、炉心内部を正圧に保つことができず、小室17の上面に形成された光ファイバ母材挿入口18を介して炉心12内に大気が流入し、炉心管11の酸化劣化及び光ファイバ5の強度劣化を引き起こし、線引作業自体が続行不可能になるといった問題があった。
【0012】
そこで、本発明は上記問題を解決すべく案出されたものであり、その目的は、炉心内への大気の流入を防止して、炉心管の酸化劣化及び光ファイバの強度劣化を防止できる光ファイバ線引炉を提供することにある。
【0013】
【課題を解決するための手段】
前記課題を解決すべく、本発明は、ダミー棒を予め連結した光ファイバ母材を線引きする光ファイバ線引炉において、線引炉の炉心管上部の光ファイバ母材挿入口に光ファイバ母材との隙間を封止して炉心内への大気の流入を防止するためのシート状耐熱封止材を設けると共に、上記光ファイバ母材挿入口の上部にシート状耐熱封止材を覆う小室を形成し、且つ上記ダミー棒が上記光ファイバ母材よりも小径で、上記ダミー棒に上記光ファイバ母材と同径の円筒型キャップを覆わせて疑似同径母材を形成し、その疑似同径母材の外周に上記小室上部に形成された光ファイバ母材挿入口との隙間を封止するシート状耐熱封止材を設けたものである。
【0015】
また、上記線引炉の炉心管上部の光ファイバ母材挿入口に設けられたシート状耐熱封止材と上記小室上部に形成された光ファイバ母材挿入口との距離が、上記ダミー棒の上記光ファイバ母材との接続部と上記疑似同径母材の外周に設けられたシート状耐熱封止材との距離よりも大きいものが好ましい。
【0016】
さらに、上記シート状耐熱封止材が、カーボンフェルトにて構成されたものが好ましい。
【0017】
また、上記疑似同径母材の外周に設けられたシート状耐熱封止材が、上記ダミー棒の上記光ファイバ母材との接続部より50mm以上離れて位置するものが好ましい。
【0018】
【発明の実施の形態】
以下、本発明の実施の形態を添付図面に従って説明する。
【0019】
図1は本発明に係る光ファイバ線引炉の好適な実施の形態を示した断面図である。
【0020】
まず、係る光ファイバ線引炉の構成を説明する。
【0021】
図示するように、本実施の形態に係る光ファイバ線引炉21は、ダミー棒22を予め融着・連結した光ファイバ母材23を線引きするものである。光ファイバ線引炉21は、加熱部24を備えた炉心管25を有している。
【0022】
炉心管25の下部には、連続的に光ファイバ33が引き出されるための炉下口34が形成されている。炉下口34は、光ファイバ33との接触を避けると共に、炉心26内を正圧に保持できるように、直径が数mmに形成されている。
【0023】
炉心管25の上部には、光ファイバ母材23を炉心26内へ挿入するための光ファイバ母材挿入口27が形成されている。この光ファイバ母材挿入口27は、挿入される光ファイバ母材23の径よりも僅かに大きな径を有している。
【0024】
光ファイバ母材挿入口27には、光ファイバ母材23との隙間を封止して炉心26内への大気の流入を防止するためのシート状耐熱封止材28が設けられている。このシート状耐熱封止材28は、カーボンフェルトにて構成され、挿入される光ファイバ母材23を囲繞するようにリング状に形成されている。
【0025】
光ファイバ母材挿入口27の上部には、上述のシート状耐熱封止材28を覆う小室29が形成されている。小室29は、蓋部31を有する円筒状に形成されたケーシング32によって区画され、円筒状に形成されている。小室29上部の蓋部31には、光ファイバ母材23を挿入するための光ファイバ母材挿入口35が形成されている。この光ファイバ母材挿入口35は、上記光ファイバ母材挿入口27と同様に、挿入される光ファイバ母材23の径よりも僅かに大きな径を有している。
【0026】
なお、図示していないが、炉心26及び小室29には、炉心管25の酸化劣化を防止するために窒素等の不活性ガスをパージするための不活性ガス流路が接続されている。
【0027】
光ファイバ母材23が、比較的太く、例えば直径φ100mmの場合には、その上部に直径φ50mmのダミー棒22が融着されている。そして、光ファイバ母材23とダミー棒22との接続部37には、光ファイバ母材23と同等の直径φ100mmを有し、高さh1=200mmの円筒型キャップ38が載置され、ダミー棒22の下部を覆っている。この円筒型キャップ38で、疑似同径母材39が形成される。
【0028】
円筒型キャップ38の上端部には、蓋部31に円筒型キャップ38を係止させるための係止爪41が形成されている。この係止爪41の下部には、円筒型キャップ38が蓋部31に係止した際に、光ファイバ母材挿入口35と円筒型キャップ38戸の隙間を封止するためのシート状耐熱封止材43が設けられている。このシート状耐熱封止材43も、上述したシート状耐熱封止材28と同様に、カーボンフェルトにて構成され、リング状に形成されている。
【0029】
炉心管25上部の光ファイバ母材挿入口27に設けられたシート状耐熱封止材28と、小室29上部に形成された光ファイバ母材挿入口35との距離(小室29の高さh2と同等)は、ダミー棒22の光ファイバ母材23との接続部37と、ダミー棒22側(蓋部31に係止した円筒型キャップ38)に設けられたシート状耐熱封止材43との距離(円筒型キャップ38の高さh1と同等)よりも大きくなるようになっている。
【0030】
また、ダミー棒22側となる円筒型キャップ38の外周に設けられたシート状耐熱封止材43が、ダミー棒22の光ファイバ母材23との接続部38より50mm以上離れて位置するようになっている。
【0031】
具体的には、円筒型キャップ38の高さh1が200mmの場合に、小室29の高さh2が300mmで、直径がφ200mmとなっている。これによって、炉心管25上部の光ファイバ母材挿入口27に設けられたシート状耐熱封止材28と、小室29上部に形成された光ファイバ母材挿入口35との距離も300mmとなり、上述の条件を満たす。
【0032】
次に、上記構成の光ファイバ線引炉21による光ファイバ線引工程と共にその作用を説明する。
【0033】
まず、線引開始時には、図1(a)に示すように、光ファイバ母材23が長く、円筒型キャップ38のシート状耐熱封止材43は、小室29の蓋部31よりも上方に位置しているが、光ファイバ母材23が、炉心管25上部のシート状耐熱封止材28と接触して、炉心26は封止されている。
【0034】
このとき、光ファイバ母材23とダミー棒22との接続部37は、小室29内に位置しており、そこから放散される熱によってシート状耐熱封止材28が焼失することはない。
【0035】
また、円筒型キャップ38のシート状耐熱封止材43は、光ファイバ母材23とダミー棒22との接続部37から50mm以上離れているので、接続部37から放散される熱の影響を受けることはない。
【0036】
そして、線引が進み、光ファイバ母材23が徐々に短くなってくると、図1(b)に示すように、円筒型キャップ38が小室29上部の蓋部31に係止し、シート状耐熱封止材43によって、小室19と外部とを封止する。そして、さらに線引が進むと、円筒型キャップ38は、係止されているのでその位置に残り、光ファイバ母材23とダミー棒22は、さらに下降する。
【0037】
このとき、光ファイバ母材23とダミー棒22との接続部37が、シート状耐熱封止材28の部分に位置して、接続部37から放散される熱によってシート状耐熱封止材28が焼失する場合があるが、小室29が、その上部のシート状耐熱封止材43によって外部と封止されているので、炉心26内に大気が流入するのを防止できる。
【0038】
さらに、線引が進み、図1(c)に示すように、光ファイバ母材23とダミー棒22との接続部37が炉心26内まで下降して、炉心26と小室29が連通するが、小室29が、外部と封止されているので、炉心26内に大気が流入することはない。
【0039】
以上のように、上記構成によれば、上記線引の各工程において、炉心26内或いは小室29内を外部と封止することができるので、炉心26内部を正圧に保つことができ、炉心26内への大気の流入を防止できる。
【0040】
これによって、炉心管25の酸化劣化及び光ファイバ33の強度劣化を防止することができ、円滑で安定した線引を行うことができる。
【0041】
なお、上記実施の形態では、シート状耐熱封止材28,43はカーボンフェルト等にて構成しているが、これに限られるものではない。光ファイバ母材23の表面を傷付けなければ、例えば、ガラス・セラミック系等の耐熱材であってもよい。
【0042】
【発明の効果】
以上要するに本発明によれば、炉心内への大気の流入を防止でき、炉心管の酸化劣化及び光ファイバの強度劣化を防止することができるといった優れた効果を発揮する。
【図面の簡単な説明】
【図1】本発明に係る光ファイバ線引炉の好適な実施の形態を示した断面図であって、(a)は線引の第一工程を示した断面図、(b)は線引の第二工程を示した断面図、(c)は線引の第三工程を示した断面図である。
【図2】光ファイバ線引装置の全体構成を示した概略図である。
【図3】従来の光ファイバ線引炉を示した断面図であって、(a)は線引の第一工程を示した断面図、(b)は線引の第二工程を示した断面図である。
【符号の説明】
21 光ファイバ線引炉
22 ダミー棒
23 光ファイバ母材
25 炉心管
26 炉心
27 光ファイバ母材挿入口
28 シート状耐熱封止材
29 小室
35 光ファイバ母材挿入口
37 (光ファイバ母材とダミー棒との)接続部
38 円筒型キャップ
39 疑似同径母材
43 シート状耐熱封止材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical fiber drawing furnace for drawing an optical fiber preform having a dummy rod connected in advance among optical fiber drawing apparatuses.
[0002]
[Prior art]
FIG. 2 is a schematic view showing an optical fiber drawing apparatus, and FIG. 3 is a cross-sectional view showing a conventional optical fiber drawing furnace.
[0003]
As shown in FIG. 2, the optical fiber drawing apparatus 1 heats and melts the optical fiber preform 2 in the core tube 11 of the drawing furnace 3, and draws the optical fiber 5 from the furnace lower port 4 of the drawing furnace 3. Then, two layers of UV curable resins having different hardnesses are continuously coated and wound up. The first layer is coated with a relatively low elasticity resin via the coating die 6 and the UV lamp 7, and the second layer is coated with a high elasticity resin via the downstream coating die 8 and the UV lamp 9. It is common.
[0004]
Since the drawing furnace 3 needs to heat the quartz-based optical fiber preform 2 to about 2000 ° C., the furnace core tube 11 is generally made of ceramic such as zirconia or high-purity carbon. .
[0005]
Here, the core tube 11 made of carbon will be described with reference to FIG. When high purity carbon is used as the material of the core tube 11, it is necessary to purge the core 12 with an inert gas such as helium or argon in order to prevent oxidation consumption of the core 12.
[0006]
In the lower part of the core tube 11 of the drawing furnace 3, an optical fiber 5 is continuously drawn, so that a furnace lower port 4 having a diameter of several millimeters is formed. In the upper part of the core tube 11 of the drawing furnace 3, an optical fiber is formed. An optical fiber preform insertion port 14 having a diameter slightly larger than the diameter of the preform 2 is formed. In the optical fiber preform insertion port 14, a sheet-like heat-resistant sealing material 15 made of carbon felt or the like is provided in order to keep the inside of the core 12 at a positive pressure.
[0007]
A cylindrical chamber 17 that covers the sheet-like heat-resistant sealing material 15 is formed in the upper part of the optical fiber preform insertion port 14. An optical fiber preform insertion port 18 having a diameter slightly larger than the diameter of the optical fiber preform 2 to be inserted is formed on the upper surface of the small chamber 17.
[0008]
When the diameter of the optical fiber preform 2 is relatively small, a quartz dummy rod or dummy tube having the same diameter as that of the preform is fused in advance to the optical fiber preform 2 and sequentially from the upper part of the drawing furnace 3. Insert and draw from the end of the base material to make an optical fiber.
[0009]
On the other hand, when the diameter of the optical fiber preform 2 is large, it is difficult to connect a dummy bar or a dummy tube, so a dummy rod 16 that is thinner than the preform diameter is connected (see FIG. 3). For such a different-diameter base material, a cylindrical cap 19 having the same diameter as that of the base material is covered with a connecting portion between the optical fiber base material 2 and the dummy rod 16 to obtain a pseudo-same base material.
[0010]
[Problems to be solved by the invention]
However, in the optical fiber drawing furnace 3, regardless of the diameter of the optical fiber preform 2 that is being drawn, the heat at the melted portion of the preform of the preform propagates through the preform and is connected to the dummy rod 16. The heat is dissipated at 20 and locally becomes hot.
[0011]
Therefore, as the drawing progresses, the optical fiber preform 2 is sequentially fed, and as shown in FIG. 3B, the connecting portion 20 between the optical fiber preform 2 and the dummy rod 16 is a sheet-like heat-resistant sealing material. When approaching 15, the carbon felt may be burned down by the heat dissipated from the connecting portion 20. As a result, the inside of the core cannot be maintained at a positive pressure, and the atmosphere flows into the core 12 through the optical fiber preform insertion port 18 formed on the upper surface of the small chamber 17, causing oxidation deterioration and light of the core tube 11. There is a problem that the strength of the fiber 5 is deteriorated and the drawing work itself cannot be continued.
[0012]
Therefore, the present invention has been devised to solve the above-described problems, and its purpose is to prevent the inflow of air into the core and prevent oxidation deterioration of the core tube and strength deterioration of the optical fiber. It is to provide a fiber drawing furnace.
[0013]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention provides an optical fiber drawing furnace for drawing an optical fiber preform to which a dummy rod is connected in advance. A sheet-like heat-resistant sealing material is provided to prevent the inflow of air into the reactor core, and a small chamber covering the sheet-like heat-resistant sealing material is provided above the optical fiber preform insertion port. The dummy rod is smaller in diameter than the optical fiber preform, and the dummy rod is covered with a cylindrical cap having the same diameter as the optical fiber preform to form a pseudo-same diameter preform. A sheet-like heat - resistant sealing material is provided on the outer periphery of the diameter base material to seal the gap with the optical fiber base material insertion port formed in the upper portion of the small chamber.
[0015]
Also, the distance between the sheet-like heat-resistant sealing material provided at the optical fiber preform insertion port at the upper part of the core tube of the drawing furnace and the optical fiber preform insertion port formed at the upper part of the small chamber is the distance between the dummy rods. What is larger than the distance of the connection part with the said optical fiber preform | base_material and the sheet-like heat-resistant sealing material provided in the outer periphery of the said pseudo | simulated same diameter preform | base_material is preferable.
[0016]
Furthermore, it is preferable that the sheet-like heat-resistant sealing material is composed of carbon felt.
[0017]
Moreover, it is preferable that the sheet-like heat-resistant sealing material provided on the outer periphery of the pseudo-same diameter base material is located at a distance of 50 mm or more from the connection portion of the dummy rod with the optical fiber base material.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
[0019]
FIG. 1 is a sectional view showing a preferred embodiment of an optical fiber drawing furnace according to the present invention.
[0020]
First, the configuration of the optical fiber drawing furnace will be described.
[0021]
As shown in the drawing, an optical fiber drawing furnace 21 according to the present embodiment draws an optical fiber preform 23 in which a dummy rod 22 is fused and connected in advance. The optical fiber drawing furnace 21 has a furnace core tube 25 provided with a heating unit 24.
[0022]
A furnace lower port 34 for continuously drawing out the optical fiber 33 is formed in the lower part of the furnace tube 25. The furnace lower port 34 is formed to have a diameter of several millimeters so as to avoid contact with the optical fiber 33 and to maintain the inside of the core 26 at a positive pressure.
[0023]
An optical fiber preform insertion port 27 for inserting the optical fiber preform 23 into the core 26 is formed in the upper part of the core tube 25. The optical fiber preform insertion port 27 has a diameter slightly larger than the diameter of the optical fiber preform 23 to be inserted.
[0024]
The optical fiber preform insertion port 27 is provided with a sheet-like heat-resistant sealing material 28 for sealing the gap with the optical fiber preform 23 to prevent the inflow of air into the core 26. The sheet-like heat-resistant sealing material 28 is made of carbon felt and is formed in a ring shape so as to surround the optical fiber preform 23 to be inserted.
[0025]
A small chamber 29 that covers the above-described sheet-like heat-resistant sealing material 28 is formed in the upper portion of the optical fiber preform insertion port 27. The small chamber 29 is partitioned by a cylindrical casing 32 having a lid 31 and is formed in a cylindrical shape. An optical fiber preform insertion port 35 for inserting the optical fiber preform 23 is formed in the lid 31 at the top of the small chamber 29. Similar to the optical fiber preform insertion port 27, the optical fiber preform insertion port 35 has a diameter slightly larger than the diameter of the optical fiber preform 23 to be inserted.
[0026]
Although not shown, the reactor core 26 and the small chamber 29 are connected to an inert gas flow path for purging an inert gas such as nitrogen in order to prevent oxidative deterioration of the reactor core tube 25.
[0027]
If the optical fiber preform 23 is relatively thick, for example, having a diameter of φ100 mm, a dummy rod 22 having a diameter of φ50 mm is fused to the upper portion thereof. A cylindrical cap 38 having a diameter φ100 mm equivalent to that of the optical fiber preform 23 and having a height h1 = 200 mm is placed on the connection portion 37 between the optical fiber preform 23 and the dummy rod 22. The lower part of 22 is covered. With this cylindrical cap 38, a pseudo-same base material 39 is formed.
[0028]
A locking claw 41 for locking the cylindrical cap 38 to the lid 31 is formed at the upper end of the cylindrical cap 38. A sheet-shaped heat-resistant seal for sealing the gap between the optical fiber preform insertion port 35 and the cylindrical cap 38 when the cylindrical cap 38 is locked to the lid portion 31 is provided below the locking claw 41. A stop material 43 is provided. This sheet-like heat-resistant sealing material 43 is also made of carbon felt and formed in a ring shape, like the sheet-like heat-resistant sealing material 28 described above.
[0029]
The distance between the sheet-like heat-resistant sealing material 28 provided in the optical fiber preform insertion port 27 at the top of the core tube 25 and the optical fiber preform insertion port 35 formed at the top of the small chamber 29 (the height h2 of the small chamber 29) Is equivalent to the connection portion 37 of the dummy rod 22 to the optical fiber preform 23 and the sheet-like heat-resistant sealing material 43 provided on the dummy rod 22 side (cylindrical cap 38 locked to the lid portion 31). The distance is larger than the distance (equivalent to the height h1 of the cylindrical cap 38).
[0030]
Further, the sheet-like heat-resistant sealing material 43 provided on the outer periphery of the cylindrical cap 38 on the dummy rod 22 side is positioned 50 mm or more away from the connection portion 38 of the dummy rod 22 with the optical fiber preform 23. It has become.
[0031]
Specifically, when the height h1 of the cylindrical cap 38 is 200 mm, the height h2 of the small chamber 29 is 300 mm and the diameter is 200 mm. As a result, the distance between the sheet-like heat-resistant sealing material 28 provided in the optical fiber preform insertion port 27 above the furnace core tube 25 and the optical fiber preform insertion port 35 formed in the upper portion of the small chamber 29 is also 300 mm. Satisfy the condition of
[0032]
Next, the operation will be described together with the optical fiber drawing step by the optical fiber drawing furnace 21 having the above configuration.
[0033]
First, at the start of drawing, as shown in FIG. 1A, the optical fiber preform 23 is long, and the sheet-like heat-resistant sealing material 43 of the cylindrical cap 38 is positioned above the lid portion 31 of the small chamber 29. However, the core 26 is sealed by the optical fiber preform 23 coming into contact with the sheet-like heat-resistant sealing material 28 above the core tube 25.
[0034]
At this time, the connection portion 37 between the optical fiber preform 23 and the dummy rod 22 is located in the small chamber 29, and the heat resistant sealing material 28 is not burned out by the heat dissipated therefrom.
[0035]
Further, since the sheet-like heat-resistant sealing material 43 of the cylindrical cap 38 is separated by 50 mm or more from the connection portion 37 between the optical fiber preform 23 and the dummy rod 22, it is affected by the heat dissipated from the connection portion 37. There is nothing.
[0036]
When drawing progresses and the optical fiber preform 23 is gradually shortened, as shown in FIG. 1 (b), the cylindrical cap 38 is locked to the lid portion 31 at the upper part of the small chamber 29 to form a sheet. The small chamber 19 and the outside are sealed by the heat-resistant sealing material 43. When the drawing is further advanced, the cylindrical cap 38 is locked and remains in that position, and the optical fiber preform 23 and the dummy rod 22 are further lowered.
[0037]
At this time, the connection portion 37 between the optical fiber preform 23 and the dummy rod 22 is located at the portion of the sheet-like heat-resistant sealing material 28, and the sheet-like heat-resistant sealing material 28 is heated by the heat dissipated from the connection portion 37. In some cases, the chamber 29 is burned off, but the small chamber 29 is sealed from the outside by the sheet-like heat-resistant sealing material 43 on the upper portion thereof, so that the atmosphere can be prevented from flowing into the core 26.
[0038]
Further, as the drawing progresses, as shown in FIG. 1C, the connecting portion 37 between the optical fiber preform 23 and the dummy rod 22 descends into the core 26, and the core 26 and the small chamber 29 communicate with each other. Since the small chamber 29 is sealed from the outside, the atmosphere does not flow into the core 26.
[0039]
As described above, according to the above configuration, in each drawing process, the inside of the core 26 or the small chamber 29 can be sealed with the outside, so that the inside of the core 26 can be maintained at a positive pressure, and the core The inflow of air into the interior 26 can be prevented.
[0040]
Thereby, oxidation deterioration of the furnace core tube 25 and strength deterioration of the optical fiber 33 can be prevented, and smooth and stable drawing can be performed.
[0041]
In the above embodiment, the sheet-like heat-resistant sealing materials 28 and 43 are made of carbon felt or the like, but are not limited thereto. As long as the surface of the optical fiber preform 23 is not damaged, for example, a heat resistant material such as glass and ceramics may be used.
[0042]
【The invention's effect】
In summary, according to the present invention, it is possible to prevent the inflow of air into the core, and to exhibit excellent effects such as preventing oxidation deterioration of the core tube and strength deterioration of the optical fiber.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a preferred embodiment of an optical fiber drawing furnace according to the present invention, wherein (a) is a cross-sectional view showing a first step of drawing, and (b) is a drawing. Sectional drawing which showed the 2nd process of this, (c) is sectional drawing which showed the 3rd process of drawing.
FIG. 2 is a schematic diagram showing the overall configuration of an optical fiber drawing device.
3A and 3B are cross-sectional views showing a conventional optical fiber drawing furnace, where FIG. 3A is a cross-sectional view showing a first drawing process, and FIG. 3B is a cross-sectional view showing a second drawing process. FIG.
[Explanation of symbols]
21 Optical fiber drawing furnace 22 Dummy rod 23 Optical fiber preform 25 Core tube 26 Core 27 Optical fiber preform insertion port 28 Sheet-like heat resistant sealing material 29 Chamber 35 Optical fiber preform insertion slot 37 (Optical fiber preform and dummy Connection portion 38 (with rod) Cylindrical cap 39 Pseudo-same diameter base material 43 Sheet-like heat-resistant sealing material

Claims (4)

ダミー棒を予め連結した光ファイバ母材を線引きする光ファイバ線引炉において、線引炉の炉心管上部の光ファイバ母材挿入口に光ファイバ母材との隙間を封止して炉心内への大気の流入を防止するためのシート状耐熱封止材を設けると共に、上記光ファイバ母材挿入口の上部にシート状耐熱封止材を覆う小室を形成し、且つ上記ダミー棒が上記光ファイバ母材よりも小径で、上記ダミー棒に上記光ファイバ母材と同径の円筒型キャップを覆わせて疑似同径母材を形成し、その疑似同径母材の外周に上記小室上部に形成された光ファイバ母材挿入口との隙間を封止するシート状耐熱封止材を設けたことを特徴とする光ファイバ線引炉。In an optical fiber drawing furnace that draws an optical fiber preform to which a dummy rod is connected in advance, the gap between the optical fiber preform is sealed in the optical fiber preform insertion port at the upper part of the core tube of the drawing furnace, and the core is inserted into the core. A sheet-like heat-resistant sealing material is provided to prevent the inflow of the atmosphere, a small chamber is formed on the optical fiber preform insertion port to cover the sheet-like heat-resistant sealing material, and the dummy rod is the optical fiber. The dummy rod is covered with a cylindrical cap having the same diameter as the optical fiber preform and the pseudo-same diameter preform is formed on the dummy rod and formed on the outer periphery of the pseudo-same preform on the upper portion of the small chamber. An optical fiber drawing furnace comprising a sheet-like heat - resistant sealing material that seals a gap between the optical fiber preform insertion port. 上記線引炉の炉心管上部の光ファイバ母材挿入口に設けられたシート状耐熱封止材と上記小室上部に形成された光ファイバ母材挿入口との距離が、上記ダミー棒の上記光ファイバ母材との接続部と上記疑似同径母材の外周に設けられたシート状耐熱封止材との距離よりも大きい請求項1に記載の光ファイバ線引炉。The distance between the sheet-like heat-resistant sealing material provided at the optical fiber preform insertion port at the upper part of the core tube of the drawing furnace and the optical fiber preform insertion port formed at the upper part of the small chamber is the light of the dummy rod. The optical fiber drawing furnace according to claim 1, wherein the distance is greater than a distance between a connection portion with a fiber preform and a sheet-like heat-resistant sealing material provided on an outer periphery of the pseudo-diameter preform . 上記シート状耐熱封止材が、カーボンフェルトにて構成された請求項1又は2に記載の光ファイバ線引炉。  The optical fiber drawing furnace according to claim 1 or 2, wherein the sheet-like heat-resistant sealing material is made of carbon felt. 上記疑似同径母材の外周に設けられたシート状耐熱封止材が、上記ダミー棒の上記光ファイバ母材との接続部より50mm以上離れて位置する請求項1から3いずれかに記載の光ファイバ線引炉。 The sheet-like heat-resistant sealing material provided on the outer periphery of the pseudo-same diameter base material is located 50 mm or more away from the connection portion of the dummy rod with the optical fiber base material. Optical fiber drawing furnace.
JP2001367215A 2001-11-30 2001-11-30 Optical fiber drawing furnace Expired - Fee Related JP4228570B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001367215A JP4228570B2 (en) 2001-11-30 2001-11-30 Optical fiber drawing furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001367215A JP4228570B2 (en) 2001-11-30 2001-11-30 Optical fiber drawing furnace

Publications (2)

Publication Number Publication Date
JP2003171139A JP2003171139A (en) 2003-06-17
JP4228570B2 true JP4228570B2 (en) 2009-02-25

Family

ID=19176996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001367215A Expired - Fee Related JP4228570B2 (en) 2001-11-30 2001-11-30 Optical fiber drawing furnace

Country Status (1)

Country Link
JP (1) JP4228570B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5556117B2 (en) * 2009-10-13 2014-07-23 住友電気工業株式会社 Optical fiber drawing method and drawing apparatus
JP6119299B2 (en) * 2013-02-25 2017-04-26 住友電気工業株式会社 Optical fiber drawing method
JP6476628B2 (en) * 2014-07-25 2019-03-06 住友電気工業株式会社 Optical fiber manufacturing method and manufacturing apparatus
KR101926370B1 (en) * 2016-09-09 2018-12-07 한국과학기술원 Methods of manufacturing optical fiber prepreg sheet
FI127774B (en) * 2016-09-14 2019-02-15 Rosendahl Nextrom Gmbh A sealing arrangement in a drawing furnace

Also Published As

Publication number Publication date
JP2003171139A (en) 2003-06-17

Similar Documents

Publication Publication Date Title
JP2009062265A (en) Apparatus for fabricating optical fiber and method for sealing drawing furnace
JP4228570B2 (en) Optical fiber drawing furnace
US6497118B1 (en) Method and apparatus for reducing refractory contamination in fused silica processes
JP2014201513A (en) Sintering apparatus
WO2004113243A1 (en) Optical fiber drawing apparatus and gas seal mechanism
RU2740642C2 (en) Method of drawing optical fiber and device for drawing
JP6421569B2 (en) Optical fiber manufacturing method and optical fiber manufacturing apparatus
JP2006248842A (en) Furnace and method for drawing optical fiber
JP5535129B2 (en) Optical fiber manufacturing method
JP2012082089A (en) Method for manufacturing optical fiber
JP2016028989A (en) Manufacturing method and manufacturing apparatus for optical fibers
JP6513147B2 (en) Manufacturing method and cap
JP2011168475A (en) Method of manufacturing optical fiber
JP2002356344A (en) Method for drawing optical fiber and wire drawing furnace for optical fiber
JP2004513863A (en) Optical fiber preform manufacturing apparatus and method
KR20040076775A (en) Method and apparatus for efficient dehydration in mcvd process
JPH0812365A (en) Manufacturing device for optical fiber base material
JP2012246159A (en) Sealing structure of drawing furnace for optical fiber
JP2006124252A (en) Method and apparatus for manufacturing optical fiber preform
JP2004142988A (en) Method and apparatus for heating glass body
JP2004161563A (en) Method and apparatus for drawing optical fiber
KR20010031525A (en) Apparatus and method for drawing waveguide fibers
KR100528752B1 (en) Method of and apparatus for overcladding a optical preform rod
KR100556316B1 (en) Method of RIT process for removing water in the gap of rod and tube
JPH06219767A (en) Method of drawing glass preform for optical fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080402

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081124

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees