JP4655685B2 - Optical fiber drawing furnace and optical fiber drawing method - Google Patents

Optical fiber drawing furnace and optical fiber drawing method Download PDF

Info

Publication number
JP4655685B2
JP4655685B2 JP2005060385A JP2005060385A JP4655685B2 JP 4655685 B2 JP4655685 B2 JP 4655685B2 JP 2005060385 A JP2005060385 A JP 2005060385A JP 2005060385 A JP2005060385 A JP 2005060385A JP 4655685 B2 JP4655685 B2 JP 4655685B2
Authority
JP
Japan
Prior art keywords
optical fiber
core tube
inert gas
core
exhaust path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005060385A
Other languages
Japanese (ja)
Other versions
JP2006240930A (en
Inventor
達哉 城澤
友幸 西尾
芳宣 黒沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2005060385A priority Critical patent/JP4655685B2/en
Publication of JP2006240930A publication Critical patent/JP2006240930A/en
Application granted granted Critical
Publication of JP4655685B2 publication Critical patent/JP4655685B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/029Furnaces therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/60Optical fibre draw furnaces
    • C03B2205/82Means for sealing the fibre exit or lower end of the furnace
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/60Optical fibre draw furnaces
    • C03B2205/82Means for sealing the fibre exit or lower end of the furnace
    • C03B2205/83Means for sealing the fibre exit or lower end of the furnace using gas

Description

本発明は、光ファイバ線引炉及び光ファイバの線引方法に係り、特に、大型で、長尺の光ファイバ母材を用いる光ファイバ線引炉及び光ファイバの線引方法に関するものである。   The present invention relates to an optical fiber drawing furnace and an optical fiber drawing method, and more particularly, to an optical fiber drawing furnace and an optical fiber drawing method using a large and long optical fiber preform.

一般に、光ファイバは、図4に示すような製造装置を用いて製造される。この製造装置は、先ず、線引炉40において、光ファイバ母材101を加熱、溶融させた後、垂直下方に線引きを行うことで、炉下出口55から光ファイバ102が引き出される。線引炉40は、主に、光ファイバ母材101が収容される炉心管51と、光ファイバ母材101を加熱し、溶融させるヒータ54と、引き出された光ファイバ102が通されるインナー炉心管52とで構成される。炉心管51の内部空間により炉心53が形成される。   Generally, an optical fiber is manufactured using a manufacturing apparatus as shown in FIG. In this manufacturing apparatus, first, the optical fiber preform 101 is heated and melted in the drawing furnace 40 and then drawn vertically downward, whereby the optical fiber 102 is drawn from the furnace outlet 55. The drawing furnace 40 mainly includes a core tube 51 in which the optical fiber preform 101 is accommodated, a heater 54 for heating and melting the optical fiber preform 101, and an inner core in which the drawn optical fiber 102 is passed. And a tube 52. A core 53 is formed by the internal space of the core tube 51.

引き出された光ファイバ102は、外径測定器43で外径の測定がなされた後、冷却管44内で冷却ガスが吹き付けられて冷却される。その後、コーティング器45において光ファイバ102の周りに樹脂(例えば、紫外線硬化樹脂)を被覆した後、その光ファイバ102を樹脂硬化炉46内に通すことで、樹脂が硬化される。これによって、光ファイバ素線103が得られる。この冷却、樹脂被覆、及び樹脂硬化のステップは、適宜、繰り返し行われる。その後、光ファイバ素線103は、ターンプーリ47により走行方向が転換され、引取キャプスタン48を経て巻取器49に巻き取られる。   The drawn optical fiber 102 is cooled by blowing the cooling gas in the cooling pipe 44 after the outer diameter is measured by the outer diameter measuring device 43. Then, after coating the resin around the optical fiber 102 in the coater 45 (for example, ultraviolet curable resin), the resin is cured by passing the optical fiber 102 through the resin curing furnace 46. As a result, the optical fiber 103 is obtained. The cooling, resin coating, and resin curing steps are repeated as appropriate. Thereafter, the traveling direction of the optical fiber 103 is changed by the turn pulley 47 and is wound around the winder 49 via the take-up capstan 48.

線引炉40は、石英ベースの光ファイバ母材101を2000℃程度に加熱する必要があることから、炉心管51及びインナー炉心管52の材質として、一般に、高純度カーボンやジルコニアなどのセラミックスが用いられる。   Since the drawing furnace 40 needs to heat the quartz-based optical fiber preform 101 to about 2000 ° C., ceramics such as high-purity carbon and zirconia are generally used as the material of the core tube 51 and the inner core tube 52. Used.

高純度カーボン製の炉心管51及びインナー炉心管52を備えた線引炉を用いて光ファイバの製造を行う場合、炉心53内での炉心管51及びインナー炉心管52の酸化を防ぐために、炉心53内に供給した不活性ガスにより、炉心53内のパージがなされる。この時、不活性ガスの流れ方向により、線引炉は、図5に示すように、不活性ガスGが上向きに流れるアップフロータイプと、図6に示すように、不活性ガスGが下向きに流れるダウンフロータイプに大別される。   When an optical fiber is manufactured using a drawing furnace having a high purity carbon core tube 51 and an inner core tube 52, in order to prevent oxidation of the core tube 51 and the inner core tube 52 in the core 53, the core The inside of the core 53 is purged by the inert gas supplied into the core 53. At this time, depending on the flow direction of the inert gas, the drawing furnace has an upflow type in which the inert gas G flows upward as shown in FIG. 5 and an inert gas G in the downward direction as shown in FIG. Broadly divided into flowing downflow types.

アップフロータイプの場合、炉心管51の上部に、光ファイバ母材101よりもやや大径の縮径部(フランジ付き円筒部材)57が設けられる。不活性ガスGは、線引炉の下方に設けたガス導入口58から導入され、炉心53内を上向きに流れた後、光ファイバ母材101と縮径部57の隙間(以下、上部隙間という)から炉心53外へ排気される。線引炉の上方には、炉心53内における不活性ガスGの圧力を調整するためのバルブ59aを備えた排気口59が適宜設けられる。   In the case of the upflow type, a reduced diameter portion (cylindrical member with a flange) 57 having a slightly larger diameter than the optical fiber preform 101 is provided on the upper portion of the core tube 51. The inert gas G is introduced from a gas inlet 58 provided below the drawing furnace, and flows upward in the core 53, and then the gap between the optical fiber preform 101 and the reduced diameter portion 57 (hereinafter referred to as an upper gap). ) To the outside of the core 53. An exhaust port 59 provided with a valve 59a for adjusting the pressure of the inert gas G in the core 53 is appropriately provided above the drawing furnace.

一方、ダウンフロータイプの場合、炉心管51の上部に、光ファイバ母材101とほぼ同径の穴を有する円環状の耐熱封止部材67が設けられる。不活性ガスGは、線引炉の上方に設けたガス導入口68から導入され、炉心53内を下向きに流れた後、光ファイバ102と炉下出口55の隙間(以下、下部隙間という)から炉心53外へ排気される。線引炉の下方には、炉心53内における不活性ガスGの圧力を調整するためのバルブ69aを備えた排気口69が適宜設けられる。   On the other hand, in the case of the down flow type, an annular heat-resistant sealing member 67 having a hole having substantially the same diameter as that of the optical fiber preform 101 is provided on the upper portion of the core tube 51. The inert gas G is introduced from a gas inlet 68 provided above the drawing furnace, flows downward in the core 53, and then from a gap between the optical fiber 102 and the furnace outlet 55 (hereinafter referred to as a lower gap). It is exhausted out of the core 53. Below the drawing furnace, an exhaust port 69 provided with a valve 69a for adjusting the pressure of the inert gas G in the core 53 is appropriately provided.

また、アップフロータイプとダウンフロータイプを組み合わせた構造(以下、複合タイプという)の線引炉がある(例えば、特許文献1,2参照)。特許文献1記載の線引炉は、炉心管(外側炉心管)の内部に、上部インナー炉心管及び下部インナー炉心管を有する。この線引炉の下方から供給された不活性ガスは、下部インナー炉心管、上部インナー炉心管を経て線引炉上方から排気される。また、線引炉の上方から供給された不活性ガスは、外側炉心管と上部インナー炉心管の間の空間及び外側炉心管と下部インナー炉心管の間の空間を経て線引炉下方から排気される。   Further, there is a drawing furnace having a structure combining an upflow type and a downflow type (hereinafter referred to as a composite type) (see, for example, Patent Documents 1 and 2). The drawing furnace described in Patent Document 1 includes an upper inner core tube and a lower inner core tube inside a core tube (outer core tube). The inert gas supplied from below the drawing furnace is exhausted from above the drawing furnace via the lower inner core tube and the upper inner core tube. Further, the inert gas supplied from above the drawing furnace is exhausted from below the drawing furnace through the space between the outer core tube and the upper inner core tube and the space between the outer core tube and the lower inner core tube. The

特開平5−279070号公報JP-A-5-279070 特開2003−206155号公報JP 2003-206155 A

従来の、アップフロータイプ、ダウンフロータイプ、及び複合タイプの線引炉は、いずれも炉心管及び排気経路におけるダスト付着について考慮されていなかった。近年においては、光ファイバのコストダウンを図るべく、光ファイバ母材の大型化(大径化)、長尺化が進んでいる。これに伴って、光ファイバ母材の加熱、溶融時に発生するダスト量、炉心管及び排気経路に付着する光ファイバ母材1本当たりのダスト量が増加する傾向にある。その結果、炉心管及び排気経路に付着したダストが無視できなくなっている。炉心管及び排気経路に付着したダストは、炉心管の寿命低下、炉心内の温度分布の不均一化、炉心内の内圧の変動及び不安定化、排気詰まりによるダスト逆流などの悪影響をもたらすという問題があった。   None of the conventional upflow type, downflow type, and composite type draw furnaces have been considered for dust adhesion in the core tube and the exhaust path. In recent years, in order to reduce the cost of optical fibers, the optical fiber preform has been increased in size (increase in diameter) and lengthened. Along with this, the amount of dust generated during heating and melting of the optical fiber preform, and the amount of dust per optical fiber preform attached to the furnace core tube and the exhaust path tend to increase. As a result, dust adhering to the core tube and the exhaust passage cannot be ignored. The problem is that dust adhering to the core tube and exhaust path causes adverse effects such as reduced life of the core tube, uneven temperature distribution in the core, fluctuation and instability of internal pressure in the core, and dust backflow due to exhaust clogging. was there.

以上の事情を考慮して創案された本発明の目的は、光ファイバ母材、光ファイバ、炉心管、及び排気経路にダストが付着するおそれのない光ファイバ線引炉及び光ファイバの線引方法を提供することにある。   An object of the present invention created in view of the above circumstances is an optical fiber preform, an optical fiber, a furnace core tube, and an optical fiber drawing furnace in which there is no possibility of dust adhering to an exhaust path, and an optical fiber drawing method. Is to provide.

上記目的を達成すべく本発明に係る光ファイバ線引炉は、炉心内を不活性ガスでパージしつつ、炉心内で加熱溶融させた光ファイバ母材を線引きする光ファイバ線引炉において、
上記炉心を形成する炉心管と、
線引炉上方より上記炉心管の内部にダウンフローの不活性ガスを供給するための第1不活性ガス供給手段と、
線引炉下方より上記炉心管の内部にアップフローの不活性ガスを供給するための第2不活性ガス供給手段と、
上記炉心管内下部に設けられるインナー炉心管と、
該炉心管と該インナー炉心管の間隙を塞ぐように設けられ、断熱材で構成される排気経路形成部材とを備え、
該排気経路形成部材は炉心内をパージした上記アップフロー及びダウンフローの両不活性ガスを炉心管外に排気する排気経路を有し、上記炉心管の内部に位置する上記排気経路の吸込み口は、上記炉心の中央付近で合流する上記アップフローの不活性ガスと上記ダウンフローの不活性ガスを吸い込み可能な位置に位置するように形成されているものである。
To achieve the above object, an optical fiber drawing furnace according to the present invention is an optical fiber drawing furnace for drawing an optical fiber preform heated and melted in the core while purging the inside of the core with an inert gas.
A core tube forming the core;
A first inert gas supply means for supplying an inert gas in a downflow from above the drawing furnace into the furnace core tube;
A second inert gas supply means for supplying an upflow of inert gas into the furnace core tube from below the drawing furnace;
An inner core tube provided in the lower part of the core tube,
An exhaust path forming member that is provided so as to close a gap between the core tube and the inner core tube, and includes an insulating material;
The exhaust path forming member has an exhaust path for exhausting both the up-flow and down-flow inert gases purged in the core to the outside of the core tube, and the inlet of the exhaust path located inside the core tube is The up-flow inert gas and the down-flow inert gas that merge in the vicinity of the center of the core are positioned so as to be able to suck in the inert gas.

ここで、排気経路形成部材は厚肉管で構成され、その厚肉本体部に、炉心管の内部と外部を連通する排気経路を、上記厚肉本体部の周方向に所定の間隔で複数本設けるようにしてもよい。また、排気経路形成部材は、円環状のフランジ部と複数本の管部で構成され、該フランジ部の周方向に所定の間隔でフランジ部に管部の数と同数の貫通穴を設け、かつ、その貫通穴と管部内部の穴を連通させるようにしてもよい。
さらに、排気経路形成部材を構成する断熱材は、カーボン断熱材であることが好ましい。
Here, the exhaust path forming member is constituted by a thick-walled pipe, and a plurality of exhaust paths that communicate the inside and outside of the core tube are connected to the thick-walled main body part at predetermined intervals in the circumferential direction of the thick-walled body part. You may make it provide. The exhaust path forming member is composed of an annular flange portion and a plurality of pipe portions, and has the same number of through holes as the number of pipe portions in the flange portion at a predetermined interval in the circumferential direction of the flange portion, and The through hole and the hole inside the pipe portion may be communicated with each other.
Furthermore, the heat insulating material constituting the exhaust path forming member is preferably a carbon heat insulating material.

一方、本発明に係る光ファイバの線引方法は、炉心内を不活性ガスでパージしつつ、炉心内で加熱溶融させた光ファイバ母材を線引きする光ファイバの線引方法において、
上記炉心を形成する炉心管内下部にインナー炉心管を設け、該炉心管と該インナー炉心管の間隙を塞ぐように、断熱材で構成される排気経路形成部材を設けてなる線引炉を用い、上記光ファイバ母材を加熱、溶融させて線引きする際、
線引炉上方より炉心管内部にダウンフローの不活性ガスを供給すると共に、線引炉下方よりインナー炉心管を通じて炉心管内部にアップフローの不活性ガスを供給し、上記光ファイバ母材には上記ダウンフローの不活性ガスを接触させ、上記光ファイバには上記アップフローの不活性ガスを接触させ、上記アップフローの不活性ガスと上記ダウンフローの不活性ガスの合流場所である上記炉心の中央付近から炉心管内部に供給された両不活性ガスを、上記排気経路形成部材を介して炉心管外に排気するものである。
On the other hand, the optical fiber drawing method according to the present invention is an optical fiber drawing method for drawing an optical fiber preform heated and melted in the core while purging the inside of the core with an inert gas.
Using a draw furnace in which an inner core tube is provided in the lower part of the core tube forming the core, and an exhaust path forming member made of a heat insulating material is provided so as to close a gap between the core tube and the inner core tube, When drawing the optical fiber preform by heating, melting,
A down flow inert gas is supplied into the core tube from above the drawing furnace, and an up flow inert gas is supplied to the inside of the core tube through the inner core tube from below the drawing furnace. contacting the inert gas of the down flow, in the optical fiber is contacted with the inert gas of the upflow is the core at the merging location of the inert gas of the inert gas and the down-flow of the upflow Both inert gases supplied to the inside of the core tube from near the center are exhausted outside the core tube through the exhaust path forming member.

本発明によれば、炉心管及び排気経路にダストが付着するおそれがないという優れた効果を発揮する。   According to the present invention, an excellent effect is exhibited that there is no risk of dust adhering to the core tube and the exhaust path.

以下、本発明の好適一実施の形態を添付図面に基づいて説明する。   A preferred embodiment of the present invention will be described below with reference to the accompanying drawings.

本発明の好適一実施の形態に係る光ファイバ線引炉の構造概略図を図1に示す。   FIG. 1 shows a schematic structural diagram of an optical fiber drawing furnace according to a preferred embodiment of the present invention.

図1に示すように、本実施の形態に係る光ファイバ線引炉10は、炉心13内で加熱溶融させた光ファイバ母材Pを、矢印A2の方向(図1中では下方向)に線引きして光ファイバOFを作製するものである。この光ファイバ線引炉10は、主に、炉心管11、炉殻16、インナー炉心管12で構成される。   As shown in FIG. 1, the optical fiber drawing furnace 10 according to the present embodiment draws the optical fiber preform P heated and melted in the core 13 in the direction of arrow A2 (downward in FIG. 1). Thus, the optical fiber OF is manufactured. The optical fiber drawing furnace 10 mainly includes a core tube 11, a furnace shell 16, and an inner core tube 12.

炉心管11は上下に開口端を有する管材で構成され、上部開口端に、ロッドRを有する光ファイバ母材Pの長手方向の一部が収容される。炉心管11の内部空間が炉心13を形成する。ロッドRは矢印A1の方向(図1中では上下方向)に移動自在に設けられる。   The core tube 11 is composed of a tube material having an opening end in the vertical direction, and a part in the longitudinal direction of the optical fiber preform P having the rod R is accommodated in the upper opening end. The inner space of the core tube 11 forms the core 13. The rod R is provided so as to be movable in the direction of arrow A1 (vertical direction in FIG. 1).

この炉心管11を取り囲むように炉殻16が設けられる。この炉殻16内には、光ファイバ母材Pを加熱し、溶融させるためのヒータ(加熱手段)14が設けられる。このヒータ14は、炉心管11の長さ方向(図1中では上下方向)中央部付近を取り囲むように配置される。炉殻16は水冷構造となっており、炉殻16の上面壁16a及び下面壁16bには、冷却水Wを循環供給させる冷却水循環手段(図示せず)が接続される。これによって、炉殻16が水冷され、炉殻16の過熱が防止される。   A furnace shell 16 is provided so as to surround the core tube 11. A heater (heating means) 14 for heating and melting the optical fiber preform P is provided in the furnace shell 16. The heater 14 is disposed so as to surround the vicinity of the central portion in the length direction (vertical direction in FIG. 1) of the core tube 11. The furnace shell 16 has a water cooling structure, and cooling water circulation means (not shown) for circulatingly supplying the cooling water W is connected to the upper surface wall 16 a and the lower surface wall 16 b of the furnace shell 16. As a result, the furnace shell 16 is cooled with water, and overheating of the furnace shell 16 is prevented.

インナー炉心管12は炉心管11よりも小径の管材で構成され、炉心管11の下部開口端に、インナー炉心管12の長手方向の少なくとも一部が挿入して設けられる。インナー炉心管12の下端には、適宜、インナー炉心管12の内径と同径の金属製(例えば、ステンレス鋼製)管材71を接続してもよい。勿論、管材71を接続する代わりに、インナー炉心管12を長尺に形成してもよい。   The inner core tube 12 is made of a tube material having a diameter smaller than that of the core tube 11, and at least a part of the inner core tube 12 in the longitudinal direction is provided at the lower opening end of the core tube 11. A metal (for example, stainless steel) pipe 71 having the same diameter as the inner core 12 may be connected to the lower end of the inner core 12 as appropriate. Of course, instead of connecting the pipe material 71, the inner core tube 12 may be formed long.

光ファイバ線引炉10の上部には第1不活性ガス供給手段72が設けられる。より具体的には、炉殻16の上面壁16aに当接させて、炉心管11を取り囲むように円筒部材73が設けられる。この円筒部材73は、円筒部73aと、円筒部73aの非上面壁側端に形成されるフランジ部73bで構成される。円筒部73aに形成した貫通穴73cにガスタンクを備えた第1ガス供給ライン(図示せず)が接続される。フランジ部73bの上部に、光ファイバ母材Pとほぼ同径の穴を有する円環状の耐熱封止部材78が設けられる。耐熱封止部材78は、例えば、光ファイバ母材Pの外径に応じて穴の大きさが縮・拡径自在に調整される。または、穴の大きさの異なる耐熱封止部材78を予め複数個用意しておき、光ファイバ母材Pの外径に応じて使い分けるようにしてもよい。この耐熱封止部材78によって、光ファイバ母材Pと線引炉本体のシールがなされる。   A first inert gas supply means 72 is provided at the top of the optical fiber drawing furnace 10. More specifically, a cylindrical member 73 is provided so as to surround the core tube 11 in contact with the upper surface wall 16 a of the furnace shell 16. The cylindrical member 73 includes a cylindrical portion 73a and a flange portion 73b formed at a non-top wall side end of the cylindrical portion 73a. A first gas supply line (not shown) provided with a gas tank is connected to a through hole 73c formed in the cylindrical portion 73a. An annular heat-resistant sealing member 78 having a hole having substantially the same diameter as the optical fiber preform P is provided on the upper portion of the flange portion 73b. In the heat-resistant sealing member 78, for example, the size of the hole is adjusted so that the diameter of the hole can be reduced or increased according to the outer diameter of the optical fiber preform P. Alternatively, a plurality of heat-resistant sealing members 78 having different hole sizes may be prepared in advance, and may be selectively used according to the outer diameter of the optical fiber preform P. The heat-resistant sealing member 78 seals the optical fiber preform P and the drawing furnace body.

また、光ファイバ線引炉10の下部には第2不活性ガス供給手段75が設けられる。より具体的には、管材71の下端にディスク材76が接続される。このディスク材76の上面中央部には管材71の内径と同径の穴76aが設けられる。この穴76aの中央底部にはより小径の貫通穴76bが設けられ、この貫通穴76bが炉下出口15を形成する。貫通穴76bの径は、光ファイバOFの外径よりもやや大きい程度とされる。ディスク材76の周面には穴76aと周面を連通する貫通穴76cが形成され、この貫通穴76cにガスタンクを備えた第2ガス供給ライン(図示せず)が接続される。   A second inert gas supply means 75 is provided at the lower part of the optical fiber drawing furnace 10. More specifically, the disk material 76 is connected to the lower end of the tube material 71. A hole 76 a having the same diameter as the inner diameter of the tube material 71 is provided at the center of the upper surface of the disk material 76. A through hole 76b having a smaller diameter is provided at the center bottom of the hole 76a, and the through hole 76b forms the furnace outlet 15. The diameter of the through hole 76b is set to be slightly larger than the outer diameter of the optical fiber OF. A through hole 76c that communicates with the hole 76a is formed in the peripheral surface of the disk member 76, and a second gas supply line (not shown) having a gas tank is connected to the through hole 76c.

インナー炉心管12の炉心管側端(図1中では上端)の周りには排気経路形成部材20が装着され、これによって、炉心管11とインナー炉心管12の間隙が塞がれる。排気経路形成部材20は、断熱材で構成されている。断熱材は、熱のやり取りが少ない、熱を伝えにくい材料であり、例えば、内部に空気を含有している。ここで、炉殻16の下面壁16bと排気経路形成部材20の下端は面一に形成することが好ましい。   An exhaust path forming member 20 is mounted around an end of the inner core tube 12 on the side of the core tube (upper end in FIG. 1), thereby closing the gap between the core tube 11 and the inner core tube 12. The exhaust path forming member 20 is made of a heat insulating material. The heat insulating material is a material that hardly exchanges heat and hardly transfers heat. For example, the heat insulating material contains air inside. Here, the lower wall 16b of the furnace shell 16 and the lower end of the exhaust path forming member 20 are preferably formed flush with each other.

図2に示すように、排気経路形成部材20は厚肉管で構成されるものであり、その中央部の穴21にインナー炉心管12が嵌入される。また、排気経路形成部材20は、炉心管11の内部と外部を連通させるために、厚肉本体部22の上端面と下端面を連絡する排気経路23を備える。排気経路23は、厚肉本体部22の長手方向(図2中では上下方向)に沿って、かつ、周方向に所定の間隔で複数本(図2中では等間隔で6本を図示)設けられる。   As shown in FIG. 2, the exhaust path forming member 20 is composed of a thick tube, and the inner core tube 12 is fitted into the hole 21 at the center thereof. Further, the exhaust path forming member 20 includes an exhaust path 23 that connects the upper end surface and the lower end surface of the thick-walled body portion 22 in order to communicate the inside and the outside of the core tube 11. A plurality of exhaust paths 23 are provided along the longitudinal direction (vertical direction in FIG. 2) of the thick-walled main body 22 and at a predetermined interval in the circumferential direction (six are illustrated at regular intervals in FIG. 2). It is done.

炉殻16の下面壁16bに当接させて、インナー炉心管12及び排気経路形成部材20を取り囲むように排気炉殻17が設けられる。排気炉殻17とインナー炉心管12で囲まれた空間が排気小室18を形成する。この排気小室18は、排気経路形成部材20の排気経路23を介して炉心13と連絡され、また、排気炉殻17の貫通穴17aに接続された排気ライン19と連絡される。排気小室18の容積は、排気経路形成部材20における全排気経路23の容積よりも大容積に形成される。排気ライン19は、内圧を制御するためのバルブ(図示せず)を備えていてもよい。   An exhaust furnace shell 17 is provided in contact with the lower wall 16 b of the furnace shell 16 so as to surround the inner core tube 12 and the exhaust path forming member 20. A space surrounded by the exhaust furnace shell 17 and the inner furnace core tube 12 forms an exhaust chamber 18. The exhaust chamber 18 communicates with the core 13 through the exhaust path 23 of the exhaust path forming member 20 and also communicates with the exhaust line 19 connected to the through hole 17 a of the exhaust furnace shell 17. The volume of the exhaust chamber 18 is formed to be larger than the volume of all the exhaust paths 23 in the exhaust path forming member 20. The exhaust line 19 may include a valve (not shown) for controlling the internal pressure.

排気経路形成部材20を構成する断熱材としては、炉心13内で使用可能な材料、すなわち約2000℃の高温に耐え得る耐熱性を有した材料であれば特に限定するものではなく、例えば、断熱性及び耐熱性がともに良好なカーボン断熱材(発泡炭素)が挙げられる。   The heat insulating material constituting the exhaust path forming member 20 is not particularly limited as long as it is a material that can be used in the core 13, that is, a material having heat resistance that can withstand a high temperature of about 2000 ° C. And carbon heat insulating material (foamed carbon) having good properties and heat resistance.

炉心管11及びインナー炉心管12の構成材としては、高純度カーボンやジルコニアなどのセラミックスが挙げられる。   Examples of the constituent material of the core tube 11 and the inner core tube 12 include ceramics such as high-purity carbon and zirconia.

両不活性ガスG1,G2としては、拡散係数が大きいHeガスが好ましいが、特にこれに限定するものではなく、ArガスやN2ガスであってもよい。また、両不活性ガスG1,G2は、同種又は異種のいずれであってもよい。 The both inert gases G1 and G2 are preferably He gas having a large diffusion coefficient, but are not particularly limited thereto, and may be Ar gas or N 2 gas. Further, both the inert gases G1, G2 may be the same type or different types.

尚、本実施の形態においては、排気経路形成部材20が一体型の場合を例に挙げて説明を行ったが、特にこれに限定するものではない。例えば、図3に示すように、排気経路形成部材30は、円環状のフランジ部32と少なくとも1本の管部35で構成される別体型であってもよい。フランジ部32には、管部35の数と同数の貫通穴34が、周方向に所定の間隔で複数個(図3中では等間隔で6個を図示)設けられる。フランジ部32と各管部35は、各貫通穴34と各管部35の穴36が連通するように接続される。または、フランジ部32と各管部34の接続は、フランジ部32の各貫通穴34に各管部35を嵌入させてもよい。貫通穴34及び穴36が排気経路23を形成する。排気経路形成部材30のフランジ部32及び管部35は全て断熱材で構成されるが、これに限定されるものではなく、フランジ部32の貫通穴34及び各管部35の穴36の少なくとも表面に断熱層を有する排気経路形成部材30であってもよい。   In the present embodiment, the case where the exhaust path forming member 20 is an integral type has been described as an example, but the present invention is not particularly limited thereto. For example, as shown in FIG. 3, the exhaust path forming member 30 may be a separate type composed of an annular flange portion 32 and at least one pipe portion 35. The flange portion 32 is provided with a plurality of through holes 34 as many as the number of the tube portions 35 at a predetermined interval in the circumferential direction (six holes are shown at regular intervals in FIG. 3). The flange part 32 and each pipe part 35 are connected so that each through hole 34 and the hole 36 of each pipe part 35 communicate with each other. Alternatively, the connection between the flange part 32 and each pipe part 34 may be made to fit each pipe part 35 into each through hole 34 of the flange part 32. The through hole 34 and the hole 36 form the exhaust path 23. The flange portion 32 and the pipe portion 35 of the exhaust path forming member 30 are all made of a heat insulating material, but are not limited to this, and at least the surface of the through hole 34 of the flange portion 32 and the hole 36 of each pipe portion 35. The exhaust path forming member 30 having a heat insulating layer may be used.

次に、本実施の形態の作用を説明する。   Next, the operation of the present embodiment will be described.

光ファイバ線引炉10の炉心13がヒータ14によって加熱される。光ファイバ線引炉10の上方からは、第1不活性ガス供給手段72を介して不活性ガスG1が供給される。また、光ファイバ線引炉10の下方からは、第2不活性ガス供給手段75を介して不活性ガスG2が供給される。   The core 13 of the optical fiber drawing furnace 10 is heated by the heater 14. An inert gas G <b> 1 is supplied from above the optical fiber drawing furnace 10 via the first inert gas supply means 72. Further, the inert gas G <b> 2 is supplied from below the optical fiber drawing furnace 10 via the second inert gas supply means 75.

光ファイバ母材Pがヒータ14の加熱により溶融され、光ファイバOFが線引きされる。ここで、線引炉の上方は、光ファイバ線引炉10と光ファイバ母材Pの間隙が耐熱封止部材78でほぼ完全にシールされている。また、光ファイバ線引炉10の下方は、炉下出口15と光ファイバOFの間が開放されているものの、その間隙は非常に小さい。よって、不活性ガスG1のほぼ全量は、炉心管11と光ファイバ母材Pの間隙を介して炉心13内部へと導かれる。また、不活性ガスG2の大部分は、インナー炉心管12と光ファイバOFの間隙を介して炉心13内部へと導かれる。   The optical fiber preform P is melted by the heating of the heater 14, and the optical fiber OF is drawn. Here, above the drawing furnace, the gap between the optical fiber drawing furnace 10 and the optical fiber preform P is almost completely sealed by the heat-resistant sealing member 78. Moreover, although the space | interval between the lower exit 15 and the optical fiber OF is open below the optical fiber drawing furnace 10, the gap is very small. Therefore, almost the entire amount of the inert gas G1 is guided into the core 13 through the gap between the core tube 11 and the optical fiber preform P. Further, most of the inert gas G2 is introduced into the core 13 through the gap between the inner core tube 12 and the optical fiber OF.

図5に示したアップフロータイプの線引炉と同様に、インナー炉心管12の下方から供給された不活性ガスG2は、インナー炉心管12内を上側に向かって流れると共に、インナー炉心管12の上端から炉心13内に噴き出される。これによって、インナー炉心管12内のパージが行われる。また、図6に示したダウンフロータイプの線引炉と同様に、炉心管11の上端側から炉心13内に供給された不活性ガスG1は、炉心管11と光ファイバ母材Pの間隙を通じて下側に向かって流れ、これによって、炉心13内のパージが行われる。   Similarly to the upflow type drawing furnace shown in FIG. 5, the inert gas G <b> 2 supplied from below the inner core tube 12 flows upward in the inner core tube 12, and It is ejected into the core 13 from the upper end. Thereby, the purge in the inner core tube 12 is performed. Similarly to the downflow type drawing furnace shown in FIG. 6, the inert gas G <b> 1 supplied into the core 13 from the upper end side of the core tube 11 passes through the gap between the core tube 11 and the optical fiber preform P. The gas flows downward, thereby purging the core 13.

パージ後の両不活性ガスG1,G2は、炉心13内がほぼ気密に保たれていることから、炉心13の中央付近まで達した後、圧力がより低い方へと流れる。ここで、炉心13内に臨んで配置される排気経路形成部材20の後流側には排気小室18が形成されているが、この排気小室18は、排気経路23よりも大容積に、かつ、炉心13内よりも低圧に保たれている。よって、両不活性ガスG1,G2は、排気経路形成部材20を介して排気小室18、排気ライン19へと流れ、炉心13内に滞留することなく速やかに排気される。その結果、両不活性ガスG1,G2が逆流することはなく、高温の光ファイバOFは、常にクリーンなアップフローの不活性ガスG2と接触され、また、光ファイバ母材Pは、常にクリーンなダウンフローの不活性ガスG1と接触される。   Since both the inert gases G1 and G2 after the purge are kept almost airtight in the core 13, they reach the vicinity of the center of the core 13 and then flow toward a lower pressure. Here, an exhaust small chamber 18 is formed on the downstream side of the exhaust path forming member 20 disposed facing the core 13, and the exhaust small chamber 18 has a larger volume than the exhaust path 23, and It is kept at a lower pressure than in the core 13. Therefore, both the inert gases G1 and G2 flow to the exhaust chamber 18 and the exhaust line 19 through the exhaust path forming member 20, and are quickly exhausted without staying in the core 13. As a result, both the inert gases G1 and G2 do not flow backward, the high temperature optical fiber OF is always in contact with the clean upflow inert gas G2, and the optical fiber preform P is always clean. It contacts with the downflow inert gas G1.

両不活性ガスG1,G2が排気小室18へと流れる際、排気経路形成部材が設けられていない場合(炉心管11とインナー炉心管12の間隙を直接通過させる場合)だと、炉殻16の上面壁16a及び下面壁16bはウォータジャケット構造となっていることから、下面壁16b近傍において両不活性ガスG1,G2が急激に冷却される。その結果、炉心管11の下部内周面及びインナー炉心管12の上部外周面にダストが多量に付着する。そこで、本実施の形態に係る光ファイバ線引炉10では、炉心管11とインナー炉心管12の間隙に排気経路形成部材20を設けている。排気経路形成部材20は、断熱性及び耐熱性に優れたカーボン断熱材で構成されていることから、両不活性ガスG1,G2と排気経路23の間で熱のやり取りはほとんど生じない。よって、ガス状のダストを含んだ両不活性ガスG1,G2が排気経路形成部材20の排気経路23を通過する際、両不活性ガスG1,G2が急激に冷却されることはない。   When both the inert gases G1 and G2 flow into the exhaust chamber 18, when the exhaust path forming member is not provided (when the gap between the core tube 11 and the inner core tube 12 is directly passed), Since the upper wall 16a and the lower wall 16b have a water jacket structure, both the inert gases G1, G2 are rapidly cooled in the vicinity of the lower wall 16b. As a result, a large amount of dust adheres to the lower inner peripheral surface of the core tube 11 and the upper outer peripheral surface of the inner core tube 12. Therefore, in the optical fiber drawing furnace 10 according to the present embodiment, the exhaust path forming member 20 is provided in the gap between the core tube 11 and the inner core tube 12. Since the exhaust path forming member 20 is made of a carbon heat insulating material having excellent heat insulation and heat resistance, heat exchange between the inert gases G1 and G2 and the exhaust path 23 hardly occurs. Therefore, when both the inert gases G1 and G2 containing gaseous dust pass through the exhaust path 23 of the exhaust path forming member 20, the both inert gases G1 and G2 are not rapidly cooled.

その結果、両不活性ガスG1,G2は、高温状態を保ったまま排気経路23を通過するため、排気経路23にダストが付着するおそれはない。排気経路23を通過した両不活性ガスG1,G2は、炉心13内部と比べて低温な排気小室18内で冷却される。この冷却によって、両不活性ガスG1,G2中に含まれるガス状のダストが固化し、排気小室18に付着(固着)する。   As a result, both the inert gases G1 and G2 pass through the exhaust path 23 while maintaining a high temperature state, so there is no possibility that dust will adhere to the exhaust path 23. Both the inert gases G1 and G2 that have passed through the exhaust path 23 are cooled in the exhaust chamber 18 that is cooler than the interior of the core 13. By this cooling, the gaseous dust contained in both the inert gases G1 and G2 is solidified and adhered (fixed) to the exhaust chamber 18.

以上より、本実施の形態に係る光ファイバ線引炉10によれば、光ファイバ母材P及び光ファイバOFにダストが付着することはほとんどない。よって、線引きによって得られた光ファイバOFは、ダストがほとんど付着していないことから非常に強度の高いものとなり、線引きの途中で断線するおそれはほとんどない。その結果、長尺の光ファイバOFを得ることができる。   As described above, according to the optical fiber drawing furnace 10 according to the present embodiment, dust hardly adheres to the optical fiber preform P and the optical fiber OF. Therefore, the optical fiber OF obtained by drawing has very high strength because dust hardly adheres, and there is almost no possibility of disconnection in the middle of drawing. As a result, a long optical fiber OF can be obtained.

また、本実施の形態に係る光ファイバ線引炉10によれば、光ファイバ母材P及び光ファイバOFのみならず、炉心管11及び排気経路形成部材20の排気経路23にもダストが付着することはほとんどない。これは、大型、長尺の光ファイバ母材Pを用いて光ファイバOFの線引きを行った場合も同様である。よって、炉心管11の寿命向上、炉心13内の温度分布の均一化、及び炉心13内の内圧変動の抑制を図ることができる。また、排気経路23がダストによる排気詰まりを起こすおそれはないことから、炉心13内にダストが逆流するおそれもない。   Further, according to the optical fiber drawing furnace 10 according to the present embodiment, dust adheres not only to the optical fiber preform P and the optical fiber OF but also to the core tube 11 and the exhaust path 23 of the exhaust path forming member 20. There is hardly anything. The same applies to the case where the optical fiber OF is drawn using a large and long optical fiber preform P. Therefore, the life of the core tube 11 can be improved, the temperature distribution in the core 13 can be made uniform, and the internal pressure fluctuation in the core 13 can be suppressed. Further, since there is no possibility that the exhaust passage 23 is clogged with dust, there is no possibility that dust will flow back into the core 13.

また、排気小室18の内面、または排気小室18と排気ライン19の両内面にも断熱層を適宜コーティングすることで、排気経路の任意の位置(所望の位置)にダストを固着させることができる。排気経路の任意の位置を、メンテナンスの際のアクセスが容易な位置に設定しておけば、経時運転に伴ってダストが固着した任意の位置の排気経路のみを、容易に、交換、補修することができる。よって、長時間にわたって線引きを行っても、光ファイバ線引炉10において、ダスト付着に伴う種々のトラブルが発生するのを防ぐことができる。   Moreover, dust can be fixed to an arbitrary position (desired position) in the exhaust path by appropriately coating the inner surface of the exhaust chamber 18 or both the inner surfaces of the exhaust chamber 18 and the exhaust line 19 with a heat insulating layer. If any position in the exhaust path is set to a position that can be easily accessed during maintenance, only the exhaust path at any position where dust adheres to the operation over time can be easily replaced or repaired. Can do. Therefore, even if it draws over a long time, it can prevent that various troubles accompanying dust adhesion occur in optical fiber drawing furnace 10.

また、図2に示した構造の排気経路形成部材20の代わりに、図3に示した構造の排気経路形成部材30を用いることで、排気経路形成部材の製造工程がやや複雑になるものの、高価なカーボン断熱材の使用量を減らすことができ、原料コストの低減を図ることができる。また、排気経路形成部材と、炉心管11及びインナー炉心管12の各接触面積は、排気経路形成部材30の方が排気経路形成部材20よりも小さい。このため、排気経路形成部材30は、排気経路形成部材20よりも断熱性、すなわち、排気経路23を通過する両不活性ガスG1,G2の保温効果に優れている。   Further, by using the exhaust path forming member 30 having the structure shown in FIG. 3 instead of the exhaust path forming member 20 having the structure shown in FIG. 2, the manufacturing process of the exhaust path forming member is slightly complicated, but expensive. The amount of carbon heat insulating material used can be reduced, and the raw material cost can be reduced. Further, the contact area between the exhaust path forming member and the core tube 11 and the inner core tube 12 is smaller in the exhaust path forming member 30 than in the exhaust path forming member 20. For this reason, the exhaust path forming member 30 is more heat-insulating than the exhaust path forming member 20, that is, the heat retaining effect of both the inert gases G 1 and G 2 passing through the exhaust path 23.

以上、本発明は、上述した実施の形態に限定されるものではなく、他にも種々のものが想定されることは言うまでもない。   As described above, the present invention is not limited to the above-described embodiment, and it goes without saying that various other things are assumed.

次に、本発明を実施例に基づいて説明するが、本発明はこれらの実施例に限定されるものではない。   Next, although this invention is demonstrated based on an Example, this invention is not limited to these Examples.

図2に示した構造を有する3種類の排気経路形成部材を作製した。各排気経路形成部材は、構成材料が異なっており、それぞれカーボン断熱材製(試料1)、カーボン材製(試料2)、石英ガラス製(試料3)の3種類とした。試料1〜3の各排気経路形成部材を図1に示した線引炉に適用し、光ファイバの線引きを行った。   Three types of exhaust path forming members having the structure shown in FIG. 2 were produced. Each exhaust path forming member has a different constituent material, and is made of three types: a carbon heat insulating material (sample 1), a carbon material (sample 2), and a quartz glass (sample 3). The exhaust path forming members of Samples 1 to 3 were applied to the drawing furnace shown in FIG. 1 to draw the optical fiber.

その結果、試料1の排気経路形成部材を用いた場合、排気経路にダスト付着は生じなかった。これに対して、試料2,3の排気経路形成部材を用いた場合、それぞれ排気経路にダスト付着が生じた。   As a result, when the exhaust path forming member of Sample 1 was used, no dust adhered to the exhaust path. On the other hand, when the exhaust path forming member of Samples 2 and 3 was used, dust adhered to the exhaust path.

以上より、断熱材で構成される排気経路形成部材を用いた本発明に係る線引炉においては、炉心管及びインナー炉心管は勿論のこと、排気経路にもダストの付着がないことが確認できた。   From the above, in the drawing furnace according to the present invention using the exhaust path forming member composed of a heat insulating material, it can be confirmed that there is no dust adhering to the exhaust path as well as the core pipe and the inner core pipe. It was.

図1に示した構造を有する線引炉を用い、光ファイバの線引きを行った。光ファイバ母材としては、外径が110〜120mm、長さが1200mmで、1本当たり1000kmの長さの光ファイバを得ることができる大径のものを用いた。また、炉心管の内径は130mm、インナー炉心管の内径は40mmとした。さらに、排気経路形成部材としては、図2に示した構造のものを用い、カーボン断熱材製、高さは150mmとした。不活性ガスは、ともにHeガスを用いた。   The optical fiber was drawn using the drawing furnace having the structure shown in FIG. As the optical fiber base material, an optical fiber having an outer diameter of 110 to 120 mm, a length of 1200 mm, and an optical fiber having a length of 1000 km per one was used. The inner diameter of the core tube was 130 mm, and the inner diameter of the inner core tube was 40 mm. Further, as the exhaust path forming member, the one having the structure shown in FIG. 2 was used, made of carbon heat insulating material, and the height was 150 mm. He gas was used as the inert gas.

光ファイバを1000km線引きした後、すぐに次の光ファイバ母材を線引炉にセットし、連続して光ファイバの線引きを行った。この線引工程を繰り返し、全体で5000kmの線引きを行った。   After drawing the optical fiber by 1000 km, the next optical fiber preform was immediately set in a drawing furnace, and the optical fiber was drawn continuously. This drawing process was repeated to draw a total of 5000 km.

線引終了後、線引炉の内部を観察した。その結果、炉心管、インナー炉心管、光ファイバ母材、及び排気経路形成部材の排気経路において、ダストの付着は全く観察されなかった。   After the drawing, the inside of the drawing furnace was observed. As a result, no dust was observed in the exhaust path of the core tube, the inner core tube, the optical fiber preform, and the exhaust path forming member.

また、5000kmの長さの光ファイバに対してプルーフ試験を施し、光ファイバの強度を調べた。その結果、光ファイバの断線箇所は9箇所であり、平均通過長が500kmと長尺な光ファイバを得ることができた。   In addition, a proof test was performed on an optical fiber having a length of 5000 km to examine the strength of the optical fiber. As a result, there were nine disconnections in the optical fiber, and a long optical fiber having an average passage length of 500 km could be obtained.

以上より、本発明に係る線引炉を用いて光ファイバの線引きを行うことで、線引炉における不活性ガスが流れる流路全体でダストの付着は全くなく、かつ、線引きによって得られた光ファイバにもダストの付着がほとんどないことが確認できた。   As described above, by drawing the optical fiber using the drawing furnace according to the present invention, no dust adheres to the entire flow path through which the inert gas flows in the drawing furnace, and the light obtained by the drawing is obtained. It was confirmed that there was almost no dust adhesion on the fiber.

本発明の好適一実施の形態に係る光ファイバ線引炉の構造概略図である。1 is a schematic structural diagram of an optical fiber drawing furnace according to a preferred embodiment of the present invention. 図1における排気経路形成部材の拡大斜視図である。FIG. 2 is an enlarged perspective view of an exhaust path forming member in FIG. 1. 図2の排気経路形成部材の一変形例である。It is a modification of the exhaust path formation member of FIG. 光ファイバ製造装置の全体模式図である。It is a whole schematic diagram of an optical fiber manufacturing apparatus. 従来の光ファイバ線引炉の一例を示す構造概略図である。It is the structure schematic which shows an example of the conventional optical fiber drawing furnace. 従来の光ファイバ線引炉の他の例を示す構造概略図である。It is the structure schematic which shows the other example of the conventional optical fiber drawing furnace.

符号の説明Explanation of symbols

10 光ファイバ線引炉
11 炉心管
12 インナー炉心管
13 炉心
20 排気経路形成部材
23 排気経路
P 光ファイバ母材
G1,G2 不活性ガス
DESCRIPTION OF SYMBOLS 10 Optical fiber drawing furnace 11 Core tube 12 Inner core tube 13 Core 20 Exhaust path formation member 23 Exhaust path P Optical fiber preform G1, G2 Inert gas

Claims (5)

炉心内を不活性ガスでパージしつつ、炉心内で加熱溶融させた光ファイバ母材を線引きする光ファイバ線引炉において、
上記炉心を形成する炉心管と、
線引炉上方より上記炉心管の内部にダウンフローの不活性ガスを供給するための第1不活性ガス供給手段と、
線引炉下方より上記炉心管の内部にアップフローの不活性ガスを供給するための第2不活性ガス供給手段と、
上記炉心管内下部に設けられるインナー炉心管と、
該炉心管と該インナー炉心管の間隙を塞ぐように設けられ、断熱材で構成される排気経路形成部材とを備え、
該排気経路形成部材は炉心内をパージした上記アップフロー及びダウンフローの両不活性ガスを炉心管外に排気する排気経路を有し、上記炉心管の内部に位置する上記排気経路の吸込み口は、上記炉心の中央付近で合流する上記アップフローの不活性ガスと上記ダウンフローの不活性ガスを吸い込み可能な位置に位置するように形成されていることを特徴とする光ファイバ線引炉。
In an optical fiber drawing furnace for drawing an optical fiber preform heated and melted in the core while purging the inside of the core with an inert gas,
A core tube forming the core;
A first inert gas supply means for supplying an inert gas in a downflow from above the drawing furnace into the furnace core tube;
A second inert gas supply means for supplying an upflow of inert gas into the furnace core tube from below the drawing furnace;
An inner core tube provided in the lower part of the core tube,
An exhaust path forming member that is provided so as to close a gap between the core tube and the inner core tube, and includes an insulating material;
The exhaust path forming member has an exhaust path for exhausting both the up-flow and down-flow inert gases purged in the core to the outside of the core tube, and the inlet of the exhaust path located inside the core tube is An optical fiber drawing furnace characterized by being formed at a position where the up-flow inert gas and the down-flow inert gas that merge near the center of the core can be sucked.
上記排気経路形成部材が厚肉管で構成され、その厚肉本体部に、上記炉心管の内部と外部を連通する排気経路を、上記厚肉本体部の周方向に所定の間隔で複数本設けた請求項1記載の光ファイバ線引炉。   The exhaust path forming member is composed of a thick tube, and a plurality of exhaust paths are provided in the thick body portion at a predetermined interval in the circumferential direction of the thick body portion to communicate the inside and outside of the core tube. The optical fiber drawing furnace according to claim 1. 上記排気経路形成部材が、円環状のフランジ部と複数本の管部で構成され、該フランジ部の周方向に所定の間隔でフランジ部に管部の数と同数の貫通穴を設け、かつ、その貫通穴と管部内部の穴を連通させた請求項1記載の光ファイバ線引炉。   The exhaust path forming member is composed of an annular flange portion and a plurality of pipe portions, and the flange portion is provided with the same number of through holes as the number of pipe portions at a predetermined interval in the circumferential direction of the flange portion, and The optical fiber drawing furnace according to claim 1, wherein the through hole and the hole inside the pipe portion are communicated with each other. 上記断熱材がカーボン断熱材である請求項1から3いずれかに記載の光ファイバ線引炉。   The optical fiber drawing furnace according to any one of claims 1 to 3, wherein the heat insulating material is a carbon heat insulating material. 炉心内を不活性ガスでパージしつつ、炉心内で加熱溶融させた光ファイバ母材を線引きする光ファイバの線引方法において、
上記炉心を形成する炉心管内下部にインナー炉心管を設け、該炉心管と該インナー炉心管の間隙を塞ぐように、断熱材で構成される排気経路形成部材を設けてなる線引炉を用い、上記光ファイバ母材を加熱、溶融させて線引きする際、
線引炉上方より炉心管内部にダウンフローの不活性ガスを供給すると共に、線引炉下方よりインナー炉心管を通じて炉心管内部にアップフローの不活性ガスを供給し、上記光ファイバ母材には上記ダウンフローの不活性ガスを接触させ、上記光ファイバには上記アップフローの不活性ガスを接触させ、上記アップフローの不活性ガスと上記ダウンフローの不活性ガスの合流場所である上記炉心の中央付近から炉心管内部に供給された両不活性ガスを、上記排気経路形成部材を介して炉心管外に排気することを特徴とする光ファイバの線引方法。
In the optical fiber drawing method of drawing the optical fiber preform heated and melted in the core while purging the inside of the core with an inert gas,
Using a draw furnace in which an inner core tube is provided in the lower part of the core tube forming the core, and an exhaust path forming member made of a heat insulating material is provided so as to close a gap between the core tube and the inner core tube, When drawing the optical fiber preform by heating, melting,
A down flow inert gas is supplied into the core tube from above the drawing furnace, and an up flow inert gas is supplied to the inside of the core tube through the inner core tube from below the drawing furnace. contacting the inert gas of the down flow, in the optical fiber is contacted with the inert gas of the upflow is the core at the merging location of the inert gas of the inert gas and the down-flow of the upflow A method of drawing an optical fiber, characterized in that both inert gases supplied from the vicinity of the center to the inside of the core tube are exhausted outside the core tube through the exhaust path forming member.
JP2005060385A 2005-03-04 2005-03-04 Optical fiber drawing furnace and optical fiber drawing method Expired - Fee Related JP4655685B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005060385A JP4655685B2 (en) 2005-03-04 2005-03-04 Optical fiber drawing furnace and optical fiber drawing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005060385A JP4655685B2 (en) 2005-03-04 2005-03-04 Optical fiber drawing furnace and optical fiber drawing method

Publications (2)

Publication Number Publication Date
JP2006240930A JP2006240930A (en) 2006-09-14
JP4655685B2 true JP4655685B2 (en) 2011-03-23

Family

ID=37047708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005060385A Expired - Fee Related JP4655685B2 (en) 2005-03-04 2005-03-04 Optical fiber drawing furnace and optical fiber drawing method

Country Status (1)

Country Link
JP (1) JP4655685B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013105302A1 (en) * 2012-01-10 2013-07-18 住友電気工業株式会社 Optical fiber production method and production device, and optical fiber
JPWO2021193567A1 (en) * 2020-03-23 2021-09-30

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6385026A (en) * 1986-09-29 1988-04-15 Sumitomo Electric Ind Ltd Furnace for drawing optical fiber
JPH04240604A (en) * 1991-01-24 1992-08-27 Furukawa Electric Co Ltd:The Optical fiber drawing furnace
JPH08333130A (en) * 1995-06-01 1996-12-17 Furukawa Electric Co Ltd:The Heating furnace for drawing optical fiber
JPH11236236A (en) * 1998-02-20 1999-08-31 Hitachi Cable Ltd Drawing method of optical fiber and its device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6385026A (en) * 1986-09-29 1988-04-15 Sumitomo Electric Ind Ltd Furnace for drawing optical fiber
JPH04240604A (en) * 1991-01-24 1992-08-27 Furukawa Electric Co Ltd:The Optical fiber drawing furnace
JPH08333130A (en) * 1995-06-01 1996-12-17 Furukawa Electric Co Ltd:The Heating furnace for drawing optical fiber
JPH11236236A (en) * 1998-02-20 1999-08-31 Hitachi Cable Ltd Drawing method of optical fiber and its device

Also Published As

Publication number Publication date
JP2006240930A (en) 2006-09-14

Similar Documents

Publication Publication Date Title
US8631669B2 (en) Optical fiber manufacturing apparatus and optical fiber manufacturing method
JP2006248842A (en) Furnace and method for drawing optical fiber
JP5064526B2 (en) Float tank system for float glass production
US20110283740A1 (en) Float bath system for manufacturing float glass and cooling method of the same
JPWO2010119696A1 (en) Manufacturing method of optical fiber
JP4655685B2 (en) Optical fiber drawing furnace and optical fiber drawing method
US6497118B1 (en) Method and apparatus for reducing refractory contamination in fused silica processes
TWI428297B (en) Float bath for manufacturing float glass and cooling method of the same
CN104098255A (en) Sintering apparatus
JP2012082089A (en) Method for manufacturing optical fiber
US20050042559A1 (en) Furnaces having dual gas screens and methods for operating the same
US20020178762A1 (en) Methods and apparatus for forming and controlling the diameter of drawn optical glass fiber
JPH038738A (en) Furnace and method for drawing optical fiber
JP6513147B2 (en) Manufacturing method and cap
JP4404203B2 (en) Optical fiber manufacturing method
JP2000247688A (en) Cooling device for optical fiber
JP2004250286A (en) Apparatus and method of drawing optical fiber
JP2000044269A (en) Dehydrating and transparent vitrifying apparatus for porous optical fiber preform
JP2008179517A (en) Apparatus and method for producing glass preform
KR100812468B1 (en) Over cladding apparatus and method thereof
JP4450801B2 (en) Glass lump forming apparatus, glass lump manufacturing method, and optical element manufacturing method
JP4228570B2 (en) Optical fiber drawing furnace
JP4973440B2 (en) Glass article heating method and induction furnace
WO2021193567A1 (en) Optical fiber wiredrawing furnace and method for producing optical fiber
JP2013203623A (en) Drawing furnace and drawing method for optical fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101213

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4655685

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees