JP4224984B2 - Exhaust gas purification device for internal combustion engine - Google Patents

Exhaust gas purification device for internal combustion engine Download PDF

Info

Publication number
JP4224984B2
JP4224984B2 JP2002142581A JP2002142581A JP4224984B2 JP 4224984 B2 JP4224984 B2 JP 4224984B2 JP 2002142581 A JP2002142581 A JP 2002142581A JP 2002142581 A JP2002142581 A JP 2002142581A JP 4224984 B2 JP4224984 B2 JP 4224984B2
Authority
JP
Japan
Prior art keywords
exhaust gas
catalyst
exhaust
fuel ratio
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002142581A
Other languages
Japanese (ja)
Other versions
JP2003328742A (en
Inventor
稔 益田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2002142581A priority Critical patent/JP4224984B2/en
Publication of JP2003328742A publication Critical patent/JP2003328742A/en
Application granted granted Critical
Publication of JP4224984B2 publication Critical patent/JP4224984B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は内燃機関の排気浄化装置に関する。
【0002】
【従来の技術】
複数の気筒を一対の気筒群に分割し、これら気筒群に接続された一対の上流側排気通路が合流して形成される下流側排気通路内に、流入する排気ガスの空燃比がリーンのときに流入する排気ガス中のNOを蓄え、流入する排気ガスの空燃比が低下したときに排気ガス中に還元剤が含まれていると蓄えているNOを還元して蓄えているNOの量が減少するNO触媒を配置し、NO触媒の温度を上昇させるために、一方の気筒群で燃焼される混合気の空燃比をリーンに保持しかつ他方の気筒群で燃焼される混合気の空燃比をリッチに保持すると共に、このときNO触媒内に流入する排気ガス全体の平均空燃比が理論空燃比になるようにした内燃機関の排気浄化装置が公知である(特開平8−61052号公報参照)。
【0003】
この場合、一方の気筒群から排出される排気ガス中には多量の酸素が含まれており、他方の気筒群から排出される排気ガス中には多量の未燃HC,COが含まれている。従って、これら酸素及び未燃HC,COがNO触媒に到りNO触媒内で反応すると、NO触媒の温度が上昇せしめられる。
【0004】
【発明が解決しようとする課題】
一方の気筒群から排出された排気ガスと、他方の気筒群から排出された排気ガスとは共に下流側排気通路内に流入して合流する。しかしながら、これらの排気ガスがNO触媒に到るまでに良好に混合ないし攪拌されるとは限らず、むしろ酸素及び未燃HC,COが偏在したままNO触媒内に流入する恐れがある。この場合には、NO触媒に供給される未燃HC,COをNO触媒の温度上昇のために有効に利用できなくなり、更に、NO触媒の温度を目標温度まで上昇させるのに長時間を要することにもなる。上述の公報はこの問題点について何ら示唆していない。
【0005】
そこで本発明の目的は、触媒の温度を効果的にかつ速やかに上昇させることができる内燃機関の排気浄化装置を提供することにある。
【0006】
【課題を解決するための手段】
前記課題を解決するために1番目の発明によれば、複数の気筒を一対の気筒群に分割し、これら気筒群に接続された一対の上流側排気通路が合流して形成される下流側排気通路内に酸化能を有する触媒を配置し、該触媒の温度を上昇させるために、一方の上流側排気通路から下流側排気通路内に流出する排気ガスの空燃比をリーンに保持しかつ他方の上流側排気通路から下流側排気通路内に流出する排気ガスの空燃比をリッチに保持すると共に、このとき下流側排気通路内に流入する排気ガス全体の平均空燃比が理論空燃比又はわずかばかりリッチになるようにした内燃機関の排気浄化装置において、前記触媒上流の下流側排気通路内に、一方の上流側排気通路からの排気ガスと他方の上流側排気通路からの排気ガスとを混合する混合手段を配置し、前記混合手段と前記触媒間の下流側排気通路を互いに並列に延びる一対の分岐通路から形成し、これら分岐通路内にそれぞれ酸化能を有する追加の触媒を配置している。
【0009】
また、番目の発明によれば1番目の発明において、前記混合手段を、排気ガスが下流側排気通路のほぼ中心軸線周りに旋回するように排気ガスを案内する旋回装置から形成している。
【0010】
また、番目の発明によれば1番目の発明において、前記内燃機関において燃焼がリーン空燃比のもとで継続的に行われるようになっており、前記触媒を、流入する排気ガスの空燃比がリーンのときに流入する排気ガス中のNOを蓄え、流入する排気ガスの空燃比が低下したときに排気ガス中に還元剤が含まれていると蓄えているNOを還元して蓄えているNOの量が減少するNO触媒から形成している。
【0011】
また、番目の発明によれば番目の発明において、前記追加の触媒を三元触媒から形成している。
【0012】
なお、本明細書では排気通路の或る位置よりも上流の排気通路、燃焼室、及び吸気通路内に供給された空気と炭化水素HC及び一酸化炭素COとの比をその位置における排気ガスの空燃比と称している。
【0013】
【発明の実施の形態】
図1は本発明を火花点火式内燃機関に適用した場合を示している。しかしながら本発明を圧縮着火式内燃機関に適用することもできる。
【0014】
図1を参照すると、機関本体1は複数例えば六つの気筒を備えている。これら気筒は機関本体1の中心軸線の一側において整列された例えば三つの気筒からなる第1の気筒群1aと、機関本体1の中心軸線の他側において整列された例えば三つの気筒からなる第2の気筒群1bとに分割されている。第1及び第2の気筒群1a,1bはそれぞれ対応する排気マニホルド2a,2bを介してY字管3のそれぞれ対応する枝部3a,3bにそれぞれ接続され、Y字管3の合流部3cはY字管4の合流部4cに接続される。Y字管4の一対の枝部4a,4bにはそれぞれケーシング5の入口がそれぞれ接続され、これらケーシング5の出口はY字管6及び排気管7を介してケーシング8の入口に接続される。また、ケーシング8の出口には排気管9が接続される。なお、図1において符号10は各気筒の燃焼室内に配置された電磁制御式燃料噴射弁を示している。
【0015】
ケーシング8内には酸化能を有する触媒11が収容され、本発明による実施例ではこの触媒11はNO触媒から形成される。NO触媒11は例えばアルミナを担体とし、この担体上に例えばカリウムK、ナトリウムNa、リチウムLi、セシウムCsのようなアルカリ金属、バリウムBa、カルシウムCaのようなアルカリ土類、ランタンLa、イットリウムYのような希土類から選ばれた少なくとも一つと、白金Pt、パラジウムPd、ロジウムRh、イリジウムIrのような貴金属とが担持されている。一方、ケーシング5内には酸化能を有する追加の触媒12がそれぞれ収容される。本発明による実施例では、追加の触媒12は三元触媒からそれぞれ形成される。
【0016】
更に図1を参照すると、Y字管3の枝部3a,3bが合流してからY字管4の枝部4a,4bが分岐するまでの、例えばY字管4の合流部4c内には旋回装置13が配置される。この旋回装置13は図2に示されるように、Y字管4の内壁面上に固定される外輪13aと、外輪13aのほぼ中央に配置される内輪13bと、周方向に互いに離間しつつ外輪13a及び内輪13bにより支持される複数の羽根13cとを具備する。図2においてハッチングが施された部分が羽根13cを示している。
【0017】
これら羽根13cはY字管4の合流部4cの中心軸線に沿って螺旋状に延びており、従って排気ガスはこの旋回装置13によって、Y字管4の合流部4cのほぼ中心軸線周りに旋回するように案内される。なお、本発明による実施例ではこれら羽根13cは回転できないが、排気ガスが旋回する限り、羽根13cを回転可能に支持することもできる。
【0018】
一方、第1及び第2の気筒群1a,1bはそれぞれ対応するサージタンク(図示しない)を介して共通の吸気ダクト(図示しない)に接続されている。
【0019】
電子制御ユニット40はデジタルコンピュータからなり、双方向性バス41によって互いに接続されたROM(リードオンリメモリ)42、RAM(ランダムアクセスメモリ)43、CPU(マイクロプロセッサ)44、入力ポート45及び出力ポート46を具備する。排気管7にはNO触媒11内に流入する排気ガスの平均空燃比を検出するための空燃比センサ49rが取り付けられ、排気管9にはNO触媒11から流出した排気ガスの温度を検出するための温度センサ49tが取り付けられる。この排気ガスの温度はNO触媒11の温度を表している。これらセンサ49r,49tの出力電圧はそれぞれ対応するAD変換器47を介して入力ポート45に入力される。また、アクセルペダル50にはアクセルペダル50の踏み込み量に比例した出力電圧を発生する負荷センサ51が接続され、負荷センサ51の出力電圧は対応するAD変換器47を介して入力ポート45に入力される。更に入力ポート45にはクランクシャフトが例えば30°回転する毎に出力パルスを発生するクランク角センサ52が接続される。一方、出力ポート46は対応する駆動回路48を介して燃料噴射弁10にそれぞれ接続される。
【0020】
NO触媒11は流入する排気ガスの平均空燃比がリーンのときにはNOを蓄え、流入する排気ガスの空燃比が低下したときに排気ガス中に還元剤が含まれていると蓄えているNOを還元して蓄えているNOの量を減少させる蓄積還元作用を行う。
【0021】
NO触媒の蓄積還元作用の詳細なメカニズムについては完全には明らかにされていない。しかしながら、現在考えられているメカニズムを、担体上に白金Pt及びバリウムBaを担持させた場合を例にとって簡単に説明すると次のようになる。
【0022】
即ち、NO触媒に流入する排気ガスの空燃比が理論空燃比よりもかなりリーンになると流入する排気ガス中の酸素濃度が大巾に増大し、酸素OがO 又はO2−の形で白金Ptの表面に付着する。一方、流入する排気ガス中のNOは白金Ptの表面上でO 又はO2−と反応し、NOとなる(NO+O→NO)。次いで生成されたNOの一部は白金Pt上でさらに酸化されつつNO触媒内に吸収されて酸化バリウムBaOと結合しながら、硝酸イオンNO の形でNO触媒内に拡散する。このようにしてNOがNO触媒内に蓄えられる。
【0023】
これに対し、NO触媒に流入する排気ガスの空燃比がリッチ又は理論空燃比になると、排気ガス中の酸素濃度が低下してNOの生成量が低下し、反応が逆方向(NO →NO)に進み、斯くしてNO触媒内の硝酸イオンNO がNOの形でNO触媒から放出される。この放出されたNOは排気ガス中に還元剤即ちHC,COが含まれているとこれらHC,COと反応して還元せしめられる。このようにして白金Ptの表面上にNOが存在しなくなるとNO触媒から次から次へとNOが放出されて還元され、NO触媒内に蓄えられているNOの量が次第に減少する。
【0024】
なお、硝酸塩を形成することなくNOを蓄え、NOを放出することなくNOを還元することも可能である。
【0025】
図1に示される内燃機関はリーン空燃比のもとでの燃焼が継続して行われており、従ってNO触媒11内に流入する排気ガスの空燃比はリーンに維持されている。その結果、排気ガス中のNOはNO触媒11内に蓄えられる。
【0026】
時間の経過と共にNO触媒11内の蓄積NO量は次第に増大する。そこで本発明による実施例では、例えばNO触媒11内の蓄積NO量が許容量を越えたときには、NO触媒11内に流入する排気ガスの空燃比を一時的にリッチに切り替えるようにしている。このようにすると、NO触媒11内の蓄積NO量が減少し、このときNO触媒11からNOが流出しない。
【0027】
ところが、排気ガス中にはイオウ分がSOの形で含まれており、NO触媒11内にはNOばかりでなくSOも蓄えられる。このSOのNO触媒11内への蓄積メカニズムはNOの蓄積メカニズムと同じであると考えられる。即ち、担体上に白金Pt及びバリウムBaを担持させた場合を例にとって簡単に説明すると、NO触媒11に流入する排気ガスの空燃比がリーンのときには上述したように酸素OがO 又はO2−の形で白金Ptの表面に付着しており、流入する排気ガス中のSOは白金Ptの表面上でO 又はO2−と反応し、SOとなる。次いで生成されたSOは白金Pt上でさらに酸化されつつNO触媒11内に吸収されて酸化バリウムBaOと結合しながら、硫酸イオンSO の形でNO触媒11内に拡散する。この硫酸イオンSO は次いでバリウムイオンBaと結合して硫酸塩BaSOを生成する。
【0028】
この硫酸塩BaSOは分解しにくく、NO触媒11内に流入する排気ガスの空燃比をただ単にリッチにしてもNO触媒11内の硫酸塩BaSOの量は減少しない。このため、時間が経過するにつれてNO触媒11内の硫酸塩BaSOの量が増大し、その結果NO触媒11が蓄えうるNOの量が減少することになる。
【0029】
しかしながら、NO触媒11の温度を例えば550℃以上に維持しつつNO触媒11に流入する排気ガスの空燃比を理論空燃比又はわずかばかりリッチにすると、NO触媒11内の硫酸塩BaSOが分解してSOの形でNO触媒11から放出される。この放出されたSOは排気ガス中に還元剤即ちHC,COが含まれているとこれらHC,COと反応してSOに還元せしめられる。このようにしてNO触媒11内に蓄えられているSOの量が次第に減少し、このときNO触媒11からSOがSOの形で流出することがない。
【0030】
そこで本発明による実施例では、例えばNO触媒11内の蓄積SO量が許容量を越えたときには、NO触媒11内の蓄積SO量を減少させるために、NO触媒11の温度を550℃まで上昇し次いで550℃以上に維持しながら、NO触媒11内に流入する排気ガスの平均空燃比を理論空燃比又はわずかばかりリッチに保持するようにしている。
【0031】
具体的には、三元触媒12内に流入する排気ガス全体の平均空燃比を理論空燃比又はわずかばかりリッチになるようにしつつ、Y字管3の枝部3a内を流通する排気ガスの空燃比をリーンに保持し、Y字管3の枝部3b内を流通する排気ガスの空燃比が一時的にリッチに切り替えられる。その結果、比較的多量の酸素を含む排気ガスと、比較的多量のHC,COを含む排気ガスとが形成される。
【0032】
これら排気ガスはY字管3の合流部3c内及びY字管4の合流部4c内で互いに合流した後に三元触媒12内に流入し、その結果三元触媒12内において排気ガス中に含まれる多量のHC,COが多量の酸素の存在下で燃焼する。このため、三元触媒12から流出する排気ガスの温度が上昇され、この高温の排気ガスが次いでNO触媒11内に流入することによりNO触媒11の温度が上昇される。
【0033】
この場合、排気ガスは三元触媒12内に流入する前に旋回装置13によって旋回されており、その結果枝部3aからの酸素と枝部3bからのHC,COとが良好に攪拌され混合されている。従って、三元触媒12に供給されたHC,COが三元触媒12内で燃焼しやすくなっており、即ちNO触媒11の温度を上昇させるために有効に利用されることになる。また、NO触媒11の温度を目標温度まで上昇させるために必要な時間を短縮でき、更に、三元触媒12から流出するHC,COの量を低減することができる。
【0034】
なお、Y字管3の枝部3b内を流通する排気ガスの空燃比をリッチに切り替えるには様々な方法がある。即ち、例えば第2の気筒群1bで燃焼される混合気の空燃比をリッチに切り替える方法や、或いは、第2の気筒群1bで燃焼される混合気の空燃比をリーンに保持しながら、排気マニホルド2b又は枝部3b内に追加の燃料を供給したり、爆発工程又は排気行程において第2の気筒群1bの燃焼室内に燃料噴射弁10から追加の燃料を供給する方法がある。
【0035】
図3は図1に示される実施例におけるY字管3の枝部3a,3bの出口と、Y字管4の枝部4a,4bの入口とを概略的に示しており、この例ではY字管3の枝部3a,3bの出口中心を結ぶ直線L3と、Y字管4の枝部4a,4bの出口中心を結ぶ直線L4とが互いにほぼ平行になっている。なお、図3においてCCはY字管3の合流部3c及びY字管4の合流部4cにより形成される合流室を示している。
【0036】
Y字管3の枝部3a,3b内をそれぞれ流通した排気ガスは合流室CC内にそれぞれ流出して合流し、次いでY字管4の枝部4a,4b内に流入する。このことは結局のところ、Y字管3の枝部3aから流出した排気ガスがY字管4の枝部4a,4bに分配され、枝部3bから流出した排気ガスが枝部4a,4bに分配されることを意味している。
【0037】
この場合、合流室CCの容積は比較的小さく、ここでの排気ガスの混合は期待できない。従って、旋回装置13が設けられていないとしたならば、Y字管3の枝部3a,3bからそれぞれ流出した排気ガスは例えば枝部3a,3bの形状などに応じて定まる方向に、それらの慣性でもって進行することになる。このため、Y字管3の例えば枝部3aから流出した排気ガスのうちの大部分がY字管4の枝部4a内に流入し残りのわずかな一部が枝部4b内に流入する場合もあれば、排気ガスの大部分が枝部4b内に流入し残りのわずかな一部が枝部4a内に流入する場合もある。枝部3bから流出した排気ガスについても同様なことが言える。その結果、一方の三元触媒12には過剰のHC,COが供給され、他方の三元触媒12には過剰の酸素が供給されるということになる。
【0038】
そこで本発明による実施例では、排気ガスを旋回させて混合するための旋回装置13を合流室CC内に配置している。その結果、Y字管3の枝部3a,3bから流出した排気ガスが十分に混合された後に、Y字管4の枝部4a,4b内に流入する。従って、この場合には、Y字管3の枝部3aから流出した排気ガスがY字管4の枝部4a,4b内にほぼ均等に流入し、Y字管3の枝部3bから流出した排気ガスがY字管4の枝部4a,4b内にほぼ均等に流入しているということになる。このため、各三元触媒12に供給されるHC,CO及び酸素に過不足が生じない。
【0039】
図4はY字管3の枝部3a,3bの出口中心を結ぶ直線L3と、Y字管4の枝部4a,4bの出口中心を結ぶ直線L4とが互いにほぼ垂直になっている場合を示しており、この場合にも本発明を適用することができる。この場合に旋回装置13が設けられないとしたならば、各三元触媒12の一部分に過剰のHC,COが局所的に供給され、別の部分に過剰の酸素が局所的に供給される恐れがある。この場合に旋回装置13を設ければ、このような不具合を解決することができ、即ち旋回装置13を設けることによってHC,CO及び酸素を各三元触媒12全体に供給できるということになる。言い換えると、三元触媒12全体を有効に利用できる。
【0040】
これまで述べてきた実施例では、旋回装置13とNO触媒11間の排気通路を互いに並列に延びる一対の分岐通路から形成し、これら分岐通路内にそれぞれ三元触媒12を配置している。このようにすると各三元触媒12の容量を小さくすることができ、従って機関背圧が上昇するのを抑制できる。しかしながら、旋回装置13とNO触媒11間の排気通路を単一の排気通路から形成し、この単一の排気通路内に単一の三元触媒を配置した場合にも本発明を適用することができる。或いは、旋回装置13とNO触媒11間に三元触媒を配置しない場合にも本発明を適用することができる。この場合には、枝部3aからの酸素と枝部3bからのHC,COとがNO触媒11内において互いに反応することになる。
【0041】
【発明の効果】
触媒の温度を効果的にかつ速やかに上昇させることができる。
【図面の簡単な説明】
【図1】内燃機関の全体図である。
【図2】旋回装置の正面図である。
【図3】Y字管3,4の出口及び入口を概略的に示す図である。
【図4】別の実施例におけるY字管3,4の出口及び入口を概略的に示す図である。
【符号の説明】
1a…第1の気筒群
1b…第2の気筒群
3,4…Y字管
11…NO触媒
12…三元触媒
13…旋回装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an exhaust emission control device for an internal combustion engine.
[0002]
[Prior art]
When a plurality of cylinders are divided into a pair of cylinder groups, and the air-fuel ratio of the exhaust gas flowing into the downstream exhaust passage formed by joining a pair of upstream exhaust passages connected to these cylinder groups is lean store up NO X in the exhaust gas flowing into the air-fuel ratio of the inflowing exhaust gas is stored by reducing NO X are stored as containing a reducing agent in the exhaust gas when the reduced NO X the amount will place the NO X catalyst of decreasing, in order to raise the temperature of the NO X catalyst is burned in retaining the air-fuel ratio of the mixture burned in one cylinder group to a lean and the other cylinder group the air-fuel ratio of the mixture holds rich exhaust gas control apparatus that the average air-fuel ratio of the entire exhaust gas was set to the stoichiometric air-fuel ratio flowing into this time the NO X catalyst is known (JP-a 8-61052 gazette).
[0003]
In this case, the exhaust gas discharged from one cylinder group contains a large amount of oxygen, and the exhaust gas discharged from the other cylinder group contains a large amount of unburned HC and CO. . Therefore, these oxygen and unburned HC, the CO reacts in the NO X catalyst Italian the NO X catalyst, the temperature of the NO X catalyst is raised.
[0004]
[Problems to be solved by the invention]
The exhaust gas discharged from one cylinder group and the exhaust gas discharged from the other cylinder group both flow into the downstream exhaust passage and merge. However, not limited to these exhaust gases are well mixed to stirring until reaching the NO X catalyst, there is a risk of rather flowing into oxygen and unburned HC, the NO X catalyst while CO is unevenly distributed. In this case, unburned HC to be supplied to the NO X catalyst, will not be able to effectively use the CO for the temperature rise of the NO X catalyst, further, a long time the temperature of the NO X catalyst to raise up to the target temperature It will also require. The above publication does not suggest anything about this problem.
[0005]
SUMMARY OF THE INVENTION An object of the present invention is to provide an exhaust gas purification apparatus for an internal combustion engine that can increase the temperature of a catalyst effectively and quickly.
[0006]
[Means for Solving the Problems]
In order to solve the above-described problem, according to a first aspect of the invention, a plurality of cylinders are divided into a pair of cylinder groups, and a downstream exhaust gas formed by joining a pair of upstream exhaust passages connected to the cylinder groups. In order to dispose a catalyst having oxidizing ability in the passage and raise the temperature of the catalyst, the air-fuel ratio of the exhaust gas flowing out from one upstream exhaust passage into the downstream exhaust passage is kept lean and the other The air-fuel ratio of the exhaust gas flowing out from the upstream exhaust passage into the downstream exhaust passage is kept rich, and the average air-fuel ratio of the entire exhaust gas flowing into the downstream exhaust passage at this time is the stoichiometric air fuel ratio or slightly richer In the exhaust gas purification apparatus for an internal combustion engine, the exhaust gas from one upstream exhaust passage and the exhaust gas from the other upstream exhaust passage are mixed in the downstream exhaust passage upstream of the catalyst. Means And location, the mixing means and the downstream exhaust passage between the catalyst formed from a pair of branch passages extending in parallel to each other, are arranged additional catalyst having respective oxidation ability in these branch passages.
[0009]
Further, in the first aspect, according to a second aspect of the invention, the mixing means, the exhaust gas is formed from the turning device for guiding the exhaust gas to pivot about substantially the center axis of the downstream side exhaust passage.
[0010]
Further, in the first aspect according to the third invention, the combustion in the internal combustion engine are adapted to be continuously performed under a lean air-fuel ratio, the air-fuel ratio of the exhaust gas to the catalyst and flows stored but stored the NO X in the exhaust gas flowing at the time of the lean air-fuel ratio of the inflowing exhaust gas by reducing NO X are stored as containing a reducing agent in the exhaust gas when the reduced the amount of and NO X is formed from NO X catalyst decreases.
[0011]
Further, in the first aspect according to the fourth invention, it is formed from the three-way catalyst the additional catalyst.
[0012]
In the present specification, the ratio of the air supplied to the exhaust passage upstream of a certain position of the exhaust passage, the combustion chamber, and the intake passage and the hydrocarbon HC and carbon monoxide CO is determined by the ratio of the exhaust gas at that position. This is called the air-fuel ratio.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows a case where the present invention is applied to a spark ignition type internal combustion engine. However, the present invention can also be applied to a compression ignition type internal combustion engine.
[0014]
Referring to FIG. 1, the engine main body 1 includes a plurality of, for example, six cylinders. These cylinders are, for example, a first cylinder group 1a composed of, for example, three cylinders aligned on one side of the central axis of the engine body 1, and a first cylinder composed of, for example, three cylinders aligned on the other side of the central axis of the engine body 1. It is divided into two cylinder groups 1b. The first and second cylinder groups 1a and 1b are respectively connected to the corresponding branch portions 3a and 3b of the Y-tube 3 via the corresponding exhaust manifolds 2a and 2b, respectively. Connected to the junction 4 c of the Y-tube 4. The inlets of the casing 5 are respectively connected to the pair of branch portions 4 a and 4 b of the Y-shaped tube 4, and the outlets of the casing 5 are connected to the inlet of the casing 8 via the Y-shaped tube 6 and the exhaust pipe 7. An exhaust pipe 9 is connected to the outlet of the casing 8. In FIG. 1, reference numeral 10 indicates an electromagnetically controlled fuel injection valve disposed in the combustion chamber of each cylinder.
[0015]
In the casing 8 is accommodated catalyst 11 having an oxidizing ability, in the embodiment according to the present invention the catalyst 11 is formed from NO X catalyst. The NO X catalyst 11 has, for example, alumina as a carrier, and on this carrier, for example, alkali metal such as potassium K, sodium Na, lithium Li, cesium Cs, alkaline earth such as barium Ba, calcium Ca, lanthanum La, yttrium Y, etc. And at least one selected from rare earths such as platinum Pt, palladium Pd, rhodium Rh, and iridium Ir. On the other hand, an additional catalyst 12 having oxidation ability is accommodated in the casing 5. In embodiments according to the present invention, the additional catalyst 12 is each formed from a three-way catalyst.
[0016]
Referring further to FIG. 1, for example, in the junction 4 c of the Y-tube 4 from the merge of the branches 3 a and 3 b of the Y-tube 3 to the branch of the branches 4 a and 4 b of the Y-tube 4. A swivel device 13 is arranged. As shown in FIG. 2, the turning device 13 includes an outer ring 13 a fixed on the inner wall surface of the Y-tube 4, an inner ring 13 b disposed substantially at the center of the outer ring 13 a, and an outer ring spaced apart from each other in the circumferential direction. 13a and a plurality of blades 13c supported by the inner ring 13b. In FIG. 2, the hatched portion indicates the blade 13c.
[0017]
These blades 13c extend spirally along the central axis of the junction 4c of the Y-shaped tube 4, so that the exhaust gas swirls around the substantially central axis of the junction 4c of the Y-shaped tube 4 by the swiveling device 13. To be guided. In the embodiment according to the present invention, these blades 13c cannot be rotated, but the blades 13c can be rotatably supported as long as the exhaust gas swirls.
[0018]
On the other hand, the first and second cylinder groups 1a and 1b are connected to a common intake duct (not shown) via corresponding surge tanks (not shown).
[0019]
The electronic control unit 40 is composed of a digital computer, and is connected to each other by a bidirectional bus 41. A ROM (read only memory) 42, a RAM (random access memory) 43, a CPU (microprocessor) 44, an input port 45 and an output port 46 are connected. It comprises. The exhaust pipe 7 is attached air-fuel ratio sensor 49r for detecting the average air-fuel ratio of the exhaust gas flowing into the NO X catalyst 11, the exhaust pipe 9 detects the temperature of the exhaust gas flowing out from the NO X catalyst 11 A temperature sensor 49t is attached. The temperature of the exhaust gases represents the temperature of the NO X catalyst 11. The output voltages of these sensors 49r and 49t are input to the input port 45 via the corresponding AD converters 47, respectively. A load sensor 51 that generates an output voltage proportional to the amount of depression of the accelerator pedal 50 is connected to the accelerator pedal 50, and the output voltage of the load sensor 51 is input to the input port 45 via the corresponding AD converter 47. The Further, the input port 45 is connected with a crank angle sensor 52 that generates an output pulse every time the crankshaft rotates, for example, 30 °. On the other hand, the output port 46 is connected to the fuel injection valve 10 via a corresponding drive circuit 48.
[0020]
The NO X catalyst 11 stores NO X when the average air-fuel ratio of the inflowing exhaust gas is lean, and stores NO X when the reducing gas is contained in the exhaust gas when the air-fuel ratio of the inflowing exhaust gas decreases. Accumulate and reduce to reduce the amount of NO X stored by reducing X.
[0021]
It not fully elucidated detailed mechanism of accumulation reducing action of the NO X catalyst. However, the mechanism currently considered can be briefly described as follows, taking as an example the case where platinum Pt and barium Ba are supported on a support.
[0022]
That is, the oxygen concentration in the exhaust gas air-fuel ratio of the exhaust gas flowing into the NO X catalyst flows become considerably leaner than the stoichiometric air-fuel ratio is increased by a large margin, the oxygen O 2 is O 2 - or O 2- of It adheres to the surface of platinum Pt in the form. On the other hand, NO in the inflowing exhaust gas reacts with O 2 or O 2− on the surface of platinum Pt to become NO 2 (NO + O 2 → NO 2 ). Next, a part of the generated NO 2 is further oxidized on the platinum Pt and absorbed into the NO X catalyst and combined with barium oxide BaO, and diffuses in the NO X catalyst in the form of nitrate ions NO 3 . In this way, NO X is stored in the NO X catalyst.
[0023]
On the other hand, when the air-fuel ratio of the exhaust gas flowing into the NO X catalyst becomes rich or stoichiometric, the oxygen concentration in the exhaust gas decreases, the amount of NO 2 generated decreases, and the reaction proceeds in the reverse direction (NO 3 - → proceeds to NO), NO X catalyst in the nitrate ions NO 3 and thus - are released from the NO X catalyst in the form of NO. When the exhaust gas contains a reducing agent, that is, HC and CO, the released NO X reacts with these HC and CO and is reduced. When NO X no longer exists on the surface of platinum Pt in this way, NO X is released from the NO X catalyst to the next and reduced, and the amount of NO X stored in the NO X catalyst gradually increases. Decrease.
[0024]
Incidentally, stored without any NO X to form a nitrate, it can be reduced without any NO X to release NO X.
[0025]
Internal combustion engine shown in FIG. 1 are continuously performed combustion under a lean air-fuel ratio, therefore the air-fuel ratio of the exhaust gas flowing into the NO X catalyst 11 is maintained lean. As a result, NO X in the exhaust gas is stored in the NO X catalyst 11.
[0026]
The accumulated NO X amount in the NO X catalyst 11 gradually increases with time. Therefore, in this embodiment of the present invention, for example, when the accumulated amount of NO X in the NO X catalyst 11 exceeds the allowable amount, so as to temporarily switch to make the air flowing into the NO X catalyst 11 Yes. In this way, reduces the accumulated amount of NO X in the NO X catalyst 11, NO X does not flow out from the NO X catalyst 11 at this time.
[0027]
However, the exhaust gas contains sulfur in the form of SO X , and not only NO X but also SO X is stored in the NO X catalyst 11. The accumulation mechanism of SO X in the NO X catalyst 11 is considered to be the same as the accumulation mechanism of NO X. That is, when briefly described as an example the case of carrying platinum Pt and barium Ba on the carrier, the oxygen O 2 as the air-fuel ratio of the exhaust gas flowing into the NO X catalyst 11 described above when the lean O 2 - Alternatively, it is attached to the surface of platinum Pt in the form of O 2− , and SO 2 in the inflowing exhaust gas reacts with O 2 or O 2− on the surface of platinum Pt to become SO 3 . Next, the generated SO 3 is further oxidized on the platinum Pt while being absorbed into the NO X catalyst 11 and combined with barium oxide BaO, and diffuses into the NO X catalyst 11 in the form of sulfate ions SO 4 . This sulfate ion SO 4 is then combined with barium ion Ba + to produce sulfate BaSO 4 .
[0028]
This sulfate BaSO 4 is not easily decomposed, and the amount of sulfate BaSO 4 in the NO X catalyst 11 does not decrease even if the air-fuel ratio of the exhaust gas flowing into the NO X catalyst 11 is simply made rich. Therefore, increasing the amount of sulfate BaSO 4 in the NO X catalyst 11 over time, the amount of resulting NO X catalyst 11 can stored NO X is decreased.
[0029]
However, if the air-fuel ratio of the exhaust gas flowing into the NO X catalyst 11 is made to be the stoichiometric air fuel ratio or slightly rich while maintaining the temperature of the NO X catalyst 11 at, for example, 550 ° C. or higher, the sulfate BaSO 4 in the NO X catalyst 11 Is decomposed and released from the NO X catalyst 11 in the form of SO 3 . The released SO 3 reacts with HC and CO and is reduced to SO 2 when a reducing agent, that is, HC and CO is contained in the exhaust gas. In this way, the amount of SO X stored in the NO X catalyst 11 gradually decreases, and at this time, SO X does not flow out from the NO X catalyst 11 in the form of SO 3 .
[0030]
In the embodiment according to the present invention, therefore, for example, when the accumulated SO X amount in the NO X catalyst 11 exceeds the allowable amount, to reduce the accumulation SO X amount in the NO X catalyst 11, the temperature of the NO X catalyst 11 while maintaining the elevated and then 550 ° C. or higher to 550 ° C., and the average air ratio of the exhaust gas flowing into the NO X catalyst 11 to hold the stoichiometric air fuel ratio or just slightly rich.
[0031]
Specifically, while the average air-fuel ratio of the entire exhaust gas flowing into the three-way catalyst 12 is made to be the stoichiometric air-fuel ratio or slightly richer, the exhaust gas exhaust flowing through the branch portion 3a of the Y-shaped tube 3 is exhausted. The fuel ratio is kept lean, and the air-fuel ratio of the exhaust gas flowing in the branch portion 3b of the Y-shaped tube 3 is temporarily switched to rich. As a result, an exhaust gas containing a relatively large amount of oxygen and an exhaust gas containing a relatively large amount of HC and CO are formed.
[0032]
These exhaust gases merge with each other in the merge portion 3c of the Y-shaped tube 3 and in the merge portion 4c of the Y-shaped tube 4, and then flow into the three-way catalyst 12. As a result, they are included in the exhaust gas in the three-way catalyst 12. A large amount of HC and CO burned in the presence of a large amount of oxygen. Therefore, the temperature increase of the exhaust gas flowing out from the three-way catalyst 12, the temperature of the NO X catalyst 11 is raised by flowing into the NO X catalyst 11 is then exhaust gas at this high temperature.
[0033]
In this case, the exhaust gas is swirled by the swirler 13 before flowing into the three-way catalyst 12, so that the oxygen from the branch part 3a and the HC and CO from the branch part 3b are well stirred and mixed. ing. Therefore, HC supplied to the three-way catalyst 12, CO has become easily burned in the three-way catalyst 12, that is, be effectively utilized to increase the temperature of the NO X catalysts 11. In addition, the time required to raise the temperature of the NO X catalyst 11 to the target temperature can be shortened, and further, the amount of HC and CO flowing out from the three-way catalyst 12 can be reduced.
[0034]
There are various methods for switching the air-fuel ratio of the exhaust gas flowing through the branch portion 3b of the Y-shaped tube 3 to be rich. That is, for example, a method of switching the air-fuel ratio of the air-fuel mixture combusted in the second cylinder group 1b to be rich, or an exhaust gas while maintaining the air-fuel ratio of the air-fuel mixture combusted in the second cylinder group 1b lean. There is a method of supplying additional fuel into the manifold 2b or the branch portion 3b, or supplying additional fuel from the fuel injection valve 10 into the combustion chamber of the second cylinder group 1b in the explosion process or the exhaust stroke.
[0035]
FIG. 3 schematically shows the outlets of the branches 3a and 3b of the Y-shaped tube 3 and the inlets of the branches 4a and 4b of the Y-shaped tube 4 in the embodiment shown in FIG. A straight line L3 connecting the outlet centers of the branch portions 3a and 3b of the tube 3 and a straight line L4 connecting the outlet centers of the branches 4a and 4b of the Y tube 4 are substantially parallel to each other. In FIG. 3, CC indicates a merging chamber formed by the merging portion 3 c of the Y-shaped tube 3 and the merging portion 4 c of the Y-shaped tube 4.
[0036]
The exhaust gases flowing through the branch portions 3a and 3b of the Y-shaped tube 3 respectively flow out into the merge chamber CC and merge, and then flow into the branch portions 4a and 4b of the Y-shaped tube 4. As a result, the exhaust gas flowing out from the branch portion 3a of the Y-tube 3 is distributed to the branch portions 4a and 4b of the Y-tube 4, and the exhaust gas flowing out from the branch portion 3b is distributed to the branch portions 4a and 4b. It means to be distributed.
[0037]
In this case, the volume of the merge chamber CC is relatively small, and mixing of exhaust gas here cannot be expected. Therefore, if the swivel device 13 is not provided, the exhaust gas flowing out from the branch portions 3a and 3b of the Y-shaped tube 3 is in a direction determined according to the shape of the branch portions 3a and 3b, for example. It will proceed with inertia. For this reason, the case where most of the exhaust gas flowing out from, for example, the branch portion 3a of the Y-tube 3 flows into the branch portion 4a of the Y-tube 4, and the remaining small portion flows into the branch portion 4b. In some cases, most of the exhaust gas flows into the branch portion 4b and a small part of the remaining portion flows into the branch portion 4a. The same can be said for the exhaust gas flowing out from the branch part 3b. As a result, one of the three-way catalysts 12 is supplied with excess HC and CO, and the other three-way catalyst 12 is supplied with excess oxygen.
[0038]
Therefore, in the embodiment according to the present invention, the swirling device 13 for swirling and mixing the exhaust gas is disposed in the merge chamber CC. As a result, the exhaust gas flowing out from the branches 3 a and 3 b of the Y-shaped tube 3 is sufficiently mixed and then flows into the branches 4 a and 4 b of the Y-shaped tube 4. Therefore, in this case, the exhaust gas flowing out from the branch portion 3a of the Y-tube 3 flows into the branches 4a and 4b of the Y-tube 4 almost evenly and flows out from the branch portion 3b of the Y-tube 3. The exhaust gas flows into the branches 4a and 4b of the Y-shaped tube 4 almost evenly. For this reason, excess or deficiency does not occur in HC, CO and oxygen supplied to each three-way catalyst 12.
[0039]
FIG. 4 shows a case where a straight line L3 connecting the outlet centers of the branch portions 3a and 3b of the Y-shaped tube 3 and a straight line L4 connecting the outlet centers of the branch portions 4a and 4b of the Y-shaped tube 4 are substantially perpendicular to each other. In this case, the present invention can be applied. If the swivel device 13 is not provided in this case, excess HC and CO may be locally supplied to a part of each three-way catalyst 12 and excess oxygen may be locally supplied to another part. There is. In this case, if the swirling device 13 is provided, such a problem can be solved, that is, by providing the swirling device 13, HC, CO, and oxygen can be supplied to the entire three-way catalyst 12. In other words, the entire three-way catalyst 12 can be used effectively.
[0040]
This embodiment that has been described up to the exhaust passage between the turning device 13 and the NO X catalyst 11 is formed from a pair of branch passages each other extending in parallel, it is disposed, respectively a three-way catalyst 12 in those branch passages. In this way, the capacity of each three-way catalyst 12 can be reduced, and therefore the increase in engine back pressure can be suppressed. However, the exhaust passage between the turning device 13 and the NO X catalyst 11 is formed from a single exhaust passage, also possible to apply the present invention in the case of arranging the single three-way catalyst in this single exhaust passage Can do. Alternatively, even if between the turning device 13 and the NO X catalyst 11 is not arranged a three-way catalyst can be applied to the present invention. In this case, oxygen from the branch part 3 a and HC and CO from the branch part 3 b react with each other in the NO X catalyst 11.
[0041]
【The invention's effect】
The temperature of the catalyst can be increased effectively and quickly.
[Brief description of the drawings]
FIG. 1 is an overall view of an internal combustion engine.
FIG. 2 is a front view of the turning device.
FIG. 3 is a view schematically showing an outlet and an inlet of Y-shaped tubes 3 and 4;
FIG. 4 is a diagram schematically showing an outlet and an inlet of a Y-tube 3, 4 in another embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1a ... 1st cylinder group 1b ... 2nd cylinder group 3, 4 ... Y-shaped pipe 11 ... NO X catalyst 12 ... Three-way catalyst 13 ... Swivel device

Claims (4)

複数の気筒を一対の気筒群に分割し、これら気筒群に接続された一対の上流側排気通路が合流して形成される下流側排気通路内に酸化能を有する触媒を配置し、該触媒の温度を上昇させるために、一方の上流側排気通路から下流側排気通路内に流出する排気ガスの空燃比をリーンに保持しかつ他方の上流側排気通路から下流側排気通路内に流出する排気ガスの空燃比をリッチに保持すると共に、このとき下流側排気通路内に流入する排気ガス全体の平均空燃比が理論空燃比又はわずかばかりリッチになるようにした内燃機関の排気浄化装置において、前記触媒上流の下流側排気通路内に、一方の上流側排気通路からの排気ガスと他方の上流側排気通路からの排気ガスとを混合する混合手段を配置し、前記混合手段と前記触媒間の下流側排気通路を互いに並列に延びる一対の分岐通路から形成し、これら分岐通路内にそれぞれ酸化能を有する追加の触媒を配置した内燃機関の排気浄化装置。A plurality of cylinders are divided into a pair of cylinder groups, and a catalyst having oxidizing ability is disposed in a downstream exhaust passage formed by joining a pair of upstream exhaust passages connected to the cylinder groups. Exhaust gas that maintains the air-fuel ratio of the exhaust gas flowing out from one upstream exhaust passage into the downstream exhaust passage in a lean manner and flows out from the other upstream exhaust passage into the downstream exhaust passage in order to increase the temperature In the exhaust gas purification apparatus for an internal combustion engine, the catalyst is maintained at a rich air-fuel ratio, and at this time, the average air-fuel ratio of the entire exhaust gas flowing into the downstream exhaust passage is made the stoichiometric air-fuel ratio or slightly richer. A mixing means for mixing the exhaust gas from one upstream exhaust passage and the exhaust gas from the other upstream exhaust passage is disposed in the upstream downstream exhaust passage, and the downstream side between the mixing means and the catalyst Exhaust Was formed from a pair of branch passages extending in parallel with each other, an exhaust purifying apparatus for an internal combustion engine arranged an additional catalyst having respective oxidation ability of these branch passage. 前記混合手段を、排気ガスが下流側排気通路のほぼ中心軸線周りに旋回するように排気ガスを案内する旋回装置から形成した請求項1に記載の内燃機関の排気浄化装置。 2. The exhaust gas purification apparatus for an internal combustion engine according to claim 1, wherein the mixing means is formed of a swirling device that guides the exhaust gas so that the exhaust gas swirls around a substantially central axis of the downstream exhaust passage . 前記内燃機関において燃焼がリーン空燃比のもとで継続的に行われるようになっており、前記触媒を、流入する排気ガスの空燃比がリーンのときに流入する排気ガス中のNO を蓄え、流入する排気ガスの空燃比が低下したときに排気ガス中に還元剤が含まれていると蓄えているNO を還元して蓄えているNO の量が減少するNO 触媒から形成した請求項1に記載の内燃機関の排気浄化装置。 In the internal combustion engine, combustion is continuously performed under a lean air-fuel ratio, and the catalyst stores NO X in the exhaust gas flowing in when the air-fuel ratio of the exhaust gas flowing in is lean. , the air-fuel ratio of the inflowing exhaust gas formed from NO X catalyst amount of the NO X which the NO X that accumulated to contain a reducing agent in the exhaust gas are stored by reduction decreases upon reduction The exhaust emission control device for an internal combustion engine according to claim 1. 前記追加の触媒を三元触媒から形成した請求項1に記載の内燃機関の排気浄化装置。The exhaust purification device for an internal combustion engine according to claim 1, wherein the additional catalyst is formed of a three-way catalyst .
JP2002142581A 2002-05-17 2002-05-17 Exhaust gas purification device for internal combustion engine Expired - Lifetime JP4224984B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002142581A JP4224984B2 (en) 2002-05-17 2002-05-17 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002142581A JP4224984B2 (en) 2002-05-17 2002-05-17 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2003328742A JP2003328742A (en) 2003-11-19
JP4224984B2 true JP4224984B2 (en) 2009-02-18

Family

ID=29702828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002142581A Expired - Lifetime JP4224984B2 (en) 2002-05-17 2002-05-17 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4224984B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110239631A1 (en) * 2010-04-05 2011-10-06 Caterpillar Inc. Ring Reductant Mixer
JP2019183666A (en) * 2018-04-03 2019-10-24 いすゞ自動車株式会社 Exhaust pipe
JP6885983B2 (en) * 2019-04-08 2021-06-16 メタウォーター株式会社 Plumbing unit
CN114577543A (en) * 2022-02-18 2022-06-03 中国环境科学研究院 System and method for detecting emission amount of particulate matters in tail gas

Also Published As

Publication number Publication date
JP2003328742A (en) 2003-11-19

Similar Documents

Publication Publication Date Title
JP2586738B2 (en) Exhaust gas purification device for internal combustion engine
KR100287050B1 (en) Method and apparatus for purifying exhaust gas of an engine
US6378298B2 (en) Exhaust purifying apparatus and method for internal combustion engine
US6253545B1 (en) Internal combustion engine having lean NOx catalyst
EP1689984B1 (en) Exhaust gas control apparatus for internal combustion engine
JP3791470B2 (en) Exhaust gas purification device for internal combustion engine
JP4224984B2 (en) Exhaust gas purification device for internal combustion engine
JP3580180B2 (en) Exhaust gas purification device for internal combustion engine
JP3695378B2 (en) Exhaust gas purification device
JP3577946B2 (en) Compression ignition type internal combustion engine having a combustion type heater
JP3570237B2 (en) Exhaust gas purification device for internal combustion engine
JP2000145436A (en) Exhaust emission control device for internal combustion engine
JP2006348904A (en) Exhaust emission control device for internal combustion engine
JP2018123698A (en) Exhaust emission control device for internal combustion engine
JP3846355B2 (en) Exhaust gas purification device for internal combustion engine
JP3613660B2 (en) Exhaust gas purification device for internal combustion engine
JP2004150382A (en) Exhaust emission control device of internal combustion engine
JP3972727B2 (en) Exhaust gas purification device for internal combustion engine
JP3912170B2 (en) Exhaust gas purification device for internal combustion engine
JP3324475B2 (en) Exhaust gas purification device for internal combustion engine
JP2001003732A (en) Exhaust emission control device for internal combustion engine
JP3846361B2 (en) Exhaust gas purification device for internal combustion engine
JP3891034B2 (en) Exhaust gas purification device for internal combustion engine
JP3570262B2 (en) Exhaust gas purification device for internal combustion engine
JP2852589B2 (en) Exhaust gas purification device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4224984

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131205

Year of fee payment: 5

EXPY Cancellation because of completion of term