JP4728605B2 - Optical fiber preform and manufacturing method thereof - Google Patents

Optical fiber preform and manufacturing method thereof Download PDF

Info

Publication number
JP4728605B2
JP4728605B2 JP2004205777A JP2004205777A JP4728605B2 JP 4728605 B2 JP4728605 B2 JP 4728605B2 JP 2004205777 A JP2004205777 A JP 2004205777A JP 2004205777 A JP2004205777 A JP 2004205777A JP 4728605 B2 JP4728605 B2 JP 4728605B2
Authority
JP
Japan
Prior art keywords
tip
quartz tube
optical fiber
fusion
core rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004205777A
Other languages
Japanese (ja)
Other versions
JP2006027924A (en
Inventor
潔 有馬
正秀 伊東
正英 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2004205777A priority Critical patent/JP4728605B2/en
Publication of JP2006027924A publication Critical patent/JP2006027924A/en
Application granted granted Critical
Publication of JP4728605B2 publication Critical patent/JP4728605B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Manufacture, Treatment Of Glass Fibers (AREA)

Description

本発明は、光ファイバ用母材、その製造方法及び装置に関し、更に詳しくは、線引工程に先立って、クラッドとなる石英管と光ファイバ用コアロッドとを先端部で融着して形成する先端融着部を有する光ファイバ用母材、その製造方法及び装置に関する。   The present invention relates to an optical fiber preform, a manufacturing method and an apparatus thereof, and more particularly, a tip formed by fusing a quartz tube serving as a clad and an optical fiber core rod at the tip prior to the drawing step. The present invention relates to an optical fiber preform having a fused portion, a manufacturing method thereof, and an apparatus thereof.

近年、光ファイバが大量に利用されるようになるに従い、その量産化及び低コスト化が進んできた。量産化及び低コスト化のためには、大型の光ファイバ用母材を作製し、それを線引することが最も簡便な方法である。大型の光ファイバ用母材を製造する方法の一つとして、いわゆるロッドインチューブ法による光ファイバ用母材の製造方法が提案されている。ロッドインチューブ法とは、光ファイバ用母材の体積の大部分を占めるクラッド部用の石英管を作製し、この石英管の内側中空(以下、石英管内部という)にVAD(Vapor-phase Axial Deposition)法やOVD(Outside Vapor Deposition)法等で作製したコアを含む光ファイバ用コアロッド(以降、コアロッドと呼ぶ。)を挿入し、外部から加熱しこれらを融着一体化して光ファイバ用ガラス母材とする方法である。   In recent years, as optical fibers have been used in large quantities, their mass production and cost reduction have progressed. For mass production and cost reduction, the simplest method is to produce a large optical fiber preform and draw it. As one method for producing a large optical fiber preform, a so-called rod-in-tube method for producing an optical fiber preform has been proposed. In the rod-in-tube method, a quartz tube for the cladding part that occupies most of the volume of the optical fiber preform is fabricated, and VAD (Vapor-phase Axial) is placed inside the quartz tube (hereinafter referred to as the inside of the quartz tube). Insert an optical fiber core rod (hereinafter referred to as a core rod) including a core manufactured by Deposition method or OVD (Outside Vapor Deposition) method, and heat from the outside to fuse and integrate them to make a glass mother for optical fiber. It is a method to make a material.

しかし、近年さらにクラッド用石英管の大型化が進み、ロッドインチューブ法を用いた場合、融着一体化の際に発生する母材のクラックや、融着一体化設備の大型化に伴うコストの上昇が問題になってきている。このため特許文献1で提案されているように、線引時に石英管とコアロッドとを融着一体化する方法が注目を集めている。この方法では、線引時に石英管とコアロッドとの間の隙間を減圧し融着するので、融着一体化のための大型設備が不要であり、また融着一体化時の温度が高いので、石英管の粘度が十分に低くクラックが発生しにくい利点がある。   However, in recent years, the size of the quartz tube for cladding has further increased, and when the rod-in-tube method is used, cracks in the base material that occur during fusion integration and the costs associated with the increase in the size of the fusion integration equipment The rise is becoming a problem. For this reason, as proposed in Patent Document 1, a method of fusing and integrating a quartz tube and a core rod during drawing is drawing attention. In this method, since the gap between the quartz tube and the core rod is reduced and fused at the time of drawing, a large facility for fusion integration is unnecessary, and the temperature at the time of fusion integration is high. There is an advantage that the viscosity of the quartz tube is sufficiently low and cracks are hardly generated.

ところで、線引時に融着一体化を行う方法では、線引中に石英管とコアロッドとの間の隙間を減圧して融着一体化を行うため、通常は線引される側の石英管端部を予め塞いでおく必要がある。また前記石英管端部は、線引開始から定常状態に移行するまでの時間を短くするために、テーパ形状に成形しておく必要もある。前掲特許文献1では、石英管の先端部とコアロッドの先端部との融着(以下、先端融着という。)を、ダミー部材を介して行うことにより、先端形状を成形することを提案している。
特開昭60−155542号公報
By the way, in the method of performing fusion integration at the time of drawing, the gap between the quartz tube and the core rod is reduced during drawing to perform fusion integration. It is necessary to block the part in advance. Further, the quartz tube end portion needs to be formed into a tapered shape in order to shorten the time from the start of drawing to the transition to the steady state. In the aforementioned Patent Document 1, it is proposed that the tip shape of the quartz tube and the tip portion of the core rod are fused (hereinafter referred to as tip fusion) through a dummy member to form the tip shape. Yes.
JP-A-60-155542

一般的に、線引においては、まず、加熱炉下部の開口から、融解した母材先端が小塊となって落下する(以下、融解落下という。)。次いで、この融解落下に後続して、光ファイバが線引され、加熱炉下部の開口から出てくるため、これを、最初の段階では比較的遅い速度で巻き取り、その後、除々に線速を上げて巻き取る。線速が安定するまでは、光ファイバの特性が安定しないため、線速が安定した時点からの光ファイバを良品とし出荷している。このため、材料の歩留まりを上げるためには、融解落下から線速が安定するまでの時間を短くすることが重要になる。   Generally, in drawing, first, the molten base material tip falls as a small lump from the opening at the bottom of the heating furnace (hereinafter referred to as melting drop). Then, following this melting and dropping, the optical fiber is drawn and emerges from the opening at the bottom of the furnace, so that it is wound up at a relatively slow speed in the first stage, and then gradually drawn down. Raise and wind up. Since the characteristics of the optical fiber are not stable until the line speed is stabilized, the optical fiber from the time when the line speed is stabilized is shipped as a good product. For this reason, in order to increase the yield of the material, it is important to shorten the time from the melting and dropping until the linear velocity is stabilized.

線引時に融着一体化を行う方法では、石英管の断面外径が例えば100mm以上と太い場合には、石英管の熱容量が大きくなるため、加熱開始から融解落下までの時間が60〜90分ほどになり、効率的ではない。また先端融着では、従来はコアロッドの先端部と石英管の先端部とをダミー部材を介して融着する方法も採用されてきたが、石英管の大型化に伴って、融着装置とダミー部材を大型化する必要があり、コスト上昇が問題となっている。   In the method of fusion integration at the time of drawing, when the cross-sectional outer diameter of the quartz tube is as thick as 100 mm or more, for example, the heat capacity of the quartz tube increases, so the time from the start of heating to melting and dropping is 60 to 90 minutes. Not as efficient. In the tip fusion, a method of fusing the tip of the core rod and the tip of the quartz tube via a dummy member has been conventionally employed. However, as the size of the quartz tube is increased, the fusion device and the dummy are joined. It is necessary to increase the size of the member, and an increase in cost is a problem.

更に、先端融着では、(1)コアロッドの表面、及び石英管の内外表面にファイバ断線の原因となりうる不純物が付着することを防止すること、(2)石英管内表面及びコアロッドの表面に水分が付着することを防止すること、(3)加工(先端融着及び先端成形)後の冷却時に発生するクラックを防止すること、なども、安定な光ファイバ製品を得るために重要な課題である。(2)については、先端融着部の加工時のみでなく、加工後においても外気を石英管内部に浸入させないことが重要である。水分があると、加熱中にコアロッドと石英管の界面からOHが拡散し、ファイバの伝送損失が増加する。(3)のクラックは、石英管とコアロッドとの間に生じた温度差により発生する応力が原因である。   Further, in the tip fusion, (1) to prevent impurities that may cause fiber breakage on the surface of the core rod and the inner and outer surfaces of the quartz tube, and (2) moisture on the inner surface of the quartz tube and the surface of the core rod. Preventing adhesion and (3) preventing cracks generated during cooling after processing (tip fusion and tip molding) are also important issues for obtaining a stable optical fiber product. Regarding (2), it is important not to allow outside air to enter the quartz tube not only during the processing of the tip fused portion but also after the processing. If there is moisture, OH diffuses from the interface between the core rod and the quartz tube during heating, increasing the transmission loss of the fiber. The crack (3) is caused by the stress generated by the temperature difference generated between the quartz tube and the core rod.

本発明は、石英管の先端部と、石英管内部に挿入した光ファイバ用コアロッドの先端部とを融着して成る先端融着部を有する光ファイバ用母材を改良し、特に大型の装置を用いなくても、材料歩留まりが高くかつ安定な光ファイバ製品が得られるように改良された光ファイバ用母材を提供することを目的とする。   The present invention improves an optical fiber preform having a tip fused portion formed by fusing a tip portion of a quartz tube and a tip portion of an optical fiber core rod inserted into the quartz tube. An object of the present invention is to provide an optical fiber preform improved so that a stable optical fiber product with a high material yield can be obtained even without using the optical fiber.

上記目的を達成するために、本発明の第1の視点に係る光ファイバ用母材は、石英管の一方の先端部と該石英管の内部に挿入した光ファイバ用コアロッドの該石英管の先端部と同じ側となる先端部とを融着加工して成る先端融着部を有する光ファイバ用母材において、
前記先端融着部がテーパ形状を有し、融着加工前の石英管の平均外径をDとし、前記先端融着部の外径が0.95Dである長手方向位置から0.10Dである長手方向位置までを、融着加工後の先端テーパ部と定義したときに、該先端テーパ部の長さが1.0D〜3.0Dの範囲にあることを特徴とする。
In order to achieve the above object, an optical fiber preform according to a first aspect of the present invention includes a tip of a quartz tube and a tip of the quartz tube of a core rod for an optical fiber inserted into the quartz tube. In the optical fiber base material having the tip fusion part formed by fusing the tip part on the same side as the part,
The tip fusion part has a taper shape, the average outer diameter of the quartz tube before fusion processing is D, and the outer diameter of the tip fusion part is 0.10 D from the longitudinal position where it is 0.95D. When the position up to the longitudinal direction is defined as the tip tapered portion after the fusion processing, the length of the tip tapered portion is in the range of 1.0D to 3.0D.

また、本発明の第2の視点に係る光ファイバ用母材は、石英管の先端部と該石英管の内部に挿入した光ファイバ用コアロッドの先端部とを融着加工して成る先端融着部を有する光ファイバ用母材において、
前記石英管と前記光ファイバ用コアロッドとの間に不活性ガスが封入されていることを特徴とする。
Further, the optical fiber preform according to the second aspect of the present invention is a tip fusion formed by fusing a tip portion of a quartz tube and a tip portion of an optical fiber core rod inserted into the quartz tube. In the optical fiber preform having a portion,
An inert gas is sealed between the quartz tube and the optical fiber core rod.

更に、本発明の光ファイバ用母材の製造方法は、石英管の先端部と該石英管の内部に挿入した光ファイバ用コアロッドの先端部とを、加熱炉内で加熱融着して先端融着部を形成する工程と、
前記先端融着部を加工する工程であって、融着加工前の石英管の平均外径をDとし、前記先端融着部の外径が0.95Dである長手方向位置から0.10Dである長手方向位置までを、融着加工後の先端テーパ部と定義したときに、該先端テーパ部の長さが1.0D〜3.0Dの範囲となるように加工する工程とを有することを特徴とする。
Furthermore, the optical fiber preform manufacturing method of the present invention includes a tip end portion of a quartz tube and a tip end portion of a core rod for an optical fiber inserted into the quartz tube, which are heated and fused in a heating furnace. Forming a landing portion;
A step of processing the tip fusion part, where D is an average outer diameter of the quartz tube before the fusion process, and 0.10D from a longitudinal position where the outer diameter of the tip fusion part is 0.95D. And having a step of processing so that the length of the tip tapered portion is in the range of 1.0D to 3.0D when the tip tapered portion after fusion processing is defined up to a certain longitudinal position. Features.

更に、本発明の光ファイバ用母材の製造装置は、石英管の先端部と該石英管の内部に挿入した光ファイバ用コアロッドの先端部とを、加熱炉内で加熱融着して先端融着部を形成する融着装置と、
前記先端融着部を加工する加工装置であって、融着加工前の石英管の平均外径をDとし、前記先端融着部の径が0.95Dである長手方向位置から0.10Dである長手方向位置までを、融着加工後の先端テーパ部と定義したときに、該先端テーパ部の長さが1.0D〜3.0Dの範囲となるように加工する加工装置を備えることを特徴とする。
Furthermore, the optical fiber preform manufacturing apparatus according to the present invention heats and melts the tip of the quartz tube and the tip of the core rod for the optical fiber inserted into the quartz tube in a heating furnace. A fusing device for forming a landing portion;
A processing apparatus for processing the tip fusion part, wherein an average outer diameter of the quartz tube before the fusion process is D, and a diameter of the tip fusion part is 0.95D from a longitudinal position of 0.10D. Provided with a processing device for processing so that the length of the tip tapered portion is in the range of 1.0D to 3.0D when the tip tapered portion after the fusion processing is defined up to a certain longitudinal position. Features.

本発明の第1の視点に係る光ファイバ用母材によると、先端テーパ部の長さを上記範囲に設定することにより、この光ファイバ用母材から得られる光ファイバのクラッド非円率が小さく抑えられること、融解落下時間が短くなり作業時間が短縮できること、気泡ができる光ファイバの先端部の長さが短くなり、また、線速が安定するまでに要する線速安定時間が短縮でき、材料の歩留まりが向上すること等の効果が得られる。   According to the optical fiber preform according to the first aspect of the present invention, the cladding non-circularity of the optical fiber obtained from the optical fiber preform is reduced by setting the length of the tip tapered portion in the above range. It can be suppressed, melting and dropping time can be shortened and working time can be shortened, the length of the tip of the optical fiber that can generate bubbles can be shortened, and the linear speed stabilization time required until the linear speed can be stabilized can be shortened. The effect of improving the yield is obtained.

また、本発明の第2の視点に係る光ファイバ用母材によると、光ファイバ用母材の保管中における品質劣化が防止でき、特に製品となった光ファイバの先端部における損失が低下する効果がある。   In addition, according to the optical fiber preform according to the second aspect of the present invention, it is possible to prevent quality degradation during storage of the optical fiber preform, and in particular, to reduce the loss at the tip of the optical fiber that is the product. There is.

更に、本発明の光ファイバ用母材の製造方法及び製造装置によると、先端テーパ部の形状を前記形状に加工することにより、上記効果を奏する光ファイバ用母材の製造が可能である。   Furthermore, according to the optical fiber preform manufacturing method and manufacturing apparatus of the present invention, it is possible to manufacture an optical fiber preform that achieves the above effects by processing the shape of the tip tapered portion into the shape.

また、本発明の光ファイバ用母材の製造方法では、前記先端融着部を、1800℃から室温に降温する際の平均温度変化を20℃/分以下とする徐冷工程を有することも好ましい態様である。この場合、光ファイバ用母材のクラックが防止できる。   In the method for manufacturing an optical fiber preform of the present invention, it is also preferable to have a gradual cooling step in which the average temperature change when the temperature of the tip fused portion is lowered from 1800 ° C. to room temperature is 20 ° C./min. It is an aspect. In this case, cracking of the optical fiber preform can be prevented.

また、本発明の光ファイバ用母材の製造方法では、加熱炉の内部に流す不活性ガスを、石英管の端部を挿入している加熱炉の一方の開口部から、加熱炉の他方の開口部に向けて流すことも本発明の好ましい態様である。前記本発明の第2の視点に係る光ファイバ用母材の製造が可能となる。 Further, in the optical fiber preform manufacturing method of the present invention, the inert gas flowing inside the heating furnace is passed from one opening of the heating furnace into which the end of the quartz tube is inserted to the other of the heating furnace. Flowing toward the opening is also a preferred aspect of the present invention. The optical fiber preform according to the second aspect of the present invention can be manufactured.

また、前記先端融着部を形成する工程及び前記先端融着部を加工する工程では、石英管の内部を石英管の外部と同じ圧力に保つことも本発明の好ましい態様である。この場合、加熱中の石英管の不要な変形が抑えられ、得られる光ファイバの外径変動を小さく抑えることができる。   In a preferred embodiment of the present invention, the inside of the quartz tube is kept at the same pressure as the outside of the quartz tube in the step of forming the tip fused portion and the step of processing the tip fused portion. In this case, unnecessary deformation of the quartz tube during heating can be suppressed, and fluctuations in the outer diameter of the resulting optical fiber can be reduced.

本発明の光ファイバ用母材の製造装置は、前記先端融着部を、1800℃から室温に降温する際の平均温度変化を20℃/分以下とする徐冷装置を更に備えることが好ましい。この場合、得られる光ファイバ用母材についてクラックの発生が抑えられる。   Preferably, the optical fiber preform manufacturing apparatus of the present invention further includes a slow cooling device that sets an average temperature change at 20 ° C./min or less when the tip fusion portion is cooled from 1800 ° C. to room temperature. In this case, occurrence of cracks can be suppressed in the optical fiber preform obtained.

また、石英管の端部を挿入している加熱炉の一方の開口部から、加熱炉の他方の開口部に向けて不活性ガスを流すガス導入装置を更に有することも本発明の光ファイバ用母材の製造装置の好ましい態様である。石英管の外表面にダストが付着することを防止できる。   In addition, the optical fiber of the present invention further includes a gas introduction device for flowing an inert gas from one opening of the heating furnace into which the end of the quartz tube is inserted toward the other opening of the heating furnace. This is a preferred embodiment of a base material manufacturing apparatus. It is possible to prevent dust from adhering to the outer surface of the quartz tube.

更に、前記融着装置による融着時と前記加工装置による加工時に、石英管の内部を外部と同じ圧力に保つ圧力保持手段を更に有することも好ましい。石英管の変形の防止が可能となる。   Furthermore, it is preferable to further have a pressure holding means for keeping the inside of the quartz tube at the same pressure as the outside at the time of fusing by the fusing device and at the time of processing by the processing device. The quartz tube can be prevented from being deformed.

以下、本発明の原理を説明する。図3に、先端融着部を有する光ファイバ用母材のテーパ部の長さと、この光ファイバ用母材から、線引と同時に融着一体化を行って得られた光ファイバの特性等との関係を示す。詳しくは、同図には、光ファイバ用母材の先端テーパ部の長さ(L)と光ファイバのクラッド非円率との関係(図(a))、先端テーパ部の長さと線引時の融解落下時間との関係(同図(b))、先端テーパ部の長さと得られた光ファイバ中で気泡を有する部分の長さとの関係(同図(c))、及び、先端テーパ部の長さと線引時の線速安定時間との関係(同図(d))が、それぞれグラフで示されている。ここで、図4に示すように、加工前の石英管31の平均外径をDとして(同図(a))、加工後の光ファイバ用母材(同図(b))の先端テーパ部33を、石英管31の外径が0.95Dである長手方向位置から石英管31の外径が0.10Dである長手方向位置までの母材部分であると定義し、その先端テーパ部33の長さをLとしている。   Hereinafter, the principle of the present invention will be described. FIG. 3 shows the length of the taper portion of the optical fiber preform having the tip fused portion, the characteristics of the optical fiber obtained by performing fusion integration simultaneously with drawing from the optical fiber preform, and the like. The relationship is shown. Specifically, the figure shows the relationship between the length (L) of the tip tapered portion of the optical fiber preform and the cladding non-circularity of the optical fiber (Fig. (A)), the length of the tip tapered portion and the drawing time. The relationship between the melting and dropping time (Fig. (B)), the relationship between the length of the tip tapered portion and the length of the portion having bubbles in the obtained optical fiber (Fig. (C)), and the tip tapered portion The relationship between the length of the wire and the linear velocity stabilization time at the time of drawing ((d) in the figure) is shown by a graph. Here, as shown in FIG. 4, when the average outer diameter of the quartz tube 31 before processing is D (FIG. 4 (a)), the tip end tapered portion of the optical fiber preform (FIG. 4 (b)) is processed. 33 is defined as a base material portion from a longitudinal position where the outer diameter of the quartz tube 31 is 0.95D to a longitudinal position where the outer diameter of the quartz tube 31 is 0.10D, and the tip tapered portion 33 thereof. The length of is assumed to be L.

図3のグラフから、加熱開始から融解落下までの時間を短くするためには、先端テーパ部33を長くすれば良いことが判る(図3(b))。しかし、テーパ部が長過ぎると、線速安定までの時間が伸びること(図3(d))、及び、線速安定後もしばらくの間はファイバ中に気泡が発生すること(図3(c))が判明した。ファイバ中に気泡が発生する原因は、テーパ部が長くなると、コアロッドと石英管とが不完全に融着している箇所が発生し、この部分にガスが残りやすいためである。またテーパ部が短い場合には、前述のように融解落下の時間が延びることの他に、線速安定直後のクラッド非円率が悪化することも判った(図3(a))。なお、図3(a)におけるクラッド非円率の規格上限値は一般的には1%であり、その定義はITU-T G650.1に従うものとする。上記結果から、テーパ部の長さLには適切な長さが存在することが理解できる。   From the graph of FIG. 3, it can be seen that in order to shorten the time from the start of heating to melting and dropping, it is only necessary to lengthen the tip tapered portion 33 (FIG. 3B). However, if the taper portion is too long, the time until the linear velocity is stabilized is extended (FIG. 3D), and bubbles are generated in the fiber for a while after the linear velocity is stabilized (FIG. 3C). ))There was found. The reason why bubbles are generated in the fiber is that when the taper portion becomes long, a portion where the core rod and the quartz tube are fused incompletely occurs, and gas tends to remain in this portion. In addition, when the taper portion is short, it has been found that, in addition to extending the melting and dropping time as described above, the cladding non-circularity immediately after the linear velocity stabilization is deteriorated (FIG. 3A). In addition, the standard upper limit value of the cladding non-circularity in FIG. 3A is generally 1%, and the definition thereof conforms to ITU-T G650.1. From the above results, it can be understood that there is an appropriate length for the length L of the tapered portion.

前記のように先端テーパ部33を定義すると、図3(a)から(d)までのグラフから、適切な先端テーパ部の長さLをL=1.0D〜3.0Dの範囲とすることにより、良好な光ファイバが高い歩留まりで得られる。石英管31とコアロッド32との先端融着加工、及び、その先端テーパ部33の形状加工については、コスト削減のため、ダミー部材なしに石英管31とコアロッド32とを直接融着し、先端形状を先に述べたテーパ形状に成形することが望ましい。   When the tip tapered portion 33 is defined as described above, the appropriate length L of the tip tapered portion is in the range of L = 1.0D to 3.0D from the graphs of FIGS. 3 (a) to 3 (d). Thus, a good optical fiber can be obtained with a high yield. Regarding the tip fusion processing of the quartz tube 31 and the core rod 32 and the shape processing of the tip tapered portion 33, the quartz tube 31 and the core rod 32 are directly fused without a dummy member to reduce the cost, and the tip shape is obtained. Is preferably formed into the tapered shape described above.

上記先端テーパ部の形状を得るために以下の方法を採用した。まず、コアロッドを石英管に挿入した状態で固定し吊り下げる。双方の先端を縦型の加熱炉で加熱し、重力により石英管が伸びて石英管が縮径することにより、コアロッドと石英管との先端融着が行われる。加熱中は、加熱炉の上部から不活性ガス(例えば、Ar)を上方から下方に向けて流し、清浄な不活性ガスで石英管の先端を包むことによって、石英管とコアロッドとの間の隙間、及び、石英管外部にダストが付着するのを防止できる。   The following method was employed to obtain the shape of the tip tapered portion. First, the core rod is fixed and suspended while being inserted into the quartz tube. Both ends are heated in a vertical heating furnace, the quartz tube is extended by gravity, and the diameter of the quartz tube is reduced, whereby the end fusion between the core rod and the quartz tube is performed. During heating, a gap between the quartz tube and the core rod is obtained by flowing an inert gas (for example, Ar) from the top to the bottom of the furnace and wrapping the tip of the quartz tube with clean inert gas. And dust can be prevented from adhering to the outside of the quartz tube.

先端融着の際には、石英管とコアロッドとの間の隙間に、水分含有率が100ppm以下の不活性ガス(例えば、Ar)を流すことで、加熱に起因する水分のコアロッドへの拡散を防ぐことができる。先端融着後、さらに加熱を続けると重力によって加熱部分が伸びる。伸びた不要な部分は、加熱炉の下に設けた切断機によって断続的に数回切断する。先端テーパ部の長さは、切断回数で制御することができ、切断回数を増やすことにより、先端テーパ部を短くすることができる。ただし、切断回数をある程度増やしていくと、先端テーパ部の長さは変化しなくなる。切断回数以外にも、先端テーパ部の長さは、切断時に母材を上方向に、連続的または断続的に引き上げることにより、短くすることができる。また、炉内の温度分布を変化させることによっても、先端テーパ部の長さを変化させることができる。   At the time of tip fusion, an inert gas (for example, Ar) having a moisture content of 100 ppm or less is allowed to flow through the gap between the quartz tube and the core rod, thereby diffusing moisture to the core rod due to heating. Can be prevented. If the heating is further continued after the tip fusion, the heated portion will be extended by gravity. The extended unnecessary part is intermittently cut several times by a cutting machine provided under the heating furnace. The length of the tip tapered portion can be controlled by the number of times of cutting, and the tip tapered portion can be shortened by increasing the number of times of cutting. However, if the number of times of cutting is increased to some extent, the length of the tip tapered portion does not change. In addition to the number of times of cutting, the length of the tip tapered portion can be shortened by pulling the base material upward or continuously or intermittently during cutting. Also, the length of the tip tapered portion can be changed by changing the temperature distribution in the furnace.

先端テーパ部の加工後は、その加工部分の温度を除々に下げることで、石英管とコアロッドとの間に温度差を付けずに温度を下げることができる。また熱源として使っている加熱炉は、長手方向の温度変化が緩やかであり、温度制御が容易である。このため、バーナを使った徐冷とは異なり、比較的容易に徐冷が可能である。   After the tip tapered portion is processed, the temperature of the processed portion is gradually decreased, so that the temperature can be decreased without creating a temperature difference between the quartz tube and the core rod. Also, the heating furnace used as a heat source has a gentle temperature change in the longitudinal direction, and temperature control is easy. For this reason, unlike the slow cooling using a burner, a slow cooling is possible comparatively easily.

石英管とコアロッドとの間にArガスを封入すると、線引する前の光ファイバ用母材の保管期間中における界面の汚染等によるファイバ特性の劣化を防止できる。   When Ar gas is sealed between the quartz tube and the core rod, it is possible to prevent deterioration of fiber characteristics due to contamination of the interface during the storage period of the optical fiber preform before drawing.

図5のグラフは、本実施例に係る光ファイバ用母材を線引して得られた光ファイバにおいて、該光ファイバの線引開始からの長さを該光ファイバ母材の線引開始先端部から長手方向に相当する位置に変換した数値を横軸にとり、1.38μmにおける光ファイバの損失(dB/km)との関係を示している。本発明の実施形態の光ファイバ用母材から得られた光ファイバでは、Arガスの封入によって、母材の先端部に対応する光ファイバの部分からも安定な損失特性が得られている。しかし、Arガスを封入していない従来の光ファイバ用母材から得られた光ファイバでは、母材の先端部に対応する光ファイバの部分で損失増加を示している。このような損失増加を有する光ファイバの先端部分は、予めこれを除いて製品とする必要があり、製品の歩留まり低下の要因となる。   The graph of FIG. 5 shows the length from the drawing start of the optical fiber to the drawing start tip of the optical fiber preform in the optical fiber obtained by drawing the optical fiber preform according to the present embodiment. The numerical value converted from the portion to the position corresponding to the longitudinal direction is taken on the horizontal axis, and the relationship with the loss (dB / km) of the optical fiber at 1.38 μm is shown. In the optical fiber obtained from the optical fiber preform of the embodiment of the present invention, stable loss characteristics are obtained also from the portion of the optical fiber corresponding to the tip of the preform by sealing Ar gas. However, in an optical fiber obtained from a conventional optical fiber preform that does not contain Ar gas, the loss of the optical fiber corresponding to the tip of the preform is increased. The tip portion of the optical fiber having such an increase in loss needs to be made into a product excluding this in advance, which causes a reduction in product yield.

図1(a)及び(b)はそれぞれ、本発明の一実施形態の光ファイバ用母材を製造するにあたり、加工前及び加工中の状態で示す、光ファイバ用母材の製造装置10の断面図である。   1 (a) and 1 (b) are cross-sectional views of an optical fiber preform manufacturing apparatus 10 shown before and during processing when manufacturing an optical fiber preform according to an embodiment of the present invention. FIG.

製造装置の構造は以下の通りである。縦型の加熱炉11は、カーボン抵抗炉であり、加熱炉11の下方には、伸びた光ファイバ用母材の不要部を取り除く切断機12が配設される。なお、図1では省略しているが、加熱炉10の上部には石英管31を吊り下げ、石英管31を加熱炉11に挿入する長さを決める位置決め装置がある。加熱炉11より下側は、加熱炉11への外気の巻き込み防止と、炉内のガスの流れを制御することを目的として、外気と縁を切ってある。また切断機12の下には、加工中の母材の先端部が十分に伸びたことを検知するためのカメラ13があり、カメラ13で先端部を検知すると、切断機12でその先端部をカットする。カットした不要部は、真空ゲートバルブ14によって上部と縁を切ることができるペデスタル15内に落下する。加工後、真空ゲートバルブ14を閉じて、炉内とペデスタル15との間の縁を切り、ペデスタル15を外気に開放し、落下させた不要部を外部に搬出する。搬出後は、ペデスタル15の内部を不活性ガスで置換した後に、真空ゲートバルブ14を開として、次の加工を行う。
実施例1
The structure of the manufacturing apparatus is as follows. The vertical heating furnace 11 is a carbon resistance furnace, and a cutting machine 12 for removing unnecessary portions of the stretched optical fiber preform is disposed below the heating furnace 11. Although not shown in FIG. 1, there is a positioning device that suspends the quartz tube 31 at the upper part of the heating furnace 10 and determines the length for inserting the quartz tube 31 into the heating furnace 11. The lower side of the heating furnace 11 is cut off from the outside air for the purpose of preventing the entrainment of outside air into the heating furnace 11 and controlling the flow of gas in the furnace. Under the cutting machine 12, there is a camera 13 for detecting that the leading end of the base material being processed is sufficiently stretched. When the leading end is detected by the camera 13, the cutting machine 12 removes the leading end. Cut. The cut unnecessary part falls into the pedestal 15 where the upper part and the edge can be cut by the vacuum gate valve 14. After processing, the vacuum gate valve 14 is closed, the edge between the inside of the furnace and the pedestal 15 is cut, the pedestal 15 is opened to the outside air, and the dropped unnecessary part is carried out to the outside. After unloading, the inside of the pedestal 15 is replaced with an inert gas, and then the vacuum gate valve 14 is opened to perform the next processing.
Example 1

実施例1の光ファイバ用母材の製造に際して、まず、図1(a)に示す製造装置10において、石英管31の内部に光ファイバ用コアロッド32を挿入し、これらの先端を加熱炉11内に挿入した。石英管径はφ100〜150mm、コアロッド径はφ32〜48mm、該石英管の内面と挿入した該コアロッドの外面との間隔が0.3mm以下となるように、コアロッドの延伸外径及び石英管のサイズを選定した。コアロッド32の先端には、同図の例では石英ダミーロッド34が溶着されている。コアロッド32の先端に安価な石英ダミーロッド34を溶着すると、先端加工時に廃棄される部分を石英ダミーロッド34とすることができ、高価なコアロッドの廃棄量が減る利点がある。   When manufacturing the optical fiber preform of the first embodiment, first, in the manufacturing apparatus 10 shown in FIG. 1A, the optical fiber core rod 32 is inserted into the quartz tube 31, and these tips are placed in the heating furnace 11. Inserted into. The diameter of the quartz tube is φ100 to 150 mm, the diameter of the core rod is φ32 to 48 mm, and the outer diameter of the core rod and the size of the quartz tube are set so that the distance between the inner surface of the quartz tube and the outer surface of the inserted core rod is 0.3 mm or less. Was selected. A quartz dummy rod 34 is welded to the tip of the core rod 32 in the example of FIG. If an inexpensive quartz dummy rod 34 is welded to the tip of the core rod 32, the portion discarded at the time of tip processing can be used as the quartz dummy rod 34, and there is an advantage that the amount of expensive core rod discarded is reduced.

石英管31の加熱しない側の端部(上端)には、この上端を囲むチャンバ16を設け、チャンバ16内には、水分率が100ppm以下であるArガスをAr供給口17から供給した。また、チャンバ16には、先端融着が終了した後に、石英管31の内圧上昇によって石英管31が変形しないように、Arガスを吹き流すための噴出口18を配設している。Arガスは、徐冷終了後まで流し、その後に噴出口18と供給口17とを閉じて、石英管31の内部にArを封入する。これにより、加工終了後から線引までの間に水分を含んだ外気が、石英管31の内部に侵入することを防ぐ。加熱炉11には、不活性ガス、本実施例ではArガスを、加熱炉11の上部開口付近のAr供給口19より供給した。Arガスは、石英管31に当たった後2つに別れ、一方のArの流れは上方に向かって、外気が加熱炉11内に浸入することを防ぐと共に、加熱炉11内のダストが、石英管の加工部の上部付近に焼き付くことを防ぐ。もう一方のArの流れが下方に向かって流れるように、加熱炉11の下側にポンプ20を設置し、加熱炉11内のガスを加熱炉11外に排出した。   A chamber 16 surrounding this upper end was provided at the end (upper end) on the non-heated side of the quartz tube 31, and Ar gas having a moisture content of 100 ppm or less was supplied into the chamber 16 from the Ar supply port 17. Further, the chamber 16 is provided with a jet port 18 for blowing Ar gas so that the quartz tube 31 is not deformed by the increase in the internal pressure of the quartz tube 31 after the end fusion. Ar gas flows until after the slow cooling is completed, and then the jet port 18 and the supply port 17 are closed, and Ar is sealed inside the quartz tube 31. This prevents outside air containing moisture from entering the inside of the quartz tube 31 from the end of processing to the drawing. An inert gas, Ar gas in this example, was supplied to the heating furnace 11 from an Ar supply port 19 near the upper opening of the heating furnace 11. Ar gas is divided into two parts after hitting the quartz tube 31, and the flow of one Ar is directed upward to prevent the outside air from entering the heating furnace 11, and the dust in the heating furnace 11 becomes quartz. Prevents seizing near the top of the machined part of the tube. A pump 20 was installed on the lower side of the heating furnace 11 so that the other Ar flow would flow downward, and the gas in the heating furnace 11 was discharged out of the heating furnace 11.

加熱炉11の下側は密閉してあるので、ポンプ20を利用してガスを排出することで減圧され、加熱炉11内のガスは下降流になる。また、本実施例では、Arガスの供給口を一箇所しか設けなかったが、Arガスを加熱炉11の上方に流す供給口と、下方に流す供給口とに分けるなど複数の供給口を設けても良い。Arガスの供給により、石英管31の先端を清浄なArガスが包むように流れ、石英管31の外部にダストが付着することを防止できる。   Since the lower side of the heating furnace 11 is sealed, the pressure is reduced by discharging the gas using the pump 20, and the gas in the heating furnace 11 becomes a downward flow. In this embodiment, only one Ar gas supply port is provided. However, a plurality of supply ports such as a supply port for flowing Ar gas upward and a supply port for flowing downward Ar gas are provided. May be. By supplying Ar gas, it is possible to prevent dust from adhering to the outside of the quartz tube 31 by flowing so that the tip of the quartz tube 31 is wrapped with clean Ar gas.

図1(b)は、先端形状の成形時を示している。石英管31が融解すると、その先端が重力に引っ張られて径方向に収縮し、コアロッド32と石英管31の先端が融着する。このとき加熱炉11の温度は1900〜2100℃とした。先端部が伸びると、その先端部をカメラ13が認識し、切断装置12で伸びた先端を切断した。この融解及び切断を繰り返すことにより、先端テーパ部の長さが制御できる。本実施例では、切断回数が4回で先端テーパ部の長さが2.2Dとなった。加工後、徐冷中の石英管31及びコアロッド32の変形を防止するため、加熱炉11の温度をできるだけ速やかに1800℃まで下げた。   FIG.1 (b) has shown the time of shaping | molding of a front-end | tip shape. When the quartz tube 31 melts, its tip is pulled by gravity and contracts in the radial direction, and the core rod 32 and the tip of the quartz tube 31 are fused. At this time, the temperature of the heating furnace 11 was 1900-2100 degreeC. When the tip portion extended, the camera 13 recognized the tip portion, and the tip extended by the cutting device 12 was cut. By repeating this melting and cutting, the length of the tip tapered portion can be controlled. In this example, the number of times of cutting was 4 and the length of the tip tapered portion was 2.2D. After processing, in order to prevent deformation of the quartz tube 31 and the core rod 32 during slow cooling, the temperature of the heating furnace 11 was lowered to 1800 ° C. as quickly as possible.

1800℃の温度域では、石英ガラスはまだ柔らかく、石英管31とコアロッド32に温度差が生じ応力が発生しても、自ら変形できるのでクラックは発生しない。石英管31とコアロッド32との間の温度差を無くすため、1800℃で5分間保持した後に、20℃/分の割合で室温まで下げてから、加熱炉11から取り出した。クラックは発生しなかった。しかし、温度変化を30℃/分で冷却したときには、石英管31にクラックが入ることがあった。また、加工を連続して行う場合には、加熱炉11の温度を下げ過ぎると、次に温度を上げるときに時間がかかるので経済的ではない。これを避けるために、加熱炉11の温度がある一定の温度(例えば1800℃)になった時点で、除々に石英管31を加熱炉11から引き上げても徐冷の効果がある。引上げ速度は、引き上げる際の加熱炉11の温度と炉内の温度分布にもよるが、加工部分の温度変化が30℃/分以下であればクラックは発生しない。   In the temperature range of 1800 ° C., the quartz glass is still soft, and even if a temperature difference occurs between the quartz tube 31 and the core rod 32 and a stress is generated, it can be deformed by itself so that no cracks are generated. In order to eliminate the temperature difference between the quartz tube 31 and the core rod 32, the temperature was maintained at 1800 ° C. for 5 minutes, and then the temperature was lowered to room temperature at a rate of 20 ° C./min. Cracks did not occur. However, when the temperature change was cooled at 30 ° C./min, the quartz tube 31 sometimes cracked. Moreover, when processing is performed continuously, if the temperature of the heating furnace 11 is lowered too much, it takes time to raise the temperature next, which is not economical. In order to avoid this, even if the quartz tube 31 is gradually pulled up from the heating furnace 11 when the temperature of the heating furnace 11 reaches a certain temperature (for example, 1800 ° C.), there is an effect of gradual cooling. The pulling speed depends on the temperature of the heating furnace 11 during pulling and the temperature distribution in the furnace, but cracks do not occur if the temperature change in the processed portion is 30 ° C./min or less.

本実施例に示す方法で製造した光ファイバ用母材を線引した。図3にその光ファイバ用母材から得られた光ファイバの特性を示してある。例えば、先端テーパ部33の長さLが2.2Dのプリフォーム用母材については、線引の際の加熱開始から融解落下までの時間は例えば23分(同図(b))、線速安定までの時間は57分であり(同図(d))、ファイバ中の泡の発生はなかった(同図(c))。比較のため、テーパ部の長さを4.0Dに成形した母材を線引した。加熱開始から融解落下までの時間は20分と短かったが(同図(b))、線速安定までの時間は98分であり(同図(d))、線速安定後、約120kmのファイバには泡が発生した(同図(c))。また、クラッド非円率については、両者とも規格内であり問題なかった(同図(a))。またOHが起因となる波長1.38μmにおける伝送損失においても、両者とも規格内であった(図5)。   The optical fiber preform manufactured by the method shown in this example was drawn. FIG. 3 shows the characteristics of an optical fiber obtained from the optical fiber preform. For example, for a preform base material having a length L of the tip tapered portion 33 of 2.2D, the time from the start of heating to the melting and dropping at the time of drawing is, for example, 23 minutes ((b) in the figure), the linear velocity The time to stabilization was 57 minutes (FIG. (D)), and no bubbles were generated in the fiber (FIG. (C)). For comparison, a base material formed with a tapered portion length of 4.0D was drawn. The time from the start of heating to melting and dropping was as short as 20 minutes ((b) in the figure), but the time to linear velocity stabilization was 98 minutes ((d) in the figure). Bubbles were generated in the fiber ((c) in the figure). Further, the clad non-circularity was within the standard and there was no problem ((a) in the figure). Also, the transmission loss at a wavelength of 1.38 μm caused by OH was within the standard (FIG. 5).

実施例2
先端溶着加工を施す側と反対側を密封すると、先端融着中に石英管31の内圧力が高まり、最悪の場合、石英管31が変形することがある。このため、石英管31内の圧力を一定に保つ必要がある。実施例2では、加熱中及び徐冷中の石英管31内と大気圧の差圧をモニターし、石英管31内からガスを排出することにより、圧力を制御した。図2に実施例2の光ファイバ用母材の加工の際における加熱炉11の上部構成を示す。本実施例では、目標とする圧力は大気圧とした。十分に冷却した後は、ダストの少ない不活性ガス(例えば Arガス)を封入する。
Example 2
If the side opposite to the side to be subjected to the tip welding process is sealed, the internal pressure of the quartz tube 31 increases during the tip fusion, and in the worst case, the quartz tube 31 may be deformed. For this reason, it is necessary to keep the pressure in the quartz tube 31 constant. In Example 2, the pressure difference was controlled by monitoring the differential pressure between the atmospheric pressure and the quartz tube 31 during heating and slow cooling, and discharging the gas from the quartz tube 31. FIG. 2 shows the upper structure of the heating furnace 11 when processing the optical fiber preform of the second embodiment. In this embodiment, the target pressure is atmospheric pressure. After cooling sufficiently, an inert gas (eg, Ar gas) with less dust is sealed.

本実施例では、圧力制御を行うため、実施例1と比較して製造装置の構成が複雑であるが、加熱中及び徐冷中にArガスを使用しないので、Arガスの使用量が少なくて済み、経済的である。   In this example, since the pressure control is performed, the structure of the manufacturing apparatus is complicated compared to Example 1, but since Ar gas is not used during heating and slow cooling, the amount of Ar gas used is small, Economical.

以上、本発明をその好適な実施形態例に基づいて説明したが、本発明の光ファイバ用母材、その製造装置及び方法は、上記実施形態及び実施例の構成にのみ限定されるものではなく、上記実施形態及び実施例の構成から種々の修正及び変更を施したものも、本発明の範囲に含まれる。   As mentioned above, although this invention was demonstrated based on the suitable embodiment example, the optical fiber preform | base_material of this invention, its manufacturing apparatus, and a method are not limited only to the structure of the said embodiment and Example. Also, various modifications and changes made from the configurations of the above-described embodiments and examples are also included in the scope of the present invention.

(a)及び(b)はそれぞれ、実施例1の光ファイバ用母材の先端部加工前及び先端部加工中の状態で示す、製造装置の一部断面側面図。(A) And (b) is the partial cross section side view of a manufacturing apparatus shown in the state before the front-end | tip part processing of the optical fiber preform | base_material of Example 1, respectively, during a front-end | tip part processing, respectively. 実施例2の光ファイバ用母材の加工前の状態で示す、加熱炉上部の断面図。Sectional drawing of the upper part of a heating furnace shown in the state before the process of the optical fiber preform | base_material of Example 2. FIG. (a)〜(d)はそれぞれ、先端テーパ部の長さと、該光ファイバ用母材から線引して得られた光ファイバの特性との関係を示すグラフ。(A)-(d) is a graph which respectively shows the relationship between the length of a front-end | tip taper part, and the characteristic of the optical fiber obtained by drawing from this preform | base_material for optical fibers. (a)及び(b)はそれぞれ、光ファイバ用母材の先端テーパ部の定義を示すために、加工前及び加工後の状態における光ファイバ用母材の先端部を示す断面図。(A) And (b) is sectional drawing which shows the front-end | tip part of the preform | base_material for optical fibers in the state before and after a process, respectively, in order to show the definition of the front-end | tip taper part of the preform | base_material for optical fibers. 本発明の一実施形態の光ファイバ用母材と従来技術の光ファイバ用母材の損失特性の違いを示すグラフ。The graph which shows the difference of the loss characteristic of the preform | base_material for optical fibers of one Embodiment of this invention, and the preform | base_material for optical fibers of a prior art.

符号の説明Explanation of symbols

10:製造装置
11:加熱炉
12:切断器
13:カメラ
14:真空ゲートバルブ
15:ペデスタル
16:チャンバ
17:Ar供給口
18:Ar噴出口
19:Ar供給口
20:ポンプ
31:石英管
32:ロッド
33:先端テーパ部
34:ダミーロッド
10: Manufacturing apparatus 11: Heating furnace 12: Cutting device 13: Camera 14: Vacuum gate valve 15: Pedestal 16: Chamber 17: Ar supply port 18: Ar outlet 19: Ar supply port 20: Pump 31: Quartz tube 32: Rod 33: Tapered end portion 34: Dummy rod

Claims (7)

石英管の先端部と該石英管の内部に挿入した光ファイバ用コアロッドの先端部とを融着加工して成る先端融着部を有する光ファイバ用母材において、
前記石英管の断面外径が100mm以上であり、
前記石英管の内面と前記光ファイバ用コアロッドの外面との間に隙間を有し、
前記先端融着部がテーパ形状を有し、融着加工前の前記石英管の平均外径をDとし、前記先端融着部の外径が0.95Dである長手方向位置から0.10Dである長手方向位置までを、融着加工後の先端テーパ部と定義したときに、該先端テーパ部の長さが1.0D〜3.0Dの範囲にあることを特徴とする光ファイバ用母材。
In the optical fiber preform having a tip fusion portion formed by fusing a tip portion of a quartz tube and a tip portion of an optical fiber core rod inserted into the quartz tube,
The quartz tube has an outer diameter of 100 mm or more,
Having a gap between the inner surface of the quartz tube and the outer surface of the core rod for optical fiber,
The tip fusion part has a taper shape, the average outer diameter of the quartz tube before fusion processing is D, and the outer diameter of the tip fusion part is 0.95D from a longitudinal position of 0.10D. An optical fiber preform characterized in that when a position in a longitudinal direction is defined as a tip tapered portion after fusion processing, the length of the tip tapered portion is in the range of 1.0D to 3.0D. .
前記石英管と前記光ファイバ用コアロッドとの間の前記隙間に不活性ガスが封入されていることを特徴とする請求項1に記載の光ファイバ用母材。   2. The optical fiber preform according to claim 1, wherein an inert gas is sealed in the gap between the quartz tube and the optical fiber core rod. 断面外径が100mm以上である石英管を準備する工程と、
前記石英管の内部に該石英管の内面と隙間を有するように光ファイバ用コアロッドを挿入する工程と、
前記石英管の先端部と該石英管の内部に挿入した光ファイバ用コアロッドの先端部とを、加熱炉内で加熱融着して先端融着部を形成する工程と、
前記先端融着部を加工する工程であって、融着加工前の石英管の平均外径をDとし、前記先端融着部の外径が0.95Dである長手方向位置から0.10Dである長手方向位置までを、融着加工後の先端テーパ部と定義したときに、該先端テーパ部の長さが1.0D〜3.0Dの範囲となるように加工する工程とを有することを特徴とする光ファイバ用母材の製造方法。
Preparing a quartz tube having a cross-sectional outer diameter of 100 mm or more;
Inserting a core rod for an optical fiber so as to have an inner surface with a gap inside the quartz tube of the quartz tube,
A step of forming a tip fused portion by heating and fusing a tip portion of the quartz tube and a tip portion of an optical fiber core rod inserted into the quartz tube in a heating furnace;
A step of processing the tip fusion part, where D is an average outer diameter of the quartz tube before the fusion process, and 0.10D from a longitudinal position where the outer diameter of the tip fusion part is 0.95D. And having a step of processing so that the length of the tip tapered portion is in the range of 1.0D to 3.0D when the tip tapered portion after fusion processing is defined up to a certain longitudinal position. A manufacturing method of a base material for optical fiber, which is characterized.
前記先端融着部を形成する工程における前記加熱炉の温度は1900〜2100℃とすることを特徴とする請求項3に記載の光ファイバ用母材の製造方法。   The method for manufacturing an optical fiber preform according to claim 3, wherein the temperature of the heating furnace in the step of forming the tip fusion part is 1900 to 2100 ° C. 前記加工する工程に後続して、前記先端融着部を1800℃から室温に降温する際の平均温度変化を20℃/分以下とする徐冷工程を更に有することを特徴とする、請求項4に記載の光ファイバ用母材の製造方法。   5. The method according to claim 4, further comprising a gradual cooling step in which an average temperature change when the temperature of the tip fused portion is lowered from 1800 ° C. to room temperature is 20 ° C./min or less after the processing step. The manufacturing method of the preform | base_material for optical fibers as described in any one of. 加熱炉の内部に流す不活性ガスを、石英管の端部を挿入している加熱炉の一方の開口部から、加熱炉の他方の開口部に向けて流すことを特徴とする、請求項3〜5の何れか一に記載の光ファイバ用母材の製造方法。   The inert gas that flows inside the heating furnace flows from one opening of the heating furnace into which the end of the quartz tube is inserted toward the other opening of the heating furnace. The manufacturing method of the preform | base_material for optical fibers as described in any one of -5. 前記先端融着部を形成する工程及び加工する工程では、石英管の内部を石英管の外部と同じ圧力に保つことを特徴とする、請求項3〜6の何れか一に記載の光ファイバ用母材の製造方法。   The optical fiber according to any one of claims 3 to 6, wherein in the step of forming the tip fused portion and the step of processing, the inside of the quartz tube is maintained at the same pressure as the outside of the quartz tube. A manufacturing method of a base material.
JP2004205777A 2004-07-13 2004-07-13 Optical fiber preform and manufacturing method thereof Active JP4728605B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004205777A JP4728605B2 (en) 2004-07-13 2004-07-13 Optical fiber preform and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004205777A JP4728605B2 (en) 2004-07-13 2004-07-13 Optical fiber preform and manufacturing method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010071907A Division JP5276037B2 (en) 2010-03-26 2010-03-26 Optical fiber preform and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2006027924A JP2006027924A (en) 2006-02-02
JP4728605B2 true JP4728605B2 (en) 2011-07-20

Family

ID=35894719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004205777A Active JP4728605B2 (en) 2004-07-13 2004-07-13 Optical fiber preform and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4728605B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11649185B2 (en) 2019-01-15 2023-05-16 Heraeus Quartz North America Llc Automated large outside diameter preform tipping process and resulting glass preforms

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5512808B2 (en) 2010-05-21 2014-06-04 株式会社フジクラ Manufacturing method of optical fiber

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000264662A (en) * 1999-03-12 2000-09-26 Shin Etsu Chem Co Ltd Preform for optical fiber and its production
JP2002080238A (en) * 2000-09-06 2002-03-19 Sumitomo Electric Ind Ltd Base material for optical fiber and method of forming the same
JP2003192369A (en) * 2001-12-21 2003-07-09 Sumitomo Electric Ind Ltd Method for heating base glass material for optical fiber
JP2003327440A (en) * 2002-05-09 2003-11-19 Furukawa Electric Co Ltd:The Method for manufacturing preform for optical fiber
JP2004002140A (en) * 2002-04-11 2004-01-08 Sumitomo Electric Ind Ltd Method and apparatus for manufacturing optical fiber preform or optical fiber intermediate preform
JP2004051455A (en) * 2002-07-23 2004-02-19 Furukawa Electric Co Ltd:The Method of manufacturing optical fiber

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000264662A (en) * 1999-03-12 2000-09-26 Shin Etsu Chem Co Ltd Preform for optical fiber and its production
JP2002080238A (en) * 2000-09-06 2002-03-19 Sumitomo Electric Ind Ltd Base material for optical fiber and method of forming the same
JP2003192369A (en) * 2001-12-21 2003-07-09 Sumitomo Electric Ind Ltd Method for heating base glass material for optical fiber
JP2004002140A (en) * 2002-04-11 2004-01-08 Sumitomo Electric Ind Ltd Method and apparatus for manufacturing optical fiber preform or optical fiber intermediate preform
JP2003327440A (en) * 2002-05-09 2003-11-19 Furukawa Electric Co Ltd:The Method for manufacturing preform for optical fiber
JP2004051455A (en) * 2002-07-23 2004-02-19 Furukawa Electric Co Ltd:The Method of manufacturing optical fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11649185B2 (en) 2019-01-15 2023-05-16 Heraeus Quartz North America Llc Automated large outside diameter preform tipping process and resulting glass preforms

Also Published As

Publication number Publication date
JP2006027924A (en) 2006-02-02

Similar Documents

Publication Publication Date Title
US8015846B2 (en) Elongation method for producing an optical component of quartz glass and preliminary product suited for performing the method
US11834365B2 (en) Optical fiber preform production method, optical fiber preform, and optical fiber production method
JP4809348B2 (en) Method for producing optical components made of quartz glass
EP3180293A1 (en) Quartz glass article and method for forming a quartz glass optical component
JP5603024B2 (en) Optical fiber preform manufacturing method
JP4728605B2 (en) Optical fiber preform and manufacturing method thereof
US20240051865A1 (en) Optical fiber preform production method, optical fiber preform, and optical fiber production method
JP5512808B2 (en) Manufacturing method of optical fiber
JP5276037B2 (en) Optical fiber preform and manufacturing method thereof
JPH0341415B2 (en)
TWI399349B (en) Method of fiber base material and fiber base material
JP7024546B2 (en) Manufacturing method of multi-core optical fiber
JPS60155542A (en) Method for molding fiber for optical communication
JP2022116706A (en) Glass base material stretching method
JP7042229B2 (en) Method of stretching glass base material for optical fiber
US20170275199A1 (en) Optical fiber preform manufacturing method and manufacturing apparatus
JP4568272B2 (en) Optical fiber and preform manufacturing method
JP4496012B2 (en) Manufacturing method of glass preform for optical fiber
JP2585286B2 (en) Manufacturing method of optical fiber and preform for optical fiber
JP3836298B2 (en) Method for manufacturing preform for optical fiber
JP5989943B1 (en) Optical fiber preform and optical fiber manufacturing method
JP4228622B2 (en) Optical fiber preform manufacturing method
JP2004143016A (en) Method for manufacturing optical fiber preform
JPH06329434A (en) Heating furnace for drawing wire of optical fiber
JP2004043199A (en) Process for manufacturing optical fiber preform

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100304

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100326

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20100409

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110307

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110415

R151 Written notification of patent or utility model registration

Ref document number: 4728605

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350