JP2004161563A - Method and apparatus for drawing optical fiber - Google Patents

Method and apparatus for drawing optical fiber Download PDF

Info

Publication number
JP2004161563A
JP2004161563A JP2002331015A JP2002331015A JP2004161563A JP 2004161563 A JP2004161563 A JP 2004161563A JP 2002331015 A JP2002331015 A JP 2002331015A JP 2002331015 A JP2002331015 A JP 2002331015A JP 2004161563 A JP2004161563 A JP 2004161563A
Authority
JP
Japan
Prior art keywords
optical fiber
fiber preform
gas
furnace
reduced diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002331015A
Other languages
Japanese (ja)
Inventor
Takayuki Shimazu
貴之 島津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2002331015A priority Critical patent/JP2004161563A/en
Publication of JP2004161563A publication Critical patent/JP2004161563A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/029Furnaces therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/60Optical fibre draw furnaces
    • C03B2205/80Means for sealing the preform entry or upper end of the furnace
    • C03B2205/81Means for sealing the preform entry or upper end of the furnace using gas

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an apparatus for drawing an optical fiber, in which the volume change occupied by gas in the inside of a furnace body can be suppressed and by which a high quality optical fiber free from the diameter fluctuation can be drawn. <P>SOLUTION: A gas feeding unit 17 for blowing out a seal gas toward the inner peripheral side is provided at an upper inlet of a drawing furnace 11. A closing member 31 which is formed to have an outer diameter nearly equal to that of the optical fiber preform 21 and hung from an engaging member 32 arranged at the upper part than the optical fiber preform 21 is arranged at the diameter reduced part 21b of the optical fiber preform 21 sent into the inside of the drawing furnace 11 at least after the diameter reduced part 21b comprising a shoulder part at the upper end of the optical fiber preform 21 has arrived at the upper inlet of the drawing furnace 11. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、ガスシールにより光ファイバの線引きを安定して行うことのできる光ファイバの線引き方法及び線引き装置に関するものである。
【0002】
【従来の技術】
光ファイバは、石英等の材料で製造した母材を線引き炉の上部から供給し、線引き炉において先端部を加熱溶融し、母材の先端から下方に引き出して細径化することにより製造されている。
図6に示す線引き炉は、線引炉3上部に設置されたガスディフーザ1には、母材2を挿入するための挿入口が形成されており、このガスディフーザ1から母材2に向けて不活性ガスFが噴出されている(特許文献1参照)。
【0003】
ガスシールは通常、線引き炉の上端で不活性ガスを母材に吹き付ける形で行われる。吹き出された不活性ガスは、母材に当たって上流へ流れる上昇流と下方に流れる下降流とに分かれる。このうち、上昇流が母材と炉心管の隙間から酸素が侵入するのを防止する。また、下降流が線引き炉下部に設置されたシャッターから放出することにより下方からの酸素の侵入を防止する。このようなガスの流れにより、線引き炉内は大気圧に対して常に陽圧に保たれる。
【0004】
【特許文献1】
特開昭62−176938号公報(3頁、第1図)
【0005】
【発明が解決しようとする課題】
ところで、母材を線引きしようとした場合、炉体上部と母材との間をガスにてシールすると、母材と母材を吊り下げるダミー棒との径の差で生じる縮径部が炉体内部に進入すると、炉体内部のガスの占める体積が変化し、その結果としてガスの流れが変化してしまい、これが線引きする光ファイバの径変動になってしまう。
【0006】
この発明は、上記事情に鑑みてなされたもので、炉体内部におけるガスの占める体積変化を抑えて径変動なく高品質な光ファイバを線引きすることが可能な光ファイバの線引き方法及び線引き装置を提供することを目的としている。
【0007】
【課題を解決するための手段】
上記目的を達成するために、本発明の光ファイバの線引き方法は、上部入口にて内周側へ向かってシールガスを噴出する線引き炉内へ光ファイバ母材を上方から送り込みつつ送り込み方向前方側から引き取り線引き炉にて加熱軟化させて所定の外径に細径化された光ファイバを線引きする光ファイバの線引き方法であって、少なくとも光ファイバ母材の上端の縮径部が線引き炉の上部入口に到達した以降に、光ファイバ母材の縮径部の上方に、光ファイバ母材と略同一外径に形成されかつ光ファイバ母材側の端面が縮径部に沿う形状に形成された封鎖部材を配設して線引き炉の上部入口と封鎖部材との間をシールガスにてガスシールすることを特徴とする。
【0008】
そして、本発明の光ファイバの線引き方法によれば、光ファイバの線引きが進み、光ファイバ母材の肩部である縮径部が線引き炉内に進入したとしても、光ファイバ母材の縮径部の上方に光ファイバ母材と略同一外径に形成されかつ光ファイバ母材側の端面が縮径部に沿う形状に形成された封鎖部材を配設しているので、炉の内部におけるガスの占める体積変化が抑えられ、これにより、炉内へ供給される不活性ガスなどのシールガスの流れの変化が防止され、ガスの流れの変化によって生じる光ファイバの径の変動が抑えられ、安定した径にて光ファイバを線引きすることができ、高品質な光ファイバを線引きすることができる。
【0009】
なお、封鎖部材を複数の部材から構成し、これら複数の部材が変形する縮径部に追従して移動可能としても良い。
また、封鎖部材を、その上部に配設した係合部材から懸垂しても良い。
【0010】
また、封鎖部材を光ファイバ母材の縮径部に載置して端面を接触させおいても良く、さらに、好ましくは、封鎖部材を光ファイバ母材の縮径部に対して僅かに隙間をあけて配設しても良い。
なお、封鎖部材の端面から光ファイバ母材の縮径部にガスを流出させても良い。
【0011】
また、本発明の光ファイバの線引き装置は、上部入口にて内周側へ向かってシールガスを噴出するガス供給器が設けられた線引き炉を有し、線引き炉内に上方から送り込まれて加熱軟化された光ファイバ母材を下端から引き取ることにより所定の外径に細径化された光ファイバを線引きする光ファイバの線引き装置であって、光ファイバ母材の上端の肩部からなる縮径部の上方に、光ファイバ母材の外径と略同一外径に形成され、かつ、光ファイバ母材側の端面が縮径部に沿う形状に形成された封鎖部材が、光ファイバ母材よりも上方に配置された係合部材から懸垂されて配設されていることを特徴とする。
【0012】
そして、本発明の光ファイバの線引き装置によれば、光ファイバの線引きが進み、光ファイバ母材の肩部である縮径部が線引き炉内に進入したとしても、光ファイバ母材の縮径部に光ファイバ母材と略同一外径に形成されかつ光ファイバ母材側の端面が縮径部に沿う形状に形成された封鎖部材が配設されているので、炉の内部におけるガスの占める体積変化が抑えられ、これにより、炉内へ供給される不活性ガスなどのシールガスの流れの変化が防止され、ガスの流れの変化によって生じる光ファイバの径の変動が抑えられ、安定した径にて光ファイバを線引きすることができ、高品質な光ファイバを線引き可能な線引き装置が提供できる。
【0013】
【発明の実施の形態】
以下、本発明に係る光ファイバの線引き方法及び線引き装置の実施形態を図面に基づいて詳細に説明する。
図1及び図2は、本発明の実施形態に係る光ファイバの線引き装置を構成する線引き炉を示している。図1では、線引き装置を半割状態で示しているが、実際には、光ファイバ母材の軸を対称軸とする形状である。
図に示すように、線引き炉11は、外周に発熱部12が設けられたカーボンからなる円筒状の炉心管13を有している。
炉心管13は、その外周が断熱材14によって覆われ、さらにその外周が炉体15によって覆われている。
【0014】
炉心管13の上部には、上蓋16が設けられている。この上蓋16には、炉心管13と略同一内径の円筒部16aが形成されており、その外周側にて周方向にほぼ等間隔をあけて3箇所以上設けられたガス供給器17によって吹き出し口16bから内周側にアルゴン、窒素、ヘリウム等の不活性ガスからなるシールガスが周囲に略均等に吹き込まれて(矢印参照)ガスシールがされている。略同一とは径に対して1〜5mmの差をいう。なお、ガスシールのために吹き込むガスの流量としては、約10〜30l/min程度が好ましい。
また、炉心管13の下方には、断熱材からなる円筒状の炉延長部19が設けられている。
【0015】
そして、上記線引き炉11には、その上部からダミー棒18に連結された光ファイバ母材21が送り込まれ、その先端部が発熱部12によって加熱溶融され、下方に引き出されて細径化されて光ファイバ21aとされる。
【0016】
本実施形態では、上記線引き炉11によって光ファイバ母材21から光ファイバ21aを線引きする際に、光ファイバ母材21の上部に封鎖部材31を載置しておく。
この封鎖部材31は、外径が光ファイバ母材21と略同一(好ましくは±1mm程度の範囲)の円筒状の外周円筒体31aと、この外周円筒体31aの内部に入れ子状に挿通された円筒状の内周円筒体31bとから構成されており、内周円筒体31bにダミー棒18が挿通されている。
【0017】
この封鎖部材31を構成する外周円筒体31a及び内周円筒体31bは、それぞれその下方の端面が、ダミー棒18との径の差で生じる光ファイバ母材21の肩部からなる縮径部21bに略沿った形状に形成されている。例えば、縮径部21bがテーパ形状で、そのテーパの傾きがαであるならば、封鎖部材の下方の端面はテーパ形状で、αの傾きを有している。封鎖部材が複数の部材から構成される場合、各部材は、上記のように入れ子状に挿通された円筒体であってもよい。各円筒体がさらに、複数の部材から構成されていてもよい。使用するときには、各部材は、隙間を開けない。
封鎖部材31の上部には、ダミー棒18に固定された円板状の係合部材32が設けられており、封鎖部材31の外周円筒体31a及び内周円筒体31bは、それぞれ係合部材32から懸垂ワイヤ33によってそれぞれ懸垂されている。なお、この懸垂ワイヤ33は、封鎖部材31を光ファイバ母材21の縮径部21bに載置させた状態にて僅かに弛まされている。
【0018】
そして、このように、光ファイバ母材21の上部に、光ファイバ母材21の外径と略同一の外径の封鎖部材31を載置しておくことにより、光ファイバ21aの線引きが進み、光ファイバ母材21の肩部である縮径部21bが線引き炉11内に進入したとしても、炉の内部におけるガスの占める体積変化が抑えられ、これにより、ガス供給器17から炉内へ供給されるシールガスの流れの変化が防止され、ガスの流れの変化によって生じる光ファイバ21aの径の変動が抑えられ、安定した径にて光ファイバ21aを線引きすることができ、高品質な光ファイバ21aを線引きすることができる。
【0019】
さらに、線引きが進行し、加熱溶融箇所が縮径部21bに近づくと、光ファイバ母材21の肩部である縮径部21bが軸方向に伸び、縮径部21bにおける径方向に対する傾斜角度が大きくなる。
そして、このように、縮径部21bが変形すると、図3に示すように、封鎖部材31は、外周円筒体31a及び内周円筒体31bが縮径部21bの変形に追従して下方へ移動する。
これにより、縮径部21bが変形したとしても、確実に炉内部におけるガスの占める体積変化を抑えることができ、安定した径にて光ファイバ21aを製造することができる。
【0020】
また、封鎖部材31を吊り下げる係合部材32は、上記のようにダミー棒18に固定しても良いが、ダミー棒18に固定せずに、別個の移動手段によってダミー棒18の移動に同期させて降下させるようにしても良い。この場合、光ファイバ母材21の縮径部21bが線引き炉11に差し掛かった時点にて、係合部材32を移動手段によって下降させて、以降はダミー棒18に同期させて下降させれば良い。
【0021】
なお、封鎖部材31は、上記のように、端面が光ファイバ母材21の縮径部21bに当接するように縮径部21bに載置させても良いが、僅かに隙間をあけて配置させても良い。
ところで、線引きしている光ファイバ21aが万一断線した場合、復帰する間に光ファイバ母材21が溶融してしまわないように、光ファイバ母材21は上方へ引き上げられて線引き炉11の加熱領域から引き出される。
このとき、封鎖部材31が、その端面を光ファイバ母材21の縮径部21bに対し僅かに隙間をあけて配置されていると、加熱領域から引き出されて温度変化が生じても、光ファイバ母材21と封鎖部材31との線膨張係数の違いにより、光ファイバ母材21が損傷する恐れがない。封鎖部材が光ファイバ母材の縮径部に載置されている場合であっても、封鎖部材を係合手段から懸垂させておけば、断線時に係合部材を光ファイバ母材よりも上へ引き上げて封鎖部材と光ファイバ母材とを離すことができる。
したがって、封鎖部材31は、その端面を光ファイバ母材21の縮径部21bに対して僅かに隙間をあけて配置させるのが好ましい。
【0022】
図4に示すものは、封鎖部材31を構成する外周円筒体31a及び内周円筒体31bの先端部近傍に、反射式の光学系センサ41を設けたものである。そして、このセンサ41を有する外周円筒体31a及び内周円筒体31bからなる封鎖部材31は、センサ41によって先端と光ファイバ母材21との間の距離が測定され、この測定結果に基づいて、光ファイバ母材21との間に僅かに隙間をあけた状態に配置される。そして、これら外周円筒体31a及び内周円筒体31bは、縮径部21bが変形した際に、その変形にともなってそれぞれ僅かに隙間をあけた状態に追従する。なお、外周円筒体31a及び内周円筒体31bの端面には、可視光を遮りかつ熱を通しにくいフィルタ42が設けられ、センサ41における可視光による測定の変動や熱による影響が抑えられている。
【0023】
外周円筒体31a及び内周円筒体31bをそれぞれ別個に吊り下げる係合部材32を設け、これら係合部材32を別個に昇降させて、外周円筒体31a及び内周円筒体31bを、光ファイバ母材21の縮径部21bに追従させてもよい。
【0024】
また、封鎖部材31を中空として、内部にガスを通したり、ガスを通す配管を設けて、封鎖部材31の下面からガラス母材21にガスを吹き付け、封鎖部材31の端面と光ファイバ母材21との隙間から流出させるようにしても良く、このようにすると、ガス供給器17によって円筒部16aから内周側にガスを吹き出すことによるガスシールの効果をさらに高めることができる。
【0025】
なお、封鎖部材31は、その内部に液体やガスなどの冷媒を流して冷却する冷却構造を施すことにより、熱による破損、損傷を確実に防止することができる。また、封鎖部材31としては、石英、セラミックス、金属等が使用可能であるが、特に金属の場合は、前述した冷却構造などにより冷却してその溶融を防止するのが望ましい。
【0026】
本実施形態例のように、単一の部材からなる封鎖部材31を備えた線引き装置と、封鎖部材31を備えていない従来の線引き装置とによって光ファイバを線引きした場合の光ファイバの径の変動を比較した。
図5に示すように、封鎖部材31を備えていない線引き装置の場合は、線引きする光ファイバのファイバ距離が長くなるにしたがって、径の変動が大きくなるのに対して、封鎖部材31を備えた本実施形態例の線引き装置の場合は、ファイバ距離が長くなっても径の変動が抑えられて常に安定した光ファイバを線引きすることができることがわかった。
【0027】
【発明の効果】
以上、説明したように、本発明の光ファイバの線引き方法及び線引き装置によれば、光ファイバの線引きが進み、光ファイバ母材の肩部である縮径部が線引き炉内に進入したとしても、光ファイバ母材の縮径部に光ファイバ母材と略同一外径に形成されかつ光ファイバ母材側の端面が縮径部に沿う形状に形成された封鎖部材を配設しているので、炉の内部におけるガスの占める体積変化が抑えられ、これにより、炉内へ供給される不活性ガスなどのシールガスの流れの変化が防止され、ガスの流れの変化によって生じる光ファイバの径の変動が抑えられ、安定した径にて光ファイバを線引きすることができ、高品質な光ファイバを線引きすることができる。
【図面の簡単な説明】
【図1】本発明の光ファイバの線引き方法及び線引き装置を説明する線引き炉の斜視図である。
【図2】線引き装置を構成する線引き炉の構造を示す線引き炉の断面図である。
【図3】線引き炉における光ファイバ母材の変形状態を示す線引き炉の断面図である。
【図4】センサを有する封鎖部材を示す封鎖部材の断面図である。
【図5】本発明の光ファイバの線引き方法と従来の光ファイバの線引き方法との比較結果を示すグラフである。
【図6】従来の線引き炉の概略構造図である。
【符号の説明】
11 線引き炉
17 ガス供給器
21 光ファイバ母材
21a 光ファイバ
21b 縮径部
31 封鎖部材
31a 外周円筒体(円筒体)
31b 内周円筒体(円筒体)
32 係合部材
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an optical fiber drawing method and an optical fiber drawing apparatus that can stably draw an optical fiber by using a gas seal.
[0002]
[Prior art]
The optical fiber is manufactured by supplying a base material made of a material such as quartz from the upper part of the drawing furnace, heating and melting the front end portion in the drawing furnace, and pulling down from the front end of the base material to reduce the diameter. I have.
In the drawing furnace shown in FIG. 6, an insertion opening for inserting a base material 2 is formed in a gas diffuser 1 installed above a drawing furnace 3, and the gas diffuser 1 is inerted toward the base material 2 from the gas diffuser 1. gas F 1 is ejected (refer to Patent Document 1).
[0003]
The gas sealing is usually performed by blowing an inert gas onto the base material at the upper end of the drawing furnace. The blown out inert gas divides into an upward flow that flows upstream and a downward flow that hits the base material. Of these, the upward flow prevents oxygen from entering through the gap between the base material and the furnace tube. In addition, the downward flow is released from a shutter provided at the lower part of the drawing furnace, thereby preventing oxygen from entering from below. Due to such a gas flow, the inside of the drawing furnace is always maintained at a positive pressure with respect to the atmospheric pressure.
[0004]
[Patent Document 1]
JP-A-62-176938 (page 3, FIG. 1)
[0005]
[Problems to be solved by the invention]
By the way, when the base material is to be drawn, if the space between the upper part of the furnace body and the base material is sealed with gas, a reduced diameter portion caused by a difference in diameter between the base material and the dummy rod suspending the base material is generated. When the gas enters the inside of the furnace, the volume occupied by the gas inside the furnace body changes, and as a result, the gas flow changes, which results in a fluctuation in the diameter of the drawn optical fiber.
[0006]
The present invention has been made in view of the above circumstances, and provides an optical fiber drawing method and a drawing apparatus capable of suppressing a change in volume occupied by gas inside a furnace body and drawing a high-quality optical fiber without a diameter change. It is intended to provide.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the method for drawing an optical fiber of the present invention comprises the steps of: feeding an optical fiber preform from above into a drawing furnace in which a sealing gas is jetted toward an inner peripheral side at an upper entrance; An optical fiber drawing method for drawing an optical fiber reduced in diameter to a predetermined outer diameter by heating and softening in a drawing furnace, wherein at least the reduced diameter portion at the upper end of the optical fiber preform is located above the drawing furnace. After reaching the entrance, above the reduced diameter portion of the optical fiber preform, it was formed to have substantially the same outer diameter as the optical fiber preform, and the end face on the optical fiber preform side was formed in a shape along the reduced diameter portion. A sealing member is provided, and the space between the upper entrance of the drawing furnace and the sealing member is gas-sealed with a sealing gas.
[0008]
According to the optical fiber drawing method of the present invention, even if the drawing of the optical fiber proceeds and the reduced diameter portion which is the shoulder of the optical fiber preform enters the drawing furnace, the diameter of the optical fiber preform is reduced. Since a sealing member having an outer diameter substantially equal to that of the optical fiber preform and having an end face on the optical fiber preform side formed along the reduced diameter portion is disposed above the portion, the gas inside the furnace is The change in volume occupied by the gas is suppressed, thereby preventing the change in the flow of the seal gas such as the inert gas supplied into the furnace, the fluctuation in the diameter of the optical fiber caused by the change in the gas flow is suppressed, and the stable The optical fiber can be drawn with the adjusted diameter, and a high-quality optical fiber can be drawn.
[0009]
In addition, the sealing member may be configured by a plurality of members, and the plurality of members may be movable in accordance with the deformed reduced diameter portion.
Further, the closing member may be suspended from the engaging member disposed on the upper part.
[0010]
Further, the sealing member may be placed on the reduced diameter portion of the optical fiber preform so that the end faces thereof are in contact with each other, and more preferably, the sealing member is slightly spaced from the reduced diameter portion of the optical fiber preform. It may be arranged open.
The gas may flow out from the end face of the sealing member to the reduced diameter portion of the optical fiber preform.
[0011]
Further, the optical fiber drawing apparatus of the present invention has a drawing furnace provided with a gas supply device for ejecting a sealing gas toward an inner peripheral side at an upper entrance, and is fed into the drawing furnace from above and heated. An optical fiber drawing apparatus for drawing an optical fiber reduced in diameter to a predetermined outer diameter by drawing a softened optical fiber preform from a lower end, wherein the diameter of the optical fiber preform is reduced by a shoulder at an upper end of the preform. Above the part, a sealing member formed to have substantially the same outer diameter as the outer diameter of the optical fiber preform, and an end face on the optical fiber preform side formed in a shape along the reduced diameter portion, is formed from the optical fiber preform. Are also suspended from the engaging member disposed above.
[0012]
According to the optical fiber drawing apparatus of the present invention, even if the drawing of the optical fiber proceeds and the reduced diameter portion, which is the shoulder of the optical fiber preform, enters the drawing furnace, the diameter of the optical fiber preform is reduced. Since a sealing member having an outer diameter substantially equal to that of the optical fiber preform and an end face on the optical fiber preform side formed along the reduced diameter portion is disposed in the portion, the gas occupied in the furnace is occupied. A change in volume is suppressed, thereby preventing a change in the flow of a seal gas such as an inert gas supplied into the furnace, and suppressing a change in the diameter of the optical fiber caused by a change in the gas flow, thereby achieving a stable diameter. Thus, an optical fiber can be drawn, and a drawing apparatus capable of drawing a high-quality optical fiber can be provided.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of an optical fiber drawing method and a drawing apparatus according to the present invention will be described in detail with reference to the drawings.
1 and 2 show a drawing furnace constituting an optical fiber drawing apparatus according to an embodiment of the present invention. Although the drawing apparatus is shown in a half-split state in FIG. 1, the drawing apparatus has a shape in which the axis of the optical fiber preform is a symmetric axis.
As shown in the figure, the drawing furnace 11 has a cylindrical furnace tube 13 made of carbon and provided with a heating part 12 on the outer periphery.
The outer periphery of the furnace tube 13 is covered with a heat insulating material 14, and the outer periphery is further covered with a furnace body 15.
[0014]
An upper lid 16 is provided on the upper part of the furnace tube 13. The upper lid 16 is formed with a cylindrical portion 16a having substantially the same inner diameter as the furnace tube 13. The gas outlets 17 are provided at three or more locations on the outer peripheral side at substantially equal intervals in the circumferential direction. From 16b, a sealing gas made of an inert gas such as argon, nitrogen, helium or the like is blown substantially evenly around the inner periphery (see arrow) to perform gas sealing. Substantially the same means a difference of 1 to 5 mm with respect to the diameter. The flow rate of the gas blown for gas sealing is preferably about 10 to 30 l / min.
A cylindrical furnace extension 19 made of a heat insulating material is provided below the furnace tube 13.
[0015]
Then, the optical fiber preform 21 connected to the dummy rod 18 is fed into the drawing furnace 11 from the upper part thereof, and the front end thereof is heated and melted by the heat generating part 12, pulled out downward and reduced in diameter. The optical fiber 21a is used.
[0016]
In the present embodiment, when the optical fiber 21 a is drawn from the optical fiber preform 21 by the drawing furnace 11, the sealing member 31 is placed on the optical fiber preform 21.
The sealing member 31 has a cylindrical outer cylindrical body 31a having an outer diameter substantially the same as that of the optical fiber preform 21 (preferably in the range of about ± 1 mm), and is nested inside the outer cylindrical body 31a. The dummy rod 18 is inserted through the inner peripheral cylinder 31b.
[0017]
The outer cylindrical body 31a and the inner cylindrical body 31b that constitute the sealing member 31 each have a lower end face having a reduced diameter portion 21b formed by a shoulder of the optical fiber preform 21 generated by a difference in diameter from the dummy rod 18. Are formed in a shape substantially along the line. For example, if the reduced diameter portion 21b is tapered and the inclination of the taper is α, the lower end surface of the sealing member is tapered and has an inclination of α. When the sealing member is composed of a plurality of members, each member may be a cylindrical body nested as described above. Each cylinder may further be composed of a plurality of members. When used, each member does not leave a gap.
A disc-shaped engaging member 32 fixed to the dummy bar 18 is provided on the upper portion of the sealing member 31. The outer peripheral cylinder 31a and the inner peripheral cylinder 31b of the sealing member 31 Are suspended by suspension wires 33. The suspension wire 33 is slightly slackened in a state where the closing member 31 is placed on the reduced diameter portion 21b of the optical fiber preform 21.
[0018]
Then, by placing the sealing member 31 having an outer diameter substantially equal to the outer diameter of the optical fiber preform 21 on the upper part of the optical fiber preform 21, the drawing of the optical fiber 21a proceeds, Even if the reduced diameter portion 21b, which is the shoulder portion of the optical fiber preform 21, enters the drawing furnace 11, the change in volume occupied by the gas inside the furnace is suppressed, whereby the gas is supplied from the gas supply device 17 into the furnace. A change in the flow of the sealing gas is prevented, a change in the diameter of the optical fiber 21a caused by a change in the flow of the gas is suppressed, and the optical fiber 21a can be drawn with a stable diameter. 21a can be drawn.
[0019]
Further, as the drawing progresses and the heated and melted portion approaches the reduced diameter portion 21b, the reduced diameter portion 21b, which is the shoulder of the optical fiber preform 21, extends in the axial direction, and the inclination angle of the reduced diameter portion 21b with respect to the radial direction increases. growing.
When the reduced diameter portion 21b is deformed in this way, as shown in FIG. 3, the sealing member 31 moves the outer peripheral cylindrical body 31a and the inner peripheral cylindrical body 31b downward following the deformation of the reduced diameter portion 21b. I do.
Thereby, even if the reduced diameter portion 21b is deformed, the change in the volume occupied by the gas inside the furnace can be reliably suppressed, and the optical fiber 21a can be manufactured with a stable diameter.
[0020]
The engaging member 32 for suspending the closing member 31 may be fixed to the dummy rod 18 as described above, but is not fixed to the dummy rod 18 and is synchronized with the movement of the dummy rod 18 by a separate moving means. It may be made to fall down. In this case, when the reduced diameter portion 21b of the optical fiber preform 21 approaches the drawing furnace 11, the engaging member 32 may be lowered by the moving means, and thereafter, may be lowered in synchronization with the dummy rod 18. .
[0021]
As described above, the sealing member 31 may be placed on the reduced diameter portion 21b such that the end surface thereof is in contact with the reduced diameter portion 21b of the optical fiber preform 21, but the sealing member 31 is disposed with a slight gap. May be.
By the way, if the drawn optical fiber 21a is broken, the optical fiber preform 21 is pulled upward so that the optical fiber preform 21 is not melted during the recovery, and the heating of the drawing furnace 11 is performed. Drawn from the area.
At this time, if the sealing member 31 is arranged with its end face slightly spaced from the reduced diameter portion 21b of the optical fiber preform 21, even if the sealing member 31 is pulled out of the heating area and a temperature change occurs, the There is no possibility that the optical fiber preform 21 will be damaged due to a difference in linear expansion coefficient between the preform 21 and the sealing member 31. Even when the sealing member is placed on the reduced diameter portion of the optical fiber preform, if the sealing member is suspended from the engagement means, the engagement member is raised above the optical fiber preform at the time of disconnection. By pulling up, the sealing member and the optical fiber preform can be separated.
Therefore, it is preferable that the end surface of the sealing member 31 is disposed with a slight gap from the reduced diameter portion 21 b of the optical fiber preform 21.
[0022]
FIG. 4 shows a configuration in which a reflection type optical system sensor 41 is provided in the vicinity of the distal end portions of the outer peripheral cylindrical body 31a and the inner peripheral cylindrical body 31b constituting the closing member 31. The distance between the tip and the optical fiber preform 21 is measured by the sensor 41 in the sealing member 31 including the outer cylindrical body 31a and the inner cylindrical body 31b having the sensor 41, and based on the measurement result, The optical fiber preform 21 is arranged with a slight gap therebetween. When the reduced diameter portion 21b is deformed, the outer cylindrical body 31a and the inner cylindrical body 31b follow a state in which a slight gap is left with the deformation. In addition, a filter 42 that blocks visible light and hardly transmits heat is provided on the end surfaces of the outer cylindrical body 31a and the inner cylindrical body 31b, so that the measurement fluctuation of the sensor 41 by visible light and the influence of heat are suppressed. .
[0023]
An engaging member 32 for suspending the outer cylindrical body 31a and the inner cylindrical body 31b separately is provided, and these engaging members 32 are individually raised and lowered to separate the outer cylindrical body 31a and the inner cylindrical body 31b from each other. The material 21 may follow the reduced diameter portion 21b.
[0024]
Further, the sealing member 31 is hollow, and a gas is passed through the inside of the sealing member 31 or a pipe through which the gas is passed is provided to blow the gas onto the glass base material 21 from the lower surface of the sealing member 31 so that the end face of the sealing member 31 In this case, the effect of the gas seal by blowing out the gas from the cylindrical portion 16a to the inner peripheral side by the gas supply device 17 can be further enhanced.
[0025]
The sealing member 31 can reliably prevent breakage and damage due to heat by providing a cooling structure in which a cooling medium such as a liquid or gas flows to cool the inside. In addition, quartz, ceramics, metal, or the like can be used as the sealing member 31. In particular, in the case of metal, it is desirable to cool it by the above-described cooling structure or the like to prevent its melting.
[0026]
Fluctuation in diameter of an optical fiber when an optical fiber is drawn by a drawing device having a sealing member 31 made of a single member and a conventional drawing device not having the sealing member 31 as in the present embodiment. Were compared.
As shown in FIG. 5, in the case of the drawing apparatus not provided with the sealing member 31, the fluctuation of the diameter increases as the fiber distance of the optical fiber to be drawn increases, whereas the closing member 31 is provided. In the case of the drawing apparatus of this embodiment, it has been found that even if the fiber distance becomes long, the fluctuation of the diameter is suppressed, and a stable optical fiber can always be drawn.
[0027]
【The invention's effect】
As described above, according to the method and apparatus for drawing an optical fiber of the present invention, even if the drawing of the optical fiber proceeds and the reduced diameter portion, which is the shoulder of the optical fiber preform, enters the drawing furnace. Since the reduced diameter portion of the optical fiber preform is provided with a sealing member formed to have substantially the same outer diameter as the optical fiber preform and the end face on the optical fiber preform side formed along the reduced diameter portion. Therefore, a change in the volume occupied by the gas inside the furnace is suppressed, whereby a change in the flow of a sealing gas such as an inert gas supplied into the furnace is prevented, and the diameter of the optical fiber caused by the change in the gas flow is reduced. The fluctuation can be suppressed, the optical fiber can be drawn with a stable diameter, and a high-quality optical fiber can be drawn.
[Brief description of the drawings]
FIG. 1 is a perspective view of a drawing furnace for explaining an optical fiber drawing method and a drawing apparatus of the present invention.
FIG. 2 is a sectional view of the drawing furnace showing a structure of a drawing furnace constituting the drawing apparatus.
FIG. 3 is a cross-sectional view of the drawing furnace showing a deformed state of the optical fiber preform in the drawing furnace.
FIG. 4 is a cross-sectional view of the sealing member showing a sealing member having a sensor.
FIG. 5 is a graph showing a comparison result between an optical fiber drawing method of the present invention and a conventional optical fiber drawing method.
FIG. 6 is a schematic structural view of a conventional drawing furnace.
[Explanation of symbols]
11 Drawing furnace 17 Gas supply device 21 Optical fiber preform 21a Optical fiber 21b Reduced diameter portion 31 Sealing member 31a Outer cylindrical body (cylindrical body)
31b Inner circumference cylindrical body (cylindrical body)
32 engagement member

Claims (7)

上部入口にて内周側へ向かってシールガスを噴出する線引き炉内へ光ファイバ母材を上方から送り込みつつ送り込み方向前方側から引き取り前記線引き炉にて加熱軟化させて所定の外径に細径化された光ファイバを線引きする光ファイバの線引き方法であって、
少なくとも前記光ファイバ母材の上端の縮径部が線引き炉の上部入口に到達した以降に、前記光ファイバ母材の前記縮径部の上方に、前記光ファイバ母材と略同一外径に形成されかつ前記光ファイバ母材側の端面が前記縮径部に沿う形状に形成された封鎖部材を配設して前記線引き炉の上部入口と前記封鎖部材との間をシールガスにてガスシールすることを特徴とする光ファイバの線引き方法。
The optical fiber preform is fed from above into the drawing furnace which gushes the sealing gas toward the inner peripheral side at the upper entrance, is drawn from the front side in the feeding direction, is heated and softened in the drawing furnace, and is reduced in diameter to a predetermined outer diameter. An optical fiber drawing method for drawing an optical fiber,
At least after the reduced diameter portion at the upper end of the optical fiber preform reaches the upper entrance of the drawing furnace, the outer diameter of the optical fiber preform is formed to be substantially the same as the optical fiber preform above the reduced diameter portion of the preform. A sealing member whose end face on the optical fiber preform side is formed along the reduced diameter portion is provided, and a gas is sealed between the upper inlet of the drawing furnace and the sealing member with a sealing gas. A method for drawing an optical fiber, comprising:
請求項1記載の光ファイバの線引き方法であって、
前記封鎖部材は、複数の部材から構成され、これら複数の部材が、変形する前記縮径部に追従して移動可能とされていることを特徴とする光ファイバの線引き方法。
The method for drawing an optical fiber according to claim 1,
The method for drawing an optical fiber, wherein the closing member is composed of a plurality of members, and the plurality of members are movable following the reduced diameter portion to be deformed.
請求項1又は請求項2に記載の光ファイバの線引き方法であって、
前記封鎖部材を、その上部に配設した係合部材から懸垂したことを特徴とする光ファイバの線引き方法。
A method for drawing an optical fiber according to claim 1 or claim 2,
The method for drawing an optical fiber, wherein the closing member is suspended from an engaging member disposed on an upper portion thereof.
請求項1から3のいずれか1項に記載の光ファイバの線引き方法であって、
前記封鎖部材を前記光ファイバ母材の前記縮径部に載置して端面を接触させておくことを特徴とする光ファイバの線引き方法。
A method for drawing an optical fiber according to any one of claims 1 to 3,
An optical fiber drawing method, wherein the sealing member is placed on the reduced diameter portion of the optical fiber preform and the end faces thereof are kept in contact.
請求項1から3のいずれか1項に記載の光ファイバの線引き方法であって、
前記封鎖部材を前記光ファイバ母材の前記縮径部に対して僅かに隙間をあけて配設することを特徴とする光ファイバの線引き方法。
A method for drawing an optical fiber according to any one of claims 1 to 3,
A method for drawing an optical fiber, comprising: disposing the sealing member with a slight gap from the reduced diameter portion of the optical fiber preform.
請求項5記載の光ファイバの線引き方法であって、
前記封鎖部材の端面から、前記光ファイバ母材の前記縮径部にガスを流出させることを特徴とする光ファイバの線引き方法。
A method for drawing an optical fiber according to claim 5,
A method for drawing an optical fiber, comprising: flowing gas from the end face of the sealing member to the reduced diameter portion of the optical fiber preform.
上部入口にて内周側へ向かってシールガスを噴出するガス供給器が設けられた線引き炉を有し、該線引き炉内に上方から送り込まれて加熱軟化された光ファイバ母材を下端から引き取ることにより所定の外径に細径化された光ファイバを線引きする光ファイバの線引き装置であって、
前記光ファイバ母材の上端の肩部からなる縮径部の上方に、前記光ファイバ母材の外径と略同一外径に形成され、かつ、前記光ファイバ母材側の端面が前記縮径部に沿う形状に形成された封鎖部材が、前記光ファイバ母材よりも上方に配置された係合部材から懸垂されて配設されていることを特徴とする光ファイバの線引き装置。
It has a drawing furnace provided with a gas supply device for injecting a sealing gas toward the inner peripheral side at the upper entrance, and draws the heated and softened optical fiber preform from the lower end into the drawing furnace from above. An optical fiber drawing apparatus for drawing an optical fiber reduced in diameter to a predetermined outer diameter,
Above the reduced diameter portion formed by the shoulder at the upper end of the optical fiber preform, the outer diameter of the optical fiber preform is formed to be substantially the same as the outer diameter of the optical fiber preform, and the end face on the optical fiber preform side has the reduced diameter. An optical fiber drawing device, wherein a sealing member formed in a shape along the portion is suspended from an engaging member disposed above the optical fiber preform.
JP2002331015A 2002-11-14 2002-11-14 Method and apparatus for drawing optical fiber Pending JP2004161563A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002331015A JP2004161563A (en) 2002-11-14 2002-11-14 Method and apparatus for drawing optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002331015A JP2004161563A (en) 2002-11-14 2002-11-14 Method and apparatus for drawing optical fiber

Publications (1)

Publication Number Publication Date
JP2004161563A true JP2004161563A (en) 2004-06-10

Family

ID=32808527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002331015A Pending JP2004161563A (en) 2002-11-14 2002-11-14 Method and apparatus for drawing optical fiber

Country Status (1)

Country Link
JP (1) JP2004161563A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2022766A2 (en) 2007-08-10 2009-02-11 Shin-Etsu Chemical Company, Ltd. An apparatus for fabricating an optical fiber and a method for sealing a drawing furnace
WO2012033158A1 (en) * 2010-09-10 2012-03-15 住友電気工業株式会社 Seal structure for optical fiber drawing furnace
JP2015001741A (en) * 2013-06-14 2015-01-05 住友電気工業株式会社 Multi-mode optical fiber
US10611670B2 (en) 2016-09-14 2020-04-07 Rosendahl Nextrom Gmbh Sealing arrangement of a drawing furnace

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2022766A2 (en) 2007-08-10 2009-02-11 Shin-Etsu Chemical Company, Ltd. An apparatus for fabricating an optical fiber and a method for sealing a drawing furnace
EP2022766A3 (en) * 2007-08-10 2011-03-23 Shin-Etsu Chemical Company, Ltd. An apparatus for fabricating an optical fiber and a method for sealing a drawing furnace
US8322165B2 (en) 2007-08-10 2012-12-04 Shin-Etsu Chemical Co., Ltd. Apparatus for fabricating an optical fiber
WO2012033158A1 (en) * 2010-09-10 2012-03-15 住友電気工業株式会社 Seal structure for optical fiber drawing furnace
JP2015001741A (en) * 2013-06-14 2015-01-05 住友電気工業株式会社 Multi-mode optical fiber
US10611670B2 (en) 2016-09-14 2020-04-07 Rosendahl Nextrom Gmbh Sealing arrangement of a drawing furnace

Similar Documents

Publication Publication Date Title
CA2370494C (en) Method and induction furnace for drawing large diameter preforms to optical fibres
KR101860620B1 (en) Optical fiber drawing method and optical fiber drawing device
US20070245773A1 (en) Elongation Method for Producing an Optical Component of Quartz Glass and Preliminary Product Suited for Performing the Method
JP4809348B2 (en) Method for producing optical components made of quartz glass
JP5556117B2 (en) Optical fiber drawing method and drawing apparatus
KR970015503A (en) How to connect optical fiber drawing device and optical fiber base material and auxiliary quartz glass rod
US8661857B2 (en) Method of manufacturing optical fiber preform
JP2004161563A (en) Method and apparatus for drawing optical fiber
US20020178762A1 (en) Methods and apparatus for forming and controlling the diameter of drawn optical glass fiber
JP6513147B2 (en) Manufacturing method and cap
JP2016028989A (en) Manufacturing method and manufacturing apparatus for optical fibers
JP3189968B2 (en) Optical fiber drawing method and optical fiber drawing furnace
JP4404203B2 (en) Optical fiber manufacturing method
JP4459531B2 (en) Equipment for manufacturing glass rods
JP6421569B2 (en) Optical fiber manufacturing method and optical fiber manufacturing apparatus
US7458234B2 (en) Elongating method of optical fiber base material
JP2009526732A (en) A heater having a plurality of high temperature zones, a melting furnace for drawing an optical fiber from a preform of an optical fiber having the heater, and a method of drawing an optical fiber using the melting furnace
JP4398404B2 (en) Heat treatment method for optical fiber preform
JP2022116706A (en) Glass base material stretching method
JP4228570B2 (en) Optical fiber drawing furnace
JP2004142988A (en) Method and apparatus for heating glass body
JP4728605B2 (en) Optical fiber preform and manufacturing method thereof
JPH10115721A (en) Drawing device for plastic optical fiber
JP2004210621A (en) Method for drawing optical fiber and device for drawing optical fiber
JPH0288441A (en) Production device for high purity quartz pipe