JP2006248842A - Furnace and method for drawing optical fiber - Google Patents

Furnace and method for drawing optical fiber Download PDF

Info

Publication number
JP2006248842A
JP2006248842A JP2005067432A JP2005067432A JP2006248842A JP 2006248842 A JP2006248842 A JP 2006248842A JP 2005067432 A JP2005067432 A JP 2005067432A JP 2005067432 A JP2005067432 A JP 2005067432A JP 2006248842 A JP2006248842 A JP 2006248842A
Authority
JP
Japan
Prior art keywords
optical fiber
sealing member
fiber preform
drawing furnace
resistant sealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005067432A
Other languages
Japanese (ja)
Inventor
Tatsuya Shirosawa
達哉 城澤
Tomoyuki Nishio
友幸 西尾
Yoshinori Kurosawa
芳宣 黒沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2005067432A priority Critical patent/JP2006248842A/en
Publication of JP2006248842A publication Critical patent/JP2006248842A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/029Furnaces therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/60Optical fibre draw furnaces
    • C03B2205/80Means for sealing the preform entry or upper end of the furnace
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/60Optical fibre draw furnaces
    • C03B2205/80Means for sealing the preform entry or upper end of the furnace
    • C03B2205/81Means for sealing the preform entry or upper end of the furnace using gas
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/60Optical fibre draw furnaces
    • C03B2205/82Means for sealing the fibre exit or lower end of the furnace
    • C03B2205/83Means for sealing the fibre exit or lower end of the furnace using gas

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a furnace and a method for drawing an optical fiber which can suppress the deterioration of a heat resistant sealing member without using a chamber. <P>SOLUTION: The furnace 10 for drawing an optical fiber according to this invention draws an optical fiber preform P that is melted by heating in a furnace core 13 while purging the inside of the furnace core 13 with an inert gas G1, wherein there are provided a heat resistant sealing member 41 that has an annular ring-like shape and is located at an upper opened end of the furnace body for drawing the optical fiber and that seals the gap between the furnace body for drawing the optical fiber and the optical fiber preform P, an upper partition 34 having a through-hole 34c for passing the optical fiber preform P, and an antioxidant gas supply means for supplying the antioxidant gas G2 into a small chamber 35 that is an inner space of the upper partition 34. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、光ファイバ線引炉及び光ファイバの線引方法に係り、特に、大型で、長尺の光ファイバ母材を線引きする光ファイバ線引炉及び光ファイバの線引方法に関するものである。   The present invention relates to an optical fiber drawing furnace and an optical fiber drawing method, and more particularly to an optical fiber drawing furnace and an optical fiber drawing method for drawing a large and long optical fiber preform. .

一般に、光ファイバは、図8に示すような製造装置を用いて製造される。この製造装置は、先ず、線引炉80において、光ファイバ母材111を加熱、溶融させた後、垂直下方に線引きを行うことで、炉下出口95から光ファイバ112が引き出される。線引炉80は、主に、光ファイバ母材111が収容される炉心管91と、光ファイバ母材111を加熱し、溶融させるヒータ94と、引き出された光ファイバ112が通されるインナー炉心管92とで構成される。炉心管91の内部空間により炉心93が形成される。   In general, an optical fiber is manufactured using a manufacturing apparatus as shown in FIG. In this manufacturing apparatus, first, in the drawing furnace 80, the optical fiber preform 111 is heated and melted and then drawn vertically downward, whereby the optical fiber 112 is drawn from the furnace outlet 95. The drawing furnace 80 mainly includes a core tube 91 in which the optical fiber preform 111 is accommodated, a heater 94 for heating and melting the optical fiber preform 111, and an inner core in which the drawn optical fiber 112 is passed. And a tube 92. A core 93 is formed by the internal space of the core tube 91.

引き出された光ファイバ112は、外径測定器83で外径の測定がなされた後、冷却管84内で冷却ガスが吹き付けられて冷却される。その後、コーティング器85において光ファイバ112の周りに樹脂(例えば、紫外線硬化樹脂)を被覆した後、その光ファイバ112を樹脂硬化炉86内に通すことで、樹脂が硬化される。これによって、光ファイバ素線113が得られる。この冷却、樹脂被覆、及び樹脂硬化のステップは、適宜、繰り返し行われる。その後、光ファイバ素線113は、ターンプーリ87により走行方向が転換され、引取キャプスタン88を経て巻取器89に巻き取られる。   The extracted optical fiber 112 is cooled by blowing a cooling gas in the cooling pipe 84 after the outer diameter is measured by the outer diameter measuring device 83. Then, after coating the resin around the optical fiber 112 in the coater 85 (for example, ultraviolet curable resin), the resin is cured by passing the optical fiber 112 through the resin curing furnace 86. As a result, the optical fiber 113 is obtained. The cooling, resin coating, and resin curing steps are repeated as appropriate. Thereafter, the traveling direction of the optical fiber 113 is changed by the turn pulley 87, and is taken up by the winder 89 through the take-up capstan 88.

線引炉80は、石英ベースの光ファイバ母材111を2000℃程度に加熱する必要があることから、炉心管91及びインナー炉心管92の材質として、一般に、高純度カーボンやジルコニアなどのセラミックスが用いられる。   Since the drawing furnace 80 needs to heat the quartz-based optical fiber preform 111 to about 2000 ° C., ceramics such as high-purity carbon and zirconia are generally used as the material of the core tube 91 and the inner core tube 92. Used.

高純度カーボン製の炉心管91及びインナー炉心管92を備えた線引炉を用いて光ファイバの製造を行う場合、炉心93内での炉心管91及びインナー炉心管92の酸化を防ぐために、炉心93内に供給した不活性ガスにより、炉心93内のパージがなされる。この時、不活性ガスの流れ方向により、線引炉は、図9に示すように、不活性ガスGが上向きに流れるアップフロータイプと、図10に示すように、不活性ガスGが下向きに流れるダウンフロータイプに大別される。   When an optical fiber is manufactured using a drawing furnace having a core tube 91 and an inner core tube 92 made of high purity carbon, in order to prevent oxidation of the core tube 91 and the inner core tube 92 in the core 93, the core The inside of the core 93 is purged by the inert gas supplied into the 93. At this time, depending on the flow direction of the inert gas, the drawing furnace has an upflow type in which the inert gas G flows upward as shown in FIG. 9 and an inert gas G in the downward direction as shown in FIG. Broadly divided into flowing downflow types.

アップフロータイプの場合、炉心管91の上部に、光ファイバ母材111よりもやや大径の縮径部(フランジ付き円筒部材)97が設けられる。不活性ガスGは、線引炉の下方に設けたガス導入口98から導入され、炉心93内を上向きに流れた後、光ファイバ母材111と縮径部97の隙間(以下、上部隙間という)から炉心93外へ排気される。線引炉の上方には、炉心93内における不活性ガスGの圧力を調整するためのバルブ99aを備えた排気口99が適宜設けられる。   In the case of the upflow type, a reduced diameter part (cylindrical member with a flange) 97 having a slightly larger diameter than the optical fiber preform 111 is provided on the upper portion of the core tube 91. The inert gas G is introduced from a gas inlet 98 provided below the drawing furnace and flows upward in the core 93, and then the gap between the optical fiber preform 111 and the reduced diameter portion 97 (hereinafter referred to as an upper gap). ) To the outside of the core 93. An exhaust port 99 provided with a valve 99a for adjusting the pressure of the inert gas G in the core 93 is appropriately provided above the drawing furnace.

一方、ダウンフロータイプの場合、線引炉本体の上部に、光ファイバ母材111とほぼ同径の穴を有する円環状の耐熱封止部材107が設けられる。不活性ガスGは、線引炉の上方に設けたガス導入口108から導入され、炉心93内を下向きに流れた後、光ファイバ112と炉下出口95の隙間(以下、下部隙間という)から炉心93外へ排気される。線引炉の下方には、炉心93内における不活性ガスGの圧力を調整するためのバルブ109aを備えた排気口109が適宜設けられる。   On the other hand, in the case of the down flow type, an annular heat-resistant sealing member 107 having a hole having substantially the same diameter as that of the optical fiber preform 111 is provided on the upper portion of the drawing furnace main body. The inert gas G is introduced from a gas inlet 108 provided above the drawing furnace, flows downward in the core 93, and then from a gap between the optical fiber 112 and the furnace outlet 95 (hereinafter referred to as a lower gap). The gas is exhausted out of the core 93. Below the drawing furnace, an exhaust port 109 provided with a valve 109a for adjusting the pressure of the inert gas G in the core 93 is appropriately provided.

一般に、線引炉の炉心93内に光ファイバ母材111を出し入れする際、炉心93内に外気が混入することがある。この外気が、光ファイバ母材111の加熱時に、炉心管91の構成材であるカーボンと反応することで酸化、燃焼され、ダストが発生する。また、光ファイバ母材111の溶融時にも、石英が蒸発することでダストが発生する。   In general, when the optical fiber preform 111 is taken in and out of the core 93 of the drawing furnace, outside air may be mixed into the core 93. When this outside air reacts with carbon which is a constituent material of the core tube 91 when the optical fiber preform 111 is heated, it is oxidized and burned, and dust is generated. Further, when the optical fiber preform 111 is melted, dust is generated due to evaporation of quartz.

アップフロータイプにおいては、ダストは、上部隙間から不活性ガスGと共に排気される。このため、光ファイバ母材111の表面にダストが付着するおそれがあった。また、上部隙間から多量の不活性ガスGが排気されることから、炉心93内を陽圧に保つために、多量の不活性ガスGを必要とする。また、ダウンフロータイプにおいては、ダストは、下部隙間から不活性ガスGと共に排気される。このため、光ファイバ112の表面にダストが付着し、光ファイバ112の強度低下が生じるおそれがあった。   In the upflow type, dust is exhausted together with the inert gas G from the upper gap. For this reason, there is a possibility that dust adheres to the surface of the optical fiber preform 111. Further, since a large amount of inert gas G is exhausted from the upper gap, a large amount of inert gas G is required to keep the inside of the core 93 at a positive pressure. In the down flow type, the dust is exhausted together with the inert gas G from the lower gap. For this reason, dust may adhere to the surface of the optical fiber 112 and the strength of the optical fiber 112 may be reduced.

上記のような問題に対し、アップフロータイプとダウンフロータイプを組み合わせた構造(以下、複合タイプという)の線引炉がある(例えば、特許文献1,2参照)。特許文献1記載の線引炉は、炉心管(外側炉心管)の内部に、上部インナー炉心管及び下部インナー炉心管を有する。この線引炉の下方から供給された不活性ガスは、下部インナー炉心管、上部インナー炉心管を経て線引炉上方から排気される。また、線引炉の上方から供給された不活性ガスは、外側炉心管と上部インナー炉心管の間の空間及び外側炉心管と下部インナー炉心管の間の空間を経て線引炉下方から排気される。   For the above problems, there is a drawing furnace having a structure combining the upflow type and the downflow type (hereinafter referred to as a composite type) (see, for example, Patent Documents 1 and 2). The drawing furnace described in Patent Document 1 includes an upper inner core tube and a lower inner core tube inside a core tube (outer core tube). The inert gas supplied from below the drawing furnace is exhausted from above the drawing furnace via the lower inner core tube and the upper inner core tube. Further, the inert gas supplied from above the drawing furnace is exhausted from below the drawing furnace through the space between the outer core tube and the upper inner core tube and the space between the outer core tube and the lower inner core tube. The

特許第2760697号公報Japanese Patent No. 2760977 特開2003−206155号公報JP 2003-206155 A

しかしながら、複合タイプの線引炉では、光ファイバ母材111へのダスト付着を防止する観点から、下向きに流れる不活性ガスGの流量を十分に確保しなければならないため、線引炉本体の上部における確実なガスシールが問題となる。近年においては、光ファイバのコストダウンを図るべく、光ファイバ母材の大型化(大径化)、長尺化が進んでいる。これに伴って、炉心93内における発熱量も増大する傾向にある。その結果、図10に示した耐熱封止部材107は、構成材(金属やカーボン)に関わらず、熱劣化、酸化が著しくなってしまう。この熱劣化、酸化を防ぐために、線引炉上にチャンバ(真空チャンバ)を設けて耐熱封止部材107の周りを真空状態とし、酸素を遮断する方法が考えられる。光ファイバ母材の大型化、長尺化が進む現在、必然的に、チャンバも大型のものが必要となっている。しかしながら、チャンバの大型化は、線引炉の装置構造や設置スペースの制約上、自ずと限界があった。   However, in the composite type drawing furnace, from the viewpoint of preventing dust from adhering to the optical fiber preform 111, it is necessary to secure a sufficient flow rate of the inert gas G flowing downward. A reliable gas seal is a problem. In recent years, in order to reduce the cost of optical fibers, the optical fiber preform has been increased in size (increase in diameter) and lengthened. Along with this, the amount of heat generated in the core 93 tends to increase. As a result, the heat resistant sealing member 107 shown in FIG. 10 is significantly deteriorated and oxidized regardless of the constituent material (metal or carbon). In order to prevent this thermal deterioration and oxidation, a method in which a chamber (vacuum chamber) is provided on the drawing furnace and the surroundings of the heat-resistant sealing member 107 are evacuated to shut off oxygen is considered. As the size and length of optical fiber preforms are increasing, inevitably a large chamber is required. However, the increase in the size of the chamber is naturally limited due to restrictions on the drawing furnace device structure and installation space.

以上の事情を考慮して創案された本発明の目的は、チャンバを用いることなく、耐熱封止部材の劣化を抑制することが可能な光ファイバ線引炉及び光ファイバの線引方法を提供することにある。   The object of the present invention created in view of the above circumstances is to provide an optical fiber drawing furnace and an optical fiber drawing method capable of suppressing deterioration of a heat-resistant sealing member without using a chamber. There is.

上記目的を達成すべく本発明に係る光ファイバ線引炉は、炉心内を不活性ガスでパージしつつ、炉心内で加熱溶融させた光ファイバ母材を線引きする光ファイバ線引炉において、
光ファイバ母材が挿入される線引炉本体の上部開口端に設けられ、線引炉本体と光ファイバ母材の隙間を塞ぐ円環状の耐熱封止部材と、
その耐熱封止部材を取り囲んで、かつ、覆って設けられ、光ファイバ母材を通すための挿通穴を有する上部隔壁と、
その上部隔壁の内部空間である小室内に酸化防止ガスを供給する酸化防止ガス供給手段と、
を備えたものである。
To achieve the above object, an optical fiber drawing furnace according to the present invention is an optical fiber drawing furnace for drawing an optical fiber preform heated and melted in the core while purging the inside of the core with an inert gas.
An annular heat-resistant sealing member that is provided at the upper opening end of the drawing furnace body into which the optical fiber preform is inserted, and that closes the gap between the drawing furnace body and the optical fiber preform;
An upper partition wall that surrounds and covers the heat-resistant sealing member and has an insertion hole for passing an optical fiber preform;
An antioxidant gas supply means for supplying an antioxidant gas into a small chamber that is an internal space of the upper partition;
It is equipped with.

ここで、酸化防止ガス供給手段は、小室内の酸素濃度が200ppm以下となるように酸化防止ガスの供給量を制御する制御装置を備えていることが好ましい。また、耐熱封止部材は、高純度カーボン製のフェルト材で構成することが好ましい。   Here, the antioxidant gas supply means preferably includes a control device for controlling the supply amount of the antioxidant gas so that the oxygen concentration in the small chamber is 200 ppm or less. Moreover, it is preferable to comprise the heat-resistant sealing member with a felt material made of high purity carbon.

一方、本発明に係る光ファイバの線引方法は、炉心内を不活性ガスでパージしつつ、炉心内で加熱溶融させた光ファイバ母材を線引きする光ファイバの線引方法において、
線引炉本体の上部開口端から上記光ファイバ母材を挿入し、その光ファイバ母材を炉心内で加熱、溶融させて線引きする際、
上記不活性ガスが、線引炉本体と光ファイバ母材の隙間から漏れないように、その隙間を円環状の耐熱封止部材で塞ぎ、その耐熱封止部材を上部隔壁で取り囲むように覆い、その上部隔壁の内部空間である小室内に酸化防止ガスを供給すると共に、小室内の酸素濃度を200ppm以下に調整するものである。
On the other hand, the optical fiber drawing method according to the present invention is an optical fiber drawing method for drawing an optical fiber preform heated and melted in the core while purging the inside of the core with an inert gas.
When the optical fiber preform is inserted from the upper opening end of the drawing furnace body, the optical fiber preform is heated and melted in the core, and then drawn.
In order for the inert gas not to leak from the gap between the drawing furnace main body and the optical fiber preform, the gap is closed with an annular heat-resistant sealing member, and the heat-resistant sealing member is covered with an upper partition, An antioxidant gas is supplied to the small chamber, which is the internal space of the upper partition, and the oxygen concentration in the small chamber is adjusted to 200 ppm or less.

本発明によれば、光ファイバを線引きする際、線引炉本体上部におけるガスシールを行う耐熱封止部材が劣化するおそれがないという優れた効果を発揮する。   ADVANTAGE OF THE INVENTION According to this invention, when drawing an optical fiber, the outstanding effect that there is no possibility that the heat-resistant sealing member which performs the gas seal in the drawing furnace main body upper part may deteriorate is exhibited.

以下、本発明の好適一実施の形態を添付図面に基づいて説明する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, a preferred embodiment of the invention will be described with reference to the accompanying drawings.

本発明の好適一実施の形態に係る光ファイバ線引炉の構造概略図を図1に示す。   FIG. 1 shows a schematic structural diagram of an optical fiber drawing furnace according to a preferred embodiment of the present invention.

図1に示すように、本実施の形態に係る光ファイバ線引炉10は、炉心13内で加熱溶融させた光ファイバ母材Pを線引きして光ファイバOFを作製するものである。   As shown in FIG. 1, an optical fiber drawing furnace 10 according to the present embodiment draws an optical fiber preform P heated and melted in a core 13 to produce an optical fiber OF.

炉心管11は上下に開口端を有する管材で構成され、上部開口端に、ダミー棒Rに溶接された光ファイバ母材Pの長手方向の一部が収容される。炉心管11の内部空間が炉心13を形成する。ダミー棒Rは矢印A1の方向(図1中では上下方向)に移動自在に設けられる。   The core tube 11 is composed of a pipe material having an open end on the top and bottom, and a part in the longitudinal direction of the optical fiber preform P welded to the dummy rod R is accommodated in the upper open end. The inner space of the core tube 11 forms the core 13. The dummy bar R is provided so as to be movable in the direction of the arrow A1 (vertical direction in FIG. 1).

この炉心管11を取り囲むように炉殻16が設けられる。この炉殻16内には、光ファイバ母材Pを加熱し、溶融させるためのヒータ(加熱手段)14が設けられる。このヒータ14は、炉心管11の長さ方向(図1中では上下方向)中央部付近を取り囲むように配置される。例えば、炉心管11の上端は炉殻16の上面壁16aと面一に、炉心管11の下端は炉殻16の下面壁16bから突出させて設けられる。   A furnace shell 16 is provided so as to surround the core tube 11. A heater (heating means) 14 for heating and melting the optical fiber preform P is provided in the furnace shell 16. The heater 14 is disposed so as to surround the vicinity of the central portion in the length direction (vertical direction in FIG. 1) of the core tube 11. For example, the upper end of the core tube 11 is provided flush with the upper surface wall 16 a of the furnace shell 16, and the lower end of the core tube 11 is provided so as to protrude from the lower surface wall 16 b of the furnace shell 16.

光ファイバ線引炉10の上部には不活性ガス供給手段32が設けられる。より具体的には、炉殻16の上面壁16aに当接させて、炉心管11を取り囲むように円筒部材33が設けられる。この円筒部材33は、円筒部33aと、円筒部33aの非上面壁側端(図1中では上端)に形成されるフランジ部33bで構成される。円筒部33aに形成した不活性ガス噴出穴33cに、ガスタンクを備えた第1ガス供給ライン(図示せず)が接続され、この不活性ガス噴出穴33cを介して円筒部33a内に不活性ガスG1が噴出される。この時、円筒部33aの内周面全周から不活性ガスG1が噴出されるように、円筒部33aの内周面全周に開口する不活性ガス噴出穴33cを形成してもよい。   An inert gas supply means 32 is provided in the upper part of the optical fiber drawing furnace 10. More specifically, the cylindrical member 33 is provided so as to surround the core tube 11 in contact with the upper surface wall 16 a of the furnace shell 16. The cylindrical member 33 includes a cylindrical portion 33a and a flange portion 33b formed at a non-top wall side end (upper end in FIG. 1) of the cylindrical portion 33a. A first gas supply line (not shown) having a gas tank is connected to an inert gas ejection hole 33c formed in the cylindrical portion 33a, and the inert gas is introduced into the cylindrical portion 33a through the inert gas ejection hole 33c. G1 is ejected. At this time, you may form the inert gas ejection hole 33c opened to the perimeter of the inner peripheral surface of the cylindrical part 33a so that the inert gas G1 may be ejected from the perimeter of the inner peripheral surface of the cylindrical part 33a.

フランジ部33bの上部には、光ファイバ母材Pよりも小径(光ファイバ母材Pとほぼ同径)の穴42を有する円環状の耐熱封止部材41が設けられる。この耐熱封止部材41によって、光ファイバ母材Pと線引炉本体のガスシールがなされる。図4に示すように、耐熱封止部材41は、伸縮性を有する高純度カーボン製のフェルト材の円板材41で構成される。このため、穴42は、光ファイバ母材Pの外径変動に追従可能である。   An annular heat-resistant sealing member 41 having a hole 42 having a smaller diameter than the optical fiber preform P (substantially the same diameter as the optical fiber preform P) is provided on the upper portion of the flange portion 33b. The heat sealing member 41 provides a gas seal between the optical fiber preform P and the drawing furnace body. As shown in FIG. 4, the heat-resistant sealing member 41 is composed of a felt material disc 41 made of high-purity carbon having stretchability. For this reason, the hole 42 can follow the outer diameter variation of the optical fiber preform P.

また、フランジ部33bの上部には、耐熱封止部材41を取り囲むように、かつ、覆うように、上部隔壁34が設けられる。この上部隔壁34は、フランジ部側の大径部34aとダミー棒側の小径部34cで構成され、大径部34aと小径部34cは縮径部(段差部)34bを介して一体に設けられる。この小径部34cが線引炉本体の上部開口となり、この部分に光ファイバ母材Pが挿通される。   In addition, an upper partition wall 34 is provided above the flange portion 33b so as to surround and cover the heat-resistant sealing member 41. The upper partition wall 34 includes a large-diameter portion 34a on the flange portion side and a small-diameter portion 34c on the dummy rod side, and the large-diameter portion 34a and the small-diameter portion 34c are integrally provided via a reduced-diameter portion (stepped portion) 34b. . The small diameter portion 34c becomes an upper opening of the drawing furnace main body, and the optical fiber preform P is inserted through this portion.

上部隔壁34には、その内部空間である小室35内に酸化防止ガスG2を供給する酸化防止ガス供給手段(図示せず)が接続される。この酸化防止ガス供給手段は、小室35内の酸素濃度が200ppm以下、好ましくは150ppm以下となるように酸化防止ガスG2の供給量を制御する制御装置を備えている。   Connected to the upper partition wall 34 is an antioxidant gas supply means (not shown) for supplying the antioxidant gas G2 into a small chamber 35 which is an internal space thereof. The antioxidant gas supply means includes a control device that controls the supply amount of the antioxidant gas G2 so that the oxygen concentration in the small chamber 35 is 200 ppm or less, preferably 150 ppm or less.

耐熱封止部材41の構成材としては、光ファイバ母材Pの外径変動に追従して穴42が伸縮可能で、かつ、光ファイバ母材Pの表面を傷付けるおそれがないものであればよく、高純度カーボン製フェルト材に限定するものではない。例えば、各種セラミック製の円板材であってもよい。   As a constituent material of the heat-resistant sealing member 41, any material can be used as long as the hole 42 can be expanded and contracted following the change in the outer diameter of the optical fiber preform P and the surface of the optical fiber preform P is not damaged. The felt material is not limited to high purity carbon. For example, various ceramic disk materials may be used.

また、耐熱封止部材41の構造は、図4に示したように、円板材41aの中央部に穴42を形成したものに限定するものではない。例えば、図5に示すように、円板材51aの穴52の周りにスリット(図5中では円板材の中心部から放射状に延びる4本のスリット)53を有する耐熱封止部材51であってもよい。また、図6に示すように、図4に示した耐熱封止部材41を複数枚(図6中では4枚の場合を図示)重ねてなる積層構造の耐熱封止部材61であってもよい。また、図7に示すように、中央部に穴72を形成した円板材を多分割(図7中では3分割の場合を図示)してなるもの、つまり、円弧状の分割片71a,71b,71c,…(図7中では分割片71a,71b,71cを図示)で構成される耐熱封止部材71であってもよい。   Further, the structure of the heat-resistant sealing member 41 is not limited to the structure in which the hole 42 is formed in the central portion of the disc material 41a as shown in FIG. For example, as shown in FIG. 5, even if the heat-resistant sealing member 51 has slits 53 (four slits extending radially from the center of the disk material in FIG. 5) 53 around the hole 52 of the disk material 51a. Good. Further, as shown in FIG. 6, a heat-resistant sealing member 61 having a laminated structure in which a plurality of heat-resistant sealing members 41 shown in FIG. 4 are stacked (in the case of four in FIG. 6) may be used. . Further, as shown in FIG. 7, a disk material having a hole 72 formed at the center is divided into multiple parts (in FIG. 7, the case of three parts is shown), that is, arc-shaped parts 71a, 71b, It may be a heat resistant sealing member 71 composed of 71c,... (In FIG. 7, the divided pieces 71a, 71b, 71c are shown).

炉心管11の構成材としては、高純度カーボンやジルコニアなどのセラミックスが挙げられる。   Examples of the constituent material of the core tube 11 include ceramics such as high-purity carbon and zirconia.

不活性ガスG1及び酸化防止ガスG2としては、拡散係数が大きいHeガスが好ましいが、特にこれに限定するものではなく、ArガスやN2ガスであってもよい。また、両ガスG1,G2は、同種又は異種のいずれであってもよい。 The inert gas G1 and the antioxidant gas G2 are preferably He gas having a large diffusion coefficient, but are not particularly limited thereto, and may be Ar gas or N 2 gas. Moreover, both gas G1, G2 may be either the same kind or different kind.

次に、本実施の形態に係る光ファイバ線引炉を用いた光ファイバの線引方法について説明する。   Next, an optical fiber drawing method using the optical fiber drawing furnace according to the present embodiment will be described.

図1に示した光ファイバ線引炉10の炉心13を、ヒータ14で加熱する。一方、光ファイバ線引炉10の上方からは、第1不活性ガス供給手段32を介して不活性ガスG1を供給する。また、上部隔壁34内には酸化防止ガスG2を供給する。   The core 13 of the optical fiber drawing furnace 10 shown in FIG. On the other hand, the inert gas G <b> 1 is supplied from above the optical fiber drawing furnace 10 via the first inert gas supply means 32. Further, an antioxidant gas G2 is supplied into the upper partition 34.

この時、酸化防止ガスG2の供給量は、酸化防止ガス供給手段の制御装置によって制御されていることから、小室35内の酸素濃度は常に200ppm以下に保たれる。ここで、小室35内の酸素濃度が200ppm超の場合、雰囲気ガス中に含まれる過剰の酸素によって耐熱封止部材41が熱劣化、酸化してしまう。その結果、最悪の場合、耐熱封止部材41と光ファイバ母材Pの間に隙間が生じ、シール効果が損なわれてしまう。しかしながら、小室35内の酸素濃度を常に200ppm以下に制御しておくことで、耐熱封止部材41が熱劣化、酸化するおそれはなく、耐熱封止部材41が長期間に亘ってシール効果を持続させることができる。   At this time, since the supply amount of the antioxidant gas G2 is controlled by the control device of the antioxidant gas supply means, the oxygen concentration in the small chamber 35 is always kept at 200 ppm or less. Here, when the oxygen concentration in the small chamber 35 is more than 200 ppm, the heat-resistant sealing member 41 is thermally deteriorated and oxidized by excess oxygen contained in the atmospheric gas. As a result, in the worst case, a gap is generated between the heat-resistant sealing member 41 and the optical fiber preform P, and the sealing effect is impaired. However, by always controlling the oxygen concentration in the small chamber 35 to 200 ppm or less, the heat resistant sealing member 41 is not likely to be thermally deteriorated and oxidized, and the heat resistant sealing member 41 maintains the sealing effect for a long period of time. Can be made.

その後、光ファイバ母材Pが溶融され、光ファイバOFが線引きされる。ここで、光ファイバ線引炉10の上方においては、線引炉本体と光ファイバ母材Pの間隙が耐熱封止部材41でほぼ完全にガスシールされている。よって、不活性ガスG1のほぼ全量が、炉心管11と光ファイバ母材Pの間隙を通じて下側に向かって流れ、炉心13内部へと導かれる。   Thereafter, the optical fiber preform P is melted and the optical fiber OF is drawn. Here, above the optical fiber drawing furnace 10, the gap between the drawing furnace main body and the optical fiber preform P is almost completely gas-sealed by the heat-resistant sealing member 41. Accordingly, almost the entire amount of the inert gas G1 flows downward through the gap between the core tube 11 and the optical fiber preform P and is guided into the core 13.

一方、線引の進行に伴って、ある一定量、ダミー棒Rを下方に移動させると、耐熱封止部材41によるシール対象が、光ファイバ母材Pからダミー棒Rへと移行する。ここで、ダミー棒Rの外径は、光ファイバ母材Pの外径と同じであるため、この場合においても、線引炉本体とダミー棒Rの間隙が耐熱封止部材41でほぼ完全にガスシールされる。特に、光ファイバ母材Pとダミー棒Rの溶接部(ジョイント部)が、耐熱封止部材41の部分に位置している場合、この溶接部は高温になっているため、耐熱封止部材41における熱負荷は非常に大きなものとなる。しかし、この場合においても、小室35内の酸素濃度を常に200ppm以下に制御しておくことで、耐熱封止部材41が熱劣化、酸化するおそれはない。   On the other hand, when the dummy rod R is moved downward by a certain amount as the drawing progresses, the object to be sealed by the heat-resistant sealing member 41 shifts from the optical fiber preform P to the dummy rod R. Here, since the outer diameter of the dummy rod R is the same as the outer diameter of the optical fiber preform P, the gap between the drawing furnace body and the dummy rod R is almost completely covered by the heat-resistant sealing member 41 in this case as well. Gas sealed. In particular, when the welded portion (joint portion) between the optical fiber preform P and the dummy rod R is positioned at the heat-resistant sealing member 41, the welded portion is at a high temperature. The heat load at is very large. However, even in this case, the heat resistant sealing member 41 is not likely to be thermally deteriorated or oxidized by always controlling the oxygen concentration in the small chamber 35 to 200 ppm or less.

以上より、本実施の形態に係る光ファイバ線引炉10を用いて光ファイバOFの線引を行うことで、線引中、耐熱封止部材41に長時間に亘って高温の熱負荷が作用しても、耐熱封止部材41が熱劣化、酸化するおそれはない。これは、炉心13内の発熱量がより多くなる大型、長尺の光ファイバ母材Pを用いる場合でも同様である。よって、線引中、線引炉本体上部のガスシールを確実に行うことができることから、不活性ガス供給手段32から供給する不活性ガスG1の流量をそれ程多くしなくても、十分に炉心13内のパージを行うことができる。その結果、高価な不活性ガスG1の使用量を低減することができることから、安価に、長尺の光ファイバOFの線引を行うことができる。   As described above, by drawing the optical fiber OF using the optical fiber drawing furnace 10 according to the present embodiment, a high-temperature heat load acts on the heat-resistant sealing member 41 for a long time during drawing. However, there is no possibility that the heat-resistant sealing member 41 is thermally deteriorated and oxidized. The same applies to the case where a large and long optical fiber preform P that increases the amount of heat generated in the core 13 is used. Therefore, since the gas seal at the upper part of the drawing furnace main body can be surely performed during the drawing, the core 13 can be sufficiently obtained without increasing the flow rate of the inert gas G1 supplied from the inert gas supply means 32 so much. The purge inside can be performed. As a result, since the amount of the expensive inert gas G1 used can be reduced, the long optical fiber OF can be drawn at a low cost.

また、本実施の形態に係る光ファイバ線引炉10によれば、耐熱封止部材41の劣化を防ぐための主な装置部材は、上部隔壁34と酸化防止ガス供給手段だけであり、線引炉本体上に大掛かりで、高価な真空チャンバを設ける必要がない。よって、本実施の形態に係る光ファイバ線引炉10は、今まで装置構造や設置スペースの制約上、チャンバを設置できなかった既設の光ファイバ線引炉にも適用可能である。   Further, according to the optical fiber drawing furnace 10 according to the present embodiment, the main device members for preventing the heat resistant sealing member 41 from deteriorating are only the upper partition wall 34 and the antioxidant gas supply means. There is no need to provide a large and expensive vacuum chamber on the furnace body. Therefore, the optical fiber drawing furnace 10 according to the present embodiment can also be applied to an existing optical fiber drawing furnace in which a chamber cannot be installed due to restrictions on the apparatus structure and installation space.

次に、本実施の形態の変形例について、添付図面に基づいて説明する。   Next, a modification of the present embodiment will be described based on the attached drawings.

図1の光ファイバ線引炉の一変形例を図2、図3に示す。尚、図1と同様の部材には同じ符号を付しており、これらの部材については説明を省略する。   A modification of the optical fiber drawing furnace of FIG. 1 is shown in FIGS. In addition, the same code | symbol is attached | subjected to the member similar to FIG. 1, and description is abbreviate | omitted about these members.

本実施の形態においては、図1に示したように、ダミー棒Rの外径と光ファイバ母材Pの外径が等しい場合を例に挙げて説明を行ったが、これに限定するものではない。   In the present embodiment, as shown in FIG. 1, the case where the outer diameter of the dummy rod R and the outer diameter of the optical fiber preform P are equal is described as an example, but the present invention is not limited to this. Absent.

例えば、図2に示すように、ダミー棒Rの外径が光ファイバ母材Pの外径より小さくてもよい。この場合、ダミー棒Rと光ファイバ母材Pの溶接部近傍にダミー管21が設けられる。ダミー管21は、円板部21aと円筒部21bで構成される。円板部21aは、上部隔壁34における小径部34cの内径よりも大きな外径を有し、かつ、中央部に穴22を有する。この穴22の内径は、ダミー棒Rの外径よりもやや大径(ダミー棒Rとほぼ同径)とされ、この穴22がダミー棒Rを通すための挿通穴となる。また、円筒部21bは、光ファイバ母材Pの外径と同径(又はほぼ同径)の外径を有する。円板部21aの少なくとも穴22の周縁部、好ましくは円板部21aの全体を、耐熱封止部材41と同じ材料で形成してもよい。   For example, as shown in FIG. 2, the outer diameter of the dummy rod R may be smaller than the outer diameter of the optical fiber preform P. In this case, the dummy tube 21 is provided in the vicinity of the welded portion between the dummy rod R and the optical fiber preform P. The dummy tube 21 includes a disc portion 21a and a cylindrical portion 21b. The disc part 21a has an outer diameter larger than the inner diameter of the small diameter part 34c in the upper partition wall 34, and has a hole 22 in the central part. The inner diameter of the hole 22 is slightly larger than the outer diameter of the dummy rod R (substantially the same diameter as the dummy rod R), and the hole 22 serves as an insertion hole for allowing the dummy rod R to pass. The cylindrical portion 21b has an outer diameter that is the same diameter (or substantially the same diameter) as the outer diameter of the optical fiber preform P. You may form the peripheral part of the hole 22 of the disc part 21a, preferably the whole disc part 21a with the same material as the heat-resistant sealing member 41.

このダミー管21を備えたダミー棒R及び光ファイバ母材Pを用いて、光ファイバ線引炉10による線引を行うと、線引工程の前半段階では、線引炉本体と光ファイバ母材Pの間隙が耐熱封止部材41でガスシールされる。   When drawing is performed by the optical fiber drawing furnace 10 using the dummy rod R and the optical fiber preform P provided with the dummy tube 21, in the first half of the drawing process, the drawing furnace body and the optical fiber preform are used. The gap of P is gas sealed with the heat-resistant sealing member 41.

その後、線引の進行に伴って、ダミー棒Rを下降させていくと、図3に示すように、ある段階で、ダミー管21の円板部21aが上部隔壁34の小径部34cに着座される。この時、円板部21aによって上部隔壁34の開放部(小径部34c)が閉じられ、小室35が完全に密閉される。この着座後は、さらにダミー棒Rを下降させても、円板部21aが小径部34cにつかえて動かないことから、ダミー管21はダミー棒Rに追従して下降することはない。また、この着座後、線引炉本体上部のガスシールを行う部材は、光ファイバ母材Pに密着する耐熱封止部材41から、ダミー棒Rに密着する円板部21aへと変わる。よって、線引工程のある段階以降においても、円板部21aによって炉心13及び小室35の密閉が維持されることから、耐熱封止部材41が熱劣化、酸化するおそれはない。   Thereafter, when the dummy rod R is lowered as the drawing progresses, the disc portion 21a of the dummy tube 21 is seated on the small diameter portion 34c of the upper partition wall 34 at a certain stage as shown in FIG. The At this time, the open part (small diameter part 34c) of the upper partition 34 is closed by the disc part 21a, and the small chamber 35 is completely sealed. After the seating, even if the dummy rod R is further lowered, the disk portion 21a does not move by being held by the small diameter portion 34c, so the dummy tube 21 does not follow the dummy rod R and descend. Further, after this seating, the member that performs gas sealing on the upper portion of the drawing furnace main body is changed from the heat-resistant sealing member 41 that is in close contact with the optical fiber preform P to the disk portion 21a that is in close contact with the dummy rod R. Therefore, since the sealing of the core 13 and the small chamber 35 is maintained by the disc portion 21a even after a certain stage of the drawing process, there is no possibility that the heat resistant sealing member 41 is thermally deteriorated and oxidized.

以上、本発明は、上述した実施の形態に限定されるものではなく、他にも種々のものが想定されることは言うまでもない。   As described above, the present invention is not limited to the above-described embodiment, and it goes without saying that various other things are assumed.

次に、本発明を実施例に基づいて説明するが、本発明はこの実施例に限定されるものではない。   Next, although this invention is demonstrated based on an Example, this invention is not limited to this Example.

(実施例1)
図1に示した構造の光ファイバ線引炉を用い、光ファイバの線引きを行った。光ファイバ母材としては、外径が110〜120mmの大径のものを用いた。また、耐熱封止部材としては、図6に示した構造のものを用い、高純度カーボン製フェルト材で構成される4層構造、円板材の穴内径は105mmとした。さらに、上部隔壁における小径部の内径は130mmとした。また、上部隔壁の小室内に供給する酸化防止ガスとしては窒素ガスを用い、流量を70L/分に制御して小室内の酸素濃度を120ppmに調整した。
Example 1
The optical fiber was drawn using the optical fiber drawing furnace having the structure shown in FIG. As the optical fiber preform, a large diameter one having an outer diameter of 110 to 120 mm was used. Moreover, as the heat-resistant sealing member, the one having the structure shown in FIG. Further, the inner diameter of the small diameter portion in the upper partition was 130 mm. Further, nitrogen gas was used as an antioxidant gas supplied into the small chamber of the upper partition, and the flow rate was controlled to 70 L / min to adjust the oxygen concentration in the small chamber to 120 ppm.

(実施例2)
図2に示した構造の光ファイバ線引炉を用いる以外は、実施例1と同様にして光ファイバの線引きを行った。
(Example 2)
The optical fiber was drawn in the same manner as in Example 1 except that the optical fiber drawing furnace having the structure shown in FIG. 2 was used.

(比較例1)
小室内の酸素濃度を400ppmに調整する以外は、実施例1と同様にして光ファイバの線引きを行った。
(Comparative Example 1)
The optical fiber was drawn in the same manner as in Example 1 except that the oxygen concentration in the small chamber was adjusted to 400 ppm.

(比較例2)
小室内の酸素濃度を1000ppmに調整する以外は、実施例1と同様にして光ファイバの線引きを行った。
(Comparative Example 2)
The optical fiber was drawn in the same manner as in Example 1 except that the oxygen concentration in the small chamber was adjusted to 1000 ppm.

線引開始前から線引終了までの間の、実施例1,2及び比較例1,2の各光ファイバ線引炉における耐熱封止部材を観察した。   The heat-resistant sealing members in the optical fiber drawing furnaces of Examples 1 and 2 and Comparative Examples 1 and 2 were observed from before the drawing to the end of drawing.

その結果、実施例1,2の各光ファイバ線引炉における耐熱封止部材は、全く劣化していなかった。   As a result, the heat-resistant sealing member in each optical fiber drawing furnace of Examples 1 and 2 was not deteriorated at all.

これに対して、比較例1の光ファイバ線引炉においては、線引中、光ファイバ母材とダミー棒の溶接部が耐熱封止部材の位置に達した段階で、耐熱封止部材の劣化が一気に進行し、炉心の内圧を保つことができなくなった。この段階で線引を中止し、耐熱封止部材を観察したところ、円板材の穴周縁部が消失しており、穴内径が105mmから123mmに拡大していた。   On the other hand, in the optical fiber drawing furnace of Comparative Example 1, during the drawing, when the welded portion of the optical fiber preform and the dummy rod reaches the position of the heat resistant sealing member, the heat resistant sealing member is deteriorated. Progressed all at once, and the internal pressure of the core could not be maintained. When drawing was stopped at this stage and the heat-resistant sealing member was observed, the hole peripheral portion of the disk material disappeared, and the hole inner diameter increased from 105 mm to 123 mm.

また、比較例2の光ファイバ線引炉においては、線引開始前の予熱段階で耐熱封止部材の劣化が進行し、炉心の内圧を所定の圧力に昇圧することができなくなった。この段階で予熱を中止し、耐熱封止部材を観察したところ、円板材の穴周縁部が消失しており、穴内径が105mmから110mmに拡大していた。   Further, in the optical fiber drawing furnace of Comparative Example 2, the heat-resistant sealing member was deteriorated in the preheating stage before the drawing was started, and the internal pressure of the core could not be increased to a predetermined pressure. When preheating was stopped at this stage and the heat-resistant sealing member was observed, the hole peripheral portion of the disk material disappeared, and the hole inner diameter increased from 105 mm to 110 mm.

以上より、本発明に係る光ファイバ線引炉を用いて光ファイバの線引きを行う場合、上部殻体における小室内の酸素濃度を200ppm以下に制御することで、線引後においても耐熱封止部材の劣化が全く生じないことが確認できた。   As described above, when drawing an optical fiber using the optical fiber drawing furnace according to the present invention, the oxygen concentration in the small chamber in the upper shell is controlled to 200 ppm or less, so that the heat-resistant sealing member can be used even after drawing. It was confirmed that no deterioration occurred.

本発明の好適一実施の形態に係る光ファイバ線引炉の構造概略図である。1 is a schematic structural diagram of an optical fiber drawing furnace according to a preferred embodiment of the present invention. 図1の光ファイバ線引炉の一変形例を示す図である。It is a figure which shows the modification of the optical fiber drawing furnace of FIG. 図2において線引がさらに進行した場合の図である。FIG. 3 is a diagram when drawing is further advanced in FIG. 2. 図1における耐熱封止部材の拡大斜視図である。It is an expansion perspective view of the heat resistant sealing member in FIG. 図4の耐熱封止部材の一変形例である。It is a modification of the heat-resistant sealing member of FIG. 図4の耐熱封止部材の他の変形例である。It is another modification of the heat-resistant sealing member of FIG. 図4の耐熱封止部材のさらに別の変形例である。It is another modification of the heat-resistant sealing member of FIG. 光ファイバ製造装置の全体模式図である。It is a whole schematic diagram of an optical fiber manufacturing apparatus. 従来の光ファイバ線引炉の一例を示す構造概略図である。It is the structure schematic which shows an example of the conventional optical fiber drawing furnace. 従来の光ファイバ線引炉の他の例を示す構造概略図である。It is the structure schematic which shows the other example of the conventional optical fiber drawing furnace.

符号の説明Explanation of symbols

10 光ファイバ線引炉
11 炉心管
13 炉心
34 上部隔壁
34c 小径部(挿通穴)
35 小室
41 耐熱封止部材
P 光ファイバ母材
OF 光ファイバ
G1 不活性ガス
G2 酸化防止ガス
DESCRIPTION OF SYMBOLS 10 Optical fiber drawing furnace 11 Core tube 13 Core 34 Upper partition 34c Small diameter part (insertion hole)
35 Small chamber 41 Heat-resistant sealing member P Optical fiber preform OF Optical fiber G1 Inert gas G2 Antioxidant gas

Claims (4)

炉心内を不活性ガスでパージしつつ、炉心内で加熱溶融させた光ファイバ母材を線引きする光ファイバ線引炉において、
上記光ファイバ母材が挿入される線引炉本体の上部開口端に設けられ、線引炉本体と光ファイバ母材の隙間を塞ぐ円環状の耐熱封止部材と、
その耐熱封止部材を取り囲んで、かつ、覆って設けられ、光ファイバ母材を通すための挿通穴を有する上部隔壁と、
その上部隔壁の内部空間である小室内に酸化防止ガスを供給する酸化防止ガス供給手段と、
を備えたことを特徴とする光ファイバ線引炉。
In an optical fiber drawing furnace for drawing an optical fiber preform heated and melted in the core while purging the inside of the core with an inert gas,
An annular heat-resistant sealing member that is provided at the upper opening end of the drawing furnace body into which the optical fiber preform is inserted, and that closes a gap between the drawing furnace body and the optical fiber preform;
An upper partition wall that surrounds and covers the heat-resistant sealing member, and has an insertion hole for passing an optical fiber preform;
An antioxidant gas supply means for supplying an antioxidant gas into a small chamber that is an internal space of the upper partition;
An optical fiber drawing furnace comprising:
上記酸化防止ガス供給手段は、上記小室内の酸素濃度が200ppm以下となるように酸化防止ガスの供給量を制御する制御装置を備えた請求項1記載の光ファイバ線引炉。   2. The optical fiber drawing furnace according to claim 1, wherein the antioxidant gas supply means includes a control device for controlling an amount of supply of the antioxidant gas so that an oxygen concentration in the small chamber becomes 200 ppm or less. 上記耐熱封止部材を、高純度カーボン製のフェルト材で構成した請求項1又は2記載の光ファイバ線引炉。   The optical fiber drawing furnace according to claim 1 or 2, wherein the heat-resistant sealing member is made of a felt material made of high purity carbon. 炉心内を不活性ガスでパージしつつ、炉心内で加熱溶融させた光ファイバ母材を線引きする光ファイバの線引方法において、
線引炉本体の上部開口端から上記光ファイバ母材を挿入し、その光ファイバ母材を炉心内で加熱、溶融させて線引きする際、
上記不活性ガスが、線引炉本体と光ファイバ母材の隙間から漏れないように、その隙間を円環状の耐熱封止部材で塞ぎ、その耐熱封止部材を上部隔壁で取り囲むように覆い、その上部隔壁の内部空間である小室内に酸化防止ガスを供給すると共に、小室内の酸素濃度を200ppm以下に調整することを特徴とする光ファイバの線引方法。
In the optical fiber drawing method of drawing the optical fiber preform heated and melted in the core while purging the inside of the core with an inert gas,
When the optical fiber preform is inserted from the upper opening end of the drawing furnace body, the optical fiber preform is heated and melted in the core, and then drawn.
In order for the inert gas not to leak from the gap between the drawing furnace main body and the optical fiber preform, the gap is closed with an annular heat-resistant sealing member, and the heat-resistant sealing member is covered with an upper partition, An optical fiber drawing method, wherein an antioxidant gas is supplied into a small chamber that is an internal space of the upper partition wall, and an oxygen concentration in the small chamber is adjusted to 200 ppm or less.
JP2005067432A 2005-03-10 2005-03-10 Furnace and method for drawing optical fiber Pending JP2006248842A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005067432A JP2006248842A (en) 2005-03-10 2005-03-10 Furnace and method for drawing optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005067432A JP2006248842A (en) 2005-03-10 2005-03-10 Furnace and method for drawing optical fiber

Publications (1)

Publication Number Publication Date
JP2006248842A true JP2006248842A (en) 2006-09-21

Family

ID=37089720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005067432A Pending JP2006248842A (en) 2005-03-10 2005-03-10 Furnace and method for drawing optical fiber

Country Status (1)

Country Link
JP (1) JP2006248842A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2022766A2 (en) 2007-08-10 2009-02-11 Shin-Etsu Chemical Company, Ltd. An apparatus for fabricating an optical fiber and a method for sealing a drawing furnace
JP2009046386A (en) * 2007-07-24 2009-03-05 Shin Etsu Chem Co Ltd Heating furnace
US7631519B2 (en) * 2005-06-10 2009-12-15 Hitachi Cable, Ltd. Optical fiber drawing apparatus and sealing mechanism for the same
JP2010132505A (en) * 2008-12-05 2010-06-17 Fujikura Ltd Optical fiber production device and method for producing optical fiber
US20100207333A1 (en) * 2009-02-17 2010-08-19 Shin-Etsu Chemical Co., Ltd. Seal member
JP2011084409A (en) * 2009-10-13 2011-04-28 Sumitomo Electric Ind Ltd Method and apparatus for drawing optical fiber
CN102249531A (en) * 2010-04-30 2011-11-23 株式会社藤仓 Optical fiber manufacturing apparatus and manufacturing method
CN108516677A (en) * 2018-06-08 2018-09-11 长飞光纤光缆股份有限公司 A kind of online preform drawing positioning compression device
US10953719B2 (en) 2017-02-06 2021-03-23 Ford Global Technologies, Llc Rear axle suspension for a vehicle

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7631519B2 (en) * 2005-06-10 2009-12-15 Hitachi Cable, Ltd. Optical fiber drawing apparatus and sealing mechanism for the same
JP2009046386A (en) * 2007-07-24 2009-03-05 Shin Etsu Chem Co Ltd Heating furnace
US8322165B2 (en) 2007-08-10 2012-12-04 Shin-Etsu Chemical Co., Ltd. Apparatus for fabricating an optical fiber
EP2022766A2 (en) 2007-08-10 2009-02-11 Shin-Etsu Chemical Company, Ltd. An apparatus for fabricating an optical fiber and a method for sealing a drawing furnace
KR100980558B1 (en) * 2007-08-10 2010-09-06 신에쓰 가가꾸 고교 가부시끼가이샤 Apparatus for fabricating an optical fiber and method for sealing a drawing furnace
EP2022766A3 (en) * 2007-08-10 2011-03-23 Shin-Etsu Chemical Company, Ltd. An apparatus for fabricating an optical fiber and a method for sealing a drawing furnace
JP2010132505A (en) * 2008-12-05 2010-06-17 Fujikura Ltd Optical fiber production device and method for producing optical fiber
US8701445B2 (en) 2008-12-05 2014-04-22 Fujikura Ltd. Optical fiber manufacturing apparatus and optical fiber manufacturing method
US20100207333A1 (en) * 2009-02-17 2010-08-19 Shin-Etsu Chemical Co., Ltd. Seal member
US8702105B2 (en) * 2009-02-17 2014-04-22 Shin-Etsu Chemical Co., Ltd. Seal member
JP2011084409A (en) * 2009-10-13 2011-04-28 Sumitomo Electric Ind Ltd Method and apparatus for drawing optical fiber
CN102249531A (en) * 2010-04-30 2011-11-23 株式会社藤仓 Optical fiber manufacturing apparatus and manufacturing method
US8631669B2 (en) 2010-04-30 2014-01-21 Fujikura Ltd. Optical fiber manufacturing apparatus and optical fiber manufacturing method
CN102249531B (en) * 2010-04-30 2014-06-04 株式会社藤仓 Optical fiber manufacturing apparatus and manufacturing method
US10953719B2 (en) 2017-02-06 2021-03-23 Ford Global Technologies, Llc Rear axle suspension for a vehicle
CN108516677A (en) * 2018-06-08 2018-09-11 长飞光纤光缆股份有限公司 A kind of online preform drawing positioning compression device
CN108516677B (en) * 2018-06-08 2021-03-02 长飞光纤光缆股份有限公司 Online optical fiber perform wire drawing location closing device

Similar Documents

Publication Publication Date Title
JP2006248842A (en) Furnace and method for drawing optical fiber
JP5023016B2 (en) Optical fiber manufacturing apparatus and drawing furnace sealing method
US8631669B2 (en) Optical fiber manufacturing apparatus and optical fiber manufacturing method
US6381990B1 (en) Draw furnace sealing assembly and method
JP3949425B2 (en) Heat treatment apparatus and method for optical fiber preform
WO2002024586A1 (en) Method and apparatus for reducing refractory contamination in fused silica processes
WO2004113243A1 (en) Optical fiber drawing apparatus and gas seal mechanism
US20020178762A1 (en) Methods and apparatus for forming and controlling the diameter of drawn optical glass fiber
JP2007070189A (en) Optical fiber drawing apparatus and method of sealing drawing furnace
JP4655685B2 (en) Optical fiber drawing furnace and optical fiber drawing method
JP4404203B2 (en) Optical fiber manufacturing method
JP2012082089A (en) Method for manufacturing optical fiber
JP2000044269A (en) Dehydrating and transparent vitrifying apparatus for porous optical fiber preform
JP6513147B2 (en) Manufacturing method and cap
EP1428802B1 (en) Method and furnace for drawing an optical fibre from a preform
JP2003171139A (en) Optical fiber drawing furnace
JP6421569B2 (en) Optical fiber manufacturing method and optical fiber manufacturing apparatus
WO2015050103A1 (en) Method for manufacturing optical fiber
AU734347B2 (en) Apparatus and method for drawing waveguide fibers
JP2008184372A (en) Apparatus and method for manufacturing glass preform
JP4973440B2 (en) Glass article heating method and induction furnace
JPH0133627Y2 (en)
JPH06115968A (en) Method for drawing wire of optical fiber
KR20240001669A (en) Heat treatment apparatus and temperature regulation method of heat treatment apparatus
JP2004363499A (en) Substrate holding means