JP4224998B2 - Hyaluronic acid production promoter - Google Patents

Hyaluronic acid production promoter Download PDF

Info

Publication number
JP4224998B2
JP4224998B2 JP2002219096A JP2002219096A JP4224998B2 JP 4224998 B2 JP4224998 B2 JP 4224998B2 JP 2002219096 A JP2002219096 A JP 2002219096A JP 2002219096 A JP2002219096 A JP 2002219096A JP 4224998 B2 JP4224998 B2 JP 4224998B2
Authority
JP
Japan
Prior art keywords
hyaluronic acid
xylo
acidic
acid production
xylooligosaccharide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002219096A
Other languages
Japanese (ja)
Other versions
JP2004059480A (en
Inventor
尚也 安住
昭一 池水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Oji Paper Co Ltd
Oji Holdings Corp
Original Assignee
Oji Holdings Corp
Oji Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oji Holdings Corp, Oji Paper Co Ltd filed Critical Oji Holdings Corp
Priority to JP2002219096A priority Critical patent/JP4224998B2/en
Publication of JP2004059480A publication Critical patent/JP2004059480A/en
Application granted granted Critical
Publication of JP4224998B2 publication Critical patent/JP4224998B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Saccharide Compounds (AREA)
  • Cosmetics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、化粧品、医薬部外品、医薬品及び食品分野に於いて使用される新規なヒアルロン酸産生促進剤に関する。より詳細には、優れた生理活性を有し、しかも安全性の高いヒアルロン酸産生促進剤に関する。
【0002】
【従来の技術】
ヒアルロン酸は、皮膚、靱帯、関節液、目の硝子体等、生体内に広く分布しており、プロテオグリカンと結合したゼリー状の細胞間マトリックスを形成して、細胞や組織の保持機能、及び機械的外力や細菌感染などに対する保護機能を果たしている。また、皮膚や関節に於ける細胞機能の低下によるヒアルロン酸の減少が、皮膚の乾燥、弾力性の減少及びシワ発生等の皮膚老化、あるいは関節の湿潤性悪化による関節痛等の原因の一つとされている。
【0003】
老化した皮膚の改善剤として、ヒアルロン酸やコラーゲンを配合した化粧料が数多く提案されているが、これらは皮膚表面における保湿効果を発揮するだけであり、本質的に皮膚の乾燥、弾力性の減少及びシワ等を改善し得るものではない。また、皮膚細胞賦活剤として各種のビタミン類や生薬類を配合した化粧料も提案されているが、これらも老化した皮膚の改善、治療には至っていない。
【0004】
一方、関節液中に含まれるヒアルロン酸は、関節軟骨の表面を覆い、関節機能の円滑な作動に役立っている。慢性関節リウマチの場合、関節液中のヒアルロン酸濃度が低下し、同時に関節液の粘度も低下する〔Arthritis Rheumatism、vol.10、P357(1967)〕。この疾患においては、ヒアルロン酸ナトリウムの関節注入療法による疼痛抑制等の症状改善が報告されている〔炎症、11巻、P16、(1991)〕。同様に、外傷性関節症、骨関節炎や変形性関節症においてもヒアルロン酸の関節注入療法による改善効果が報告されている〔結合組織と疾患(講談社)、P246、(1980)〕。しかしながら、上記疾患の治療は長期にわたり、医師の処方を必要とする為、日常生活の中で手軽に使用できるものではない。
【0005】
また、熱傷受傷後の治癒過程で、壊死組織の下方から増生してくる肉芽組織の初期から組織全体が肉芽組織に置き換えられるまでの期間では、肉芽中にヒアルロン酸が著しく増加することが知られており〔結合組織と疾患(講談社)、P153、(1980)〕、熱傷の初期の治療薬として、ヒアルロン酸産生促進剤が期待されている。
【0006】
ヒト細胞のヒアルロン酸産生を促進する薬剤として、インシュリン様成長因子−1や上皮細胞成長因子〔Biochemica Biophysica Acta、1014、P305(1989)〕及びインターロイキン−1〔「日本産科婦人科学会」雑誌、41巻、P1943(1989)〕等のサイトカインが知られているが、いずれも化粧品、医薬部外品や医薬品として簡便かつ安心して使用できるものではない。
【0007】
特許第3213189号公報には、酵母エキスを有効成分として含有するヒアルロン酸産生促進剤が、特開2001−114637号公報にはドクダミまたはセイヨウノコギリの花の抽出物を含有するヒアルロン酸産生促進剤が記載され、特開2001−158728号公報にはオウバク、レモン、ユズの抽出物を含有するヒアルロン酸産生促進剤が記載されているが、いずれも抽出物の安定性、効果の安定性は定かではない。
【0008】
なお、酸性キシロオリゴ糖の生理効果に関しては、水耕栽培に於けるスギ挿穂の発根促進効果の記載(セルラーゼ研究会報第16巻2001年)、育毛剤(特願2001−388881)、メラニン生成抑制剤(特願2002−17137)及び抗炎症剤(特願2002−19378)としての提案があるのみで、ヒアルロン酸産生促進剤に関する開示はなされていない。
【0009】
【発明が解決しようとする課題】
本発明に於いては、ヒアルロン酸産生促進効果に優れ、かつ安全性及び安定性が高く、抗シワ剤、関節リウマチや関節炎等の治療薬、熱傷初期の治療薬等として人体に適用可能なヒアルロン酸産生促進剤を提供することを目的とした。
【0010】
【課題を解決するための手段】
前記課題を解決する為、培養ヒアルロン酸産生細胞に於けるヒアルロン酸産生を指標として、ヒアルロン酸産生促進剤のスクリーニングを行った。その結果、ウロン酸残基が付加した酸性キシロオリゴ糖組成物が優れたヒアルロン酸産生促進効果を有することを見出し、安全性及び安定性も優れることより、本発明を完成するに至った。
【0011】
本発明は以下の構成を採用する。即ち、本発明の第1は、「キシロオリゴ糖分子中にウロン酸残基を有する酸性キシロオリゴ糖を有効成分とするヒアルロン酸産生促進剤」である。
【0012】
本発明の第2は、前記第1発明において、該酸性キシロオリゴ糖はキシロースの重合度が異なるオリゴ糖の混合組成物であり、平均重合度が2.0〜3.0であることを特徴とするヒアルロン酸産生促進剤である。
【0013】
本発明の第3は、前記第1または第2の発明において、前記酸性キシロオリゴ糖が、「リグノセルロース材料を酵素的及び/又は物理化学的に処理してキシロオリゴ糖成分とリグニン成分の複合体を得る工程、前記工程で得られた複合体からリグニン様物質を分離するために希酸処理し、酸性キシロオリゴ糖と中性キシロオリゴ糖を含む希酸処理液を得る工程、そして、前記工程により得られた希酸処理液から、酸性キシロオリゴ糖以外の成分を除去するために、限外濾過工程、脱色工程、吸着工程、溶出工程を経て得られたもの」であることを特徴とするヒアルロン酸産生促進剤である。
【0015】
【発明実施の形態】
以下、本発明の構成について詳述する。キシロオリゴ糖とは、キシロースの2量体であるキシロビオース、3量体であるキシロトリオース、あるいは4量体〜20量体程度のキシロースの重合体を言う。本発明で使用する酸性キシロオリゴ糖とは、キシロオリゴ糖1分子中に少なくとも1つ以上のウロン酸残基を有するものを言う。
また、キシロースの重合度が異なるオリゴ糖の混合組成物であっても良い。一般的には、天然物から製造するために、このような組成物として得られることが多く、以下、主として酸性キシロオリゴ糖組成物について説明する。
該組成物は、平均重合度で示す数値は正規分布をとる酸性キシロオリゴ糖のキシロース鎖長の平均値で、2.0〜11.0が好ましく、2.0〜3.0がより好ましい。キシロース鎖長の上限と下限との差は10以下が好ましく、2以下がより好ましい。ウロン酸は天然では、ペクチン、ペクチン酸、アルギン酸、ヒアルロン酸、ヘパリン、コンドロイチン硫酸、デルタマン硫酸等の種々の生理活性を持つ多糖の構成成分として知られている。本発明におけるウロン酸としては特に限定されないが、グルクロン酸もしくは4-O-メチル-グルクロン酸が好ましい。
【0016】
上記のような酸性キシロオリゴ糖組成物を得ることが出来れば、その製法は特に限定されないが、(1)木材からキシランを抽出し、それを酵素的に分解する方法(セルラーゼ研究会発行、セルラーゼ研究会報第16巻、2001年6月14日発行、P17-26)と、(2)リグノセルロース材料を酵素的及び/又は物理化学的に処理してキシロオリゴ糖成分とリグニン成分の複合体を得、次いで該複合体を酸加水分解処理してキシロオリゴ糖混合物を得、得られるキシロオリゴ糖混合物から、1分子中に少なくとも1つ以上のウロン酸残基を側鎖として有するキシロオリゴ糖を分離する方法が挙げられる。
特に、(2)の方法が5〜10量体のように比較的高い重合度のものを大量に安価に製造することが可能である点で好ましく、以下にその概要を示す。
【0017】
酸性オリゴ糖組成物は、化学パルプ由来のリグノセルロース材料を原料とし、加水分解工程、濃縮工程、希酸処理工程、精製工程を経て得ることができる。加水分解工程では、希酸処理、高温高圧の水蒸気(蒸煮・爆砕)処理もしくは、ヘミセルラーゼによってリグノセルロース中のキシランを選択的に加水分解し、キシロオリゴ糖とリグニンからなる高分子量の複合体を中間体として得る。濃縮工程では逆浸透膜等により、キシロオリゴ糖−リグニン様物質複合体が濃縮され、低重合度のオリゴ糖や低分子の夾雑物などを除去することができる。濃縮工程は逆浸透膜を用いることが好ましいが、限外濾過膜、塩析、透析などでも可能である。得られた濃縮液の希酸処理工程により、複合体からリグニン様物質が遊離し、酸性キシロオリゴ糖と中性キシロオリゴ糖を含む希酸処理液を得ることができる。この時、複合体から切り離されたリグニン様物質は酸性下で縮合し沈殿するのでセラミックフィルターや濾紙などを用いたろ過等により除去することができる。希酸処理工程では、酸による加水分解を用いることが好ましいが、リグニン分解酵素などを用いた酵素分解などでも可能である。
【0018】
精製工程は、限外濾過工程、脱色工程、吸着工程からなる。一部のリグニン様物質は可溶性高分子として溶液中に残存するが、限外濾過工程で除去され、着色物質等の夾雑物は活性炭を用いた脱色工程によってそのほとんどが取り除かれる。限外濾過工程は限外濾過膜を用いることが好ましいが、逆浸透膜、塩析、透析などでも可能である。こうして得られた糖液中には酸性キシロオリゴ糖と中性キシロオリゴ糖が溶解している。イオン交換樹脂を用いた吸着工程により、この糖液から酸性キシロオリゴ糖のみを取り出すことができる。糖液をまず強陽イオン交換樹脂にて処理し、糖液中の金属イオンを除去する。ついで強陰イオン交換樹脂を用いて糖液中の硫酸イオンなどを除去する。この工程では、硫酸イオンの除去と同時に弱酸である有機酸の一部と着色成分の除去も同時に行っている。強陰イオン交換樹脂で処理された糖液はもう一度強陽イオン交換樹脂で処理し更に金属イオンを除去する。最後に弱陰イオン交換樹脂で処理し、酸性キシロオリゴ糖を樹脂に吸着させる。
【0019】
樹脂に吸着した酸性オリゴ糖を、低濃度の塩(NaCl、CaCl2、KCl、MgCl2など)によって溶出させることにより、夾雑物を含まない酸性キシロオリゴ糖溶液を得ることができる。この溶液を、例えば、スプレードライや凍結乾燥処理により、白色の酸性キシロオリゴ糖組成物の粉末を得ることができる。
【0020】
化学パルプ由来のリグノセルロースを原料とし、キシロオリゴ糖とリグニンからなる高分子量の複合体を中間体とした酸性キシロオリゴ糖組成物の上記製造法のメリットは、経済性とキシロースの平均重合度の高い酸性キシロオリゴ糖組成物が容易に得られる点にある。平均重合度は、例えば、希酸処理条件を調節するか、再度ヘミセルラーゼで処理することによって変えることが可能である。また、弱陰イオン交換樹脂溶出時に用いる溶出液の塩濃度を変化させることによって、1分子あたりに結合するウロン酸残基の数が異なる酸性キシロオリゴ糖組成物を得ることもできる。さらに、適当なキシラナーゼ、ヘミセルラーゼを作用させることによってウロン酸結合部位が末端に限定された酸性キシロオリゴ糖組成物を得ることも可能である。
【0021】
このようにして得られた酸性キシロオリゴ糖組成物は、エタノール、プロパノール及びイソプロパノール等の低級アルコール、プロピレングリコール、ジプロピレングリコール、1,3-ブチレングリコール及びグリセリン等の多価アルコール、希酸、希アルカリの水溶液等に溶解してヒアルロン酸産生促進剤に含有させる。或いは、アルコール、エステル等を含有する基材成分に直接添加、溶解して含有させることもできる。また、マイクロカプセル化やリポソームに内含させて添加してもよい。ヒアルロン酸産生促進剤に於ける酸性キロオリゴ糖または、酸性キシロオリゴ糖組成物の含有率としては、0.001〜20%(以下全て質量%)の範囲で使用することができるが、0.01〜10%がより好ましい。
【0022】
本発明の酸性キシロオリゴ糖組成物を配合したヒアルロン酸産生促進剤は、ローション、乳剤、クリーム、軟膏等の形態をとることが出来る。また更に、柔軟性化粧水、収れん性化粧品、洗浄用化粧水等の化粧水類、エモリエントクリーム、モイスチュアクリーム、クレンジングクリーム、メイクアップクリーム等のクリーム類、エモリエント乳液、モイスチュア乳液、ナリシング乳液、クレンジング乳液等の乳液類、ゼリー状パック、ピールオフパック、洗い流しパック、粉末パック等のパック類、美容液及び洗顔料といった種々の製剤形態のヒアルロン酸産生促進剤としても配合することが出来る。
【0023】
本発明に於いては、更に、他のヒアルロン酸産生促進成分や、保湿剤、抗炎症剤、紫外線吸収剤等、他の有効成分を配合することも出来、抗シワ用化粧料、皮膚保護用化粧料、肌荒れ改善用化粧料等の薬用化粧料、医薬部外品あるいは医薬品として提供することも出来る。
【0024】
【実施例】
以下、本発明について実施例により詳説する。本発明はこれにより限定されるものではない。まず、各測定法の概要、本発明で有効成分として含有させた酸性キシロオリゴ糖組成物UX2の調製例1を示す。
〈測定法の概要〉
(1) 全糖量の定量:
全糖量は検量線をD−キシロース(和光純薬工業(株)製)を用いて作製し、フェノール硫酸法(還元糖の定量法、学会出版センター発行)にて定量した。
(2) 還元糖量の定量:
還元糖量は検量線をD−キシロース(和光純薬工業(株)製)を用いて作製、ソモジ−ネルソン法(還元糖の定量法、学会出版センター発行)にて定量した。
(3) ウロン酸量の定量:
ウロン酸は検量線をD−グルクロン酸(和光純薬工業(株)製)を用いて作製、カルバゾール硫酸法(還元糖の定量法、学会出版センター発行)にて定量した。
(4) 平均重合度の決定法:
サンプル糖液を50℃に保ち15000rpmにて15分遠心分離し不溶物を除去し上清液の全糖量を還元糖量(共にキシロース換算)で割って平均重合度を求めた。
(5) 酸性キシロオリゴ糖の分析方法:
オリゴ糖鎖の分布はイオンクロマトグラフ(ダイオネクス社製、分析用カラム:Carbo Pac PA−10)を用いて分析した。分離溶媒には100mM NaOH溶液を用い、溶出溶媒には前述の分離溶媒に酢酸ナトリウムを500mMとなるように添加し、溶液比で、分離溶媒:溶出溶媒=10:0〜4:6となるような直線勾配を組み分離した。得られたクロマトグラムより、キシロース鎖長の上限と下限との差を求めた。
(6) オリゴ糖1分子あたりのウロン酸残基数の決定法
サンプル糖液を50℃に保ち15000rpmにて15分遠心分離し不溶物を除去し上清液のウロン酸量(D−グルクロン酸換算)を還元糖量(キシロース換算)で割ってオリゴ糖1分子あたりのウロン酸残基数を求めた。
(7) 酵素力価の定義:
酵素として用いたキシラナーゼの活性測定にはカバキシラン(シグマ社製)を用いた。酵素力価の定義はキシラナーゼがキシランを分解することで得られる還元糖の還元力をDNS法(還元糖の定量法、学会出版センター発行)を用いて測定し、1分間に1マイクロモルのキシロースに相当する還元力を生成させる酵素量を1ユニットとした。
【0025】
〈酸性キシロオリゴ糖組成物の調製例〉
〈調製例1〉
混合広葉樹チップ(国内産広葉樹70%、ユーカリ30%)を原料として、クラフト蒸解及び酸素脱リグニン工程により、酸素脱リグニンパルプスラリー(カッパー価9.6、パルプ粘度25.1cps)を得た。スラリーからパルプを濾別、洗浄した後、パルプ濃度10%、pH8に調製したパルプスラリーを用いて以下のキシラナーゼによる酵素処理を行った。
【0026】
バチルスsp.2113株(独立行政法人産業技術総合研究所特許微生物寄託センター、寄託菌株FERM BP−5264)の生産するキシラナーゼを1単位/パルプgとなるように添加した後、60℃で120分間処理した。その後、ろ過によりパルプ残渣を除去し、酵素処理液1050Lを得た。
【0027】
次に、得られた酵素処理液を濃縮工程、希酸処理工程、精製工程の順に供した。
濃縮工程では、逆浸透膜(日東電工(株)製、RO NTR-7410)を用いて濃縮液(40倍濃縮)を調製した。希酸処理工程では、得られた濃縮液のpHを3.5に調整した後、121℃で60分間加熱処理し、リグニンなどの高分子夾雑物の沈殿を形成させた。さらに、この沈殿をセラミックフィルターろ過で取り除くことにより、希酸処理溶液を得た。
【0028】
精製工程では、限外濾過・脱色工程、吸着工程の順に供した。限外濾過・脱色工程では、希酸処理溶液を限外濾過膜(オスモニクス社製、分画分子量8000)を通過させた後、活性炭(和光純薬(株)製)770gの添加及びセラミックフィルターろ過により脱色処理液を得た。吸着工程では、脱色処理液を強陽イオン交換樹脂(三菱化学(株)製PK218)、強陰イオン交換樹脂(三菱化学(株)製PA408)、強陽イオン交換樹脂(三菱化学(株)製PK218)各100kgを充填したカラムに順次通過させた後、弱陰イオン交換樹脂(三菱化学(株)製WA30)100kgを充填したカラムに供した。この弱陰イオン交換樹脂充填カラムから75mM NaCl溶液によって溶出した溶液をスプレードライ処理することによって、酸性キシロオリゴ糖組成物の粉末(全糖量353g、回収率13.1%)を得た。以下、この酸性キシロオリゴ糖組成物をUX10とする。前述の測定方法により、UX10は平均重合度10.3、キシロース鎖長の上限と下限との差は10、酸性キシロオリゴ糖1分子あたりウロン酸残基を1つ含む糖組成化合物であった。
【0029】
得られたUX10の10%水溶液100mlに、スミチームX(新日本化学工業(株)製のキシラナーゼ)50mgを添加し、60℃、20時間反応後、弱アニオン交換樹脂(WA30)10gを充填したカラムに供した。カラムを水洗した後、75mM NaCl溶液によって溶出した溶液を凍結乾燥することによって、酸性キシロオリゴ糖組成物粉末(全糖量2.1g、回収率21%)を得た。以下、この酸性キシロオリゴ糖組成物をUX2とする。前述の測定方法により、UX2は平均重合度2.3、キシロース鎖長の上限と下限との差は2、酸性キシロオリゴ糖1分子あたりウロン酸残基を1つ含む糖組成化合物であった。
【0030】
次に、得られた酸性キシロオリゴ糖組成物を用いて行ったヒアルロン酸産生促進試験、細胞増殖阻害率測定試験、マウスを用いた安全性試験及び安定性試験の概要と結果を実施例1〜4に示す。また、酸性キシロオリゴ糖組成物を含有するヒアルロン酸産生促進剤(化粧水及び軟膏)の処方と製造法を実施例5及び実施例6に示す。
【0031】
〈実施例1〉
ヒアルロン酸産生促進試験を、正常ヒト皮膚線維芽細胞(クラボウ:NHDF)を用いて実施した。以下にその概要を示す。まず、正常ヒト皮膚線維芽細胞を培地(FBS(大日本製薬(株)製)10%を含むMEMダルベッコ培地(大日本製薬(株)製))5mlを入れたフラスコに播種し、前培養(CO2濃度:5%、37℃、以下培養と略す)した。6日後、常法に従い、トリプシン処理及び遠心分離により細胞を集めた。次に、得られた細胞を、12ウエルマイクロプレートに2×104個/ウエルになるように播種した。4日間培養後、FBSを0.25%含むMEMダルベッコ培地(以下培地と略す)に交換後、組織培養用純水に溶解した酸性キシロオリゴ糖サンプルを培地に添加し、更に4日間培養した。培養後、培地を採取し、ヒアルロン酸の測定を行った。ヒアルロン酸の測定は、市販のヒアルロン酸測定キット(中外製薬(株)製)を用いて行った。また、プレート中の細胞は、常法に従い、トリプシン処理によってプレートから回収し、細胞数を測定した。ヒアルロン酸産生促進作用はヒアルロン酸産生促進率により評価した。下記の計算式によりヒアルロン酸産生促進率を算出した。なお、酸性キシロオリゴ糖サンプル無添加による培養系をコントロールとした。
【0032】
ヒアルロン酸産生促進率(%)=〔(a/b)/(c/d)〕×100
a:酸性キシロオリゴ糖サンプル添加培養におけるヒアルロン酸産生量
b:酸性キシロオリゴ糖サンプル無添加培養におけるヒアルロン酸産生量
c:酸性キシロオリゴ糖サンプル添加培養におけるプレート中の細胞数
d:酸性キシロオリゴ糖サンプル無添加培養におけるプレート中の細胞数
【0033】
酸性キシロオリゴ糖組成物UX2のヒアルロン酸産生促進試験の結果を表1に示す。
【表1】

Figure 0004224998
【0034】
UX2添加群では、コントロール群と比較して、正常ヒト皮膚線維芽細胞が産生するヒアルロン酸量が増加していることが認められた。
【0035】
〈実施例2〉
ヒアルロン酸産生促進試験を、正常ヒト表皮角化細胞(クラボウ:NHEK)を用いて実施した。以下にその概要を示す。まず、正常ヒト表皮角化細胞を培地(増殖添加剤HKGS(クラボウ製)を含むMedium154S培地(クラボウ製)、以下培地と略す)5mlを入れたフラスコに播種し、前培養(CO2濃度:5%、37℃、以下培養と略す)した。6日後、常法に従い、トリプシン処理及び遠心分離により細胞を集めた。次に、得られた細胞を、12ウエルマイクロプレートに2×104個/ウエルになるように播種した。5日間培養後、新鮮培地に交換後、組織培養用純水に溶解した酸性キシロオリゴ糖サンプルを培地に添加し、更に5日間培養した。培養後、培地を採取し、ヒアルロン酸の測定を行った。ヒアルロン酸の測定は、市販のヒアルロン酸測定キット(中外製薬(株)製)を用いて行った。また、プレート中の細胞は、常法に従い、トリプシン処理によってプレートから回収し、細胞数を測定した。ヒアルロン酸産生促進作用の評価は、実施例1と同様に、ヒアルロン酸産生促進率によって行った。
【0036】
酸性キシロオリゴ糖組成物UX2のヒアルロン酸産生促進試験の結果を表2に示す。
【表2】
Figure 0004224998
【0037】
UX2添加群では、コントロール群と比較して、正常ヒト表皮角化細胞が産生するヒアルロン酸量が増加していることが認められた。
【0038】
〈実施例3〉
実施例1及び実施例2に記載の方法で、それぞれ正常ヒト皮膚線維芽細胞および正常ヒト表皮角化細胞を培養し、培養終了後、アラマーブルー(旭テクノグラス(株)製)を用いた常法に従って、吸光度を測定(2波長測定:570nm−600nm)し、下記の計算式により細胞増殖阻害率を算出した。なお、細胞増殖阻害率は細胞毒性に相当する。細胞増殖阻害率がマイナス(−)の場合は、細胞増殖亢進又は細胞賦活活性があることを示す。酸性キシロオリゴ糖サンプル無添加による培養系をコントロールとした。
【0039】
細胞増殖阻害率(%)=100−100×〔(a−b)/(c−b)〕
a:酸性キシロオリゴ糖サンプル添加培養における吸光度
b:ブランク(培地のみ)の吸光度
c:酸性キシロオリゴ糖サンプル無添加培養における吸光度
【0040】
酸性キシロオリゴ糖組成物UX2の細胞増殖阻害率測定試験の結果を表3に示す。
【表3】
Figure 0004224998
【0041】
表3より明らかなように、酸性キシロオリゴ糖組成物UX2は、何れの濃度でも細胞毒性を示さなかった。
【0042】
〈実施例4〉
マウスを用いた安全性試験及び安定性試験は以下のように実施した。酸性キシロオリゴ糖組成物UX2の2%溶液(50%エタノール)100μlをC3Hマウス(雄、6週齢、日本チャールズリバー(株)製)の背皮に約1ヶ月間連日塗布した結果、背皮の炎症等の副作用は観察されなかった。また、1ヶ月後の上記UX2溶液のイオンクロマトグラムに於ける変化は認められなかった。これらのことは、酸性キシロオリゴ糖組成物の高い安全性と安定性を示す。
【0043】
〈実施例5〉
酸性キシロオリゴ糖組成物UX2を用いて、ヒアルロン酸産生促進作用を付与した下記組成の化粧水を常法にて製造した。
処方:(1)1,3−ブチレングリコール、3.0% (2)ソルビトール、2.0% (3)エタノール、10.0% (4)カルボキシビニルポリマー1%水溶液、10.0% (5)UX2、1.0% (6)パラオキシ安息香酸メチル、0.1% (7)香料、0.1% (8)精製水、73.8%
製造法:(6)(7)を(3)に溶解して(8)に加え、(1)(2)(5)を順次添加して混合した後、(4)を加え、混合し、均一化した。
【0044】
〈実施例6〉
酸性キシロオリゴ糖組成物UX2を用いて、ヒアルロン酸産生促進作用を付与した下記組成の軟膏を常法にて製造した。
処方:(1)白色ワセリン、25.0% (2)ステアリルアルコール、15.0% (3)ラウリル硫酸ナトリウム、1.0% (4)パラオキシ安息香酸ブチル、0.1% (5)UX2、1.0% (6)精製水、57.9%
製造法:(1)〜(4)の油相成分を混合し、75℃に加熱して、溶解、均一化する。75℃に加熱した(6)に油相成分を添加して乳化し、冷却後40℃にて(5)を順次添加、混合した後、均一化した。
【0045】
【発明の効果】
本発明で得られる酸性キシロオリゴ糖組成物を含有したヒアルロン酸産生促進剤は、優れた薬理活性を有しており、ヒト皮膚の老化防止(シワの発生予防や弾力保持)、関節炎等の予防及び治療、熱傷の初期の治療に利用することができる。特に本発明のヒアルロン酸産生促進剤を化粧料、医薬部外品及び医薬品に配合することにより、細胞外マトリックスの一つであるヒアルロン酸産生を促進し、皮膚の水分保持能力や弾力性を保持してシワの発生を防ぐ抗シワ剤として有用である。また、工業的に大量に安価に製造することができ、同一の製品が安定して生産でき、保存性が良いという利点がある。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a novel hyaluronic acid production promoter used in the fields of cosmetics, quasi drugs, pharmaceuticals, and foods. More specifically, the present invention relates to a hyaluronic acid production promoter having excellent physiological activity and high safety.
[0002]
[Prior art]
Hyaluronic acid is widely distributed in the body, such as skin, ligament, joint fluid, and vitreous body of eyes, and forms a jelly-like intercellular matrix combined with proteoglycan to maintain cell and tissue functions and machinery It protects against external forces and bacterial infections. In addition, hyaluronic acid decrease due to decreased cell function in skin and joints is one of the causes of skin aging such as skin dryness, decreased elasticity and wrinkle generation, or joint pain due to deterioration of joint wettability, etc. Has been.
[0003]
Many cosmetics containing hyaluronic acid and collagen have been proposed as improving agents for aging skin, but these only have a moisturizing effect on the skin surface, essentially reducing skin dryness and elasticity. And it cannot improve wrinkles. In addition, cosmetics containing various vitamins and herbal medicines as skin cell activators have been proposed, but these have not been improved or treated for aging skin.
[0004]
On the other hand, hyaluronic acid contained in the joint fluid covers the surface of the articular cartilage and is useful for smooth operation of the joint function. In the case of rheumatoid arthritis, the concentration of hyaluronic acid in the joint fluid decreases, and at the same time the viscosity of the joint fluid decreases [Arthritis Rheumatism, vol. 10, P357 (1967)]. In this disease, symptoms such as pain suppression by joint injection therapy with sodium hyaluronate have been reported [Inflammation, Vol. 11, P16, (1991)]. Similarly, the improvement effect by joint injection therapy of hyaluronic acid has also been reported in traumatic arthritis, osteoarthritis and osteoarthritis [connective tissue and disease (Kodansha), P246, (1980)]. However, since the treatment of the above diseases requires a doctor's prescription for a long time, it cannot be used easily in daily life.
[0005]
In the healing process after burn injury, hyaluronic acid is known to increase significantly in the granulation during the period from the beginning of the granulation tissue growing from below the necrotic tissue until the entire tissue is replaced with granulation tissue. [Connective tissue and disease (Kodansha), P153, (1980)], hyaluronic acid production promoters are expected as an early treatment for burns.
[0006]
Insulin-like growth factor-1, epithelial cell growth factor [Biochemica Biophysica Acta, 1014, P305 (1989)] and interleukin-1 [“Japanese Society of Obstetrics and Gynecology” magazine, 41, P1943 (1989)] and the like are known, but none of them can be used simply and safely as cosmetics, quasi drugs or pharmaceuticals.
[0007]
Japanese Patent No. 3213189 discloses a hyaluronic acid production promoter containing yeast extract as an active ingredient, and Japanese Patent Application Laid-Open No. 2001-114636 discloses a hyaluronic acid production promoter containing a flower extract of dokudami or sawtooth. JP-A-2001-158728 describes hyaluronic acid production promoters containing extracts of acorn, lemon and yuzu, but the stability of the extract and the stability of the effects are not clear. Absent.
[0008]
Regarding the physiological effects of acidic xylo-oligosaccharides, description of rooting promotion effect of cedar cuttings in hydroponic culture (Cellulase Research Society Vol. 16, 2001), hair growth agent (Japanese Patent Application No. 2001-388881), melanin production There is only a proposal as an inhibitor (Japanese Patent Application No. 2002-17137) and an anti-inflammatory agent (Japanese Patent Application No. 2002-19378), and no disclosure has been made regarding hyaluronic acid production promoters.
[0009]
[Problems to be solved by the invention]
In the present invention, hyaluronic acid production promoting effect is excellent, safety and stability are high, and it can be applied to the human body as an anti-wrinkle agent, a therapeutic agent for rheumatoid arthritis, arthritis, etc., a therapeutic agent for early burns, etc. The object was to provide an acid production promoter.
[0010]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, hyaluronic acid production promoters were screened using hyaluronic acid production in cultured hyaluronic acid-producing cells as an index. As a result, the present inventors have found that an acidic xylo-oligosaccharide composition to which a uronic acid residue is added has an excellent hyaluronic acid production promoting effect and is excellent in safety and stability, thereby completing the present invention.
[0011]
The present invention employs the following configuration. That is, the first of the present invention is a “hyaluronic acid production promoter comprising an acidic xylo-oligosaccharide having a uronic acid residue in the xylo-oligosaccharide molecule as an active ingredient”.
[0012]
According to a second aspect of the present invention, in the first aspect, the acidic xylo-oligosaccharide is a mixed composition of oligosaccharides having different degrees of xylose polymerization, and the average degree of polymerization is 2.0 to 3.0. Hyaluronic acid production promoter.
[0013]
According to a third aspect of the present invention, in the first or second aspect of the invention, the acidic xylo-oligosaccharide is “a complex of a xylo-oligosaccharide component and a lignin component by enzymatically and / or physicochemically treating a lignocellulose material. the resulting Ru process, the aforementioned dilute acid treatment from the resultant complex to separate the lignin-like substances in the process, obtain a dilute acid treatment liquid containing an acidic xylooligosaccharide and neutral xylooligosaccharide step then, obtained by the process Hyaluronic acid production characterized by being obtained through an ultrafiltration step, a decoloration step, an adsorption step, and an elution step in order to remove components other than acidic xylooligosaccharides from the diluted acid treatment solution obtained It is an accelerator.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the configuration of the present invention will be described in detail. The xylooligosaccharide refers to a xylose polymer that is a dimer of xylose, a xylotriose that is a trimer, or a tetramer to a 20-mer polymer of xylose. The acidic xylo-oligosaccharide used in the present invention means one having at least one uronic acid residue in one molecule of xylo-oligosaccharide.
Moreover, the mixed composition of the oligosaccharide from which the polymerization degree of xylose differs may be sufficient. Generally, it is often obtained as such a composition in order to produce it from a natural product. Hereinafter, an acidic xylo-oligosaccharide composition will be mainly described.
In the composition, the numerical value represented by the average degree of polymerization is an average value of the xylose chain length of the acidic xylooligosaccharide having a normal distribution, preferably 2.0 to 11.0, more preferably 2.0 to 3.0. The difference between the upper limit and the lower limit of the xylose chain length is preferably 10 or less, and more preferably 2 or less. Uronic acid is known in nature as a component of a polysaccharide having various physiological activities such as pectin, pectinic acid, alginic acid, hyaluronic acid, heparin, chondroitin sulfate, and deltaman sulfate. The uronic acid in the present invention is not particularly limited, but glucuronic acid or 4-O-methyl-glucuronic acid is preferable.
[0016]
If the acidic xylo-oligosaccharide composition as described above can be obtained, its production method is not particularly limited. (1) A method of extracting xylan from wood and enzymatically decomposing it (cellulase research group published, Cellulase Research) Newsletter Volume 16, Issued on June 14, 2001, P17-26), (2) Lignocellulose material is treated enzymatically and / or physicochemically to obtain a complex of xylooligosaccharide component and lignin component, Then, the complex is subjected to an acid hydrolysis treatment to obtain a xylooligosaccharide mixture, and a method for separating xylooligosaccharide having at least one uronic acid residue as a side chain in one molecule from the obtained xylooligosaccharide mixture is mentioned. It is done.
In particular, the method (2) is preferable in that a polymer having a relatively high degree of polymerization such as a 5-10 mer can be produced in a large amount at a low cost, and an outline thereof is shown below.
[0017]
The acidic oligosaccharide composition can be obtained through a hydrolysis process, a concentration process, a dilute acid treatment process, and a purification process using a lignocellulosic material derived from chemical pulp as a raw material. In the hydrolysis process, xylan in lignocellulose is selectively hydrolyzed with dilute acid treatment, high-temperature and high-pressure steam (cooking / explosion) treatment, or hemicellulase, and a high molecular weight complex composed of xylooligosaccharide and lignin is intermediated. Get as a body. In the concentration step, the xylooligosaccharide-lignin-like substance complex is concentrated by a reverse osmosis membrane or the like, and oligosaccharides having a low polymerization degree, low-molecular impurities, and the like can be removed. In the concentration step, a reverse osmosis membrane is preferably used, but ultrafiltration membrane, salting out, dialysis and the like are also possible. A lignin-like substance is released from the complex by the diluted acid treatment step of the obtained concentrated liquid, and a diluted acid-treated liquid containing acidic xylo-oligosaccharides and neutral xylo-oligosaccharides can be obtained. At this time, the lignin-like substance separated from the complex condenses and precipitates under acidic conditions, and can be removed by filtration using a ceramic filter or filter paper. In the dilute acid treatment step, acid hydrolysis is preferably used, but enzymatic degradation using lignin degrading enzyme or the like is also possible.
[0018]
The purification process includes an ultrafiltration process, a decolorization process, and an adsorption process. Some lignin-like substances remain in the solution as soluble polymers, but are removed by an ultrafiltration process, and most of impurities such as coloring substances are removed by a decolorization process using activated carbon. In the ultrafiltration step, an ultrafiltration membrane is preferably used, but reverse osmosis membrane, salting out, dialysis and the like are also possible. Acid xylo-oligosaccharides and neutral xylo-oligosaccharides are dissolved in the sugar solution thus obtained. Only an acidic xylo-oligosaccharide can be extracted from this sugar solution by an adsorption process using an ion exchange resin. First, the sugar solution is treated with a strong cation exchange resin to remove metal ions in the sugar solution. Next, sulfate ions and the like in the sugar solution are removed using a strong anion exchange resin. In this step, simultaneously with the removal of sulfate ions, a part of the organic acid, which is a weak acid, and the colored component are simultaneously removed. The sugar solution treated with the strong anion exchange resin is treated again with the strong cation exchange resin to further remove metal ions. Finally, it is treated with a weak anion exchange resin to adsorb acidic xylo-oligosaccharides to the resin.
[0019]
By eluting the acidic oligosaccharide adsorbed on the resin with a low-concentration salt (NaCl, CaCl 2 , KCl, MgCl 2, etc.), an acidic xylooligosaccharide solution free from impurities can be obtained. From this solution, for example, a powder of a white acidic xylo-oligosaccharide composition can be obtained by spray drying or freeze-drying treatment.
[0020]
The merit of the above-mentioned production method of acidic xylooligosaccharide composition using chemical pulp-derived lignocellulose as raw material and high molecular weight complex composed of xylooligosaccharide and lignin as an intermediate is economical and acidic with high average polymerization degree of xylose. The xylo-oligosaccharide composition is easily obtained. The average degree of polymerization can be changed, for example, by adjusting dilute acid treatment conditions or treating with hemicellulase again. In addition, by changing the salt concentration of the eluate used for elution of the weak anion exchange resin, acidic xylo-oligosaccharide compositions having different numbers of uronic acid residues bound per molecule can be obtained. Furthermore, it is also possible to obtain an acidic xylo-oligosaccharide composition in which the uronic acid binding site is limited to the terminal by acting an appropriate xylanase or hemicellulase.
[0021]
The acidic xylo-oligosaccharide composition thus obtained is composed of lower alcohols such as ethanol, propanol and isopropanol, polyhydric alcohols such as propylene glycol, dipropylene glycol, 1,3-butylene glycol and glycerin, dilute acids and dilute alkalis. It is dissolved in an aqueous solution of the above and added to the hyaluronic acid production promoter. Alternatively, it can be directly added to and dissolved in a base material component containing alcohol, ester or the like. Further, it may be added by microencapsulation or liposome. The content of the acidic kilo-oligosaccharide or acidic xylo-oligosaccharide composition in the hyaluronic acid production promoter can be used in the range of 0.001 to 20% (hereinafter all mass%), 0.01 to 10% is more preferable.
[0022]
The hyaluronic acid production promoter formulated with the acidic xylo-oligosaccharide composition of the present invention can take the form of lotion, emulsion, cream, ointment and the like. Furthermore, lotions such as flexible lotions, astringent cosmetics, cleansing lotions, emollient creams, moisture creams, cleansing creams, makeup creams, emollient emulsions, moisturizing emulsions, nourishing emulsions, cleansing emulsions. It can also be blended as hyaluronic acid production accelerators in various preparation forms such as emulsions such as jelly-like packs, peel-off packs, wash-out packs, powder packs, and the like, cosmetic liquids and face wash.
[0023]
In the present invention, other active ingredients such as other hyaluronic acid production-promoting ingredients, moisturizers, anti-inflammatory agents, ultraviolet absorbers and the like can also be added. It can also be provided as cosmetics, medicated cosmetics such as cosmetics for improving rough skin, quasi-drugs or pharmaceuticals.
[0024]
【Example】
Hereinafter, the present invention will be described in detail with reference to examples. The present invention is not limited thereby. First, an outline of each measurement method and Preparation Example 1 of an acidic xylo-oligosaccharide composition UX2 contained as an active ingredient in the present invention are shown.
<Outline of measurement method>
(1) Quantification of total sugar content:
The total sugar amount was prepared using a calibration curve using D-xylose (manufactured by Wako Pure Chemical Industries, Ltd.) and quantified by the phenol sulfate method (quantitative method for reducing sugar, published by the Academic Publishing Center).
(2) Quantification of reducing sugar content:
The amount of reducing sugar was prepared by using D-xylose (manufactured by Wako Pure Chemical Industries, Ltd.) with a calibration curve, and quantified by the Sommoji-Nelson method (quantitative method for reducing sugar, published by Academic Publishing Center).
(3) Quantification of uronic acid content:
Uronic acid was prepared by using D-glucuronic acid (manufactured by Wako Pure Chemical Industries, Ltd.) with a calibration curve, and quantified by the carbazole sulfate method (reducing sugar quantification method, published by Academic Publishing Center).
(4) Determination of average degree of polymerization:
The sample sugar solution was kept at 50 ° C. and centrifuged at 15,000 rpm for 15 minutes to remove insoluble matter, and the total sugar amount in the supernatant was divided by the reducing sugar amount (both converted to xylose) to determine the average degree of polymerization.
(5) Analytical method of acid xylooligosaccharide:
The oligosaccharide chain distribution was analyzed using an ion chromatograph (Dionex, analytical column: Carbo Pac PA-10). A 100 mM NaOH solution is used as a separation solvent, and sodium acetate is added to the above-mentioned separation solvent so as to have a concentration of 500 mM as an elution solvent, so that the separation solvent: elution solvent = 10: 0 to 4: 6 in a solution ratio. A simple linear gradient was combined and separated. From the obtained chromatogram, the difference between the upper limit and the lower limit of the xylose chain length was determined.
(6) Determination of the number of uronic acid residues per molecule of oligosaccharide Maintaining the sample sugar solution at 50 ° C. and centrifuging at 15000 rpm for 15 minutes to remove insoluble matters, and the amount of uronic acid in the supernatant (D-glucuronic acid) (Converted) was divided by the amount of reducing sugar (converted to xylose) to determine the number of uronic acid residues per oligosaccharide molecule.
(7) Definition of enzyme titer:
Kabikilan (manufactured by Sigma) was used to measure the activity of the xylanase used as the enzyme. The enzyme titer is defined by measuring the reducing power of reducing sugar obtained by xylanase degrading xylan using the DNS method (quantitative method for reducing sugar, published by Academic Publishing Center), and 1 micromole of xylose per minute. The amount of enzyme that generates a reducing power corresponding to 1 was defined as 1 unit.
[0025]
<Preparation Example of Acidic Xylooligosaccharide Composition>
<Preparation Example 1>
Oxygen delignified pulp slurry (kappa number 9.6, pulp viscosity 25.1 cps) was obtained from mixed hardwood chips (domestic hardwood 70%, eucalyptus 30%) as raw materials by kraft cooking and oxygen delignification processes. After the pulp was filtered and washed from the slurry, the following enzyme treatment with xylanase was performed using a pulp slurry adjusted to a pulp concentration of 10% and pH 8.
[0026]
Bacillus sp. A xylanase produced by 2113 strain (Independent Administrative Institution National Institute of Advanced Industrial Science and Technology, Patent Microorganism Deposit Center, Deposited Strain FERM BP-5264) was added to 1 unit / pulp g, and then treated at 60 ° C. for 120 minutes. Thereafter, the pulp residue was removed by filtration to obtain 1050 L of an enzyme treatment liquid.
[0027]
Next, the obtained enzyme treatment solution was subjected to a concentration step, a dilute acid treatment step, and a purification step in this order.
In the concentration step, a concentrated solution (40-fold concentrated) was prepared using a reverse osmosis membrane (RO NTR-7410, manufactured by Nitto Denko Corporation). In the dilute acid treatment step, the pH of the obtained concentrated solution was adjusted to 3.5 and then heat-treated at 121 ° C. for 60 minutes to form precipitates of polymer contaminants such as lignin. Further, this precipitate was removed by ceramic filter filtration to obtain a diluted acid treatment solution.
[0028]
In the purification process, the ultrafiltration / decolorization process and the adsorption process were performed in this order. In the ultrafiltration / decolorization step, after passing the dilute acid treatment solution through an ultrafiltration membrane (Osmonics, molecular weight cut off 8000), addition of 770 g of activated carbon (manufactured by Wako Pure Chemical Industries, Ltd.) and ceramic filter filtration To obtain a decolorization treatment solution. In the adsorption process, the decolorization treatment liquid is a strong cation exchange resin (PK218 manufactured by Mitsubishi Chemical Corporation), a strong anion exchange resin (PA408 manufactured by Mitsubishi Chemical Corporation), and a strong cation exchange resin (manufactured by Mitsubishi Chemical Corporation). PK218) Each was sequentially passed through a column packed with 100 kg, and then applied to a column packed with 100 kg of a weak anion exchange resin (WA30 manufactured by Mitsubishi Chemical Corporation). The solution eluted from the weak anion exchange resin-packed column with a 75 mM NaCl solution was spray-dried to obtain an acidic xylooligosaccharide composition powder (total sugar amount 353 g, recovery rate 13.1%). Hereinafter, this acidic xylo-oligosaccharide composition is referred to as UX10. According to the measurement method described above, UX10 was a sugar composition compound having an average degree of polymerization of 10.3, a difference between the upper limit and the lower limit of the xylose chain length of 10, and one uronic acid residue per molecule of acidic xylooligosaccharide.
[0029]
Column obtained by adding 50 mg of Sumiteam X (manufactured by Shin Nippon Chemical Industry Co., Ltd.) to 100 ml of the 10% aqueous solution of UX10, reacting at 60 ° C. for 20 hours, and then filling 10 g of weak anion exchange resin (WA30) It was used for. After the column was washed with water, the solution eluted with 75 mM NaCl solution was freeze-dried to obtain acidic xylo-oligosaccharide composition powder (total sugar amount 2.1 g, recovery rate 21%). Hereinafter, this acidic xylo-oligosaccharide composition is referred to as UX2. According to the measurement method described above, UX2 was a sugar composition compound having an average degree of polymerization of 2.3, a difference between the upper limit and the lower limit of the xylose chain length of 2, and one uronic acid residue per molecule of acidic xylooligosaccharide.
[0030]
Next, the outlines and results of hyaluronic acid production promotion test, cell growth inhibition rate measurement test, safety test and stability test using mice, which were carried out using the obtained acidic xylooligosaccharide composition, were shown in Examples 1-4. Shown in Moreover, Example 5 and Example 6 show the formulation and manufacturing method of hyaluronic acid production promoters (skin lotion and ointment) containing an acidic xylo-oligosaccharide composition.
[0031]
<Example 1>
The hyaluronic acid production promotion test was performed using normal human skin fibroblasts (Kurabo: NHDF). The outline is shown below. First, normal human skin fibroblasts were seeded in a flask containing 5 ml of a medium (MEM Dulbecco medium (Dainippon Pharmaceutical Co., Ltd.) containing 10% FBS (Dainippon Pharmaceutical Co., Ltd.)) and precultured ( CO 2 concentration: 5%, 37 ° C., hereinafter abbreviated as culture). After 6 days, cells were collected by trypsinization and centrifugation according to a conventional method. Next, the obtained cells were seeded on a 12-well microplate at 2 × 10 4 cells / well. After culturing for 4 days, the medium was replaced with a MEM Dulbecco medium (hereinafter abbreviated as “medium”) containing 0.25% of FBS, and then an acidic xylooligosaccharide sample dissolved in pure water for tissue culture was added to the medium and further cultured for 4 days. After the culture, the medium was collected and hyaluronic acid was measured. The hyaluronic acid was measured using a commercially available hyaluronic acid measurement kit (manufactured by Chugai Pharmaceutical Co., Ltd.). The cells in the plate were collected from the plate by trypsin treatment according to a conventional method, and the number of cells was measured. The hyaluronic acid production promoting action was evaluated by the hyaluronic acid production promoting rate. The hyaluronic acid production promotion rate was calculated by the following formula. A culture system without addition of an acidic xylooligosaccharide sample was used as a control.
[0032]
Hyaluronic acid production promotion rate (%) = [(a / b) / (c / d)] × 100
a: Hyaluronic acid production amount in culture with addition of acid xylooligosaccharide sample b: Hyaluronic acid production amount in culture without addition of acid xylooligosaccharide sample c: Number of cells in plate in culture with addition of acid xylooligosaccharide sample d: Culture without addition of acid xylooligosaccharide sample Number of cells in the plate at
Table 1 shows the results of the hyaluronic acid production promotion test of the acidic xylo-oligosaccharide composition UX2.
[Table 1]
Figure 0004224998
[0034]
In the UX2 addition group, it was observed that the amount of hyaluronic acid produced by normal human skin fibroblasts was increased as compared to the control group.
[0035]
<Example 2>
The hyaluronic acid production promotion test was performed using normal human epidermal keratinocytes (Kurabo: NHEK). The outline is shown below. First, normal human epidermal keratinocytes are seeded in a flask containing 5 ml of medium (Medium 154S medium (Kurabo) containing growth additive HKGS (Kurabo), hereinafter abbreviated as medium)) and precultured (CO 2 concentration: 5). %, 37 ° C., hereinafter abbreviated as culture). After 6 days, cells were collected by trypsinization and centrifugation according to a conventional method. Next, the obtained cells were seeded on a 12-well microplate at 2 × 10 4 cells / well. After culturing for 5 days, the medium was replaced with a fresh medium, an acid xylooligosaccharide sample dissolved in pure water for tissue culture was added to the medium, and further cultured for 5 days. After the culture, the medium was collected and hyaluronic acid was measured. The hyaluronic acid was measured using a commercially available hyaluronic acid measurement kit (manufactured by Chugai Pharmaceutical Co., Ltd.). The cells in the plate were collected from the plate by trypsin treatment according to a conventional method, and the number of cells was measured. The hyaluronic acid production promoting action was evaluated by the hyaluronic acid production promoting rate in the same manner as in Example 1.
[0036]
Table 2 shows the results of the hyaluronic acid production promotion test of the acidic xylo-oligosaccharide composition UX2.
[Table 2]
Figure 0004224998
[0037]
In the UX2 addition group, it was observed that the amount of hyaluronic acid produced by normal human epidermal keratinocytes was increased compared to the control group.
[0038]
<Example 3>
Normal human dermal fibroblasts and normal human epidermal keratinocytes were cultured by the method described in Example 1 and Example 2, respectively, and after completion of the culture, Alamar Blue (manufactured by Asahi Techno Glass Co., Ltd.) was used. According to a conventional method, the absorbance was measured (2 wavelength measurement: 570 nm to 600 nm), and the cell growth inhibition rate was calculated by the following formula. The cell growth inhibition rate corresponds to cytotoxicity. When the cell growth inhibition rate is negative (−), it indicates that there is cell growth enhancement or cell activation activity. A culture system without addition of an acidic xylooligosaccharide sample was used as a control.
[0039]
Cell growth inhibition rate (%) = 100-100 × [(ab) / (cb)]
a: Absorbance in culture with addition of acid xylooligosaccharide sample b: Absorbance of blank (medium only) c: Absorbance in culture without addition of acid xylooligosaccharide sample
Table 3 shows the results of the cell growth inhibition rate measurement test of the acidic xylo-oligosaccharide composition UX2.
[Table 3]
Figure 0004224998
[0041]
As is apparent from Table 3, the acidic xylo-oligosaccharide composition UX2 did not show cytotoxicity at any concentration.
[0042]
<Example 4>
Safety tests and stability tests using mice were carried out as follows. As a result of applying 100 μl of a 2% solution (50% ethanol) of acidic xylo-oligosaccharide composition UX2 to the back skin of C3H mice (male, 6 weeks old, manufactured by Charles River Japan Co., Ltd.) for about 1 month, No side effects such as inflammation were observed. Moreover, the change in the ion chromatogram of the said UX2 solution after one month was not recognized. These indicate the high safety and stability of the acidic xylooligosaccharide composition.
[0043]
<Example 5>
Using the acidic xylo-oligosaccharide composition UX2, a lotion having the following composition to which hyaluronic acid production promoting action was imparted was produced by a conventional method.
Formulation: (1) 1,3-butylene glycol, 3.0% (2) sorbitol, 2.0% (3) ethanol, 10.0% (4) carboxyvinyl polymer 1% aqueous solution, 10.0% (5 ) UX2, 1.0% (6) Methyl paraoxybenzoate, 0.1% (7) Fragrance, 0.1% (8) Purified water, 73.8%
Production method: (6) (7) is dissolved in (3) and added to (8), (1), (2) and (5) are sequentially added and mixed, and then (4) is added and mixed. Homogenized.
[0044]
<Example 6>
Using the acidic xylo-oligosaccharide composition UX2, an ointment having the following composition to which a hyaluronic acid production promoting effect was imparted was produced by a conventional method.
Formula: (1) white petrolatum, 25.0% (2) stearyl alcohol, 15.0% (3) sodium lauryl sulfate, 1.0% (4) butyl paraoxybenzoate, 0.1% (5) UX2, 1.0% (6) Purified water, 57.9%
Production method: The oil phase components (1) to (4) are mixed, heated to 75 ° C., and dissolved and homogenized. The oil phase component was added to (6) heated to 75 ° C. to emulsify, and after cooling, (5) was sequentially added and mixed at 40 ° C., and then homogenized.
[0045]
【The invention's effect】
The hyaluronic acid production promoter containing the acidic xylo-oligosaccharide composition obtained in the present invention has excellent pharmacological activity, and prevents aging of human skin (prevention of wrinkles and retention of elasticity), prevention of arthritis, etc. It can be used for treatment and early treatment of burns. In particular, the hyaluronic acid production promoter of the present invention is incorporated into cosmetics, quasi-drugs, and pharmaceuticals, thereby promoting hyaluronic acid production, which is one of the extracellular matrix, and maintaining the moisture retention ability and elasticity of the skin. Therefore, it is useful as an anti-wrinkle agent that prevents the generation of wrinkles. In addition, there is an advantage that it can be produced industrially in large quantities at low cost, the same product can be produced stably, and the storage stability is good.

Claims (3)

キシロオリゴ糖分子中にウロン酸残基を有する酸性キシロオリゴ糖を有効成分とするヒアルロン酸産生促進剤。  A hyaluronic acid production promoter comprising an acidic xylo-oligosaccharide having a uronic acid residue in the xylo-oligosaccharide molecule as an active ingredient. 該酸性キシロオリゴ糖が、キシロースの重合度が異なるオリゴ糖の混合組成物であり、平均重合度が2.0〜3.0であることを特徴とする請求項1に記載のヒアルロン酸産生促進剤。  The hyaluronic acid production promoter according to claim 1, wherein the acidic xylooligosaccharide is a mixed composition of oligosaccharides having different degrees of polymerization of xylose and having an average degree of polymerization of 2.0 to 3.0. . 前記酸性キシロオリゴ糖が、「リグノセルロース材料を酵素的及び/又は物理化学的に処理してキシロオリゴ糖成分とリグニン成分の複合体を得る工程、前記工程で得られた複合体からリグニン様物質を分離するために希酸処理し、酸性キシロオリゴ糖と中性キシロオリゴ糖を含む希酸処理液を得る工程、そして、前記工程により得られた希酸処理液から、酸性キシロオリゴ糖以外の成分を除去するために、限外濾過工程、脱色工程、吸着工程、溶出工程を経て得られたもの」であることを特徴とする請求項1又は請求項2に記載のヒアルロン酸産生促進剤。Wherein the acidic xylooligosaccharide is, "give Ru step a complex of the lignocellulosic material enzymatic and / or physicochemically treated xylooligosaccharide component and lignin components, lignin-like substances from the complex obtained in the step A process of obtaining a dilute acid treatment solution containing acid xylo-oligosaccharides and neutral xylo-oligosaccharides, and removing components other than acid xylo-oligosaccharides from the dilute acid treatment liquid obtained by the above steps. Therefore, the hyaluronic acid production promoter according to claim 1 or 2, which is obtained through an ultrafiltration step, a decolorization step, an adsorption step, and an elution step .
JP2002219096A 2002-07-29 2002-07-29 Hyaluronic acid production promoter Expired - Lifetime JP4224998B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002219096A JP4224998B2 (en) 2002-07-29 2002-07-29 Hyaluronic acid production promoter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002219096A JP4224998B2 (en) 2002-07-29 2002-07-29 Hyaluronic acid production promoter

Publications (2)

Publication Number Publication Date
JP2004059480A JP2004059480A (en) 2004-02-26
JP4224998B2 true JP4224998B2 (en) 2009-02-18

Family

ID=31940082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002219096A Expired - Lifetime JP4224998B2 (en) 2002-07-29 2002-07-29 Hyaluronic acid production promoter

Country Status (1)

Country Link
JP (1) JP4224998B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0426010D0 (en) * 2004-11-26 2004-12-29 Britannia Pharmaceuticals Ltd Improvements in or relating to organic materials
CN101147743B (en) * 2006-09-19 2010-10-06 浙江海正药业股份有限公司 Application of ginsenoside Compound-K in pharmaceutical
JP2009143832A (en) * 2007-12-13 2009-07-02 Oji Paper Co Ltd Epidermal keratinization normalizing agent
JP2013203731A (en) * 2012-03-29 2013-10-07 Nof Corp Hyaluronic acid production promoter
JP7039812B2 (en) * 2017-09-28 2022-03-23 ポーラ化成工業株式会社 Hyaluronic acid production promoter for lips

Also Published As

Publication number Publication date
JP2004059480A (en) 2004-02-26

Similar Documents

Publication Publication Date Title
JPH1121247A (en) Skin activator and allergy inhibitor
JP2008105985A (en) Hyaluronic acid production promoter, skin care preparation for external use, bathing agent, and food and drink
KR102015857B1 (en) Cosmetic composition for comprising crosslinked hyaluronic acid and prebiotics
KR102139472B1 (en) Anti-aging composition comprising functional peptides and fermented products
JP2009013240A (en) Polysaccharide, method for producing the same and its application
JP3772749B2 (en) Melanin production inhibitor
KR102533822B1 (en) Polypentoic acid and medicaments containing polypentoic acid
JP4224998B2 (en) Hyaluronic acid production promoter
WO2011115088A1 (en) Human dermal epithelial cell growth promoter, and skin composition for external use and cosmetic material including the same
JP4567942B2 (en) Osteoclast formation inhibitor
WO2014203883A1 (en) Hyaluronic acid production promoter
JP2013170149A (en) Extracellular substrate formation-promoting agent containing hyaluronic acid oligosaccharide as active ingredient
KR101247511B1 (en) Low molecular weight chondroitin sulfate hydrolysate preparation method and the cosmetic composition containing the same
KR20160003072A (en) Method for producing a mixture of neutral oligosaccharides extracted from flaxseed
JP6435072B1 (en) Method for producing protease-decomposing composition, method for producing fibroblast growth promoter, and method for producing collagen production promoter
JP4196605B2 (en) Collagen production promoter
JP2003221339A (en) Anti-inflammatory agent
JP2004507613A (en) Non-sulfated fucose-based oligosaccharide mixtures, cosmetic or pharmaceutical compositions comprising said mixtures, and their use in cosmetics or pharmacy
KR20080087941A (en) A composition containing the low molecular weight hyaluronic acid for improving skin wrinkles and skin peeling
JP2009024075A (en) Polysaccharide, method for producing the same and use of the same
CN112754981A (en) Collagen regeneration promoting preparation and preparation method and application thereof
KR101230935B1 (en) Oral composition for beauty of skin
KR102642121B1 (en) Manufacturing method for cosmetic composition of fucoidan seaweed and functional and anti-aging cosmetic composition thereof
KR102532713B1 (en) Novel Saccharomyces cerevisiae strain and use thereof
Lambe et al. Isolation, purification and characterization of hyaluronic acid: a concise review

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4224998

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131205

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131205

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141205

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term